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Abstract

Quantum state tomography, which aims to reconstruct quantum states described

by density matrices, is becoming increasingly important in many scientific stud-

ies involving quantum systems. This paper considers the reconstruction of high-

dimensional low-rank density matrices based on Pauli measurements. In particular

it focuses on estimation of eigenspace for a large low-rank density matrix. Both or-

dinary principal component analysis (PCA) and iterative thresholding sparse PCA

(ITSPCA) are studied and optimal rates of convergence are established. Minimax

lower bounds for eigenspace estimation under the spectral and Frobenius norms are

derived. It is shown that the convergence rates of the ITSPCA algorithm matches

the minimax lower bounds and the procedure is thus rate-optimal. With these PCA

estimators, we reconstruct the large low-rank density matrix and obtain the optimal

convergence rate. A simulation study is carried out to investigate the finite sample

performance of the proposed estimators of the density matrices.
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1 Introduction

Modern scientific studies often need to learn and engineer quantum systems. Examples

include quantum computation, quantum information, and quantum simulation (Nielsen

and Chuang (2000) and Wang (2011, 2012)). A quantum system is described by its state,

and the state is often characterized by a complex matrix called density matrix. For the

study of a quantum system, it is important but often difficult to reconstruct the quantum

state (density matrix). The literature refers to this reconstruction of the quantum state

as quantum state tomography, which is based on observations obtained from measuring

identically prepared quantum systems. Traditionally, quantum state tomography employs

classical statistical models and methods to deduce quantum states from quantum mea-

surements. However, the size of the density matrix usually grows exponentially with the

size of the quantum system, and thus, quantum state tomography requires the recovery of

high-dimensional density matrices. It is well known that classical statistical approaches are

neither efficient nor effective in estimating large density matrices.

Cai et al. (2016) developed a rate-optimal density matrix estimator based on Pauli mea-

surements, under the assumption that the density matrix has a sparse representation under

the Pauli matrices. A thresholding procedure is proposed to recover the density matrix.

However, the sparsity assumption does not hold in general under the Pauli representation

when the density matrix is of low-rank (see Wang (2013)). That is, the low-rank density

matrices are not included in their sparse density matrix class. Spectral decomposition

indicates that a low-rank density matrix ρ can be decomposed as follows:

ρ =
r∑

ν=1

λνqνq
†
ν ,

where r is a finite rank, † denotes conjugate transpose, λν ’s are the eigenvalues of ρ, and

qν ∈ Cd are the eigenvectors corresponding to λν . Recently, Koltchinskii and Xia (2015)

investigated the optimal estimation of low-rank density matrices under the general low-rank

density matrix class. For example, they established the minimax lower bound for quantum

versions of Kullback-Leibler divergence and of Hellinger distance, and Schatten norm and

showed that the least squared estimator with von Neumann entropy penalization achieves

the minimax lower bound. Their study mainly focused on reconstructing the low-rank

density matrix itself. However, we often have an interest in estimating eigenspace, which

also plays an important role in reconstructing low-rank density matrices. Furthermore,

the recent development in high-dimensional statistics indicates that the optimal rate of

estimating eigenspace is depending on the sparsity of eigenvectors (see, for example, Ma

(2013), Cai, Ma, and Wu (2013, 2015), Vu and Lei (2013), Johnstone and Lu (2009), and

Birnbaum et al. (2013)). The low-rank density matrix class considered in Koltchinskii and

Xia (2015) is broad, and thus their minimax lower bound may not be sharp under the

2



sparse eigenvector condition.

The present paper considers the problem of eigenspace estimation for a quantum spin

system based on Pauli measurements. Since all Pauli matrices have ±1 eigenvalues, Pauli

measurements take discrete values 1 and −1, and their distributions can be characterized

by binomial distributions (Wang (2013) and Cai et al. (2016)). Statistically, the problem

of eigenspace estimation lies in the framework of high-dimensional statistics with binomial

distributions, where both the matrix size and sample size diverge to infinity. We first

analyze the asymptotic behavior of the ordinary principal component analysis (PCA) esti-

mator and establish the optimal convergence rate when the eigenvectors are dense. We then

consider the setting where the eigenvectors are sparse. Under the sparsity condition, we

establish the minimax lower bound for the eigenspace estimation problem and show that

the iterative thresholding sparse PCA (ITSPCA) (Ma (2013)) can achieve the minimax

lower bound, and thus its convergence rate is rate-optimal. The convergence rate and min-

imax lower bound are obtained by asymptotic analysis for binomial distributions instead

of usual normal distributions. Using the ITSPCA estimator, we propose an estimator for

the eigenvalues, which leads to the reconstruction of the density matrix. The proposed

low-rank density matrix estimators also can obtain the optimal convergence rate.

The rest of paper proceeds as follows. Section 2 reviews the quantum state, density

matrix, and Pauli matrices and describes the density matrix representation through Pauli

matrices. Section 3 provides the iterative thresholding algorithm and presents a sparse con-

dition. Section 4 establishes the asymptotic theory for the iterative thresholding estimator

and the minimax lower bound of eigenspace estimators for spectral and Frobenius norms

under the sparsity assumption, where both the matrix size and sample size go to infinity.

Section 5 proposes the eigenvalue and low-rank density matrix estimators and derives their

convergence rates. Section 6 features a simulation study to illustrate the finite sample

performances of the estimators, and in Section 7 we conducted a Monte Carlo simulation

to analyze the real density matrices. Section 8 outlines the key ideas and main steps of the

proofs, and Appendix details technical proofs.

2 Quantum state tomography with Pauli measurement

2.1 Quantum state and Pauli matrices

For a d-dimensional quantum system, we describe its quantum state by a density matrix

ρ on d-dimensional complex space Cd, where density matrix ρ is a d-by-d complex matrix

satisfying (1) Hermitian, that is, ρ is equal to its conjugate transpose; (2) positive semi-

definite; (3) unit trace, that is, tr(ρ) =
∑r

ν=1 λν = 1.

The density matrix ρ can be expressed by the d-dimensional Pauli matrices. Specifically,
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let

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −

√
−1√

−1 0

)
, and σ3 =

(
1 0

0 −1

)
,

where σ1,σ2, and σ3 are called Pauli matrices. Tensor products are used to define high-

dimensional Pauli matrices. Let d = 2b for some integer b. We form b-fold tensor products

of σ0,σ1,σ2, and σ3 to obtain d-dimensional Pauli matrices

GP =
{
Bj = σ`1 ⊗ σ`2 ⊗ · · · ⊗ σ`b , (`1, `2, . . . , `b) ∈ {0, 1, 2, 3}b

}
,

and the cardinality of GP is p = 4b. We set B1 = Id, where Id is the d-dimensional identity

matrix. Denote by Cd×d the space of all d-by-d complex matrix equipped with the Frobenius

norm. Proposition 1 in Cai et al. (2016) showed that all Pauli matrices B1, . . . ,Bp form

an orthogonal basis for complex Hermitian matrices in Cd×d, and any density matrix ρ can

be expanded under the Pauli basis as follows:

ρ = d−1

(
Id +

p∑
j=2

βjBj

)
,

where coefficients βj satisfy βj = tr(ρBj) and |βj| ≤ 1.

2.2 Pauli measurements and density matrix estimation

Quantum measurements are often based on observables, where an observable is defined as

a Hermitian matrix on Cd. The Pauli matrices are widely used in quantum physics and

quantum information science to perform quantum measurements. Suppose that an experi-

ment is conducted to perform measurements on each Pauli observable Bj independently for

n quantum systems which are identically prepared in the same quantum state ρ. As Bj has

eigenvalues ±1, the theory of quantum mechanics indicates that the Pauli measurements

take values 1 and −1, and thus are Bernoulli trials. Denote by Nj the average of the n

measurement outcomes obtained from measuring Bj, j = 2, . . . , p. Then n(Nj + 1)/2 fol-

lows a binomial distribution with n trials and cell probability (1+βj)/2, where E(Nj) = βj

and V ar(Nj) = (1 − β2
j )/n (see Cai et al. (2016)). The goal of this paper is to estimate

eigenspace of ρ based on data N2, . . . , Np.

To estimate the eigenspace of the density matrix ρ, we need an initial estimator of ρ

based on the Pauli measurements N2, . . . , Np. From the binomial distribution, we easily

derive that each Nj is MLE and UMVUE of βj. Thus, a natural estimator of ρ is given by

ρ̂ = (ρ̂ij)i,j=1,...,d =
1

d

(
Id +

p∑
j=2

β̂jBj

)
, (2.1)

where β̂j = Nj.
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3 Eigenspace estimation

3.1 Model set-up

Assume that a density matrix ρ has finite rank r. By the spectral decomposition, we have

ρ =
r∑

ν=1

λνqνq
†
ν , (3.1)

where λν ’s are eigenvalues such that λ1 ≥ λ2 ≥ · · · ≥ λr > 0,
∑r

ν=1 λν = 1, and their

corresponding eigenvectors are q1, . . . ,qr ∈ Cd. In this paper we consider estimation of

the eigenspace spanned by the first m eigenvectors of ρ, that is, our aim is to estimate

the eigenspace generated by Q = (q1, . . . ,qm) ∈ Cd×m, where m is a given integer. To

make the eigenspace estimation problem well defined, we need to assume that m ≤ r and

λm−λm+1 > Cλ for some generic positive constant Cλ free of n and d, that is, there is a gap

between eigenvalues λm and λm+1 so that the corresponding eigenspaces are well separated

for investigating asymptotic properties of the eigenspace estimation.

3.2 Ordinary PCA

We define the eigenspace estimator of Q by the eigenspace spanned by the first m eigen-

vectors of the density matrix estimator ρ̂ in (2.1). As the m eigenvectors are from ordinary

PCA, the defined eigenspace estimator is called the ordinary PCA estimator and denote

by Q̂. Before investigating its asymptotic properties, we first fix some notations. For

x = (x1, . . . , xd)
T ∈ Cd and A = (Aij) ∈ Cd×d, define the `α-norms,

‖x‖α =

(
d∑
i=1

|xi|α
)1/α

, ‖A‖α = sup{‖Ax‖α , ‖x‖α = 1}, 1 ≤ α ≤ ∞.

Then ‖A‖2 is called the matrix spectral norm and equal to the square root of the largest

eigenvalue of AA†, and

‖A‖1 = max
1≤j≤d

d∑
i=1

|Aij|, ‖A‖∞ = max
1≤i≤d

d∑
j=1

|Aij|.

We have the following inequality,

‖A‖2
2 ≤ ‖A‖1 ‖A‖∞ .

The Frobenius norm of A is denoted by ‖A‖F =
√

tr(A†A). For a symmetric or complex

Hermitian matrix A, ‖A‖F is the square root of the sum of squared eigenvalues, ‖A‖2 is

equal to its largest absolute eigenvalue, and ‖A‖2 ≤ ‖A‖1 = ‖A‖∞ . Denote by C a generic

constant whose values are free of n and p and may change from appearance to appearance.
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To measure the performances of eigenspace estimators, we define a notation of distance

between eigenspaces as follows. We define the distance between two eigenspaces spanned

by Q1 and Q2 by

‖ sin(Q1,Q2)‖2
F = ‖Q1Q

†
1(Q2Q

†
2)⊥‖2

F (3.2)

and

‖ sin(Q1,Q2)‖2
2 = ‖Q1Q

†
1(Q2Q

†
2)⊥‖2

2, (3.3)

where Q1Q
†
1 and Q2Q

†
2 are projection matrices on eigenspaces Q1 and Q2, respectively,

and for a given projection matrix P, P⊥ = Id − P. The distances are referred to as the

canonical angles between Q1 and Q2 that generalize the notion of angles between lines.

The following theorem establishes the convergence rate of the ordinary PCA estimator.

Theorem 1 Suppose that nα1 ≤ d ≤ exp(nα2) for some α1 > 1/2 and α2 < 1. Then we

have

sup
Q∈Vd,m

E
[
‖ sin(Q, Q̂)‖2

2

]
≤ sup

Q∈Vd,m
E
[
‖ sin(Q, Q̂)‖2

F

]
≤ Cn−1, (3.4)

where Vd,m = {Q ∈ Cd×m : Q†Q = Id} is the complex Stiefel manifold of d-by-m orthonor-

mal matrices, and C is a generic constant free of n and d.

Remark 1 From Theorem 1 we can see that ordinary PCA has convergence rate n−1/2

regardless of sparsity condition on eigenvectors. As the PCA approach does not utilize any

sparse eigenvectors, it can achieve only n−1/2 convergence rate even for a density matrix

with sparse eigenvectors. We will show later that the convergence rate is suboptimal for

the sparse case.

3.3 Sparse eigenvectors and iterative thresholding PCA estima-

tor

As the complexity of a quantum system is exponentially increasing with its components,

its dimension d and density matrix grow exponentially in its size and are often very large.

As in usual high-dimensional statistics, we may impose sparsity on the eigenvectors of its

density matrix and estimate the eigenspace spanned the first m sparse eigenvectors. For

A ∈ Cd×m, AIJ denotes the submatrix of A formed by rows and columns whose indices

are in I and J , respectively, where I and J are subsets of {1, · · · , d}. When I or J includes

all the indices, we replace them with dot. For example, A·J is the submatrix of A with all

rows and columns indexed by J .

We impose the sparsity condition on the first r eigenvectors of ρ in (3.1) as follows. For

each ν = 1, . . . , r, assume that for some δ ∈ [0, 2),

qν ∈ Ξδ(π(d))
def
=

{
a = (a1, . . . , ad) :

d∑
ν=1

|aν |δ ≤ π(d) and
d∑

ν=1

|aν |2 = 1

}
, (3.5)
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where π(d) is a deterministic function of d that diverges slowly such as log d. The sparsity

condition is usually considered in high-dimensional statistics, for example, sparse covariance

matrix estimation (Bickel and Levina (2008), Cai and Liu (2011), and Cai and Zhou (2012)),

sparse integrated volatility matrix estimation (Kim et al. (2016), Tao et al. (2013a, 2013b),

and Wang and Zou (2013)), and sparse PCA (Birnbaum et al. (2013), Johnstone and Lu

(2009), Ma (2013), Vu et al. (2013), and Vu and Lei (2013)).

The orthogonal iteration may be used to compute the leading eigenspace of a given

Hermitian matrix (Golub and Loan (1996)), which yields the ordinary PCA estimator. As

we have seen in Section 3.2, the ordinary PCA estimator has the convergence rate n−1/2.

However, the ordinary PCA estimation may not be the best way to estimate the sparse

eigenvectors in terms of mean squared error (MSE). In order to obtain better eigenspace

estimators under sparsity, we adapt the iterative thresholding algorithm known as the

iterative thresholding sparse PCA (ITSPCA) proposed by Ma (2013).

Algorithm 1 Iterative thresholding sparse PCA (ITSPCA) (Ma (2013))

Input:

(1) Estimated density matrix ρ̂;

(2) Target subspace dimension m;

(3) Initial orthonormal matrix Q̂(0);

(4) Thresholding function T (t, γ), and threshold levels γnj, j = 1, . . . ,m.

1: repeat

2: Multiplication: T(k) = (t
(k)
νj ) = ρ̂Q̂(k−1);

3: Thresholding: T̂(k) = (t̂
(k)
νj ), with t̂

(k)
νj = T (t

(k)
νj , γnj);

4: QR factorization: Q̂(k)R̂(k) = T̂(k);

5: until convergence.

As described in Algorithm 1, the ITSPCA method has three steps; multiplication,

thresholding, and QR factorization. Without the thresholding step, the ITSPCA method

returns to the ordinary orthogonal iteration method. The thresholding step removes weak

signal elements of T(k) with a user-specified thresholding function T which satisfies

|T (t, γ)− t| ≤ γ and T (t, γ)1(|t|≤γ) = 0 for all t and all γ > 0, (3.6)

where 1E denotes the indicator function of an event E. Note that both hard thresholding

rule TH(t, γ) = t1(|t|>γ) and soft thresholding rule TS(t, γ) = e
√
−1 θ max(0, |t| − γ) satisfy

(3.6), where t = |t|e
√
−1 θ, and θ is the phase of complex number t.

To harness the ITSPCA algorithm in Algorithm 1, an appropriate initial orthonormal

matrix Q̂(0) is required. Johnstone and Lu (2009) introduced a diagonal thresholding sparse
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Algorithm 2 Diagonal thresholding sparse PCA (DTSPCA) (Johnstone and Lu (2009))

Input:

(1) Estimated density matrix ρ̂;

(2) Diagonal thresholding parameter αn.

Output: Orthonormal matrix Q̂S.

1: Selection: select the set S of coordinates:

S = {ν : ρ̂νν ≥ αn};

2: Reduced PCA: compute the eigenvectors, q̂S1 , . . . , q̂
S
|S|, of the submatrix ρ̂SS;

3: Zero-padding: construct Q̂S = (q̂1, . . . , q̂|S|) such that

q̂jS = q̂Sj , q̂jSc = 0, j = 1, . . . , |S|.

PCA (DTSPCA) method to estimate the eigenspace and showed its consistency. We can use

the DTSPCA method to obtain Q̂(0). The DTSPCA algorithm is described in Algorithm 2.

Given the output Q̂S = (q̂1, . . . , q̂|S|), we take the first m columns as the initial orthogonal

matrix, that is, Q̂(0) = (q̂1, . . . , q̂m).

4 Asymptotic theory for the eigenspace estimator

4.1 Convergence rate

Assume that density matrix ρ belongs to the following class,

Fδ(π(d)) =

{
ρ =

r∑
ν=1

λνqνq
†
ν : qν ∈ Ξδ(π(d)) for all ν ∈ {1, . . . , r}

}
, (4.1)

where Ξδ(π(d)) is defined in (3.5). We consider the following ITSPCA estimator Q̂(Rs) for

ρ. For a theoretical study, we always stop Algorithm 1 after Rs iterations, where

Rs =
1.1`S1

`Sm − `Sm+1

(log n+ 0.5 log(d ∨ n)),

`Sj = `j(ρ̂SS) ∨ 0 , and `j(ρ̂SS) is the j-th largest eigenvalue of ρ̂SS.

The following theorem establishes the convergence rate of the eigenspace estimator Q̂(Rs)

obtained from Algorithm 1.

Theorem 2 Assume density matrix ρ given by model (3.1) belongs to Fδ(π(d)) defined in

(4.1) so that for some δ ∈ (0, 2/3),

π(d)τ 1/2−3δ/4
n = O(1), (4.2)
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where τn =
√

log(d∨n)
nd

. Take αn = Cατn in Algorithm 2 and γnj = Cγ

√
`Sj τn in Algorithm 1

for some constant Cα and Cγ free of n and d, and let

R =
λ1

λm − λm+1

(log n+ 0.5 log(d ∨ n)).

Then there exist constants C0 and Cu such that for sufficiently large n, uniformly over

Fδ(π(d)), with probability at least 1− C0(d ∨ n)−2, and Rs ∈ [R, 2R], we have

‖ sin(Q, Q̂(Rs))‖2
2 ≤ ‖ sin(Q, Q̂(Rs))‖2

F ≤ Cuπ(d)τ 2−δ
n .

Remark 2 When δ < 2/3, condition (4.2) indicates that π(d) is at most of order d with

some positive power. In high-dimensional statistics, π(d) usually grows very slowly in d

with an example of log d, and so condition (4.2) is not restrictive.

The result of Theorem 2 can be extended to an upper bound for the mean squared

error (MSE). Note that (d ∨ n)−2 = o
(
π(d)τ 2−δ

n

)
and the loss functions, (3.2) and (3.3),

are bounded by r and 1, respectively. The following corollary is a direct consequence of

Theorem 2.

Corollary 1 Under the conditions of Theorem 2, we have

sup
ρ∈Fδ(π(d))

E
[
‖ sin(Q, Q̂(Rs))‖2

2

]
≤ sup

ρ∈Fδ(π(d))

E
[
‖ sin(Q, Q̂(Rs))‖2

F

]
≤ Cuπ(d)τ 2−δ

n .

Remark 3 Since in high-dimensional statistics, there is a constant C free of n and d such

that log(d∨n) ≤ C log d, Theorem 2 and Corollary 1 show that the ITSPCA estimator has

the convergence rate π(d)1/2 [n−1d−1 log d]
1/2−δ/4

under the Frobenius and spectral norms.

As d is often much larger than n, the convergence rate is faster than n−1/2 convergence rate

for the ordinary PCA case.

Although our main objective is to estimate the eigenspace, when individual eigenvector

qk is identifiable, it is interesting to see whether the ITSPCA method can estimate qk well.

The theorem below shows that the k-th column of Q̂(Rs) provides a good estimator of the

well separated qk.

Corollary 2 Suppose that for some k ≤ m, λk − λk+1 ≥ Cλ1 and λk−1 − λk ≥ Cλ2 for

some positive constants Cλ1 and Cλ2 free of n and d. Under the conditions of Theorem 2,

we have that the k-th column q̂
(Rs)
k of Q̂(Rs) satisfies

sup
ρ∈Fδ(π(d))

E
[
‖ sin(qk, q̂

(Rs)
k )‖2

2

]
≤ sup

ρ∈Fδ(π(d))

E
[
‖ sin(qk, q̂

(Rs)
k )‖2

F

]
≤ Cuπ(d)τ 2−δ

n .
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4.2 Optimality of the sparse PCA estimator

This section establishes the minimax lower bound for the problem of estimating the eigenspace

spanned by Q under model (3.1), uniformly over Fδ(π(d)), and shows that the ITSPCA

estimator achieves the minimax lower bound, and thus its convergence rate is optimal.

The theorem below provides a minimax lower bound for eigenspace estimation under

the Frobenius and spectral norms.

Theorem 3 For model (3.1), suppose that for some δ ∈ [0, 2),

π(d) = O(d(1−δ/2)−Nn−δ/2 logδ/2 d), (4.3)

where N is a positive constant free of n and d. Then there exists a positive constant CL

free of n and d such that for sufficiently large n,

inf
Q̌

sup
ρ∈Fδ(π(d))

E
[
‖ sin(Q, Q̌)‖2

2

]
≥ CLπ(d)

[
log d

nd

]1−δ/2

and

inf
Q̌

sup
ρ∈Fδ(π(d))

E
[
‖ sin(Q, Q̌)‖2

F

]
≥ CLπ(d)

[
log d

nd

]1−δ/2

,

where Q̌ denotes any estimator of Q based on N2, . . . , Np.

Remark 4 The lower bound in Theorem 3 matches the convergence rate of the ITSPCA

estimator in Theorem 2, and so we conclude that the ITSPCA estimator achieves the opti-

mal convergence rate under the Frobenius and spectral norms. That is, under the sparsity

condition, the convergence rate, π(d)1/2 [n−1d−1 log d]
1/2−δ/4

, of the ITSPCA estimator is

optimal, while the convergence rate, n−1/2, of the ordinary PCA estimator is sub-optimal.

On the other hand, without the sparsity assumption on eigenspace, that is, π(d) = d and

δ = 0, we can show that the minimax lower bound for estimating the eigenspace of ρ is

n−1/2. Thus, the upper bound of the ordinary PCA estimator in Theorem 1 is the optimal

rate.

Remark 5 To derive the lower bound in Theorem 3, we consider a special subclass of

Q, and take ρ = m−1QQ†, and then as usual we apply Fano’s lemma to obtain the

minimax lower bound (see also Birnbaum et al. (2013) and Vu and Lei (2013)). The key

difference between our approach and those in the literatures is that our observations are

characterized by binomial distributions instead of usual normal distributions, and as a

result more sophisticated proof arguments in Section 8 are needed to obtain the minimax

lower bounds.
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Remark 6 When δ = 0, condition (4.3) becomes π(d) = O(d1−N) with N > 0, and the

minimax lower bounds hold for π(d) very close to d. Consider δ > 0, and that d typically

grows polynomially or exponentially in n. If d grows exponentially in n, that is, d = en
κ
,

then π(d) = O(d(1−δ/2)−N(log d)δ/2(1−1/κ)), and N could be chosen very small value such

that π(d) is of order d with some positive power. In the case of d = nκ, as quantum

systems often have large d, we may consider the case of d ≥ n and take κ ≥ 1, and

thus π(d) = O(d(1−δ/2)−N−δ/(2κ)(log d)δ/2), which is of order d with some positive power.

Therefore, condition (4.3) is not restrictive.

Remark 7 Koltchinskii and Xia (2015) investigated the optimal convergence rate of low-

rank density matrix estimators under the general low-rank density matrix class. For ex-

ample, under the Pauli basis, Theorem 10 in Koltchinskii and Xia (2015) shows that the

optimal rate of estimating low-rank density matrices is n−1/2 which we can obtain by the

ordinary PCA estimator (see Theorem 5 in Section 5). Their low-rank class includes both

the dense and sparse eigenvectors, and thus the minimax rate is coming from the dense

sub-class. However, as we showed in Theorems 3 and 4, the rate n−1/2 is not optimal under

the sparse condition (3.5). Also their analysis focused on estimating a low-rank density ma-

trix itself. On the other hand, this paper devotes to investigating the eigenspace estimation

problem under the sparse condition (3.5). This analysis implies that the optimal rate of esti-

mating low-rank density matrices under the sparse condition is π(d)1/2 [n−1d−1 log d]
1/2−δ/4

(see Theorem 4 in Section 5).

5 Reconstruction of low-rank density matrices

This section proposes low-rank density matrix estimators using the ITSPCA and ordinary

PCA methods. We first develop estimators for eigenvalues of the low-rank density matrix

ρ as follows:

λ̂(Rs)
ν =

λ̃
(Rs)
ν∑r

j=1 λ̃
(Rs)
j

and λ̂∗ν =
λ̃ν∑r
j=1 λ̃j

for ν = 1, . . . , r,

where

λ̃(Rs)
ν = max

[
(q̂(Rs)

ν )†ρ̂ q̂(Rs)
ν , 0

]
, λ̃ν = max

[
q̂†νρ̂ q̂ν , 0

]
,

and q̂
(Rs)
ν and q̂ν are the ν-th column of Q̂(RS) and Q̂, respectively. Note that λ̂

(Rs)
ν and

λ̃ν are non-negative, and the sum of each set of estimated eigenvalues is 1. Using the

eigenvalue and eigenspace estimators, we can reconstruct the low-rank density matrix as

follows:

ρ̂(Rs) =
r∑

ν=1

λ̂(Rs)
ν q̂(Rs)

ν (q̂(Rs)
ν )† and ρ̂∗ =

r∑
ν=1

λ̂∗νq̂νq̂
†
ν .
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These two density matrix estimators satisfy three properties of the density matrix in Section

2.1.

The following theorems provide the convergence rates of eigenvalue estimators λ̂
(Rs)
ν and

λ̂∗ν , and low-rank density matrix estimators ρ̂(Rs) and ρ̂∗.

Theorem 4 Under the assumptions of Theorem 2 for ITSPCA, we have for ν = 1, . . . , r,

E
[
|λ̂(Rs)
ν − λν |

]
≤ Cπ(d)1/2τ 1−δ/2

n (5.1)

and

E
[
‖ρ̂(Rs) − ρ‖F

]
≤ Cπ(d)1/2τ 1−δ/2

n , (5.2)

where C is a generic constant free of n and d.

Theorem 5 Under the assumptions of Theorem 1 for ordinary PCA, we have for ν =

1, . . . , r,

E
[
|λ̂∗ν − λν |

]
≤ C(n−1 ∨ (nd)−1/2) and E [‖ρ̂∗ − ρ‖F ] ≤ Cn−1/2,

where C is a generic constant free of n and d.

Remark 8 When δ = 0, the convergence rate of E
[
‖ρ̂(Rs) − ρ‖F

]
is π(d)1/2d−1/2

(
log(d∨n)

n

)1/2

which is the same as the convergence rate of the optimal density matrix estimator under

the sparse representation in Theorem 1 (Cai et al. (2016)). Also under the sparse condition

(3.5), the minimax lower bound of estimating low-rank density matrices is π(d)1/2τ
1−δ/2
n ,

which can be established using the same sub-class employed in the proof of Theorem 3.

Remark 9 The convergence rate of ρ̂ is (d/n)1/2 under the Frobenius norm (see Lemma

3 in Cai et al. (2016)). On the other hand, the low-rank density matrix estimator has

convergence rate n1/2 which is the optimal rate under the general low-rank density matrix

class (Koltchinskii and Xia (2015)).

6 A numerical study

We conducted simulations to check the finite sample performances of the proposed estima-

tors.

6.1 Rank one case

We first considered the case where the density matrix has (3.1) with r = 1,

ρ = QQ† = d−1

(
Id +

p∑
j=2

βjBj

)
,

12



where Q ∈ Cd and βj = tr(ρBj) for j = 1, . . . , d2. The eigenvector Q was generated as

follows. First, its π(d) components were generated by π(d) i.i.d. random variables from

U1 +U2

√
−1, where Uj’s are i.i.d. uniform distributions on [−1, 1], and set the rest d−π(d)

components to be zero. Then normalize the generated vector by dividing its `2-norm so

that the generated Q satisfies ‖Q‖2 = 1. We varied π(d) from 5 log(d) to d − 1 with

d = 64, 128. The whole procedure repeated 200 times.

For each simulated dataset, we estimated Q using the ITSPCA with hard thresh-

old (ITS-H), ITSPCA with soft threshold (ITS-S), DTSPCA, and ordinary PCA algo-

rithms. The MSEs of eigenspace estimator Q̂ and low-rank density matrix estimator ρ̂,

E‖ sin(Q̂,Q)‖2
F and E‖ρ̂ − ρ‖2

F , were calculated by averaging the corresponding squared

norms of Q̂ and ρ̂ over 200 runs. For the ITSPCA and DTSPCA algorithms in Algo-

rithm 1 and 2, respectively, we selected tuning parameters (Cα, Cγ), to be (0.1, 2), (0.5, 1),

and (0.1) for ITS-H, ITS-S, and DTSPCA, respectively, by searching in the range of

{3, 2.5, . . . , 0.5, 0.1}2 for minimizing MSE. We used hard thresholding TH(t, γ) = t1(|t|>γ)

and soft threshold TS(t, γ) = e
√
−1θ max(0, |t| − γ) for the thresholding step in Algorithm

1 for the ITS-H and ITS-S, respectively, where t = |t|e
√
−1θ, and stopped iterating once

‖ sin(Q̂(k), Q̂(k−1))‖2 ≤ n−1d−1.

Figure 1 plots the relative efficiencies of the ITS-H, ITS-S, DTSPCA, and PCA estima-

tors with respect to the PCA estimator against the sample size n for different d and π(d),

and Figure 2 plots their MSEs against π(d) for different n and d. The numerical values of

the MSEs are reported in Table 1. Figures 1 and 2 show that the MSEs usually decrease

in sample size n; for sparse eigenvectors with π(d) = 5 log d or 5d1/2, ITSPCA estimators

usually have superior performance over the DTSPCA and PCA estimators; the MSEs of

ITSPCA and DTSPCA estimators become worse as π(d) increases, while the performance

of the PCA estimator is robust against π(d) and better than ITSPCA estimators in the

non-sparse case where π(d) = d − 1. MSEs for the density matrix estimators in Table

1 have the similar patterns to the eigenspace estimators, and ρ̂ in (2.1) has much worse

performance than the PCA estimator.

6.2 Rank four case

We simulated density matrix using (3.1) with r = 4. Specifically, choose arbitrary eigenspace

Q0 ∈ Vπ(d),4, where Vh,k is the Stiefel manifold of h-by-k orthonormal matrices. First,

we generated a π(d)-by-π(d) positive definite Hermitian matrix from uniform random

variables, for example, diagonal elements are 1 and for the off-diagonal elements, the

(h, k)-th and (k, h)-th elements are U1 +
√
−1U2, where Ui’s follow uniform distribu-

tions on (−
√

0.5,
√

0.5). Then form d-by-4 matrix Q = (QT
0 , 0)T . We varied π(d) from

5 log(d) to d − 1. Eigenvalues Λ are chosen from (0.25, 0.25, 0.25, 0.25), (0.4, 0.3, 0.2, 0.1),

13



Table 1: The MSEs of ITS-H, ITS-S, DTSPCA, and PCA estimators and corresponding
low-rank density matrix estimators for d = 128, and n = 100, 200, 500, 1000, 2000.

MSE (eigenspace)×102 MSE (density matrix)×102

d π(d) n ITS-H ITS-S DTSPCA PCA ITS-H ITS-S DTSPCA PCA ρ̂

64 5 log(d) 100 0.3008 0.4383 1.1629 0.9627 0.6016 0.8767 2.3258 1.9254 63.0741

200 0.1453 0.2155 0.5489 0.4909 0.2906 0.4310 1.0977 0.9819 31.5377

500 0.0577 0.0878 0.2251 0.1929 0.1153 0.1757 0.4501 0.3858 12.6377

1000 0.0284 0.0443 0.1163 0.0948 0.0568 0.0885 0.2327 0.1895 6.3216

2000 0.0142 0.0224 0.0438 0.0485 0.0284 0.0447 0.0877 0.0970 3.1531

5d1/2 100 0.8961 1.0046 4.8367 0.9680 1.7921 2.0093 9.6733 1.9359 63.0148

200 0.4082 0.5295 2.4086 0.4855 0.8165 1.0590 4.8173 0.9709 31.5230

500 0.1347 0.2129 1.0878 0.1941 0.2693 0.4259 2.1756 0.3882 12.6007

1000 0.0593 0.1085 0.4885 0.0961 0.1186 0.2170 0.9771 0.1922 6.2871

2000 0.0304 0.0576 0.2433 0.0484 0.0607 0.1151 0.4866 0.0969 3.1456

d− 1 100 1.3800 1.5670 12.3886 0.9876 2.7600 3.1340 24.7772 1.9751 63.0856

200 0.6485 0.7903 6.3141 0.4871 1.2970 1.5806 12.6282 0.9742 31.5273

500 0.1952 0.3325 2.4912 0.1930 0.3905 0.6649 4.9825 0.3860 12.5754

1000 0.0957 0.1713 1.3645 0.0971 0.1914 0.3427 2.7290 0.1943 6.3095

2000 0.0485 0.0881 0.5835 0.0493 0.0970 0.1762 1.1671 0.0985 3.1518

128 5 log(d) 100 0.2084 0.3270 1.4792 0.9979 0.4169 0.6539 2.9584 1.9958 127.2219

200 0.0883 0.1600 0.6500 0.4916 0.1765 0.3200 1.3001 0.9832 63.4730

500 0.0360 0.0691 0.2996 0.1954 0.0721 0.1382 0.5991 0.3909 25.3742

1000 0.0182 0.0359 0.1593 0.0990 0.0364 0.0718 0.3186 0.1979 12.6988

2000 0.0090 0.0188 0.0775 0.0498 0.0180 0.0377 0.1550 0.0995 6.3408

5d1/2 100 0.5461 0.7029 4.8951 0.9819 1.0921 1.4058 9.7902 1.9638 126.9431

200 0.2097 0.3514 2.2088 0.4856 0.4195 0.7029 4.4177 0.9711 63.5284

500 0.0841 0.1468 0.9327 0.1968 0.1682 0.2937 1.8654 0.3936 25.4182

1000 0.0430 0.0760 0.5597 0.0988 0.0860 0.1519 1.1195 0.1977 12.7027

2000 0.0216 0.0388 0.2378 0.0496 0.0433 0.0776 0.4756 0.0993 6.3566

d− 1 100 1.6628 1.4878 19.1328 0.9926 3.3256 2.9755 38.2656 1.9851 127.0068

200 0.7028 0.7814 11.4092 0.4903 1.4056 1.5629 22.8184 0.9807 63.5389

500 0.2354 0.3478 5.1377 0.1964 0.4708 0.6957 10.2754 0.3929 25.4193

1000 0.1144 0.1838 2.5418 0.0979 0.2287 0.3676 5.0837 0.1957 12.7010

2000 0.0553 0.0962 1.2805 0.0488 0.1106 0.1924 2.5610 0.0976 6.3562

(0.5, 0.3, 0.19, 0.01). Then we obtain the density matrix as follows:

ρ =
4∑

ν=1

λνqνq
†
ν = d−1

(
Id +

d2∑
j=2

βjBj

)
,
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Figure 1: Plots of relative efficiencies against sample size for the ITS-H, ITS-S, DTSPCA,
and PCA estimators with respect to the PCA estimator for π(d) = 5 log(d), 5d1/2, d − 1
with d = 64 and 128. (a)-(c) are plots of relative efficiencies based on the Frobenius norm
for π(d) = 5 log(d), 5d1/2, d − 1, respectively, with d = 64. (d)-(f) are plots of relative
efficiencies based on the Frobenius norm for π(d) = 5 log(d), 5d1/2, d− 1, respectively, with
d = 128.

where Q = (q1, . . . ,q4), d = 27. With ρ above, we computed βj = tr(ρBj) for j =

1, . . . , 214, where Bj’s are Pauli’s matrices. For each simulated dataset, we estimated Q for

m = 4 and used the same scheme as the rank one case.

Figure 3 plots the relative efficiencies of the ITS-H, ITS-S, DTSPCA, and PCA esti-
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Figure 2: Plots of MSE against π(d) for the ITS-H, ITS-S, DTSPCA, and PCA estimators
for n = 100, 500, 2000 and d = 64, 128. (a)-(c) are plots of MSEs based on the Frobenius
norm for n = 100, 500, 2000, respectively, with d = 64. (d)-(f) are plots of MSEs based on
the Frobenius norm for n = 100, 500, 2000, respectively, with d = 128.

mators with respect to the PCA estimator against the sample size n for different π(d) and

eigenvalues Λ, and Figure 2 plots their MSEs against π(d) for different sample size and

eigenvalues Λ. The numerical values of the MSEs are reported in Table 2. As the effects

of n and π(d) are similar to the rank one case, we focus on the effects of the magnitude

of the fourth eigenvalue λ4. Figures 3 and 4 show that the MSEs decrease in difference of

16



eigenvalues; when the difference of eigenvalues is small like λ4 = 0.01, all of the estimators

show worse performance, and so the relative efficiencies are very close.

7 An empirical study

We conducted a Monte Carlo simulation to analyze the density matrices which are estimated

by Häffner et al. (2005). We used two density matrices with d = 27 and 28. Denote by ρ7

and ρ8 density matrices with d = 27 and d = 28, respectively. Based on the density matrix

ρ, we first calculated βj = tr(ρBj), where Bj’s are Pauli’s matrices and then, generated

n Pauli measurements for each Pauli’s matrix. With generated Pauli measurements, we

estimated ρ by ITS-H, ITS-S, DTSPCA, and PCA. The tuning parameters were used

(0.1, 2), (0.5, 1), and (0.1) for ITS-H, ITS-S, and DTSPCA, respectively, and we used the

result of the rank test in Kim and Wang (2017) to determine the rank r. We varied n from

100 to 2000. The whole procedure repeated 200 times.

Figure 5 plots the absolute values of elements of eigenvectors corresponding to the first

six eigenvectors for ρ7 and ρ8, and the first six eigenvalues for ρ7 and ρ8 are (0.7825, 0.0605,

0.0445, 0.0324, 0.023, 0.0167) and (0.7514, 0.0609, 0.0456, 0.04, 0.0233, 0.0189), respectively,

which show that the density matrices, ρ7 and ρ8, have a low-rank and sparse eigenvectors.

That is, the assumptions in this paper may be satisfied, and the iterative thresholding

methods (ITSPCA and DTSPCA) may work well.

Table 3 presents MSEs of ITS-H, ITS-S, DTSPCA, and PCA density estimators. Figure

6 plots relative efficiencies with respect to the PCA estimators against the sample size for

d = 128 and 256. From Table 3 and Figure 6, we can see that MSEs decrease according to

the sample size n, and the iterative thresholding methods usually have smaller MSEs than

PCA density matrix estimator or ρ̂.

8 Proofs

Denote by C and C1 generic constants whose values are free of n and p and may change

from appearance to appearance.
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Table 2: The MSEs of ITS-H, ITS-S, DTSPCA, and PCA estimators and corre-
sponding low-rank density matrix estimators for n = 100, 200, 500, 1000, 2000, Λ =
(0.25, 0.25, 0.25, 0.25), (0.4, 0.3, 0.2, 0.1), (0.5, 0.3, 0.19, 0.01), and π(d) = 5 log d, 5d1/2, d−1
with d = 128.

MSE (eigenspace) MSE (density matrix)

π(d) Λ n ITS-H ITS-S DTSPCA PCA ITS-H ITS-S DTSPCA PCA ρ̂

5 log d (0.25, 0.25, 0.25, 0.25) 100 0.1861 0.1941 0.3532 0.6215 0.0240 0.0248 0.0448 0.0781 1.2792

200 0.0722 0.0925 0.1724 0.3099 0.0095 0.0119 0.0220 0.0391 0.6386

500 0.0231 0.0353 0.0648 0.1240 0.0031 0.0046 0.0083 0.0157 0.2555

1000 0.0109 0.0175 0.0310 0.0622 0.0015 0.0023 0.0040 0.0079 0.1277

2000 0.0052 0.0085 0.0151 0.0309 0.0007 0.0011 0.0019 0.0039 0.0638

(0.4, 0.3, 0.2, 0.1) 100 0.5935 0.5626 0.7734 1.2608 0.0309 0.0345 0.0519 0.0902 1.2787

200 0.2444 0.2491 0.3923 0.6903 0.0128 0.0150 0.0249 0.0436 0.6384

500 0.0846 0.0903 0.1488 0.2758 0.0044 0.0055 0.0092 0.0165 0.2553

1000 0.0415 0.0440 0.0721 0.1379 0.0019 0.0027 0.0044 0.0080 0.1276

2000 0.0195 0.0211 0.0344 0.0687 0.0009 0.0013 0.0020 0.0040 0.0638

(0.5, 0.3, 0.19, 0.01) 100 1.1132 1.1137 1.2272 1.4019 0.0257 0.0321 0.0527 0.0851 1.2782

200 1.0371 1.0486 1.0997 1.1951 0.0143 0.0170 0.0275 0.0455 0.6378

500 1.0031 1.0125 1.0219 1.0736 0.0070 0.0078 0.0117 0.0194 0.2552

1000 0.9887 0.9975 0.9873 1.0310 0.0040 0.0044 0.0057 0.0100 0.1275

2000 0.9741 0.9817 0.9514 1.0041 0.0022 0.0024 0.0029 0.0051 0.0637

5d1/2 (0.25, 0.25, 0.25, 0.25) 100 0.6163 0.4233 0.5953 0.6201 0.0775 0.0533 0.0747 0.0779 1.2799

200 0.2571 0.2169 0.3132 0.3085 0.0325 0.0274 0.0394 0.0389 0.6385

500 0.0813 0.0882 0.1343 0.1239 0.0104 0.0112 0.0170 0.0157 0.2553

1000 0.0347 0.0442 0.0683 0.0620 0.0044 0.0056 0.0086 0.0079 0.1276

2000 0.0152 0.0220 0.0336 0.0308 0.0020 0.0028 0.0042 0.0039 0.0638

(0.4, 0.3, 0.2, 0.1) 100 1.1828 0.9932 1.0824 1.2713 0.0779 0.0631 0.0839 0.0899 1.2790

200 0.5289 0.4585 0.5603 0.6914 0.0329 0.0306 0.0420 0.0435 0.6382

500 0.1773 0.1701 0.2300 0.2732 0.0113 0.0117 0.0182 0.0164 0.2553

1000 0.0815 0.0840 0.1172 0.1369 0.0050 0.0058 0.0098 0.0080 0.1276

2000 0.0385 0.0421 0.0622 0.0688 0.0021 0.0029 0.0054 0.0040 0.0638

(0.5, 0.3, 0.19, 0.01) 100 1.3123 1.2543 1.3840 1.4003 0.1199 0.1089 0.1554 0.1630 1.3185

200 1.0565 1.1265 1.1983 1.1961 0.0685 0.0723 0.1259 0.1260 0.6779

500 0.9264 1.0494 1.0758 1.0763 0.0493 0.0508 0.1095 0.1074 0.2952

1000 0.8809 1.0208 1.0348 1.0346 0.0440 0.0452 0.1082 0.1037 0.1676

2000 0.8658 1.0051 1.0188 1.0145 0.0412 0.0422 0.1088 0.1035 0.1037

d− 1 (0.25, 0.25, 0.25, 0.25) 100 1.5437 0.8133 1.1214 0.6187 0.1930 0.1020 0.1401 0.0778 1.2761

200 0.6946 0.4366 0.6917 0.3079 0.0870 0.0549 0.0865 0.0389 0.6394

500 0.2316 0.1886 0.3512 0.1239 0.0291 0.0237 0.0439 0.0157 0.2553

1000 0.0996 0.0986 0.1968 0.0618 0.0125 0.0124 0.0246 0.0078 0.1278

2000 0.0432 0.0503 0.1020 0.0309 0.0055 0.0063 0.0128 0.0039 0.0638

(0.4, 0.3, 0.2, 0.1) 100 2.0636 1.4548 1.6928 1.2713 0.2020 0.1127 0.1640 0.0901 1.2750

200 1.1570 0.8458 1.0975 0.6977 0.0902 0.0605 0.1019 0.0437 0.6392

500 0.4181 0.3307 0.5206 0.2738 0.0287 0.0244 0.0507 0.0165 0.2552

1000 0.1899 0.1702 0.2761 0.1372 0.0120 0.0124 0.0275 0.0080 0.1278

2000 0.0875 0.0887 0.1406 0.0698 0.0050 0.0063 0.0139 0.0040 0.0637

(0.5, 0.3, 0.19, 0.01) 100 1.9442 1.5199 1.7585 1.3988 0.1611 0.0965 0.1579 0.0847 1.2743

200 1.4469 1.2706 1.4723 1.1967 0.0792 0.0535 0.1027 0.0456 0.6389

500 1.1390 1.1081 1.2426 1.0724 0.0271 0.0241 0.0553 0.0195 0.2552

1000 1.0472 1.0482 1.1359 1.0301 0.0123 0.0128 0.0330 0.0099 0.1277

2000 1.0068 1.0109 1.0639 1.0034 0.0055 0.0068 0.0185 0.0051 0.0637
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Figure 3: Plots of relative efficiencies against sample size for the ITS-H, ITS-S, DTSPCA,
and PCA estimators with respect to the PCA estimator for π(d) = 5 log d, 5d1/2, d− 1 with
d = 128. (a1)-(a3) are plots of relative efficiencies based on the Frobenius norm for π(d) =
5 log(d), 5d1/2, d − 1, respectively, with Λ = (0.25, 0.25, 0.25, 0.25). (b1)-(b3) are plots of
relative efficiencies based on the Frobenius norm for π(d) = 5 log(d), 5d1/2, d − 1, respec-
tively, with Λ = (0.4, 0.3, 0.2, 0.1). (c1)-(c3) are plots of relative efficiencies based on the
Frobenius norm for π(d) = 5 log(d), 5d1/2, d−1, respectively, with Λ = (0.5, 0.3, 0.19, 0.01).
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Figure 4: Plots of MSE against π(d) for the ITS-H, ITS-S, DTSPCA, and PCA estimators
for n = 100, 500, 2000 and d = 128. (a1)-(a3) are plots of MSEs based on the Frobenius
norm for n = 100, 500, 2000, respectively, with Λ = (0.25, 0.25, 0.25, 0.25). (b1)-(b3) are
plots of MSEs based on the Frobenius norm for n = 100, 500, 2000, respectively, with
Λ = (0.4, 0.3, 0.2, 0.1). (c1)-(c3) are plots of MSEs based on the Frobenius norm for
n = 100, 500, 2000, respectively, with Λ = (0.5, 0.3, 0.19, 0.01).
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Figure 5: Plots of absolute elements of eigenvectors for the eigenvectors corresponding to
the first 6 eigenvalues. (a1)-(f1) are plots for ρ7. (a2)-(f2) are plots for ρ8.

8.1 Proofs of Theorems 1-2

8.1.1 Proof of Theorem 1

Proof of Theorem 1. Consider (3.4). By Davis-Kahn’s sin θ theorem (Theorem 3.1 in Li

(1998b)), we have

‖ sin(Q, Q̂)‖2
F ≤

‖(ρ− ρ̂)Q‖2
F

(λm − λ̂m+1)2
, (8.1)
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Table 3: MSEs (Frobenius norm) of ITS-H, ITS-S, DTSPCA, and PCA density matrix
estimators for d = 128, 256, and n = 100, 200, 500, 1000, 2000.

d n ITS-H ITS-S DTSPCA PCA ρ̂

128 100 0.04672 0.04975 0.05157 0.06837 1.27381

200 0.03360 0.03632 0.03347 0.04897 0.63686

500 0.02060 0.02060 0.01781 0.02704 0.25442

1000 0.01233 0.01222 0.01056 0.01557 0.12727

2000 0.00750 0.00706 0.00630 0.00781 0.06376

256 100 0.04529 0.05616 0.05988 0.09043 2.55323

200 0.03612 0.03778 0.03966 0.05278 1.27709

500 0.01995 0.01970 0.01868 0.02876 0.51098

1000 0.01246 0.01187 0.01041 0.01663 0.25544

2000 0.00796 0.00758 0.00649 0.00978 0.12770
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Figure 6: Plots of relative efficiencies against the sample size for the ITS-H, ITS-S, DT-
SPCA, and PCA estimators with respect to the PCA estimator. (a)-(b) are plots of relative
efficiencies based on the Frobenius norm for d = 128 and 256, respectively.

where λ̂m is the m-th eigenvalue of ρ̂. First, consider the denominator on the right hand

side. By Weyl’s theorem (Theorem 4.3 in Li (1998a)), we have

max
1≤ν≤d

|λ̂ν − λν | ≤ ‖ρ̂− ρ‖2
2.
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Simple algebraic manipulations show

max
j

∥∥∥d−1(β̂j − βj)Bj

∥∥∥
2
≤ 2

d

and ∥∥∥∥∥d−2

p∑
j=2

E
[
(β̂j − βj)2BT

j Bj

]∥∥∥∥∥
2

≤ 1

n
.

Then, by the Matrix Bernstein’s inequality (Theorem 6.1 in Tropp (2012)), we have

P (‖ρ̂− ρ‖2 ≥ t) = P

∥∥∥∥∥d−1

p∑
j=2

(β̂j − βj)Bj

∥∥∥∥∥
2

≥ t


≤ 2d exp

(
− t2/2

n−1 + 2t/(3d)

)
.

Take t =
√

6 log d/n. We have

P
(
‖ρ̂− ρ‖2 ≥

√
6 log d/n

)
≤ 2d−2. (8.2)

Consider the numerator in (8.1). Let a = (a1, . . . , ad) ∈ Cd such that ‖a‖2
2 = 1. Since

(β̂j − βj)’s are independent with mean zero, we have

E
[
‖(ρ̂− ρ)a‖2

2

]
=

1

d2

p∑
j=2

E
[
(β̂j − βj)2

]
‖Bja‖2

2

=
1

d2

p∑
j=2

1− β2
j

n

=
1

n
−
∑r

ν=1 λ
2
ν

dn
.

Then, since ‖qν‖2
2 = 1, we have

E
[
‖(ρ− ρ̂)Q‖2

F

]
=

m∑
ν=1

E
[
‖(ρ− ρ̂)qν‖2

2

]
= m

(
1

n
−
∑r

ν=1 λ
2
ν

dn

)
. (8.3)

Then, since ‖ sin(Q̂,Q)‖2
F ≤ m, we have

E
[
‖ sin(Q̂,Q)‖2

F

]
= E

[
‖ sin(Q̂,Q)‖2

F1E

]
+ E

[
‖ sin(Q̂,Q)‖2

F1Ec
]

≤ 4m

d2
+ E

[
‖(ρ̂− ρ)Q‖2

F

](
λm − λm+1 −

√
6 log d

n

)−2
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≤ 4m

n
+
m

n

(
λm − λm+1 −

√
6 log d

n

)−2

= O

(
n−1

(λm − λm+1)2

)
,

where E = {max1≤ν≤d |λ̂ν − λν | ≥
√

6 log d
n
}, and the second and third inequalities are due

to (8.2) and (8.3), respectively. �

8.1.2 Proof of Theorem 2

Proof of Theorem 2. Define the set of high signal coordinates,

H = H(τ) = {ν : |qνj| ≥ Cττn, for some 1 ≤ j ≤ r},

where Cτ is a constant. Then, similar to the proof of Lemma 3.1 (Ma (2013)), we can show

r ≤ |H| ≤ Cπ(p)τ−δn . (8.4)

In addition, let L = {1, . . . , d} \ H. Here and after, we use an extra superscript “o” to

indicate oracle quantities. That is, let

ρ =

[
ρHH ρHL
ρLH ρLL

]
and ρo =

[
ρHH 0

0 0

]
.

ρ̂ and ρ̂o are estimators for ρ and ρo, respectively. Specifically,

ρ̂ = (ρ̂ij)i,j=1,...,p and ρ̂o =

[
ρ̂HH 0

0 0

]
.

Using Algorithm 1, we construct an oracle sequence of d-by-m orthonormal matrices

{Q̂(k),o, k ≥ 1} with the initial Q̂(0),o. To construct Q̂(0),o, we use an oracle version of

Algorithm 2. Specifically, So = S ∩H. This ensures that Q̂
(0),o
L· = 0.

With probability at least 1− C0(d ∨ n)−2, we have

‖ sin(Q, Q̂(Rs))‖2
F

≤ C
{
‖ sin(Q,Qo)‖2

F + ‖ sin(Qo, Q̂o)‖2
F + ‖ sin(Q̂o, Q̂(Rs),o)‖2

F + ‖ sin(Q̂(Rs),o, Q̂(Rs))‖2
F

}
≤ C

π(d)τ 2−δ
n

(λm − λm+1)2
,

where the fist inequality is due to the triangular inequality and Jensen’s inequality, and

the last inequality is from Propositions 1-4 below. �

Proposition 1 Under assumptions of Theorem 2, we have

‖ sin(Q,Qo)‖2
F ≤ C

π(d)τ 2−δ
n

(λm − λm+1)2
.
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Proposition 2 Under assumptions of Theorem 2, we have with probability at least 1 −
C0(d ∨ n)−2

‖ sin(Qo, Q̂o)‖2
F ≤ C

π(d)τ 2−δ
n

(λm − λm+1)2
.

Proposition 3 Under assumptions of Theorem 2, we have with probability at least 1 −
C0(d ∨ n)−2,

‖ sin(Q̂o, Q̂(Rs),o)‖2
F ≤ C

π(d)τ 2−δ
n

(λm − λm+1)2
.

Proposition 4 Under assumptions of Theorem 2, we have with probability at least 1 −
C0(d ∨ n)−2,

Q̂(k),o = Q̂(k) for k ≥ 0.

The proofs of above Propositions 1-4 are given in Appendix.

8.2 Proof of Theorem 3

To obtain the lower bound, we consider the real valued density matrix, ρ. That is, βj’s

corresponding to complex valued Pauli matrices are zero.

We use the following Fano’s lemma (Lemma A.5 in Birnbaum et al. (2013)).

Lemma 1 (Fano’s Lemma) Denote by {Pθ : θ ∈ Θ} a family of probability distribution

on a common measurable space, where Θ is an arbitrary parameter set. Then, for any finite

subset G = {θ1, . . . , θM} of Θ, we have

inf
T

sup
θ∈Θ

Pθ(T 6= θ) ≥ 1− inf
F

M−1
∑M

k=1 D(Pk‖F ) + log 2

logM
,

where F is an arbitrary probability distribution, Pk = Pθk , T denotes an arbitrary estimator

of θ with values in Θ, and D(Pk‖F ) is the Kullback-Leibler (KL) divergence of F from Pk.

Lemma 2 For k = 1, 2, let

ρk =
1

d
B1 +

1

d

p∑
j=2

β
(k)
j Bj

and Pk be the product of the binomial probability measures, B(n,
1+β

(k)
2

2
), . . . , B(n,

1+β
(k)
p

2
).

Then we have

D(P1‖P2) ≤ n

p∑
j=2

(β
(1)
j − β

(2)
j )2

1− (β
(2)
j )2

.
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Lemma 3 For ε ∈ [0, 1], the function Aε : Vd−m,m 7→ Vd,m is defined in block form as

Aε(J) =

(
(1− ε2)1/2Im

εJ

)
,

where Vd,h = {Q ∈ Rd×h : Q†Q = I} is the Stiefel manifold of d-by-h orthonormal matrices.

For J1,J2 ∈ Vd−m,m, we have

‖ sin(Aε(J1),Aε(J2))‖2
2 ≥ ε2(1− ε2)‖J1 − J2‖2

2,

and

ε2(1− ε2)‖J1 − J2‖2
F ≤ ‖ sin(Aε(J1),Aε(J2))‖2

F ≤ ε2‖J1 − J2‖2
F .

Proof : Similar to the proof of Lemma 3 (Kim and Wang (2016)), we can show this

statement. �

Lemma 4 Let h be an integer satisfying e ≤ h, and let s ∈ [1, h]. There exists a subset

{J1, . . . ,JM} ⊂ Vh,1 satisfying the following properties:

(1) ‖Jj − Jj′‖2
2 ≥ 1/4 for all j 6= j′;

(2) ‖Jj‖0 ≤ s for all j;

(3) logM ≥ max{cs[1 + log(h/s)], log h}, where c > 1/30 is an absolute constant.

Proof : See the proof of Lemma A.5 (Vu and Lei (2013)). �

Proof of Theorem 3. Since Pauli matrices form an orthogonal basis for all complex

Hermitian matrices, for any given A ∈ Vd,m, where Vd,m is the Stiefel manifold of d-by-m

orthonormal matrices, there are β′js such that

ρ(A) = d−1

(
Id +

p∑
j=2

βjBj

)
= m−1AAT .

We consider the subclass of A as follows. Let

Aε(J) =

(
(1− ε2)1/2Im

εJ

)
, (8.5)

where Im is a m-by-m identity matrix, and ε ∈ [0, 1], and J ∈ Vd−m,m. Using Lemma 4, we

construct the packing set of J as follows. Define Gτ = {J1, . . . ,JM ′} with h = b(d−m)/mc
and s = %h, where % ∈ (1/h, 1). Then, from Lemma 4, (i) logM ′ ≥ cmax{d%[1 −
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log %], log d} for some constant c free n and p; (ii) ‖Ji‖0 ≤ s for all j = 1, . . . ,M ′;

(iii) ‖Jj − Jj′‖2
2 ≥ 1/4 for all j 6= j′. Choose J in (8.5) as follows:

J(a1, . . . , am) =


a1 0 · · · 0

0 a2 · · · 0
... 0

. . .
...

0 0 · · · am

 ,

where aj ∈ Gτ for all j. Let G(J) = {J(a1, . . . , am), aj ∈ Gτ for j = 1, . . . ,m}. Then, from

the construction of Gτ , G(J) ⊂ Vd−m,m, and the cardinality of G(J) is M = (M ′)m. Note

that logM ≥ mcmax{d%[1 − log %], log d}, and for any Jk ∈ G(J), there exist β
(k)
j ’s such

that

ρ(Jk) = d−1

(
Id +

p∑
j=2

β
(k)
j Bj

)
= m−1Aε(Jk)Aε(Jk)

T .

Without loss of generality, we assume that the first d Pauli matrices, Bj’s, correspond

to the diagonal Pauli matrices. Define P0 the product of the binomial probability measures,

B(n,
1+β

(0)
2

2
), . . . , B(n,

1+β
(0)
p

2
) with β

(0)
j ’s determined as follows:

β
(0)
d+1 = · · · = β(0)

p = 0

and β
(0)
1 , . . . , β

(0)
d are a solution of the following equation,

ρ0 =
1

d

d∑
j=1

β
(0)
j Bj = m−1

(
(1− ε2)Im 0

0 mε2

d−mId−m

)
.

Let β(0) = (β
(0)
1 , . . . , β

(0)
d )T and β(k) = (β

(k)
1 , . . . , β

(k)
d )T , and H = (b1, . . . ,bd), where

bj = diag(Bj) for j = 1, . . . , d. Then, by the construction of the Pauli matrices, H is

d-by-d Hadamard matrix. We have

β(0) = HTdiag(ρ0) and β(k) = HTdiag(ρ(Jk)).

Then

d∑
j=2

|β(k)
j − β

(0)
j |2 = ‖HT [diag(ρ(Jk))− diag(ρ0)]‖2

2

= d[diag(ρ(Jk))− diag(ρ0)]T [diag(ρ(Jk))− diag(ρ0)]

≤ 2m−1dε4, (8.6)

where the second equality is established by the fact that HTH = d Id. Note that |β(0)
j | ≤

1− ε2/2 for all j = 2, . . . , d. For off-diagonal terms, we have for any k = 1, . . . ,M ,

‖ρ(Jk)− ρ0‖2
F = d

p∑
j=1

|β(k)
j − β

(0)
j |2
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= m−2

∥∥∥∥∥
(

0 (1− ε2)1/2εJTk
(1− ε2)1/2εJk ε2JkJ

T
k − mε2

d−mId−m

)∥∥∥∥∥
2

F

= m−1[2(1− ε2)ε2 + ε4 +mε4/(d−m)] ≤ 2m−1ε2.

So, we have
p∑

j=d+1

|β(k)
j − β

(0)
j |2 ≤ 2m−1dε2. (8.7)

Then, by Lemma 2, we can obtain the upper bound for the KL divergence as follows:

D(Pk‖P0) ≤ n

p∑
j=2

(β
(k)
j − β

(0)
j )2

1− (β
(0)
j )2

= n

[
d∑
j=2

(β
(k)
j − β

(0)
j )2

1− (β
(0)
j )2

+

p∑
j=d+1

(β
(k)
j − β

(0)
j )2

1− (β
(0)
j )2

]

≤ n

[
d∑
j=2

(β
(k)
j − β

(0)
j )2

1− (1− ε2/2)2
+

p∑
j=d+1

(β
(k)
j − β

(0)
j )2

]

≤ n

[
4dm−1ε4

ε2
+ 2m−1dε2

]
= 6m−1ndε2, (8.8)

where the third inequality is due to (8.6) and (8.7).

By Lemmas 3 and 4, we have for any k 6= k′,

‖sin(Aε(Jk),Aε(Jk′))‖2
2 ≥ ε2(1− ε2)‖Jk − Jk′‖2

2 ≥
1

4
ε2(1− ε2). (8.9)

By Chebyshev’s inequality and Lemma 1, we have for all ε2 ∈ [0, 1/2],

max
k
EPk‖sin(Â,Aε(Jk))‖2

2 ≥
ε2(1− ε2)

16

[
1− 6m−1dnε2 + log 2

mcmax{d%[1− log %], log d}

]
≥ ε2(1− ε2)

16

[
1− 6dnε2

cm2d%[1− log %]
− log 2

mc log d

]
≥ ε2

32

[
1

2
− 6dnε2

cm2d%[1− log %]

]
,

where the first inequality is due to (8.8) and (8.9). Take

ε2 =
cm2

24

%d[1− log %]

dn
=
cm2

24

%[1− log %]

n
.

Then

max
k
EPk‖sin(Â,Aε(Jk))‖2

2 ≥
1

128
ε2. (8.10)

To ensure that ρ(Aε(Jk))’s are in the sparse subspace, Fδ(π(d)), we need the following

condition

1 + εδs(2−δ)/2 ≤ π(d). (8.11)

Take

% = c%π(d)d−1

(
log d

nd

)−δ/2
,
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where c% = 1√
2

(
cm2

24

)−δ/2
. Then, % ∈ (1/h, 1] and

ε2 ≤ c%cm
2

24
π(d)d−1n−1

(
log d

nd

)−δ/2 [
1 +

1

2
(1− δ/2) log d+ δ/2 log log d

]
≤ c%

cm2

24
π(d)

(
log d

nd

)1−δ/2

≤ 1/2.

Simple algebras show

ε2δs(2−δ) ≤ c2
%

(
cm2

24

)δ(
π(d)

(
log d

nd

)1−δ/2
)δ(

π(d)

(
log d

nd

)−δ/2)2−δ

=
1

2
π(d)2

(
log d

nd

)−δ (
log d

nd

)δ
=

1

2
π(d)2.

Thus, (8.11) holds. Now, from (8.10), we have

max
k
EPk‖sin(Â,Aε(Jk))‖2

2 ≥ Cπ(d)n−1d−1

(
log d

nd

)−δ/2
×

[
1 + N log d− log

(
c%π(d)dN−1

(
log d

nd

)−δ/2)]

≥ Cπ(d)n−1d−1

(
log d

nd

)−δ/2
log d

= Cπ(d)

(
log p

nd

)1−δ/2

, (8.12)

where the second inequality is due to (4.3).

For the Frobenius norm, by Lemmas 3 and 4, we have for any k 6= k′,

‖sin(Aε(Jk),Aε(Jk′))‖2
F ≥ ε2(1− ε2)‖Jk − Jk′‖2

F ≥
m

4
ε2(1− ε2).

Then, similar to the proof of (8.12), we can show

max
k
EPk‖sin(Â,Aε(Jk))‖2

F ≥ Cπ(d)

(
log d

nd

)1−δ/2

.
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A Appendix

A.1 Proofs of Propositions 1-4

A.1.1 Proof of Proposition 1

Proof of Proposition 1. By Davis-Kahn’s sin θ theorem (Theorem 3.1 in Li (1998b)),

we have

‖ sin(Q,Qo)‖2
F ≤

‖(ρo − ρ)Q‖2
F

(λm − `om+1)2
, (A.1)

where `oj is the j-th largest eigenvalues for ρo. First, consider the denominator of (A.1).

By Weyl’s theorem (Theorem 4.3 in Li (1998a)), we have

|`oj − λj| ≤ ‖ρo − ρ‖2 =

∥∥∥∥∥
(

0 −ρHL
−ρLH −ρLL

)∥∥∥∥∥
2

≤ 2‖ρHL‖2 + ‖ρLL‖2.

Simple algebras show

‖ρHL‖2 ≤ λ1

r∑
j=1

‖qjL‖2 ≤ Cπ(d)1/2τ 1−δ/2
n = o(1), (A.2)

where the second inequality can be shown similar to the proof of Lemma A.1 (Ma (2013)).

Similarly,

‖ρLL‖2 ≤ Cπ(d)1/2τ 1−δ/2
n = o(1).

Thus, we have

|`oj − λj| = o(1). (A.3)

and

(λm − `om+1)2 = (λm − λm+1)2 + o(1). (A.4)

Consider the numerator of (A.1). Simple algebra shows

(ρo − ρ)Q =

(
−ρHLQL·

−ρLHQH· − ρLLQL·

)
.

Then,

‖(ρo − ρ)Q‖F ≤ ‖ρHLQL·‖F + ‖ρLHQH·‖F + ‖ρLLQL·‖F
= (I) + (II) + (III).

Because of similarity, we provide arguments only for (II). Let

Λ0 = diag(λ1, . . . , λm), Λ1 = diag(λm+1, . . . , λr), and Q1 = (qm+1, . . . ,qr).

32



We have

(II) = ‖QL·Λ0Q
†
H·QH· + Q1,L·Λ1Q

†
1,H·QH·‖F

≤ ‖QL·‖F‖Λ0‖F‖Q†H·QH·‖F + ‖Q1,L·‖F‖Λ1‖F‖Q†1,H·QH·‖F
≤ Cπ(d)1/2τ 1−δ/2

n , (A.5)

where the last inequality can be shown similar to the proof of (A.2).

Now, from (A.4) and (A.5), we have

‖ sin(Q,Qo)‖2
F ≤ C

π(d)τ 2−δ
n

(λm − λm+1)2
(1 + o(1)).

�

A.1.2 Proof of Proposition 2

Proof of Proposition 2. By Davis-Kahn’s sin θ theorem (Theorem 3.1 in Li (1998b)),

we have

‖ sin(Qo, Q̂o)‖2
F ≤

‖(ρo − ρ̂o)Qo‖2
F

(`om − ̂̀om+1)2
, (A.6)

where `oj and ̂̀oj are the j-th largest eigenvalues for ρo and ρ̂o, respectively. First, we show

that with probability at least 1− C0(d ∨ n)−2,

|̂̀oj − `oj | = o(1). (A.7)

By Weyl’s theorem (Theorem 4.3 in Li (1998a)), we have

|̂̀oj − `oj | ≤ ‖ρ̂o − ρo‖2 = ‖ρ̂HH − ρHH‖2.

Let Bj = (Bl,h
j )l,h=1,...,d. We have with x = Cn−1/2d−1/2|H|

√
log(d ∨ n) for some large C,

P (‖ρ̂HH − ρHH‖2 ≥ x) ≤ P

(
max
h∈H

∑
l∈H

d−1

∣∣∣∣∣
p∑
j=2

(β̂j − βj)Bl,h
j

∣∣∣∣∣ ≥ x

)

≤ |H|2 max
h,l∈H

P

(∣∣∣∣∣
p∑
j=2

(β̂j − βj)Bl,h
j

∣∣∣∣∣ ≥ dx/|H|

)

≤ 2|H|2 max
h,l∈H

exp

(
− n2d2x2/|H|2

2n
∑p

j=2(1− β2
j )|B

l,h
j |+ 4

3
ndx/|H|

)
≤ |H|2 exp

(
− n2d2x2/|H|2

2nd+ 4
3
ndx/|H|

)
≤ C0(d ∨ n)−2,
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where third inequality is due to Bernstein’s inequality, and the fourth inequality is estab-

lished by the fact that by the construction of Pauli matrices, we have for any h, l = 1, . . . , d,

p∑
j=1

|Bh,l
j | = d. (A.8)

Then we have with probability at least 1− C0(d ∨ n)−2,

‖ρ̂HH − ρHH‖2
2 ≤ Cπ(d)2τ 2−2δ

n . (A.9)

Since π(d)2τ 2−2δ
n = o(1), (A.7) holds. Then, by (A.3), we have

|`om − ̂̀om+1| = |λm − λm+1|+ o(1). (A.10)

Consider the numerator in (A.6). Let a = (a1, . . . , a|H|) ∈ C|H| such that ‖a‖2
2 = 1. Let

BjHHa = bj = brj +
√
−1 bij, where brj = (brj1, . . . , b

r
j|H|)

T ,bij = (bij1, . . . , b
i
j|H|)

T ∈ R|H|. We

have

p‖(ρ̂HH − ρHH)a‖2
2 = ‖

p∑
j=2

(β̂j − βj)bj‖2
2 =

|H|∑
k=1

∣∣∣∣∣
p∑
j=2

(β̂j − βj)brjk +
√
−1

p∑
j=2

(β̂j − βj)bijk

∣∣∣∣∣
2

=

|H|∑
k=1


[

p∑
j=2

(β̂j − βj)brjk

]2

+

[
p∑
j=2

(β̂j − βj)bijk

]2


= I + II.

Then we have with x = Cn−1d−1|H| log(d ∨ n) for some large C,

P
(
d−2 × I ≥ x

)
≤ |H|max

k∈H
P

(∣∣∣∣∣
p∑
j=2

(β̂j − βj)brjk

∣∣∣∣∣ ≥ dx1/2/|H|1/2
)

≤ 2|H|max
k∈H

exp

(
− n2d2|H|−1x

2n
∑p

j=2(1− β2
j )(b

r
jk)

2 + 4
3
nd|H|−1/2x1/2

)
≤ 2|H| exp

(
− n2d2|H|−1x

2nd+ 4
3
nd|H|−1/2x1/2

)
≤ C0(d ∨ n)−2,

where the second inequality is due to Bernstein’s inequality, and the fourth inequality is

established by the fact that since each row of Bj has only one non-zero element (±1 or

±
√
−1), we have

p∑
j=2

(brjk)
2 ≤

p∑
j=2

∣∣∣∣∣∣
|H|∑
l=1

Bk,l
jHHal

∣∣∣∣∣∣
2

≤
p∑
j=2

|H|∑
l=1

|Bk,l
jHH ||al|

2

≤
|H|∑
l=1

|al|2
p∑
j=2

|Bk,l
jHH | ≤ d‖a‖2

2 = d,
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where the last inequality is due to (A.8). Thus, we have with probability at least 1−C0(d∨
n)−2,

d−2 × I ≤ Cπ(d)τ 2−δ
n .

Similarly, we have with probability at least 1− C0(d ∨ n)−2,

d−2 × II ≤ Cπ(d)τ 2−δ
n .

Thus, we have with probability at least 1− C0(d ∨ n)−2,

‖(ρ̂HH − ρHH)a‖2
2 ≤ Cπ(d)τ 2−δ

n (A.11)

for any a = (a1, . . . , a|H|) ∈ C|H| such that ‖a‖2
2 = 1. Since ‖qoν‖2

2 = 1 for ν = 1, . . . ,m, we

have with probability at least 1− C0(d ∨ n)−2,

‖(ρo − ρ̂o)Qo‖2
F =

m∑
ν=1

‖(ρo − ρ̂o)qoν‖
2
2 ≤ Cπ(d)τ 2−δ

n , (A.12)

where the last inequality is due to (A.11). From (A.10) and (A.12), we have with probability

at least 1− C0(d ∨ n)−2,

‖ sin(Qo, Q̂o)‖2
F ≤ C

π(d)τ 2−δ
n

(λm − λm+1)2
.

�

A.1.3 Proof of Proposition 3

Lemma 5 Under assumptions of Theorem 2, for appropriately chosen Cα and a∓ (0 <

a− < 1 < a+), when n is sufficiently large, we have with probability at least 1−C0(d∨n)−2,

S− ⊂ S ⊂ S+ ⊂ H,

where

S± =

{
ν :

r∑
j=1

λjq
2
νj > a∓ × Cατn

}
.

Proof : We have

P (S− * S) ≤ P

 ⋃
ν∈S−

{ρ̂νν < Cατn}

 ≤ ∑
ν∈S−

P (ρ̂νν < Cατn)

≤
∑
ν∈S−

P (ρ̂νν − ρνν < −(α+ − 1)Cατn)

≤
∑
ν∈S−

P (|ρ̂νν − ρνν | > (α+ − 1)Cατn)
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≤ C0(d ∨ n)−2,

where the last inequality is established by the fact that we have for large C,

P (|ρ̂νν − ρνν | > Cτn) = P

(∣∣∣∣∣
p∑
j=2

(β̂j − βj)Bν,ν
j

∣∣∣∣∣ > Cp1/2τn

)

≤ 2 exp

− 0.5C2n2pτ 2
n

n
∑p

j=2

1−β2
j

2
(Bν,ν

j )2 + 2
3
Cnp1/2τn


≤ 2 exp

(
− 0.5C2n2pτ 2

n
1
2
np1/2 + 2

3
Cnp1/2τn

)
≤ C0(d ∨ n)−3,

where the second and third inequalities are due to Bernstein’s inequality and (A.8), respec-

tively. Similarly, we can show

P{S * S+} ≤ C0(d ∨ n)−2.

Now, consider S+ ⊂ H. For any ν ∈ S+, by the definition of S+, there exists j ∈ 1, . . . , r

such that λjq
2
νj ≥ a− × Cατn/r. Since τn → 0, for sufficiently large n,

√
a−×Cατn

rλj
> Cττn.

Thus, ν ∈ H. �

Let

% = ̂̀o
m+1/

̂̀o
m,

where ̂̀oj is the j-th largest eigenvalue of ρ̂o.

Lemma 6 Under assumptions of Theorem 2, uniformly over Fδ(π(d)), with probability at

least 1− C0(d ∨ n)−2:

(1) So = S;

(2) |`j(ρ̂SoSo)− ̂̀oj | = o(1) as n→∞, for j = 1, . . . , r+ 1, where `j(ρ̂SoSo) is j-th largest

eigenvalue for ρ̂SoSo;

(3) for sufficiently large n, Q̂(0),o has full column rank, and ‖ sin(Q̂o, Q̂(0),o)‖2
F ≤ (1 −

%)2/5;

(4) for sufficiently large n, Rs ∈ [R, 2R].

Proof : Without loss of generality, we prove the statements on the event such that the

conclusions of Lemma 5.

Claim (1). The statement follows from Lemma 5.
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Claim (2). Define

ρ̂o0 =

[
ρ̂o0,HH 0

0 0

]
with ρ̂o0,HH =

[
ρ̂SoSo 0

0 0

]

and

ρo0 =

[
ρo0,HH 0

0 0

]
with ρo0,HH =

[
ρSoSo 0

0 0

]
,

and D = H \ So. By Weyl’s theorem (Li (1998a), Theorem 4.3), we have with probability

at least 1− C0(d ∨ n)−2

|`j(ρ̂SoSo)− ̂̀oj | ≤ ‖ρ̂o0,HH − ρ̂oHH‖2

≤ ‖ρ̂o0,HH − ρo0,HH‖2 + ‖ρ̂oHH − ρoHH‖2 + ‖ρo0,HH − ρoHH‖2

≤ Cπ(d)τ 1−δ
n + ‖ρo0,HH − ρoHH‖2, (A.13)

where the last inequality can be derived similar to the proof of (A.9).

Now, we examine ‖ρo0,HH − ρoHH‖2. Simple algebra manipulations show

‖ρo0,HH − ρoHH‖2 ≤ 2‖ρDSo‖2 + ‖ρDD‖2.

For ‖ρDSo‖2, since S ⊂ S+ ⊂ {ν ∈ {1, . . . , d}, |qνj| >
(
a−Cα
λr

)1/2

τ
1/2
n for some 1 ≤ j ≤ r},

similar to the proof of Lemma A.1 (Ma (2013)), we can show for j = 1, . . . , r,

‖qScj‖2
2 ≤ Cπ(d)τ 1−δ/2

n .

Thus, we have

‖ρDSo‖2 = ‖Q̄D·ΛQ̄†So·‖2 ≤ C‖Q̄D·‖F ≤ Cπ(d)1/2τ 1/2−δ/4
n , (A.14)

where Q̄ = (Q,Q1). Similarly, we can show

‖ρDD‖2 = ‖Q̄D·ΛQ̄†D·‖2 ≤ Cπ(d)1/2τ 1/2−δ/4
n . (A.15)

Combining (A.13)-(A.15), the statement holds.

Claim (3). By Davis-Kahn’s sin θ theorem (Theorem 3.1 in Li (1998b)), we have with

probability at least 1− C0(d ∨ n)−2,

‖ sin(Q̂o, Q̂(0),o)‖2
F ≤ ‖(ρ̂o − ρ̂o0)Q̂o‖2

F

(`j(ρ̂SoSo)− ̂̀oj)2
≤ C

∥∥∥(ρ̂o − ρ̂o0)Q̂o
∥∥∥2

F

≤ C

(
‖(ρ̂o − ρo)Qo‖2

F + ‖(ρ̂o0 − ρo0)Qo‖2
F + ‖(ρo − ρo0)Qo‖2

F

+‖ρ̂o − ρ̂o0‖2
F‖Q̂o −Qo‖2

F

)
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= (I) + (II) + (III) + (IV ),

where the second inequality is due to claim (2), (A.4), and (A.10). For (I) and (II), similar

to the proof of (A.12), we have with probability at least 1− C0(d ∨ n)−2,

(I) + (II) ≤ Cπ(d)τ 2−δ
n . (A.16)

For (III), similar to the proofs of (A.14) and (A.15), we have

(III) ≤ Cπ(d)τ 1−δ/2
n . (A.17)

Finally, consider (IV ). Simple algebras show

‖Q̂o −Qo‖2
F ≤ 2r. (A.18)

We have

‖ρ̂o − ρ̂o0‖2
F ≤ C(‖ρ̂o − ρo‖2

F + ‖ρ̂o0 − ρo0‖2
F + ‖ρo − ρo0‖2

F ).

Then, we have with x = Cn−1d−1|H|2 log(d ∨ n) for large C,

P
(
‖ρ̂o − ρo‖2

F ≥ x
)
≤ P

∑
h∈H

∑
l∈H

d−2

∣∣∣∣∣
p∑
j=2

(β̂j − βj)Bl,h
j

∣∣∣∣∣
2

≥ x


≤ |H|2 max

h,l∈H
P

(∣∣∣∣∣
p∑
j=2

(β̂j − βj)Bl,h
j

∣∣∣∣∣ ≥ dx1/2/|H|

)

≤ 2|H|2 max
h,l∈H

exp

(
− n2d2|H|−2x

2n
∑p

j=2(1− β2
j )|B

l,h
j |+ 4

3
nd|H|−1x1/2

)
≤ |H|2 exp

(
− n2d2|H|−2x

2nd+ 4
3
nd|H|−1x1/2

)
≤ C0(d ∨ n)−2,

where third and fourth inequalities are due to Bernstein’s inequality and (A.8), respectively.

Thus, we have with probability at least 1− C0(d ∨ n)−2,

‖ρ̂o − ρo‖2
F ≤ Cπ(d)2τ 2−2δ

n .

Similarly, we have with probability at least 1− C0(d ∨ n)−2,

‖ρ̂o0 − ρo0‖2
F ≤ Cπ(d)2τ 2−2δ

n .

Similar to the proofs of (A.14) and (A.15), we have

‖ρo − ρo0‖2
F ≤ Cπ(d)τ 1−δ/2

n .
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Therefore, with probability at least 1− C0(d ∨ n)−2

‖ρ̂o − ρ̂o0‖2
F ≤ Cπ(d)τ 1−δ/2

n . (A.19)

Combining (A.18) and (A.19), we have with probability at least 1− C0(d ∨ n)−2

(IV ) ≤ Cπ(d)τ 1−δ/2
n . (A.20)

Now, from (A.16), (A.17), and (A.20), we have with probability at least 1−C0(d∨n)−2,

‖ sin(Q̂o, Q̂(0),o)‖2
F ≤ Cπ(d)τ 1−δ/2

n ≤ 1

5
(1− %)2. (A.21)

Claim (4). The statement can be shown by combining the continuous mapping theorem

and the results from claims (1) and (2), (A.3), and (A.7). �

Let θ(k) ∈ [0, π/2] be the largest canonical angle between the subspaces ran(Q̂o) and

ran(Q̂(k),o). Further, let φ(k) be the largest canonical angle between ran(T(k),o) and ran(Q̂o).

So, ‖ sin(Q̂o, Q̂(k),o)‖2
F ≤ r sin2 θ(k) and ‖ sin(T(k),o, Q̂o)‖2

F ≤ r sin2 φ(k).

Lemma 7 Under assumptions of Theorem 2, in the first iteration of oracle Algorithm 1,

with probability at least 1− C0(d ∨ n)−2,

(1) after the multiplication step, T(1),o has full column rank and sinφ(1) ≤ % tan θ(0);

(2) after the thresholding step, Q̂(1),o has full column rank, and ‖ sin(T(1),o, Q̂(1),o)‖2
F ≤

ω2 sec2 θ(0), where ω = (̂̀om)−1
[
|H|

∑m
j=1 γ

2
nj

]1/2

.

Proof : Without loss of generality, we prove the statements on the event such that

the conclusions of Propositions 1 and 2, and Lemma 6. Thus, all the arguments are

deterministic.

Claim (1). The statement can be shown similar to the proof of Theorem 8.2.2 (Golub

and Loan (1996)) with a Hermitian matrix.

Claim (2). By Wedin’s sin θ theorem for singular subspace (Theorem 3.3 in Li (1998b)),

we have

‖ sin(T(1),o, Q̂(1),o)‖2
F = ‖ sin(T(1),o, T̂(1),o)‖2

F ≤
‖T̂(1),o −T(1),o‖2

F

σ2
m(T(1),o)

,

where σm(A) is the m-th largest singular value for d-by-m matrix, A. Now, we bound the

numerator and denominator on the right hand side.

First, we derive the lower bound for σ2
m(T(1),o). For any unit vector x ∈ Cm, let

y = Q̂(0),ox, then, y is also a unit vector in ran(Q(0),o) ⊂ Cd. Decompose y as

y = ỹ + ỹc
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with ỹ ∈ ran(Q̂o) and ỹc ∈ ran(Q̂o
c), where Q̂o and Q̂o

c are orthogonal basis. Then we have

‖T(1),ox‖2
2 = ‖ρ̂oy‖2

2 = ‖ρ̂oỹ‖2
2 + ‖ρ̂oỹc‖2

2 ≥ ‖ρ̂
oỹ‖2

2 ≥ (l̂om)2‖ỹ‖2
2 ≥ (̂̀om)2 cos2 θ(0).

Thus, we have

σ2
m(T(1),o) ≥ inf

‖x‖2=1
‖T(1),ox‖2

2 ≥ (̂̀om)2 cos2 θ(0). (A.22)

To bound the numerator, define matrix ∆T ∈ Cd×m, whose (i, j)-th element is given

by (∆T )i,j = γnj1(i∈H). Then, by the construction of T̂(1),o, we have

‖T̂(1),o −T(1),o‖F ≤ ‖∆T‖F = ̂̀o
mω. (A.23)

By (A.22) and (A.23), we have

‖ sin(T(1),o, Q̂(1),o)‖2
F ≤ ω2 sec2 θ(0).

Finally, we show that for sufficiently large n, T̂(1),o has full column rank. Now, suppose

that T̂(1),o does not have full column rank. Then, since σm(T̂(1),o) = 0 and (A.22),

|σm(T̂(1),o)− σm(T(1),o)| = |σm(T(1),o)| ≥ ̂̀om cos θ(0) ≥ 4

5
̂̀o
m, (A.24)

where the last inequality is due to Lemma 6 (3). On the other hand, by Theorem 4.7 (Li

(1998a)), we have

|σm(T̂(1),o)− σm(T(1),o)| ≤ ‖T̂(1),o −T(1),o‖2 ≤ ̂̀omω = o(1),

where the last inequality is established by the fact that̂̀o
mω ≤ C

[
π(d)τ 2−δ

n

]1/2
= o(1).

This result contradicts (A.24). Thus, T̂(1),o has full column rank, which implies that Q̂(1),o

has full column rank. �

Lemma 8 Under assumptions of Theorem 2, with probability at least 1 − C0(d ∨ n)−2,

uniformly over Fδ(π(d)), for all k ≥ 1:

(1) Q̂(k),o is orthonormal, and θ(k) satisfies

sin θ(k) ≤ % tan θ(k−1) + ω sec θ(k−1),

where ω = (̂̀om)−1
[
|H|

∑m
j=1 γ

2
n,j

]1/2

;

(2) for any a ∈ (0, 1/2], if

sin2 θ(k−1) ≤ 1.01(1− a)−2(1− %)−2ω2,

then so is sin2 θ(k). Otherwise,

sin2 θ(k)/ sin2 θ(k−1) ≤ [1− a(1− %)]2 .
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Proof : The statement can be shown similar to the proof of Proposition 6.1 (Ma (2013)).

�

Proof of Proposition 3. We prove the statement on the event such that Lemmas 8

and 6, (A.3), and (A.7) hold. If we have for some a ∈ (0, 1/2],

[1− a(1− %)]2k
∗
≤ 1

nd
, (A.25)

then, by Lemma 8, for sufficiently large n,

‖ sin(Q̂o, Q̂(k),o)‖2
F ≤ r sin2 θ(k) ≤ Cπ(d)τ 2−δ

n , for all k ≥ k∗.

Now, it is enough to show that k∗ in (A.25) is less than or equal to R = λ1
λm−λm+1

(log n +

0.5 log(d ∨ n)) with probability at least 1 − C0(d ∨ n)−2. The sufficient condition to hold

(A.25) is

log n+ 1/2 log(d ∨ n)

2 |log [1− a(1− %)]|
≤ k∗.

Since |log(1− x)| ≥ x for all x ∈ (0, 1), the upper bound of the left hand side is

log n+ 1/2 log(d ∨ n)

2a(1− %)
.

Then, if we choose

k∗ =
1

1− %
(log n+ 0.5 log(d ∨ n)) =

λm
λm − λm+1

(log n+ 0.5 log(d ∨ n)) ≤ R,

(A.25) holds with a = 1/2. �

A.1.4 Proof of Proposition 4

Proof of Proposition 4. We prove the statement on the event which conclusions of

Propositions 1-3 and Lemmas 5-8.

Let Q̂(0),o = (q̂
(0),o
1 , . . . , q̂

(0),o
m ). Since S = So, Q̂(0) = Q̂(0),o. Then, for ν ∈ L and

h = 1, . . . ,m, the (ν, h)-th element of T(1) is t
(1)
νh = ρ̂ν·q̂

(0),o
h = ρ̂oν·q̂

(0),o
h . Simple algebra

manipulations show

|t(1)
νh | ≤ |(ρ̂oν· − ρoν·)Q

o(Qo)†q̂
(0),o
h |+ |(ρ̂oν· − ρoν·)Q

o
c(Q

o
c)
†q̂

(0),o
h |+ |ρνH q̂

(0),o
hH |

≤ ‖(ρ̂oν· − ρoν·)Q
o‖2‖(Qo)†q̂

(0),o
h ‖2 + ‖ρ̂oν· − ρoν·‖2‖Qo

c(Q
o
c)
†q̂

(0),o
h ‖2 + |ρνH q̂

(0),o
hH |

= (I)νh + (II)νh + (III)νh,

where Qo and Qo
c are orthonormal basis for Rd. For (I)νh, we have with x = Cn−1/2d−1/2

√
log(d ∨ n)

for sufficiently large C,

P

(
max
ν∈L
‖(ρ̂oν· − ρoν·)Q

o‖2 ≥ x

)
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≤ m|L| max
ν∈L,h≤m

P

(∣∣∣∣∣p−1/2

p∑
j=2

(β̂j − βj)BjνHqohH

∣∣∣∣∣ ≥ √mx
)

≤ 2m|L| max
ν∈L,h≤m

exp

(
− mn2d2x2

2n
∑p

j=2(1− β2
j )|BjνHqohH |2 + 4

3
ndm1/2x

)
≤ 2m|L| exp

(
− mn2d2x2

2nd+ 4
3
ndm1/2x

)
≤ C0(d ∨ n)−2,

where the second inequality is due to Bernstein’s inequality, and the third inequality is

established by the fact that
∑p

j=2 |BjνHqohH |2 ≤ d. Then, since ‖Qo
c(Q

o
c)
†q̂

(0),o
h ‖2 ≤ 1, we

have with probability at least 1− C0(d ∨ n)−2,

max
ν∈L,1≤h≤m

(I)νh ≤ Cτn. (A.26)

For (II)νh, consider ‖ρ̂νH − ρνH‖2. We have with x = Cn−1d−1|H| log(d ∨ n) for

sufficiently large C,

P

(
max
ν∈L
‖ρ̂νH − ρνH‖2

2 ≥ x

)
= P

max
ν∈L

∑
l∈H

d−2

∣∣∣∣∣
p∑
j=2

(β̂j − βj)Bν,l
j

∣∣∣∣∣
2

≥ x


≤ |L||H| max

ν∈L,l∈H
P

(∣∣∣∣∣
p∑
j=2

(β̂j − βj)Bν,l
j

∣∣∣∣∣ ≥ dx1/2/|H|1/2
)

≤ 2|L||H| max
ν∈L,l∈H

exp

(
− n2d2|H|−1x

2n
∑p

j=2(1− β2
j )|B

ν,l
j |2 + 4

3
nd|H|−1/2x1/2

)
≤ 2|L||H| exp

(
− n2d2|H|−1x

2nd+ 4
3
nd|H|−1/2x1/2

)
≤ C0(d ∨ n)−2,

where the second inequality is due to Bernstein’s inequality. Then, with probability at least

1− C0(d ∨ n)−2,

max
ν∈L
‖ρ̂νH − ρνH‖2 ≤ Cπ(d)1/2τ 1−δ/2

n . (A.27)

Consider ‖Qo
c(Q

o
c)
†q̂

(0),o
h ‖2. Simple algebra manipulations show with probability at least

1− C0(d ∨ n)−2,

‖Qo
c(Q

o
c)
†q̂

(0),o
h ‖2

2 = Tr
[
Qo
c(Q

o
c)
†q̂

(0),o
h (q̂

(0),o
h )†

]
≤

m∑
h=1

Tr
[
Qo
c(Q

o
c)
†q̂

(0),o
h (q̂

(0),o
h )†

]
≤ Tr

[
Qo
c(Q

o
c)
†Q̂(0),o(Q̂(0),o)†

]
≤ ‖ sin(Qo,Q(0),o)‖2

F

≤ 2
(
‖ sin(Qo, Q̂o)‖2

F + ‖ sin(Q̂o,Q(0),o)‖2
F

)
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≤ Cπ(d)τ 1−δ/2
n , (A.28)

where the last inequality is due to (A.19) and Proposition 2. By (A.27) and (A.28), we

have with probability at least 1− C0(d ∨ n)−2,

max
ν∈L,1≤h≤m

(II)νh ≤ Cτnπ(d)τ 1/2−3δ/4
n ≤ Cτn. (A.29)

For (III)νh, simple algebra manipulations show

max
ν∈L,1≤h≤m

(III)νh ≤ max
ν∈L,1≤h≤m

‖ρνH‖2 ≤ max
ν∈L,1≤h≤m

C

√√√√ r∑
l=1

λ2
l |qνl|2 ≤ Cτn. (A.30)

From (A.26), (A.29), and (A.30), by choosing large Cγ, we obtain T̂
(1)
L· = 0, and so,

T̂(1) = T̂(1),o with probability at least 1 − C0(d ∨ n)−2, which implies that Q̂(1) = Q̂(1),o.

Note that the above results does not depend on k. Thus, by the induction method, we

have with probability at least 1− C0(d ∨ n)−2,

Q̂(k) = Q̂(k),o, k ≥ 0.

�

A.2 Proofs of Corollaries 1 and 2

Proof of Corollary 1. Let E be the event of the consequence of Theorem 2. Then, simple

algebras show for large n,

E
[
‖ sin(Q, Q̂(Rs))‖2

F

]
= E

[
‖ sin(Q, Q̂(Rs))‖2

F1E

]
+ E

[
‖ sin(Q, Q̂(Rs))‖2

F1Ec
]

≤ Cu
(λm − λm+1)2

π(d)

(
log(d ∨ n)

nd

)1−δ/2

+ rP (Ec)

≤ Cu
(λm − λm+1)2

π(d)

(
log(d ∨ n)

nd

)1−δ/2

+ rC0(d ∨ n)−2

≤ 2Cu
(λm − λm+1)2

π(d)

(
log(d ∨ n)

nd

)1−δ/2

,

where the second inequality is established by the fact that ‖ sin(Q, Q̂)‖2
F ≤ r for any Q

and Q̂(Rs). Similarly, we have

E
[
‖ sin(Q, Q̂(Rs))‖2

2

]
≤ 2Cu

(λm − λm+1)2
π(d)

(
log(d ∨ n)

nd

)1−δ/2

.

�
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Proof of Corollary 2. Denote by Q̂
(RS)
k and Qk the first k columns of Q̂(Rs) and

Q, respectively. Similar to the proof of Theorem 2, we have with probability at least

1− C0(d ∨ n)−2,

‖ sin(Qh, Q̂
(Rs)
h )‖2

F ≤ Cuπ(d)

(
log(d ∨ n)

nd

)1−δ/2

for h = k, k − 1. (A.31)

We have with probability at least 1− C0(d ∨ n)−2,

‖ sin(qk, q̂
(Rs)
k )‖2

F ≤ 2‖ sin(Qk, Q̂
(Rs)
k )‖2

F + 2‖ sin(Qk−1, Q̂
(Rs)
k−1 )‖2

F

≤ Cπ(d)

(
log p

np1/2

)1−δ/2

,

where the first inequality is established by the fact that qkq
†
k = QkQ

†
k −Qk−1Q

†
k−1, and

the last inequality is due to (A.31). Then, similar to the proof of Corollary 1, we have

sup
ρ∈Fn

E
[
‖ sin(qk, q̂

(Rs)
k )‖2

F

]
≤ Cπ(d)

[
log(d ∨ n)

nd

]1−δ/2

.

Similarly, we have

sup
ρ∈Fn

E
[
‖ sin(qk, q̂

(Rs)
k )‖2

2

]
≤ Cπ(d)

[
log(d ∨ n)

nd

]1−δ/2

.

�

A.3 Proof related to the lower bound

Proof of Lemma 2. Simple algebra manipulations show

EP1 [log(P1/P2)]

=

p∑
j=2

{
EP1 [Xj] log

(
1 + β

(1)
j

1 + β
(2)
j

)
+ EP1 [n−Xj] log

(
1− β(1)

j

1− β(2)
j

)}

=

p∑
j=2

{
n

1 + β
(1)
j

2
log

(
1 +

β
(1)
j − β

(2)
j

1 + β
(2)
j

)
+ n

1− β(1)
j

2
log

(
1 +

β
(2)
j − β

(1)
j

1− β(2)
j

)}

≤
p∑
j=2

{
n

1 + β
(1)
j

2
×
β

(1)
j − β

(2)
j

1 + β
(2)
j

+ n
1− β(1)

j

2
×
β

(2)
j − β

(1)
j

1− β(2)
j

}

= n

p∑
j=2

(β
(1)
j − β

(2)
j )2

1− (β
(2)
j )2

,

where the first inequality is established by the fact that log(1 + x) ≤ x for x ∈ (−1,∞). �
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A.4 Proofs of Theorems 4-5

Similar to the proof of Theorem 4, we can prove Theorem 5. So, we omit the proof of

Theorem 5.

Proof of Theorem 4. Since (5.2) can be shown imediately from (5.1) and Corollary

1, we provide arguments only for (5.1). Define

GO = {O = (O1, . . . ,Or) ∈ Vr,r : OTQTρQO = Λ},

where Vr,r is the Stiefel manifold of r-by-r orthonormal matrices, and Λ = diag(λ1, . . . , λr).

There is O ∈ GO such that

‖Q̂(Rs) −QO‖2
F ≤ 2‖ sin(Q̂(Rs),Q)‖2

F .

Let QO = QO = (qO1 , . . . ,q
O
r ). Simple algebraic manipulations show

(q̂(Rs)
ν )†ρ̂q̂(Rs)

ν − λν = (qOν )†(ρ̂− ρ)qOν +
[
(q̂(Rs)

ν )†ρ̂q̂(Rs)
ν − (qOν )†ρ̂qOν

]
= (I)ν + (II)ν .

Consider (I)ν . We have

E

[
r∑

ν=1

|(qOν )†(ρ̂− ρ)qOν |2
]
≤ E

[
‖(QO)†(ρ̂− ρ)QO‖2

F

]
≤ E

[
‖Q†(ρ̂− ρ)Q‖2

F

]
=

1

d2

r∑
ν=1

r∑
ν′=1

p∑
j=2

E
[
(β̂j − βj)2

]
|q†ν′Bjqν |2

≤ 1

d2n

r∑
ν=1

r∑
ν′=1

p∑
j=2

|q†ν′Bjqν |2

≤ C
r2

dn
, (A.32)

where the last inequality is due to (A.33) below. We have

p∑
j=2

|q†ν′Bjqν |2 ≤
p∑
j=2

(
|q†νBjqν |2 + |q†ν′Bjqν′ |2 + |(qν′ + qν)

†Bj(qν′ + qν)|2
)

≤ Cd, (A.33)

where the last inequality is due to the fact that by Proposition 1 (Cai et al. (2016)), for

any a ∈ Cd and ‖a‖2 = 1, we have

1 = ‖aa†‖2
F =

1

d2

p∑
j=1

tr(Bjaa†)2tr(B†jBj)

=
1

d

p∑
j=1

tr(Bjaa†)2 =
1

d

p∑
j=1

(a†Bja)2.
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For (II)ν , simple algebraic manipulations show

|(II)ν | = |(q̂(Rs)
ν − qOν )†ρ̂(q̂(Rs)

ν − qOν ) + 2(q̂(Rs)
ν − qOν )†ρ̂qOν |

≤ ‖ρ̂‖2‖q̂(Rs)
ν − qOν ‖2

2 + 2‖ρ̂qOν ‖2‖q̂(Rs)
ν − qOν ‖2

≤ (‖ρ̂− ρ‖2 + 1)‖q̂(Rs)
ν − qOν ‖2

2 + 2(‖(ρ̂− ρ)qOν ‖2 + 1)‖q̂(Rs)
ν − qOν ‖2.

By (8.2), we can show

E
[
‖ρ̂− ρ‖2

2

]
≤ C

log d

n
= o(1). (A.34)

Then we have

E

[
r∑

ν=1

|(II)|ν

]
≤ E

[
‖ρ̂− ρ‖2

2

]1/2
E
[
‖Q̂(Rs) −QO‖4

F

]1/2

+ E
[
‖Q̂(Rs) −QO‖2

F

]
+2E

[
‖(ρ̂− ρ)‖2

2

]1/2
E
[
‖Q̂(Rs) −QO‖2

F

]1/2

+ 2E
[
‖Q̂(Rs) −QO‖2

]
≤ C

[(
log d

n

)1/2

π(d)τ 2−δ
n + π(d)τ 2−δ

n +

(
log d

n

)1/2

π(d)1/2τ 1−δ/2
n

+π(d)1/2τ 1−δ/2
n

]
≤ Cπ(d)1/2τ 1−δ/2

n , (A.35)

where the second inequality is due to (A.34) and Corollary 1. Collecting (A.32) and (A.35),

E

[
r∑

ν=1

|(q̂(Rs)
ν )†ρ̂q̂(Rs)

ν − λν |

]
≤ Cπ(d)1/2τ 1−δ/2

n .

From the above results, we obtain

E

[
r∑

ν=1

|λ̃(Rs)
ν − λν |

]
≤ Cπ(d)1/2τ 1−δ/2

n .

Then, we have

E

[
r∑

ν=1

|λ̂(Rs)
ν − λν |

]
= E

[∣∣∣∣∣
(

1∑r
j=1 λ̃

(Rs)
j

− 1

)
λ̃(Rs)
ν + λ̃(Rs)

ν − λν

∣∣∣∣∣
]

≤ C

r∑
ν=1

E
[∣∣∣λ̃(Rs)

ν − λν
∣∣∣]

≤ Cπ(d)1/2τ 1−δ/2
n .
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