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ASYMPTOTIC EQUIVALENCE AND ADAPTIVE ESTIMATION FOR
ROBUST NONPARAMETRIC REGRESSION
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University of Pennsylvania and Yale University

Asymptotic equivalence theory developed in the literature so far are only
for bounded loss functions. This limits the potential applications of the theory
because many commonly used loss functions in statistical inference are un-
bounded. In this paper we develop asymptotic equivalence results for robust
nonparametric regression with unbounded loss functions. The results imply
that all the Gaussian nonparametric regression procedures can be robustified
in a unified way. A key step in our equivalence argument is to bin the data
and then take the median of each bin.

The asymptotic equivalence results have significant practical implications.
To illustrate the general principles of the equivalence argument we consider
two important nonparametric inference problems: robust estimation of the re-
gression function and the estimation of a quadratic functional. In both cases
easily implementable procedures are constructed and are shown to enjoy si-
multaneously a high degree of robustness and adaptivity. Other problems such
as construction of confidence sets and nonparametric hypothesis testing can
be handled in a similar fashion.

1. Introduction. The main goal of the asymptotic equivalence theory is to ap-
proximate general statistical models by simple ones. If a complex model is asymp-
totically equivalent to a simple model, then all asymptotically optimal procedures
can be carried over from the simple model to the complex one for bounded loss
functions and the study of the complex model is then essentially simplified. Early
work on asymptotic equivalence theory was focused on the parametric models and
the equivalence is local. See Le Cam (1986).

There have been important developments in the asymptotic equivalence theory
for nonparametric models in the last decade or so. In particular, global asymptotic
equivalence theory has been developed for nonparametric regression in Brown and
Low (1996b) and Brown et al. (2002), nonparametric density estimation models
in Nussbaum (1996) and Brown et al. (2004), generalized linear models in Grama
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and Nussbaum (1998), nonparametric autoregression in Milstein and Nussbaum
(1989), diffusion models in Delattre and Hoffmann (2002) and Genon-Catalot,
Laredo and Nussbaum (2002), GARCH model in Wang (2002) and Brown, Wang
and Zhao (2003), and spectral density estimation in Golubev, Nussbaum and Zhou
(2009).

So far all the asymptotic equivalence results developed in the literature are only
for bounded loss functions. However, for many statistical applications, asymptotic
equivalence under bounded losses is not sufficient because many commonly used
loss functions in statistical inference such as squared error loss are unbounded.
As commented by Johnstone (2002) on the asymptotic equivalence results: “Some
cautions are in order when interpreting these results. . . . Meaningful error mea-
sures. . . may not translate into, say, squared error loss in the Gaussian sequence
model.”

In this paper we develop asymptotic equivalence results for robust nonparamet-
ric regression with an unknown symmetric error distribution for unbounded loss
functions which include, for example, the commonly used squared error and inte-
grated squared error losses. Consider the nonparametric regression model

Yi = f

(
i

n

)
+ ξi, i = 1, . . . , n,(1)

where the errors ξi are independent and identically distributed with some den-
sity h. The error density h is assumed to be symmetric with median 0, but oth-
erwise unknown. Note that for some heavy-tailed distributions such as Cauchy
distribution the mean does not even exist. We thus do not assume the existence
of the mean here. One is often interested in robustly estimating the regression
function f or some functionals of f . These problems have been well studied in
the case of Gaussian errors. In the present paper we introduce a unified approach
to turn the general nonparametric regression model (1) into a standard Gaussian
regression model and then in principle any procedure for Gaussian nonparamet-
ric regression can be applied. More specifically, with properly chosen T and m,
we propose to divide the observations Yi into T bins of size m and then take the
median Xj of the observations in the j th bin for j = 1, . . . , T . The asymptotic
equivalence results developed in Section 2 show that under mild regularity condi-
tions, for a wide collection of error distributions the experiment of observing the
medians {Xj : j = 1, . . . , T } is in fact asymptotically equivalent to the standard
Gaussian nonparametric regression model

Yi = f

(
i

T

)
+ 1

2h(0)
√

m
zi, zi

i.i.d.∼ N(0,1), i = 1, . . . , T(2)

for a large class of unbounded losses. Detailed arguments are given in Section 2.
We develop the asymptotic equivalence results for the general regression

model (1) by first extending the classical formulation of asymptotic equivalence
in Le Cam (1964) to accommodate unbounded losses. The asymptotic equivalence
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result has significant practical implications. It implies that all statistical procedures
for any asymptotic decision problem in the setting of the Gaussian nonparametric
regression can be carried over to solve problems in the general nonparametric re-
gression model (1) for a class of unbounded loss functions. In other words, all the
Gaussian nonparametric regression procedures can be robustified in a unified way.
We illustrate the applications of the general principles in two important nonpara-
metric inference problems under the model (1): robust estimation of the regression
function f under integrated squared error loss and the estimation of the quadratic
functional Q(f ) = ∫

f 2 under squared error.
As we demonstrate in Sections 3 and 4 the key step in the asymptotic equiv-

alence theory, binning and taking the medians, can be used to construct simple
and easily implementable procedures for estimating the regression function f and
the quadratic functional

∫
f 2. After obtaining the medians of the binned data, the

general model (1) with an unknown symmetric error distribution is turned into a
familiar Gaussian regression model, and then a Gaussian nonparametric regression
procedure can be applied. In Section 3 we choose to employ a blockwise James–
Stein wavelet estimator, BlockJS, for the Gaussian regression problem because
of its desirable theoretical and numerical properties. See Cai (1999). The robust
wavelet regression procedure has two main steps:

1. Binning and taking median of the bins.
2. Applying the BlockJS procedure to the medians.

The procedure is shown to achieve four objectives simultaneously: robustness,
global adaptivity, spatial adaptivity, and computational efficiency. Theoretical re-
sults in Section 3.2 show that the estimator achieves optimal global adaptation for
a wide range of Besov balls as well as a large collection of error distributions.
In addition, it attains the local adaptive minimax rate for estimating functions at
a point. Figure 1 compares a direct wavelet estimate with our robust estimate in
the case of Cauchy noise. The example illustrates the fact that direct application
of a wavelet regression procedure designed for Gaussian noise may not work at
all when the noise is in fact heavy-tailed. On the other hand, our robust procedure
performs well even in Cauchy noise.

In Section 4 we construct a robust procedure for estimating the quadratic func-
tional Q(f ) = ∫

f 2 following the same general principles. Other problems such
as construction of confidence sets and nonparametric hypothesis testing can be
handled in a similar fashion.

Key technical tools used in our development are an improved moderate devia-
tion result for the median statistic and a better quantile coupling inequality. Median
coupling has been considered in Brown, Cai and Zhou (2008). For the asymptotic
equivalence results given in Section 2 and the proofs of the theoretical results in
Section 3 we need a more refined moderate deviation result for the median and
an improved coupling inequality than those given in Brown, Cai and Zhou (2008).
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FIG. 1. Left panel: spikes signal with Cauchy noise. Middle panel: an estimate obtained by apply-
ing directly a wavelet procedure to the original noisy signal. Right panel: a robust estimate by apply
a wavelet block thresholding procedure to the medians of the binned data. Sample size is 4096 and
bin size is 8.

These improvements play a crucial role in this paper for establishing the asymp-
totic equivalence as well as robust and adaptive estimation results. The results may
be of independent interest for other statistical applications.

The paper is organized as follows. Section 2 develops an asymptotic equiva-
lence theory for unbounded loss functions. To illustrate the general principles of
the asymptotic equivalence theory, we then consider robust estimation of the re-
gression function f under integrated squared error in Section 3 and estimation of
the quadratic functional

∫
f 2 under squared error in Section 4. The two estimators

are easily implementable and are shown to enjoy desirable robustness and adaptiv-
ity properties. In Section 5 we derive a moderate deviation result for the medians
and a quantile coupling inequality. The proofs are contained in Section 6.

2. Asymptotic equivalence. This section develops an asymptotic equivalence
theory for unbounded loss functions. The results reduce the general nonparametric
regression model (1) to a standard Gaussian regression model.

The Gaussian nonparametric regression has been well studied and it often serves
as a prototypical model for more general nonparametric function estimation set-
tings. A large body of literature has been developed for minimax and adaptive es-
timation in the Gaussian case. These results include optimal convergence rates and
optimal constants. See, for example, Pinsker (1980), Korostelev (1993), Donoho
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et al. (1995), Johnstone (2002), Tsybakov (2004), Cai and Low (2005, 2006b)
and references therein for various estimation problems under various loss func-
tions. The asymptotic equivalence results established in this section can be used
to robustify these procedures in a unified way to treat the general nonparametric
regression model (1).

We begin with a brief review of the classical formulation of asymptotic equiva-
lence and then generalize it to accommodate unbounded losses.

2.1. Classical asymptotic equivalence theory. Le Cam (1986) developed a
general theory for asymptotic decision problems. At the core of this theory is the
concept of a distance between statistical models (or experiments), called Le Cam’s
deficiency distance. The goal is to approximate general statistical models by sim-
ple ones. If a complex model is close to a simple model in Le Cam’s distance, then
there is a mapping of solutions to decision theoretic problems from one model to
the other for all bounded loss functions. Therefore the study of the complex model
can be reduced to the one for the simple model.

A family of probability measures E = {Pθ : θ ∈ �} defined on the same σ -field
of a sample space � is called a statistical model (or experiment). Le Cam (1964)
defined a distance �(E,F) between E and another model F = {Qθ : θ ∈ �} with
the same parameter set � by the means of “randomizations.” Suppose one would
like to approximate E by a simpler model F . An observation x in E can be
mapped into the sample space of F by generating an “observation” y accord-
ing to a Markov kernel Kx , which is a probability measure on the sample space
of F . Suppose x is sampled from Pθ . Write KPθ for the distribution of y with
KPθ(A) = ∫

Kx(A)dPθ for a measurable set A. The deficiency δ of E with re-
spect to F is defined as the smallest possible value of the total variation distance
between KPθ and Qθ among all possible choices of K , that is,

δ(E,F ) = inf
K

sup
ϑ∈�

|KPϑ − Qϑ |TV.

See Le Cam (1986, page 3) for further details. The deficiency δ of E with respect
to F can be explained in terms of risk comparison. If δ(E,F ) ≤ ε for some ε > 0,
it is easy to see that for every procedure τ in F there exists a procedure ξ in E such
that R(θ; ξ) ≤ R(θ; τ) + 2ε for every θ ∈ � and any loss function with values
in the unit interval. The converse is also true. Symmetrically one may consider
the deficiency of F with respect to E as well. The Le Cam’s deficiency distance
between the models E and F is then defined as

�(E,F) = max(δ(E,F ), δ(F,E)).(3)

For bounded loss functions, if �(E,F) is small, then to every statistical procedure
for E there is a corresponding procedure for F with almost the same risk function
and vice versa. Two sequences of experiments En and Fn are called asymptotically
equivalent, if �(En,Fn) → 0 as n → ∞. The significance of asymptotic equiva-
lence is that all asymptotically optimal statistical procedures can be carried over
from one experiment to the other for bounded loss functions.
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2.2. Extension of the classical asymptotic equivalence formulation. For many
statistical applications, asymptotic equivalence under bounded losses is not suf-
ficient because many commonly used loss functions are unbounded. Let En =
{Pθ,n : θ ∈ �} and Fn = {Qθ,n : θ ∈ �} be two asymptotically equivalent models
in Le Cam’s sense. Suppose that the model Fn is simpler and well studied and a
sequence of estimators θ̂n satisfy

EQθ,nn
rd(θ̂n, θ) → c as n → ∞,

where d is a distance between θ̂ and θ , and r, c > 0 are constants. This im-
plies that θ can be estimated by θ̂n under the distance d with a rate n−r . Ex-
amples include EQθ,nn(θ̂ − θ)2 → c in many parametric estimation problems, and
EQf,n

nr
∫
(f̂ − f )2 dμ → c, where f is an unknown function and 0 < r < 1, in

many nonparametric estimation problems. The asymptotic equivalence between
En and Fn in the classical sense does not imply that there is an estimator θ̂∗ in En

such that

EPθ,nn
rd(θ̂∗, θ) → c.

In this setting the loss function is actually L(ϑ, θ) = nrd(ϑ, θ) which grows as n

increases, and is usually unbounded.
In this section we introduce a new asymptotic equivalence formulation to han-

dle unbounded losses. Let �E and �F be a set of procedures for E and F , re-
spectively. Let  be a set of loss functions. We define the deficiency distance
�(E,F ;,�E,�F ) as follows.

DEFINITION 1. Define δ(E,F ;,�E,�F ) ≡ inf{ε ≥ 0: for every procedure
τ ∈ �F there exists a procedure ξ ∈ �E such that R(θ; ξ) ≤ R(θ; τ) + 2ε for
every θ ∈ � for any loss function L ∈ }. Then the deficiency distance between
models E and F for the loss class  and procedure classes �E and �F is defined
as �(E,F ;,�E,�F ) = max{δ(E,F ;,�E,�F ), δ(F,E;,�F ,�E)}.

In other words, if the deficiency �(E,F ;,�E,�F ) is small, then to every
statistical procedure for one experiment, there is a corresponding procedure for
another experiment with almost the same risk function for losses L ∈  and pro-
cedures in �.

DEFINITION 2. Two sequences of experiments En and Fn are called asymp-
totically equivalent with respect to the sets of procedures �En and �Fn and set of
loss functions n if �(En,Fn;n,�En,�Fn) → 0 as n → ∞.

If En and Fn are asymptotically equivalent, then all asymptotically optimal sta-
tistical procedures in �Fn can be carried over to En for loss functions L ∈ n with
essentially the same risk. The definitions here generalize the classical asymptotic
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equivalence formulation, which corresponds to the special case with  being the
set of loss functions with values in the unit interval.

For most statistical applications the loss function is bounded by a certain power
of n. We now give a sufficient condition for the asymptotic equivalence under such
losses. Suppose that we estimate f or a functional of f under a loss L. Let pf,n

and qf,n be the density functions, respectively, for En and Fn. Note that in the
classical formulation of asymptotic equivalence for bounded losses, the deficiency
of En with respect to Fn goes to zero if there is a Markov kernel K such that

sup
f

|KPf,n − Qf,n|TV → 0.(4)

For unbounded losses the condition (4) is no longer sufficient to guarantee that
the deficiency goes to zero. Let p∗

f,n and qf,n be the density functions of KPf,n

and Qf,n, respectively. Let ϕ(f ) be an estimand, which can be f or a functional

of f . Suppose that in Fn there is an estimator ϕ̂(f )q of ϕ(f ) such that∫
L(ϕ̂(f )q, ϕ(f ))qf,n → c.

We would like to derive sufficient conditions under which there is an estimator
ϕ̂(f )p in En such that∫

L(ϕ̂(f )p,ϕ(f ))pf,n ≤ c
(
1 + o(1)

)
.

Note that if ϕ̂(f )p is constructed by mapping over ϕ̂(f )q via a Markov kernel K ,
then

EL(ϕ̂(f )p,ϕ(f )) =
∫

L(ϕ̂(f )q, ϕ(f ))p∗
f,n

=
∫

L(ϕ̂(f )q, ϕ(f ))qf,n +
∫

L(ϕ̂(f )q, ϕ(f ))(p∗
f,n − qf,n).

Let An = {|p∗
f,n/qf,n − 1| < εn} for some εn → 0, and write∫

L(ϕ̂(f )q, ϕ(f ))(p∗
f,n − qf,n)

=
∫

L(ϕ̂(f )q, ϕ(f ))qf,n(p
∗
f,n/qf,n − 1)[I (An) + I (Ac

n)]

≤
∫

L(ϕ̂(f )q, ϕ(f ))qf,n(p
∗
f,n/qf,n − 1){p∗

f,n/qf,n ≥ 1}[I (An) + I (Ac
n)]

≤ εn

∫
L(ϕ̂(f )q, ϕ(f ))qf,nI (An) +

∫
L(ϕ̂(f )q, ϕ(f ))p∗

f,nI (Ac
n).

If KPf,n(A
c
n) decays exponentially fast uniformly over F and L is bounded by a

polynomial of n, this formula implies that∫
L(ϕ̂(f )q, ϕ(f ))(qf,n − p∗

f,n) = o(1).
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ASSUMPTION (A0). For each estimand ϕ(f ), each estimator ϕ̂(f ) ∈ �n and
each L ∈ n, there is a constant M > 0, independent of the loss function and the
procedure, such that L(ϕ̂(f ), ϕ(f )) ≤ MnM .

The following result summarizes the above discussion and gives a sufficient
condition for the asymptotic equivalence for the set of procedures �n and set of
loss functions n.

PROPOSITION 1. Let En = {Pθ,n : θ ∈ �} and Fn = {Qθ,n : θ ∈ �} be two
models. Suppose there is a Markov kernel K such that KPθ,n and Qθ,n are defined
on the same σ -field of a sample space. Let p∗

f,n and qf,n be the density functions
of KPf,n and Qf,n w.r.t. a dominating measure such that for a sequence εn → 0

sup
f

KPf,n(|p∗
f,n/qf,n − 1| ≥ εn) ≤ CDn−D

for all D > 0, then δ(En,Fn;n,�En,�Fn) → 0 as n → ∞ under Assump-
tion (A0).

Examples of loss functions include

L(f̂n, f ) = n2α/(2α+1)
∫

(f̂n −f )2 and L(f̂n, f ) = n2α/(2α+1)
∫ (√

f̂n −√
f

)2

for estimating f and L(f̂n, f ) = n2α/(2α+1)(f̂n(t0) − f (t0))
2 for estimating f at

a fixed point t0 where α is the smoothness of f , as long as we require f̂n to be
bounded by a power of n. If the maximum of f̂n or f̂n(t0) grows faster than a
polynomial of n, we commonly obtain a better estimate by truncation, for example,
defining a new estimate min(f̂n, n

2).
The above discussions suggest that we may study a broad range of loss functions

under a mild restriction on procedures. In comparison to the classic framework of
asymptotic equivalence, here the collection of loss functions is much broadened
to include unbounded losses while the collection of procedures is slightly more
restrictive to only include those with losses bounded by a polynomial power of n.
Virtually all practical procedures satisfy this condition. Of course in our formula-
tion if the n is set to be the collection of bounded loss functions, then the proce-
dure can be any measurable function.

2.3. Asymptotic equivalence for robust estimation under unbounded losses.
We now return to the nonparametric regression model (1) and denote the model
by En,

En :Yi = f (i/n) + ξi, i = 1, . . . , n.

An asymptotic equivalence theory for nonparametric regression with a known
error distribution has been developed in Grama and Nussbaum (2002), but the
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Markov kernel (randomization) there was not given explicitly, and so it is not im-
plementable. In this section we propose an explicit and easily implementable pro-
cedure to reduce the nonparametric regression with an unknown error distribution
to a Gaussian regression. We begin by dividing the interval [0,1] into T equal-
length subintervals. Without loss of generality, we shall assume that n is divisible
by T , and let m = n/T , the number of observations in each bin. We then take the
median Xj of the observations in each bin, that is,

Xj = median{Yi, (j − 1)m + 1 ≤ i < jm},
and make statistical inferences based on the median statistics {Xj }. Let Fn be the
experiment of observing {Xj,1 ≤ j ≤ T }. In this section we shall show that Fn is
in fact asymptotically equivalent to the following Gaussian experiment:

Gn :X∗∗
j = f (j/T ) + 1

2h(0)
√

m
Zj, Zj

i.i.d.∼ N(0,1), 1 ≤ j ≤ T ,

under mild regularity conditions. The asymptotic equivalence is established in two
steps.

Suppose the function f is smooth. Then f is locally approximately constant.
We define a new experiment to approximate En as follows:

E∗
n :Y ∗

i = f ∗(i/n) + ξi, 1 ≤ i ≤ n,

where f ∗(i/n) = f (
�iT /n�

T
). For each of the T subintervals, there are m observa-

tions centered around the same mean.
For the experiment E∗

n we bin the observations Y ∗
i and then take the medians in

exactly the same way and let X∗
j be the median of the Y ∗

i ’s in the j th subinterval.
If E∗

n approximates En well, the statistical properties X∗
j are then similar to Xj .

Let ηj be the median of corresponding errors ξi in the j th bin. Note that the median
of X∗

j has a very simple form:

F ∗
n :X∗

j = f (j/T ) + ηj , 1 ≤ j ≤ T .

Theorem 6 in Section 5 shows that ηj can be well approximated by a normal
variable with mean 0 and variance 1

4mh2(0)
, which suggests that F ∗

n is close to the
experiment Gn.

We formalize the above heuristics in the following theorems. We first introduce
some conditions. We shall choose T = n2/3/ logn and assume that f is in a Hölder
ball,

f ∈ F = {f : |f (y) − f (x)| ≤ M|x − y|d}, d > 3/4.(5)

ASSUMPTION (A1). Let ξ be a random variable with density function h. De-
fine ra(ξ) = log h(ξ−a)

h(ξ)
and μ(a) = Er(ξ). Assume that

μ(a) ≤ Ca2,(6)

E exp
[
t
(
ra(ξ) − μ(a)

)] ≤ exp(Ct2a2),(7)
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for 0 ≤ |a| < ε and 0 ≤ |ta| < ε for some ε > 0. Equation (7) is roughly equiv-
alent to Var(ra(ξ)) ≤ Ca2. Assumption (A1) is satisfied by many distributions
including Cauchy and Gaussian.

The following asymptotic equivalence result implies that any procedure based
on Xj has exactly the same asymptotic risk as a similar procedure by just replacing
Xj by X∗

j . That is, the experiments Fn and F ∗
n are asymptotically equivalent.

THEOREM 1. Under Assumptions (A0) and (A1) and the Hölder condi-
tion (5), the two experiments En and E∗

n are asymptotically equivalent with respect
to the set of procedures �n and set of loss functions n.

The following asymptotic equivalence result implies that asymptotically there
is no need to distinguish X∗

j ’s from the Gaussian random variables X∗∗
j ’s. We need

the following assumptions on the density function h(x) of ξ .

ASSUMPTION (A2).
∫ 0
−∞ h(x) = 1

2 , h(0) > 0, and |h(x)−h(0)| ≤ Cx2 in an
open neighborhood of 0.

The last condition |h(x)−h(0)| ≤ Cx2 is basically equivalent to h′(0) = 0. The
Assumption (A2) is satisfied when h is symmetric and h′′ exists in a neighborhood
of 0.

THEOREM 2. Under Assumptions (A0) and (A2), the two experiments F ∗
n

and Gn are asymptotically equivalent with respect to the set of procedures �n and
set of loss functions n.

These theorems together imply that, under assumptions (A1) and (A2) and the
Hölder condition (5), the experiment Fn is asymptotically equivalent to Gn with
respect to the set of procedures �n and set of loss functions n. So any statistical
procedure δ in Gn can be carried over to the En (by treating Xj as if it were X∗∗

j )
in the sense that the new procedure has the same asymptotic risk as δ for all loss
functions bounded by a certain power of n.

2.4. Discussion. The asymptotic equivalence theory provides deep insight and
useful guidance for the construction of practical procedures in a broad range of
statistical inference problems under the nonparametric regression model (1) with
an unknown symmetric error distribution. Interesting problems include robust and
adaptive estimation of the regression function, estimation of linear or quadratic
functionals, construction of confidence sets, nonparametric hypothesis testing, etc.
There is a large body of literature on these nonparametric problems in the case of
Gaussian errors. With the asymptotic equivalence theory developed in this section,
many of these procedures and results can be extended and robustified to deal with
the case of an unknown symmetric error distribution. For example, the SureShrink
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procedure of Donoho and Johnstone (1995), the empirical Bayes procedures of
Johnstone and Silverman (2005) and Zhang (2005), and SureBlock in Cai and
Zhou (2009) can be carried over from the Gaussian regression to the general non-
parametric regression. Theoretical properties such as rates of convergence remain
the same under the regression model (1) with suitable regularity conditions.

To illustrate the general ideas, we consider in the next two sections two im-
portant nonparametric problems under the model (1): adaptive estimation of the
regression function f and robust estimation of the quadratic functional Q(f ) =∫

f 2. These examples show that for a given statistical problem it is easy to turn the
case of nonparametric regression with general symmetric errors into the one with
Gaussian noise and construct highly robust and adaptive procedures. Other robust
inference problems can be handled in a similar fashion.

3. Robust wavelet regression. We consider in this section robust and adap-
tive estimation of the regression function f under the model (1). Many estimation
procedures have been developed in the literature for case where the errors ξi are
assumed to be i.i.d. Gaussian. However, these procedures are not readily applicable
when the noise distribution is unknown. In fact direct application of the procedures
designed for the Gaussian case can fail badly if the noise is in fact heavy-tailed.
See, for example, Figure 1 in the Introduction.

In this section we construct a robust procedure by following the general prin-
ciples of the asymptotic equivalence theory developed in Section 2. The estimator
is robust, adaptive, and easily implementable. In particular, its performance is not
sensitive to the error distribution.

3.1. Wavelet procedure for robust nonparametric regression. We begin with
basic notation and definitions and then give a detailed description of our robust
wavelet regression procedure.

Let {φ,ψ} be a pair of father and mother wavelets. The functions φ and ψ

are assumed to be compactly supported and
∫

φ = 1. Dilation and translation of
φ and ψ generate an orthonormal wavelet basis. For simplicity in exposition, we
work with periodized wavelet bases on [0,1]. Let

φ
p
j,k(t) =

∞∑
l=−∞

φj,k(t − l), ψ
p
j,k(t) =

∞∑
l=−∞

ψj,k(t − l) for t ∈ [0,1],

where φj,k(t) = 2j/2φ(2j t − k) and ψj,k(t) = 2j/2ψ(2j t − k). The collection
{φ

p
j0,k

, k = 1, . . . ,2j0;ψp
j,k, j ≥ j0 ≥ 0, k = 1, . . . ,2j } is then an orthonormal ba-

sis of L2[0,1], provided the primary resolution level j0 is large enough to en-
sure that the support of the scaling functions and wavelets at level j0 is not the
whole of [0,1]. The superscript “p” will be suppressed from the notation for
convenience. An orthonormal wavelet basis has an associated orthogonal Discrete
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Wavelet Transform (DWT) which transforms sampled data into the wavelet coef-
ficients. See Daubechies (1992) and Strang (1992) for further details on wavelets
and discrete wavelet transform. A square-integrable function f on [0, 1] can be
expanded into a wavelet series,

f (t) =
2j0∑
k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑
k=1

θj,kψj,k(t),(8)

where θ̃j,k = 〈f,φj,k〉, θj,k = 〈f,ψj,k〉 are the wavelet coefficients of f .
We now describe the robust regression procedure in detail. Let the sample

{Yi, i = 1, . . . , n} be given as in (1). Set J = �log2
n

log1+b n
� for some b > 0

and let T = 2J . We first group the observations Yi consecutively into T equi-
length bins and then take the median of each bin. Denote the medians by X =
(X1, . . . ,XT ). Apply the discrete wavelet transform to the binned medians X and
let U = T −1/2WX be the empirical wavelet coefficients, where W is the discrete
wavelet transformation matrix. Write

U = (ỹj0,1, . . . , ỹj0,2j0 , yj0,1, . . . , yj0,2j0 , . . . , yJ−1,1, . . . , yJ−1,2J−1)
′.(9)

Here ỹj0,k are the gross structure terms at the lowest resolution level, and yj,k (j =
j0, . . . , J − 1, k = 1, . . . ,2j ) are empirical wavelet coefficients at level j which
represent fine structure at scale 2j . Set

σn = 1

2h(0)
√

n
.(10)

Then the empirical wavelet coefficients can be written as

yj,k = θj,k + εj,k + σnzj,k + ξj,k,(11)

where θj,k are the true wavelet coefficients of f , εj,k are “small” deterministic
approximation errors, zj,k are i.i.d. N(0,1), and ξj,k are some “small” stochastic
errors. The asymptotic equivalence theory given in Section 2 indicates that both
εj,k and ξj,k are “negligible” and the calculations in Section 6 will show this is
indeed the case. If these negligible errors are ignored then we have

yj,k ≈ θj,k + σnzj,k with zj,k
i.i.d.∼ N(0,1),(12)

which is the idealized Gaussian sequence model.
The BlockJS procedure introduced in Cai (1999) for Gaussian nonparametric

regression is then applied to yj,k as if they are exactly distributed as in (12). More
specifically, at each resolution level j , the empirical wavelet coefficients yj,k are
grouped into nonoverlapping blocks of length L. Let Bi

j = {(j, k) : (i − 1)L + 1 ≤
k ≤ iL} and let S2

j,i ≡ ∑
(j,k)∈Bi

j
y2
j,k . Let σ̂ 2

n be an estimator of σ 2
n [see (16)] for
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an estimator). Set J∗ = �log2
T

log1+b n
�. A modified James–Stein shrinkage rule is

then applied to each block Bi
j with j ≤ J∗, that is,

θ̂j,k =
(

1 − λ∗Lσ̂ 2
n

S2
j,i

)
+
yj,k for (j, k) ∈ Bi

j ,(13)

where λ∗ = 4.50524 is a constant satisfying λ∗ − logλ∗ = 3. For the gross struc-

ture terms at the lowest resolution level j0, we set ˆ̃
θj0,k = ỹj0,k . The estimate

of f at the sample points { i
T

: i = 1, . . . , T } is obtained by applying the in-
verse discrete wavelet transform (IDWT) to the denoised wavelet coefficients.

That is, {f ( i
T
) : i = 1, . . . , T } is estimated by f̂ = { ̂

f ( i
T
) : i = 1, . . . , T } with

f̂ = T 1/2W−1 · θ̂ . The whole function f is estimated by

f̂n(t) =
2j0∑
k=1

ˆ̃
θj0,kφj0,k(t) +

J∗−1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(t).(14)

REMARK 1. An estimator of h−2(0) can be given by

ĥ−2(0) = 8m

T

∑
(X2k−1 − X2k)

2(15)

and the variance σ 2
n is then estimated by

σ̂ 2
n = 1

4ĥ2(0)n
= 2

T 2

∑
(X2k−1 − X2k)

2.(16)

It is shown in Section 6 that the estimator σ̂ 2
n is an accurate estimate of σ 2

n .

The robust estimator f̂n constructed above is easy to implement. Figure 2 below
illustrate the main steps of the procedure. As a comparison, we also plotted the
estimate obtained by applying directly the BlockJS procedure to the original noisy
signal. It can be seen clearly that this wavelet procedure does not perform well
in the case of heavy-tailed noise. Other standard wavelet procedures have similar
performance qualitatively. On the other hand, the BlockJS procedure performs very
well on the medians of the binned data.

3.2. Adaptivity and robustness of the procedure. The robust regression proce-
dure presented in Section 3.1 enjoys a high degree of adaptivity and robustness.
We consider the theoretical properties of the procedure over the Besov spaces.
For a given r-regular mother wavelet ψ with r > α and a fixed primary resolu-
tion level j0, the Besov sequence norm ‖ · ‖bα

p,q
of the wavelet coefficients of a

function f is defined by

‖f ‖bα
p,q

= ‖ξ
j0

‖p +
( ∞∑

j=j0

(2js‖θj‖p)q

)1/q

,(17)
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FIG. 2. Top left panel: noisy Spikes signal with sample size n = 4096 where the noise has t2 distri-
bution. Top right panel: the medians of the binned data with the bin size m = 8. Middle left panel: the
discrete wavelet coefficients of the medians. Middle right panel: blockwise thresholded wavelet coef-
ficients of the medians. Bottom left panel: the robust estimate of the Spikes signal (dotted line is the
true signal). Bottom right panel: the estimate obtained by applying directly the BlockJS procedure to
the original noisy signal.
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where ξ
j0

is the vector of the father wavelet coefficients at the primary resolution

level j0, θj is the vector of the wavelet coefficients at level j , and s = α + 1
2 −

1
p

> 0. Note that the Besov function norm of index (α,p, q) of a function f is
equivalent to the sequence norm (17) of the wavelet coefficients of the function.
See Meyer (1992), Triebel (1992) and DeVore and Popov (1988) for further details
on Besov spaces. We define

Bα
p,q(M) = {f ; ‖f ‖bα

p,q
≤ M}.(18)

In the case of Gaussian noise the minimax rate of convergence for estimating f

over the Besov body Bα
p,q(M) is n−2α/(1+2α). See Donoho and Johnstone (1998).

We shall consider the following collection of error distributions. For 0 < ε1 < 1,
εi > 0, i = 2,3,4, let

Hε1,ε2 =
{
h :

∫ 0

−∞
h(x) = 1

2
, ε1 ≤ h(0) ≤ 1

ε1
,

(19)

|h(x) − h(0)| ≤ x2

ε1
for all |x| < ε2

}
and define H = H(ε1, ε2, ε3, ε4) by

H =
{
h ∈ Hε1,ε2 :

∫
|x|ε3h(x) dx < ε4,

(20)

h(x) = h(−x),
∣∣h(3)(x)

∣∣ ≤ ε4 for |x| ≤ ε3

}
.

The assumption
∫ |x|ε3h(x) dx < ε4 guarantees that the moments of the median

of the binned data are well approximated by those of the normal random variable.
Note that this assumption is satisfied by a large collection of distributions including
Cauchy distribution.

The following theorem shows that our estimator achieves optimal global adap-
tation for a wide range of Besov balls Bα

p,q(M) defined in (18) and uniformly over
the family of error distributions given in (20).

THEOREM 3. Suppose the wavelet ψ is r-regular. Then the estimator f̂n de-

fined in (14) satisfies, for p ≥ 2, α ≤ r and 2α2

1+2α
> 1

p
,

sup
h∈H

sup
f ∈Bα

p,q (M)

E‖f̂n − f ‖2
2 ≤ Cn−2α/(1+2α)

and for 1 ≤ p < 2, α ≤ r and 2α2

1+2α
> 1

p
,

sup
h∈H

sup
f ∈Bα

p,q(M)

E‖f̂n − f ‖2
2 ≤ Cn−2α/(1+2α)(logn)(2−p)/(p(1+2α)).
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In addition to global adaptivity, the estimator also enjoys a high degree of local
spatial adaptivity. For a fixed point t0 ∈ (0,1) and 0 < α ≤ 1, define the local
Hölder class �α(M, t0, δ) by

�α(M, t0, δ) = {f : |f (t) − f (t0)| ≤ M|t − t0|α for t ∈ (t0 − δ, t0 + δ)}.
If α > 1, then

�α(M, t0, δ) = {
f :

∣∣f (�α�)(t) − f (�α�)(t0)
∣∣ ≤ M|t − t0|α′

for t ∈ (t0 − δ, t0 + δ)
}
,

where �α� is the largest integer less than α and α′ = α − �α�.
In Gaussian nonparametric regression setting, it is well known that the opti-

mal rate of convergence for estimating f (t0) over �α(M, t0, δ) with α completely
known is n−2α/(1+2α). On the other hand, when α is unknown, Lepski (1990) and
Brown and Low (1996a) showed that the local adaptive minimax rate over the
Hölder class �α(M, t0, δ) is (logn/n)2α/(1+2α). So one has to pay at least a loga-
rithmic factor for adaptation.

Theorem 4 below shows that our estimator achieves optimal local adaptation
with the minimal cost uniformly over the family of noise distributions defined
in (20).

THEOREM 4. Suppose the wavelet ψ is r-regular with r ≥ α > 0. Let t0 ∈
(0,1) be fixed. Then the estimator f̂n defined in (14) satisfies

sup
h∈H

sup
f ∈�α(M,t0,δ)

E
(
f̂n(t0) − f (t0)

)2 ≤ C ·
(

logn

n

)2α/(1+2α)

.(21)

REMARK 2. Note that in the general asymptotic equivalence theory given in
Section 2 the bin size was chosen to be n1/3 logn. However, for specific estimation
problems such as robust estimation of f discussed in this section, the bin size
can be chosen differently. Here we choose a small bin size log1+b n. There is a
significant advantage in choosing such a small bin size in this problem. Note that
the smoothness assumptions for α in Theorems 3 and 4 are different from those
in Theorems 3 and 4 in Brown, Cai and Zhou (2008). For example, in Theorem 4
of Brown, Cai and Zhou (2008) it was assumed α > 1/6, but now we need only
α > 0 due to the choice of the small bin size.

4. Robust estimation of the quadratic functional
∫

f 2. An important non-
parametric estimation problem is that of estimating the quadratic functional
Q(f ) = ∫

f 2. This problem is interesting in its own right and closely related to
the construction of confidence balls and nonparametric hypothesis testing in non-
parametric function estimation. See, for example, Li (1989), Dümbgen (1998),
Spokoiny (1998), Genovese and Wasserman (2005) and Cai and Low (2006a). In
addition, as shown in Bickel and Ritov (1988), Donoho and Nussbaum (1990) and
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Fan (1991), this problem connects the nonparametric and semiparametric litera-
tures.

Estimating the quadratic functional Q(f ) has been well studied in the Gaussian
noise setting. See, for example, Donoho and Nussbaum (1990), Fan (1991). Efro-
movich and Low (1996), Laurent and Massart (2000), Klemelä (2006) and Cai
and Low (2005, 2006b). In this section, we shall consider robust estimation of the
quadratic functional Q(f ) under the regression model (1) with an unknown sym-
metric error distribution. We shall follow the same notation used in Section 3. Note
that the orthonormality of the wavelet basis implies the isometry between the L2
function norm and the �2 wavelet sequence norm which yields

Q(f ) =
∫

f 2 =
2j0∑
k=1

θ̃2
j0,k

+
∞∑

j=j0

2j∑
k=1

θ2
j,k.

The problem of estimating Q(f ) is then translated into estimating the squared
coefficients.

We consider adaptively estimating Q(f ) over Besov balls Bα
p,q(M) with α >

1
p

+ 1
2 . We shall show that it is in fact possible to find a simple procedure which

is asymptotically rate optimal simultaneously over a large collection of unknown
symmetric error distributions. In this sense, the procedure is robust.

As in Section 3, we group the observations Yi into T bins of size log1+b(n) for
some b > 0 and then take the median of each bin. Let X = (X1, . . . ,XT ) denote
the binned medians and let U = T −1/2WX be the empirical wavelet coefficients,
where W is the discrete wavelet transformation matrix. Write U as in (9). Then
the empirical wavelet coefficients can be approximately decomposed as in (12):

ỹj0,k ≈ θ̃j0,k + σnz̃j0,k and yj,k ≈ θj,k + σnzj,k,(22)

where σn = 1/(2h(0)
√

n) and z̃j0,k and zj,k are i.i.d. standard normal variables.
The quadratic functional Q(f ) can then be estimated as if we have exactly the

idealized sequence model (22). More specifically, let Jq = �log2
√

n� and set

Q̂ =
2j0∑
k=1

(ỹ2
j0,k

− σ̂ 2
n ) +

Jq∑
j=j0

2j∑
k=1

(y2
j,k − σ̂ 2

n ).(23)

The following theorem shows that this estimator is robust and rate-optimal for a
large collection of symmetric error distributions and a wide range of Besov classes
simultaneously.

THEOREM 5. For all Besov balls Bα
p,q(M) with α > 1

p
+ 1

2 , the estimator Q̂

given in (23) satisfies

sup
f ∈Bα

p,q(M)

Ef

(
Q̂ − Q(f )

)2 ≤ M2

h2(0)
n−1(

1 + o(1)
)
.(24)
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REMARK 3. We should note that there is a slight tradeoff between efficiency
and robustness. When the error distribution is known to be Gaussian, it is possible
to construct a simple procedure which is efficient, asymptotically attaining the ex-
act minimax risk 4M2n−1. See, for example, Cai and Low (2005). In the Gaussian
case, the upper bound in (24) is 2πM2n−1 which is slightly larger than 4M2n−1.
On the other hand, our procedure is robust over a large collection of unknown
symmetric error distributions.

The examples of adaptive and robust estimation of the regression function and
the quadratic functional given in the last and this sections illustrate the practical use
of the general principles in the asymptotic equivalence theory given in Section 2.
It is easy to see that other nonparametric inference problems such as the construc-
tion of confidence sets and nonparametric hypothesis testing under the general
nonparametric regression model (1) can be handled in a similar way. Hence, our
approach can be viewed as a general method for robust nonparametric inference.

5. Technical tools: moderate deviation and quantile coupling for median.
Quantile coupling is an important technical tool in probability and statistics. For
example, the celebrated KMT coupling results given in Komlós, Major and Tus-
nády (1975) plays a key role in the Hungarian construction in the asymptotic equiv-
alence theory. See, for example, Nussbaum (1996). Standard coupling inequalities
are mostly focused on the coupling of the mean of i.i.d. random variables with a
normal variable. Brown, Cai and Zhou (2008) studied the coupling of a median
statistic with a normal variable. For the asymptotic equivalence theory given in
Section 2 and the proofs of the theoretical results in Section 3 we need a more
refined moderate deviation result for the median and an improved coupling in-
equality than those given in Brown, Cai and Zhou (2008). This improvement plays
a crucial role in this paper. It is the main tool for reducing the problem of robust
regression with unknown symmetric noise to a well studied and relatively simple
problem of Gaussian regression. The result here may be of independent interest
because of the fundamental role played by the median in statistics.

Let X be a random variable with distribution G, and Y with a continuous distri-
bution F . Define

X̃ = G−1(F (Y )),(25)

where G−1(x) = inf{u :G(u) ≥ x}, then L(X̃) = L(X). Note that X̃ and Y are
now defined on the same probability space. This makes it possible to give a
pointwise bound between X̃ and Y . For example, one can couple Binomial(m,

1/2) and N(m/2,m/4) distributions. Let X = 2(W − m/2)/
√

m with W ∼
Binomial(m,1/2) and Y ∼ N(0,1), and let X̃(Y ) be defined as in (25). Komlós,
Major and Tusnády (1975) showed that for some constant C > 0 and ε > 0, when
|X̃| ≤ ε

√
m,

|X̃ − Y | ≤ C√
m

+ C√
m

|X̃|2.(26)
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Let ξ1, . . . , ξm be i.i.d. random variables with density function h. Denote the
sample median by ξmed. The classical theory shows that the limiting distribution
of 2h(0)

√
mξmed is N(0,1). We will construct a new random variable ξ̃med by

using quantile coupling in (25) such that L(̃ξmed) = L(ξmed) and show that ξ̃med
can be well approximated by a normal random variable as in (26). Denote the
distribution and density function the sample median ξmed by G and g, respectively.
We obtain an improved approximation of the density g by a normal density which
leads to a better moderate deviation result for the distribution of sample median
and consequently improve the classical KMT bound from the rate 1/

√
m to 1/m.

A general theory for improving the classical quantile coupling bound was given in
Zhou (2006).

THEOREM 6. Let Z ∼ N(0,1) and let ξ1, . . . , ξm be i.i.d. with density func-
tion h, where m = 2k + 1 for some integer k ≥ 1. Let Assumption (A2) hold. Then,
for |x| ≤ ε,

g(x) =
√

8kf (0)√
2π

exp
(−8kh2(0)x2/2 + O(kx4 + k−1)

)
(27)

and for 0 < x < ε,

G(−x) = �(−x) exp
(
O(kx4 + k−1)

)
and

(28)
G(x) = �(x) exp

(
O(kx4 + k−1)

)
,

where G(x) = 1 − G(x), and �(x) = 1 − �(x). Consequently, for every m, there
is a mapping ξ̃med(Z) : R �→ R such that L(̃ξmed(Z)) = L(ξmed) and∣∣2h(0)

√
mξ̃med − Z

∣∣ ≤ C

m
+ C

m

∣∣2h(0)
√

mξ̃med
∣∣3, when |̃ξmed| ≤ ε(29)

and ∣∣2h(0)
√

mξ̃med − Z
∣∣ ≤ C

m
(1 + |Z|3), when |Z| ≤ ε

√
m,(30)

where C, ε > 0 depend on h but not on m.

REMARK 4. In Brown, Cai and Zhou (2008), the density g of the sample
median was approximated by a normal density as

g(x) =
√

8kh(0)√
2π

exp
(−8kh2(0)x2/2 + O(k|x|3 + |x| + k−1)

)
for |x| ≤ ε.

Since ξmed = Op(1/
√

m), the approximation error O(k|x|3 + |x| + k−1) is at the
level of 1/

√
m. In comparison, the approximation error O(kx4 + k−1) in (27) is at

the level of 1/m. This improvement is necessary for establishing (36) in the proof
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of Theorem 2, and leads to an improved quantile coupling bound (30) over the
bound obtained in Brown, Cai and Zhou (2008):∣∣2h(0)

√
mξ̃med − Z

∣∣ ≤ C√
m

+ C√
m

Z2, when |̃ξmed| ≤ ε.

Since Z is at a constant level, we improve the bound from a classical rate 1/
√

m

to 1/m.

Although the result is only given to m odd, it can be easily extended to the even
case as discussed in Remark 1 of Brown, Cai and Zhou (2008). The coupling result
given in Theorem 6 in fact holds uniformly for the whole family of h ∈ Hε1,ε2 .

THEOREM 7. Let ξ1, . . . , ξm be i.i.d. with density h ∈ Hε1,ε2 in (19). For every
m = 2k + 1 with integer k ≥ 1, there is a mapping ξ̃med(Z) : R �→ R such that
L(̃ξmed(Z)) = L(ξmed) and for two constants Cε1,ε2 , εε1,ε2 > 0 depending only on
ε1 and ε2, ∣∣2h(0)

√
mξ̃med − Z

∣∣ ≤ Cε1,ε2

m
+ Cε1,ε2

m

∣∣2h(0)
√

mξ̃med
∣∣3,

(31)
when |̃ξmed| ≤ εε1,ε2

and ∣∣2h(0)
√

mξ̃med − Z
∣∣ ≤ Cε1,ε2

m
+ Cε1,ε2

m
|Z|3, when |Z| ≤ εε1,ε2

√
m,

uniformly over all h ∈ Hε1,ε2 .

6. Proofs. We shall prove the main results in the order of Theorems 6 and 7,
Theorems 1 and 2, Theorem 3, and then Theorem 5. Theorems 6 and 7 provide
important technical tools for the proof of the rest of the theorems. For reasons of
space, we omit the proof of Theorem 4 and some of the technical lemmas. See Cai
and Zhou (2008) for the complete proofs.

In this section, C denotes a positive constant not depending on n that may vary
from place to place and we set d ≡ min(α − 1

p
,1).

6.1. Proofs of Theorems 6 and 7. We only prove (27) and (28). It follows
from Zhou (2006) that the moderate deviation bound (28) implies the coupling
bounds (29) and (30). Let H(x) be the distribution function of ξ1. The density of
the median ξ(k+1) is

g(x) = (2k + 1)!
(k!)2 Hk(x)

(
1 − H(x)

)k
h(x).
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Stirling’s formula, j ! = √
2πjj+1/2 exp(−j + εj ) with εj = O(1/j), gives

g(x) = (2k + 1)!
4k(k!)2

[
4H(x)

(
1 − H(x)

)]k
h(x)

= 2
√

2k + 1

e
√

2π

(
2k + 1

2k

)2k+1[
4H(x)

(
1 − H(x)

)]k
h(x) exp

(
O

(
1

k

))
.

It is easy to see |√2k + 1/
√

2k − 1| ≤ k−1, and(
2k + 1

2k

)2k+1

= exp
(
−(2k + 1) log

(
1 − 1

2k + 1

))
= exp

(
1 + O

(
1

k

))
.

Then we have, when 0 < H(x) < 1,

g(x) =
√

8k√
2π

[
4H(x)

(
1 − H(x)

)]k
h(x) exp

(
O

(
1

k

))
.(32)

From the assumption in the theorem, Taylor’s expansion gives

4H(x)
(
1 − H(x)

) = 1 − 4
(
H(x) − H(0)

)2

= 1 − 4
[∫ x

0

(
h(t) − h(0)

)
dt + h(0)x

]2

= 1 − 4
(
h(0)x + O(|x|3))2

for 0 ≤ |x| ≤ ε, that is, log(4H(x)(1 − H(x))) = −4h2(0)x2 + O(x4) when |x| ≤
2ε for some ε > 0. Here ε is chosen sufficiently small so that h(x) > 0 for |x| ≤ 2ε.
Assumption (A2) also implies

h(x)

h(0)
= 1 + O(x2) = exp(O(x2)) for |x| ≤ 2ε.

Thus, for |x| ≤ 2ε,

g(x) =
√

8kh(0)√
2π

exp
(−8kh2(0)x2/2 + O(kx4 + x2 + k−1)

)
=

√
8kh(0)√

2π
exp

(−8kh2(0)x2/2 + O(kx4 + k−1)
)
.

Now we approximate the distribution function of ξmed by a normal distribution.
Without loss of generality, we assume h(0) = 1. We write

g(x) =
√

8k√
2π

exp
(−8kx2/2 + O(kx4 + k−1)

)
for |x| ≤ 2ε.

Now we use this approximation of density functions to give the desired approxi-
mation of distribution functions. Specifically, we shall show

G(x) =
∫ x

−∞
g(t) dt ≤ �

(√
8kx

)
exp

(
C(kx4 + k−1)

)
(33)
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and

G(x) ≥ �
(√

8kx
)

exp
(−C(kx4 + k−1)

)
(34)

for all −ε ≤ x ≤ 0 and some C > 0. The proof for 0 ≤ x ≤ ε is similar. We now
prove inequality (33). Note that(

�
(√

8kx
)

exp
(
C(kx4 + k−1)

))′
= √

8kϕ
(√

8kx
)

exp
(
C(kx4 + k−1)

)
(35)

+ �
(√

8kx
)
4kCx3 exp

(
C(kx4 + k−1)

)
.

From Mill’s ratio inequality, we have �(
√

8kx)(−√
8kx) < ϕ(

√
8kx) and hence

�
(√

8kx
)
(4Ckx3) exp

(
C(kx4 + k−1)

)
≥ √

8kϕ
(√

8kx
)(−C

2
x2

)
exp

(
C(kx4 + k−1)

)
.

This and (35) yield(
�

(√
8kx

)
exp

(
C(kx4 + k−1)

))′
≥ √

8kϕ
(√

8kx
)(

1 − C

2
x2

)
exp

(
C(kx4 + k−1)

)
≥ √

8kϕ
(√

8kx
)

exp(−Cx2) exp
(
C(kx4 + k−1)

)
≥ √

8kϕ
(√

8kx
)

exp
(
C(kx4 + k−1)/4

)
.

Here in the second inequality we apply 1− t/2 ≥ exp(−t) when 0 < t < 1/2. Thus
we have(

�
(√

8kx
)

exp
(
C(kx4 + k−1)

))′ ≥ √
8kϕ

(√
8kx

)
exp

(
C(kx4 + k−1)

)
for C sufficiently large and for −2ε ≤ x ≤ 0. Then∫ x

−2ε
g(t) dt ≤

∫ x

−2ε

(
�

(√
8kt

)
exp

(
C(kx4 + k−1)

))′
=

[
�

(√
8kx

)
exp

(
C(kx4 + k−1)

)
−�

(√
8k · (2ε)

)
exp

(
C

(
k(2ε)4 + k−1)) ]

≤ �
(√

8kx
)

exp
(
C(kx4 + k−1)

)
.

In (32) we see∫ −2ε

−∞
g(t) dt =

∫ −2ε

−∞
(2k + 1)!

(k!)2 Hk(t)
(
1 − H(t)

)k
h(t) dt

=
∫ H(−2ε)

0

(2k + 1)!
(k!)2 uk(1 − u)k du
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= o(k−1)

∫ H(−ε)

H(−3ε/2)

(2k + 1)!
(k!)2 uk(1 − u)k du

≤ o(k−1)

∫ H(x)

H(−2ε)

(2k + 1)!
(k!)2 uk(1 − u)k du

= o(k−1)

∫ x

−2ε
g(t) dt,

where the third equality is a result of the fact that uk
1(1−u1)

k = o(k−1)uk
2(1−u2)

k

uniformly for u1 ∈ [0,H(−2ε)] and u2 ∈ [H(−3ε/2),H(−ε)]. Thus we have

G(x) ≤ �
(√

8kx
)

exp(Ckx4 + Ck−1),

which is (33). Equation (34) can be established in a similar way.

REMARK. Note that in the proof of Theorem 6 it can be seen easily that con-
stants C and ε in (29) depends only on the ranges of h(0) and the bound of Lip-
schitz constants of h at a fixed open neighborhood of 0. Theorem 7 then follows
from the proof of Theorem 6 together with this observation.

6.2. Proofs of Theorems 1 and 2.

PROOF OF THEOREM 1. Let εn be a sequence approaching to 0 slowly, for
example, εn = 1/ log logn. Let pf,n be the joint density of Yi ’s and p∗

f,n be the
joint density of Y ∗

i ’s. And let Pf,n be the joint distribution of Yi ’s and Pf ∗,n be the
joint distribution of Y ∗

i ’s. We want to show that

max{Pf ∗,n(|1 − pf ∗,n/pf,n| ≥ εn),Pf,n(|1 − pf,n/pf ∗,n| ≥ εn)}
decays exponentially fast uniformly over the function space.

Note that Pf ∗,n(|1−pf ∗,n/pf,n| ≥ εn) = P0,n(|1−p0,n/pf ∗−f,n| ≥ εn). It suf-
fices to show that P0,n(| log(pf ∗−f,n/p0,n)| ≥ εn) decays exponentially fast. Write

log(pf ∗−f,n/p0,n) =
n∑

i=1

log
h(ξi − ai)

h(ξi)

with ai = f ∗(i/n) − f (i/n), where ξi has density h(x). Under Assumption (A1),
we have Erai

(ξi) ≤ Ca2
i and E exp[t (rai

(ξi) − μ(ai))] ≤ exp(Ct2a2
i ) which imply

P0,n

(
exp

[
t

n∑
i=1

rai
(ξi) − μ(ai)

]
≥ exp(tεn)

)
≤ exp

(
Ct2

n∑
i=1

a2
i − tεn

)
.

Since
n∑

i=1

a2
i ≤ C1n ·

(
n4/3

log2 n

)−d

= C1n
1−4d/3 log2d n,
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which goes to zero for d > 3/4, by setting t = n(4d/3−1)/2 the Markov inequality
implies that P0,n(| log(pf ∗−f,n/p0,n)| ≥ εn) decays exponentially fast. �

PROOF OF THEOREM 2. Let gf,n be the joint density of X∗
j ’s and qf,n be the

joint density of X∗∗
j ’s. And let G0,n be the joint distribution of ηj ’s and Q0,n be

the joint distribution of Zj ’s. Theorem 6 yields

g(x) =
√

4mh(0)√
2π

exp
(−4mh2(0)x2/2 + O(mx4 + m−1)

)
for |x| ≤ m−1/3. Since G0,n(|ηj | > m−1/3) and Q0,n(|Zj | > m−1/3) decay expo-
nentially fast, it suffices to study

T∑
i=1

log
g(Zj )

φσm(Zj )
I (|Zj | ≤ m−1/3).

Let

l(Zj ) = log
g(Zj )

φσm(Zj )
I (|Zj | ≤ m−1/3)

with Zj normally distributed with density φσm(x). It can be easily shown that

El(Zj ) ≤ CQ0,n

(
1 − g(Zj )

φσm(Zj )

)2

≤ C1m
−2

and

Var(l(Zj )) ≤ Cm−2.

Since |Zj | ≤ Cm−1/3, then |l(Zj )| ≤ Cm−1/3. Taylor’s expansion gives

E exp
[
t
(
l(Zj ) − El(Zj )

)] ≤ exp(Ct2m−2)

for t = log3/2 n, then similar to the proof of Theorem 1 we have

Qf,n

(| log(gf,n/qf,n)| ≥ εn

) ≤ exp(Ct2T m−2 − tεn).(36)

Since T m−2 = 1/ log3 n → 0, it decays faster than any polynomial of n. �

6.3. Proof of Theorems 3 and 4. In the proofs of Theorems 3, 4 and 5, we
shall replace σ̂ 2

n by σ 2
n . We assume that h(0) is known and equal to 1 without loss

of generality, since it can be shown easily that the estimator ĥ(0) given in (15)
satisfies

P {|ĥ−2(0) − h−2(0)| > n−δ} ≤ cln
−l(37)
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for some δ > 0 and all constants l ≥ 1. Note that E m
T/2

∑
(X2k−1 − X2k)

2 =
1
4h−2(0) + O(

√
mT −d), and it is easy to show

E

∣∣∣∣8m

T

∑
(X2k−1 − X2k)

2 − h−2(0)

∣∣∣∣l ≤ Cl

(√
mT −d)l

,

where
√

mT −d = n−δ with δ > 0 in our assumption. Then (37) holds by Cheby-
shev’s inequality. It is very important to see that the asymptotic risk properties of
our estimators for f in (13) and Q(f ) in (23) do not change when replacing σ 2

n

by σ 2
n (1 + O(n−δ)), thus in our analysis we may just assume that h(0) is known

without loss of generality.
For simplicity, we shall assume that n is divisible by T in the proof. The cou-

pling inequality and the fact that a Besov ball Bα
p,q(M) can be embedded into a

Hölder ball with smoothness d = min(α − 1
p
,1) > 0 [see Meyer (1992)] enable

us to precisely control of the errors. Proposition 2 gives the bounds for both the
deterministic and stochastic errors.

PROPOSITION 2. Let Xj be given as in our procedure and let f ∈ Bα
p,q(M).

Then Xj can be written as

√
mXj = √

mf

(
j

T

)
+ 1

2
Zj + εj + ζj ,(38)

where:

(i) Zj
i.i.d.∼ N(0, 1

h2(0)
);

(ii) εj are constants satisfying |εj | ≤ C
√

mT −d and so 1
n

∑T
i=1 ε2

j ≤ CT −2d;
(iii) ζj are independent and “stochastically small” random variables satisfying

with Eζj = 0, and can be written as

ζj = ζj1 + ζj2 + ζj3

with

|ζj1| ≤ C
√

mT −d,

Eζj2 = 0 and |ζ2j | ≤ C

m
(1 + |Zj |3),

P (ζj3 = 0) ≥ 1 − C exp(−εm) and E|ζj3|D exists

for some ε > 0 and C > 0, and all D > 0.

REMARK 5. Equation (38) is different than Proposition 1 in Brown, Cai
and Zhou (2008), where there is an additional bias term

√
mbm. Lemma 5 in

Brown, Cai and Zhou (2008) showed that the bias bm can be estimated with a rate
max{T −2d,m−4}. Therefore in that paper we need to choose the bin size m = n1/4
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such that m−4 = o(n−2α/(2α+1)) is negligible relative to the minimax risk. In the
present paper we can choose m = log1+b n because there is no bias term and as a
result the condition on the smoothness is relaxed.

The proof of Proposition 2 is similar to that of Proposition 1 in Brown, Cai and
Zhou (2008) and is thus omitted here. See Cai and Zhou (2008) for a complete
proof.

We now consider the wavelet transform of the medians of the binned data. From
Proposition 2 we may write

1√
T

Xi = f (i/T )√
T

+ εi√
n

+ Zi

2
√

n
+ ζi√

n
.

Let (yj,k) = T −1/2W · X be the discrete wavelet transform of the binned data.
Then one may write

yj,k = θ ′
j,k + εj,k + 1

2
√

n
zj,k + ξj,k,(39)

where θ ′
j,k are the discrete wavelet transform of (f ( i

T
))1≤i≤T , zj,k are the trans-

form of the Zi’s and so are i.i.d. N(0,1) and εj,k and ξj,k are, respectively, the
transforms of ( εi√

n
) and (

ζi√
n
). The following proposition gives the risk bounds of

the block thresholding estimator in a single block. These risk bounds are similar
to results for the Gaussian case given in Cai (1999). But in the current setting the
error terms εj,k and ξj,k make the problem more complicated.

PROPOSITION 3. Let yj,k be given as in (39) and let the block thresholding
estimator θ̂j,k be defined as in (13). Then:

(i) for some constant C > 0,

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ ′
j,k)

2 ≤ min
{

4
∑

(j,k)∈Bi
j

(θ ′
j,k)

2,8λ∗Ln−1
}

(40)
+ 6

∑
(j,k)∈Bi

j

ε2
j,k + CLn−2;

(ii) for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such
that for all (j, k) ∈ Bi

j

E(θ̂j,k − θ ′
j,k)

2 ≤ Cτ · min
{

max
(j,k)∈Bi

j

{(θ ′
j,k + εj,k)

2},Ln−1
}

+ n−2+τ ;(41)

(iii) for j ≤ J∗ and εn > 1/ logn, P(
√

n|ξj,k| ≥ εn) ≤ C exp(−εnm).
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The third part follows from Lemma 3 in Cai and Wang (2008) which gives a
concentration inequality for wavelet coefficients at a given resolution.

For reasons of space we omit the proof of Proposition 3 here. See Cai and Zhou
(2008) for a complete proof. We also need the following lemmas for the proof of
Theorems 3 and 4. The proof of these lemmas is relatively straightforward and is
thus omitted.

LEMMA 1. Suppose yi = θi + zi, i = 1, . . . ,L, where θi are constants and zi

are random variables. Let S2 = ∑L
i=1 y2

i and let θ̂i = (1 − λL
S2 )+yi. Then

E‖θ̂ − θ‖2
2 ≤ ‖θ‖2

2 ∧ 4λL + 4E[‖z‖2
2I (‖z‖2

2 > λL)].(42)

LEMMA 2. Let X ∼ χ2
L and λ > 1. Then

P(X ≥ λL) ≤ e−L/2(λ−logλ−1) and
(43)

EXI (X ≥ λL) ≤ λLe−L/2(λ−logλ−1).

LEMMA 3. Let T = 2J and let fJ (x) = ∑T
k=1

1√
T
f ( k

T
)φJ,k(x). Then

sup
f ∈Bα

p,q(M)

‖fJ − f ‖2
2 ≤ CT −2d where d = min(α − 1/p,1).

Let {θ ′
j,k} be the discrete wavelet transform of {f ( i

T
),1 ≤ i ≤ T } and let {θj,k}

be the true wavelet coefficients of f . Then |θ ′
j,k − θj,k| ≤ CT −d2−j/2 and conse-

quently
∑J−1

j=j0

∑
k(θ

′
j,k − θj,k)

2 ≤ CT −2d .

6.3.1. Global adaptation: proof of Theorem 3. Decompose E‖f̂n − f ‖2
2 into

three terms as follows:

E‖ĝn − g‖2
2 = ∑

k

E(
ˆ̃
θj0,k − θ̃j,k)

2 +
J∗−1∑
j=j0

∑
k

E(θ̂j,k − θj,k)
2

+
∞∑

j=J∗

∑
k

θ2
j,k(44)

≡ S1 + S2 + S3.

It is easy to see that the first term S1 and the third term S3 are small:

S1 = 2j0n−1ε2 = o
(
n−2α/(1+2α)).(45)

Note that for x ∈ Rm and 0 < p1 ≤ p2 ≤ ∞,

‖x‖p2 ≤ ‖x‖p1 ≤ m1/p1−1/p2‖x‖p2 .(46)
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Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θj,k|p)1/p ≤ M . Now (46) yields that

S3 =
∞∑

j=J∗

∑
k

θ2
j,k ≤ C2−2J∗(α∧(α+1/2−1/p)).(47)

Propositions 2(ii) and 3 and Lemma 3 together yield

S2 ≤ 2
J∗−1∑
j=j0

∑
k

E(θ̂j,k − θ ′
j,k)

2 + 2
J∗−1∑
j=j0

∑
k

(θ ′
j,k − θj,k)

2

≤
J∗−1∑
j=j0

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}
+ 6

J∗−1∑
j=j0

∑
k

ε2
j,k

(48)

+ Cn−1 + 10
J∗−1∑
j=j0

∑
k

(θ ′
j,k − θj,k)

2

≤
J∗−1∑
j=j0

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}
+ Cn−1 + CT −2d .

We now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α

×
log2 n]. So, 2J1 ≈ n1/(1+2α). Then (48) and (46) yield

S2 ≤ 8λ∗
J1−1∑
j=j0

2j /L∑
i=1

Ln−1 + 8
J∗−1∑
j=J1

∑
k

θ2
j,k + Cn−1 + CT −2d

≤ Cn−2α/(1+2α).

By combining this with (45) and (47), we have E‖f̂n − f ‖2
2 ≤ Cn−2α/(1+2α) for

p ≥ 2.
Now let us consider the case p < 2. First we state the following lemma without

proof.

LEMMA 4. Let 0 < p < 1 and S = {x ∈ Rk :
∑k

i=1 x
p
i ≤ B,xi ≥ 0, i =

1, . . . , k}. Then for A > 0, supx∈S

∑k
i=1(xi ∧ A) ≤ B · A1−p.

Let J2 be an integer satisfying 2J2 � n1/(1+2α)(logn)(2−p)/p(1+2α). Note that

2j /L∑
i=1

( ∑
(j,k)∈Bi

j

θ2
j,k

)p/2

≤
2j∑

k=1

(θ2
j,k)

p/2 ≤ M2−jsp.
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It then follows from Lemma 4 that

J∗−1∑
j=J2

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}
(49)

≤ Cn−2α/(1+2α)(logn)(2−p)/(p(1+2α)).

On the other hand,

J2−1∑
j=j0

2j /L∑
i=1

min
{

8
∑

(j,k)∈Bi
j

θ2
j,k,8λ∗Ln−1

}

≤
J2−1∑
j=j0

∑
b

8λ∗Ln−1(50)

≤ Cn−2α/(1+2α)(logn)(2−p)/(p(1+2α)).

We finish the proof for the case p < 2 by putting (45), (47), (49) and (50) to-
gether:

E‖f̂n − f ‖2
2 ≤ Cn−2α/(1+2α)(logn)(2−p)/(p(1+2α)).

6.4. Proof of Theorem 5. Recall that

Q̂ =
2j0∑
k=1

(ỹ2
j0,k

− σ̂ 2
n ) +

Jq∑
j=j0

2j∑
k=1

(y2
j,k − σ̂ 2

n )

and note that the empirical wavelet coefficients can be written as

yj,k = θj,k + εj,k + σnzj,k + ξj,k.

Since (
∑

j>J1
θ2
j,k)

2 ≤ C[2−2J1(α−1/p)]2 = o( 1
n
), as in Cai and Low (2005) it is

easy to show that

Ef

{ 2j0∑
k=1

[(θ̃j0,k + σnz̃j0,k)
2 − σ 2

n ] +
Jq∑

j=j0

2j∑
k=1

[(θj,k + σnzj,k)
2 − σ 2

n ] − Q(f )

}2

≤ 4σ 2
nM2(

1 + o(1)
)
.

The theorem then follows easily from the facts below:

2j0∑
k=1

ε̃2
j,k +

Jq∑
j=j0

2j∑
k=1

ε2
j,k ≤ CT −2(α−1/p) = o

(
1

n

)
,
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E

( 2j0∑
k=1

ξ2
j,k +

Jq∑
j=j0

2j∑
k=1

ξ2
j,k

)2

≤ C
1

m2n
= o

(
1

n

)
,

E
[√

n(σ̂ 2
n − σ 2

n )
]2 = o

(
1

n

)
.
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