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An important issue raised by Efron in the context of large-scale multiple comparisons is that in many applications, the usual assumption
that the null distribution is known is incorrect, and seemingly negligible differences in the null may result in large differences in subsequent
studies. This suggests that a careful study of estimation of the null is indispensable. In this article we consider the problem of estimating a
null normal distribution, and a closely related problem, estimation of the proportion of nonnull effects. We develop an approach based on the
empirical characteristic function and Fourier analysis. The estimators are shown to be uniformly consistent over a wide class of parameters.
We investigate the numerical performance of the estimators using both simulated and real data. In particular, we apply our procedure to the
analysis of breast cancer and human immunodeficiency virus microarray datasets. The estimators perform favorably compared with existing

methods.
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1. INTRODUCTION

The analysis of massive datasets now commonly used in
scientific investigations poses many statistical challenges not
present in smaller-scale studies. One such challenge is the need
for large-scale simultaneous testing or multiple comparisons,
in which thousands or even millions of hypotheses are tested
simultaneously. In this setting, one considers a large number of
null hypotheses Hi, H, ..., H,, and is interested in determin-
ing which hypotheses are true and which are not. Associated
with each hypothesis is a test statistic. When H; is true, the test
statistic X; has a null distribution function Fy, that is,

(Xj|Hj is true) ~ Fy.

Since the pioneering work of Benjamini and Hochberg (1995),
which introduced the false discovery rate (FDR)-controlling
procedures, research on large-scale simultaneous testing has
been very active (see, e.g., Abravomich, Benjamini, Donoho,
and Johnstone 2006; Cai, Jin, and Low 2007; Donoho and Jin
2004; Efron 2004; Efron, Tibshirani, Storey, and Tusher 2001;
Genovese and Wasserman 2004; Meinhausen and Rice 2006;
Storey, Dai, and Leek 2007).

FDR procedures are based on p values, which measure the
tail probability of the null distribution. Conventionally the null
distribution is always assumed known. However, somewhat sur-
prisingly, Efron (2004) pointed out that in many applications,
such an assumption would be incorrect. Efron studied a dataset
on breast cancer in which a gene microarray was generated
for each patient in two groups, the BRCA1 group and BRCA2
group. The goal was to determine which genes were differen-
tially expressed between the two groups. For each gene, a p
value was calculated using the classical ¢ test. For convenience,
Efron chose to work on the z scale through the transformation
X; = o1 (pj), where ® =1 — @ is the survival function of the

Jiashun Jin is Assistant Professor, Department of Statistics, Purdue Univer-
sity, West Lafayette, IN 47907 (E-mail: jinj@stat.purdue.edu). T. Tony Cai is
Associate Professor, Department of Statistics, The Wharton School, University
of Pennsylvania, Philadelphia, PA 19104 (E-mail: tcai@wharton.upenn.edu).
The authors thank Bradley Efron for references and kindly sharing the datasets
and Paul Shaman for a careful reading of our manuscript and suggestions that
led to significant improvement of the presentation of the article. They also thank
Herman Rubin, an associate editor, and referees for helpful comments and ref-
erences. The research of Jin was supported in part by National Science Foun-
dation (NSF) grant DMS-05-05423, and the research of Cai was supported in
part by NSF grants DMS-03-06576 and DMS-06-04954.

standard normal distribution. Efron argued that although the-
oretically the null distribution should be the standard normal,
empirically another null distribution (which Efron called the
empirical null) is more appropriate. In fact, Efron found that
N(—.02, 1.58%) is a more appropriate null than N(0, 1) (Fig. 1).
Efron also found a similar phenomenon in the analysis of a mi-
croarray dataset on human immunodeficiency virus (HIV).

Different choices of the null distribution can give substan-
tially different outcomes in simultaneous multiple testing. Even
a seemingly negligible estimation error of the null may result
in large differences in subsequent studies. For illustration, we
carried out an experiment containing 100 independent cycles
of simulations. In each cycle, 9,000 samples are drawn from
N(0, .95%) to represent the null effects, and 1,000 samples are
drawn from N(2, .952) to represent the nonnull effects. For each
sample element X, p values are calculated as ! (Xj/.95) and
o (Xj), which represent the p values under the true null and
the misspecified null. The FDR procedure is then applied to
both sets of p values, with the FDR control parameter set at
.05. The results, reported in Figure 2, show that the true posi-
tives obtained by using N(0, 1) as the null and those obtained
by using N(0, .952) as the null are considerably different. This,
together with Efron’s arguments, suggests that a careful study
on estimating the null is indispensable.

Efron (2004) introduced a method for estimating the null dis-
tribution based on the notion of “sparsity.” Sparsity can be de-
fined in several different ways (Abramovich et al. 2006). The
most intuitive one is that the proportion of nonnull effects is
small. In some applications, the case of “asymptotically vanish-
ing sparsity” is of particular interest (Abramovich et al. 2006;
Donoho and Jin 2004). This case refers to the situation in which
the proportion of nonnull effects tends to zero as the number of
hypotheses grows to infinity. In such a setting, heuristically, the
influence of the nonnull effects becomes more and more negli-
gible, and so the null can be reliably estimated asymptotically.
In fact, Efron (2004) suggested an approach that uses the center
and half-width of the central peak of the histogram to estimate
the parameters of the null distribution.

In many applications it is more appropriate to model the set-
ting as nonsparse, that is, the proportion of nonnull effects does
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Figure 1. z-Values of Microarray Data on Breast Cancer. (a) Q-Q plot. (b) Histogram and density curves of N(0, 1) (— — —) and N(—.02, 1.58°).
The plot suggests that the null is N(—.02, 1.582) rather than N(0, 1). (See Efron 2004 for further details.)

not tend to zero when the number of hypotheses grows to infin-
ity. In such settings, Efron’s (2004) approach does not perform
well, and it is not hard to show that the estimators of the null
are generally inconsistent. Moreover, even when the setting is
asymptotically vanishingly sparse and the estimators are con-
sistent, it is still of interest to quantify the influence of sparsity
on the estimators, because a small error in the null may propa-
gate to large errors in subsequent studies.

Conventional methods for estimating the null parameters are
based on either moments or extreme observations (Efron 2004;
Meinshausen and Rice 2006; Swanepoel 1999). However, in the
nonsparse case, neither of these is very informative, because
the relevant information about the null is highly distorted by
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the nonnull effects in both of them. In this article we propose a
new approach for estimating the null parameters using the em-
pirical characteristic function and Fourier analysis as the main
tools. The approach demonstrates that the information about
the null is well preserved in the high-frequency Fourier coef-
ficients, where the distortion of the nonnull effects is asymptot-
ically negligible. The approach integrates the strength of sev-
eral factors, including sparsity and heteroscedasticity, and pro-
vides good estimates of the null in a much broader range of
situations than existing approaches do. The resulting estima-
tors are shown to be uniformly consistent over a wide class
of parameters and to outperform existing methods in simula-
tions.
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Figure 2. The Number of True Positives for Each Cycle, Using the True Null (—) and the Misspecified Null (— — —). For visualization, the numbers

are sorted ascendingly with respect to those in the true null case.
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Along with the null distribution, the proportion of nonnull
effects also is an important quantity. For example, implementa-
tion of many recent procedures requires the knowledge of both
the null and the proportion of nonnull effects (see Efron et al.
2001; Lonnstedt and Speed 2002; Storey et al. 2007). Develop-
ing good estimators for the proportion is a challenging task.
Recent work includes that of Meinshausen and Rice (2006),
Swanepoel (1999), Cai et al. (2007), and Jin (2006). In this arti-
cle we extend the method of Jin (2006) to the current setting of
heteroscedasticity with an unknown null distribution. The esti-
mator is shown to be uniformly consistent over a wide class of
parameters.

Along with the theoretical properties, we investigated numer-
ical performance of the estimators using both simulated and real
data. In particular, we used our procedure to analyze the breast
cancer (Hedenfalk, Duggen, Chen, et al. 2001) and HIV (Van’t
Wout et al.) microarray data analyzed by Efron (2004). The re-
sults indicate that our estimated null parameters lead to a more
reliable identification of differentially expressed genes than that
in Efron (2004).

The article is organized as follows. After reviewing basic no-
tations and definitions, we define the estimators of the null para-
meters in Section 2.1. We investigate the theoretical properties
of the estimators in Sections 2.2 and 2.3. In Section 2.4 we dis-
cuss the extension to dependent data structures. In Section 3 we
cover estimation of the proportion of nonnull effects. In Sec-
tion 4 we report on a simulation study carried out to investigate
numerical performance. In Section 5 we apply our procedure to
the analysis of the breast cancer and HIV microarray data. We
give proofs of the main theorems in the Appendix.

2. ESTIMATING THE NULL DISTRIBUTION

Following Efron (2004), we work on the z-scale and consider
n test statistics

Xj~NQj,07),  1<j<n, (1)

where u; and oj are unknown parameters. For a pair of null
parameters, [Lo and oy,

(j, 0j) = (o, 00) if Hjistrue  and

2

(j, 07) # (o, 00) if H; is untrue,

and we are interested in estimating o and op. We first consider
the case in which X1, ..., X, are independent. We consider the
dependent case in Section 2.4.
Set u ={u1,..., un} and o = {o1, ..
portion of nonnull effects by
_ #j:1(y, 05) # (1o, 00)}

en=én(n,0)= " 3)

., 0, }. Denote the pro-

We assume that o; > o for all 1 < j < n; that is, the standard
deviation of a nonnull effect is no less than that of a null effect.
This is the case in a wide range of applications (Efron 2004;
Lonnstedt and Speed 2002). To make the null parameters iden-
tifiable, we assume that

1
€,(,0) <¢y forsome constant 0 < €9 < > @)

Definition 1. Fix €y € (0, 1/2), no, and og > 0. We say that
(, o) is (o, 00, €0)-eligible if (4) is satisfied and o; > o¢ for
all 1 <j<n.
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Throughout this article, we assume that (i, o) is (io, 00, €o)-
eligible.

2.1 Estimating the Null Parameters

As mentioned in Section 1, an informative approach to esti-
mating the null distribution is to use the Fourier coefficients at
suitable frequencies. In the literature, Fourier coefficients fre-
quently have been used for statistical inference (see, e.g., Fan
1991; Zhang 1990). Here we use them to construct estimators
for the null parameters.

Introduce the empirical characteristic function,

I & i
on(t) = Qu(t: X1, ..., Xpom) == Y ™, )
n-
J=1
and its expectation, the g}éaracteristic function, ¢(t) = (t;
W, o,n) = % J'-'zle”“f_”-/’t/z, where i = /—1. The char-

acteristic function ¢ naturally splits into two components,

@(t) = go(t) + (1), where @o(t) = @o(t; w, 0,n) = (1 — €,) X
ezpoz—agtz/z and

o) =@t 1, o,n)

= &0 Avey oo (€T (6)
which correspond to the null and nonnull effects. Note that the
identifiability condition €, < €y < 1/2 ensures that ¢(#) # 0 for
all 1.

We now use the foregoing functions to construct estimators
for 002 and po. For any ¢ # 0 and any differentiable complex-
valued function f such that [f(¢)| ## 0, we define the two func-
tionals

4
oo (fs ) = — tdt ll];,((g || and
(N
o Re(f(®) - Im(f'(1) — Re(f' (1) - Im(f (1))
:uo(fv t) - lf([)|2 ’

where Re(z) and Im(z) denote the real and imaginary parts
of the complex number z. Simple calculus shows that evalu-
ating the functionals at g gives the exact values of 002 and uo:
crg((po; H= 002 and uo(@o; 1) = po for all £ # 0.

Inspired by this, we hope that for an appropriately chosen
large t, @, (t) = @(t) =~ @o(?), so that the contribution of non-
null effects to the empirical characteristic function is negligible,
which would then give rise to good estimates for 002 and po.
More specifically, we use 002 (¢n; 1) and wo(@y,; 1) as estimators
for 002 and o, and hope that by choosing an appropriate 7, we
have

0@ (gn; D) = 03 (93 1) ~ 0 (g0; 1) = 0 ®)
and
1o (@n; D) = o(@; 1) ~ poleo; 1) = wo. ©)]

There is clearly a trade-off in the choice of ¢. As ¢ increases
from 0 to oo, the second approximations in (8) and (9) be-
come increasingly accurate, but the first approximations be-
come more unstable, because the variances of 002(<p,,; t) and
no(pn; t) increase with f. Intuitively, we should choose a ¢
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such that ¢, (t)/¢(f) & 1, so that ¢ can be estimated with first-
order accuracy. Note that by the central limit theorem, |¢; (¢) —
o) = OP(ﬁ), so t should be chosen such that ¢(7) > ﬁ
We introduce the following method for choosing ¢, which is
adaptive to the magnitude of the empirical characteristic func-
tion. For a given y € (0, 1/2), set
;n(y) = ,in(y; ©n)
=inf{r:|g,(0)| =n"7,0 <t <logn}. (10)

Once we determine the frequency t = #,(y), we have the fol-
lowing family of “plug in” estimators indexed by y € (0, 1/2):

Y

We show later (see Lemma A.3 in the App.) that 7,(y) is as-
ymptotically equivalent to the nonstochastic quantity

and I:\LO = o (@n; ?n(y))

64 = 0@ (gn; 1 (1))

() = taly: @) = inf{: 19D =n~7,0 <t <logn}, (12)

and that the stochastic fluctuation of #,(y ) is algebraically small
and its effect is generally negligible. We note here that, by ele-
mentary calculus,

ta(y, @) =2y logn/oo] - (1 4 o(1)),

where o(1) tends to 0 uniformly for all ¢ under consideration.

n— 00,

13)

2.2 Uniform Consistency of the Estimators

We now show that the estimators 6(% and fio given in (11)
are consistent uniformly over a wide class of parameters. We
introduce two nonstochastic bridging quantities, og (¢; ta(y))
and po(e; t,(y)), which correspond to 002 and . For each es-
timator, the estimation error can be decomposed into two com-
ponents: the stochastic fluctuation and the difference between
the true parameter and its corresponding bridging quantity,

— 03] < |03 @n: (1)) — 03 (@3 ta(1)]
+og @i ta() —og| (14)

|G (@ n (1))

and

|10 (@n; Tn (1) — 10| < [0 (@n: T (1)) — 1o(@; ta(¥)) ]
+[ro(@: tan(¥)) = 1ol (15)
We consider the behavior of the two components separately. Fix
constants ¢ > 0 and A > 0, and introduce the set of parameters
An(g, A; o, 00, €0)
= {(,u, o) is (1o, 00, eo)-eligible,M,(ﬂ)(,u, o) SAq}, (16)

where My" (11, 0) = Avey;. (i) g,on (1147 = ol + lof —
U§|1/2)‘1}. For a constant r, we say that a sequence {a,},°, is
o(n™") if forany § > 0, n"%a,| — 0asn— o0o. The following
theorem elaborates the magnitude of the stochastic component.

Theorem 1. Fix constants y, €g € (0,1/2),g > 3,and A > 0.
As n — 00, except for an event with probability o(n™°!),

sup |06 (0n3 2 (1) — 03 (95 ta (1))

{An(q,A;10,00,€0)}

<3¢y -log!?(n) - n¥~1/2
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and

sup |0 (n; 10 (1)) — o(@; ta(¥))|

{An(q,A;10,00,€0)}

<V2ye;-log(n) -n? 7172,

where ¢ = (00, ¢, ) = 2002 -/max{3,g—1—2y} and

(q/2—1-v)/2, g<4
ca=ci(gy)=1(@/2-1-y), 4<g<4+42y
(g—1=2y)/3, qg>4+2y.

7)

Theorem 1 says that the stochastic components in (14) and (15)
are both algebraically small uniformly over A,,.

We now consider the nonstochastic components in (14) and
(15). As defined in (6), @(r) naturally factors into ¢(¢) =

. 2.2
M= /2 oy (1), where

V() =y u,o,n)

SO (A2 2\42
=€n'AVe[/‘:(u,-,q;)qé(uo,oo)}ele mo)t—(o7—og)t /2. (18)

Lemma A.5 tells us that there is a constant C > 0 such that uni-
formly for all (o, 00, €0)-eligible parameters (u, o), |o§(<p;
0w (1) — 0] < C- 1Y b)) /ta(y) and [po(@; ta(y)) — pol <
C - |¥/(t,(y))|; see the details therein. Combining these with
Theorem 1 gives the following theorem, which is proved in the
Appendix.

Theorem 2. Fix constants y, g € (0,1/2),g>3,and A > 0.
For all ¢, SUD(A,,(q,A: 120,00,€0)} [/ ()] <A - €. Moreover, there
is a constant C = C(y, q, A, €9, 140, 00) such that, except for
an event with algebraically small probability, for any (i, o) €
An(q, A; 1o, 00, €9) and all sufficiently large n,

, [ (ta (1)) _
|0 (@n: 1 (¥)) — 0| < C(Tgyn +log"?(n) - n” 1/2)

and
|100(@n: 1 (r)) = po| < C(|W (ta(y))| + log(n) - n? ~1/2).

Consequently, Ug((p,,; #,(y)) is uniformly consistent for 002
over A,(q, A; 1o, 00, €0). In addition, if ¥/ (z,(y)) = o(1), then
wo(@n; 1,(y)) is consistent for g as well.

We remark here that 11o(¢,; 7,(y)) is uniformly consistent for
o over any subset A C A, with sup{Ax}{|1p’(t,,(y))|} =o0(1).
Although at first glance the convergence rates are relatively
slow, in fact they are much faster in many situations.

2.3 Convergence Rate: Examples and Discussions

We now show that under mild conditions, the convergence
rates of o (¢n; 7a(y)) and wo(gu; 7x(y)) can be significantly
improved and sometimes are algebraically fast.

Example 1: Asymptotically Vanishing Sparsity. Sparsity is a
natural phenomenon found in many scientific fields, including
genomics, astronomy, and image processing. As mentioned ear-
lier, asymptotically vanishing sparsity refers to the case where
€n(,0) — 0 (as n — o0). Several models for sparsity have
been considered in the literature; among these are moderately
sparse and very sparse models, where €, = n~# for some para-
meter B satisfying 8 € (0,1/2) and 8 € (1/2, 1) (Abramovich
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et al. 2006; Donoho and Jin 2004). Lemma A.5 shows that uni-
formly over A,, |/ (t,(¥))| < O(ex(it, 0)). Theorem 2 then
yields the fact that the estimation errors of aoz(gon; .(y)) and
1o (@n; 1,(y)) are algebraically small for both the moderately
sparse and very sparse cases.

Example 2: Heteroscedasticity. It is natural in many applica-
tions to find that a nonnull effect has an elevated variance. A test
statistic consists of two components: signal and noise. An eleva-
tion of variance occurs when the signal component contributes
extra variance. Denote the minimum elevation of the variance
for the nonnull effects by

{0-2 —002}.

; (19)

T, =T,(K,0) = min
i (wj,09)#(1r0,00)}
Lemma A.5 shows that |/ (f,(y))| < O(ene™? 1028 ™GL0)y,

Thus ¥/ (ta(y)) = (1) if, say, T, > 52", and ¥/ (tx(y)) is
algebraically small if t, > cg for some constant ¢ > 0.

Example 3: Gaussian Hierarchical Model. The Gaussian hi-
erarchical model is widely used in statistical inference as well
as in microarray analysis (see, e.g., Efron 2004). A simple ver-
sion of the model is one in which o; = o¢ and the means p;
associated with nonnull effects are modeled as samples from a

density function &, (uj|H; is untrue) S h. It is not hard to show
that [/ (t, ()| < €n - | [ €™ V[(u — o) k()] dul, where the
integral is the Fourier transform of the function (¥ — po)h(u)
at frequency #,(y). By the Riemann-Lebesgue lemma (Mal-
lat 1998), |V (t.(y))| = o(t;*(y)) if the kth derivative of h(u)
is absolutely integrable. In particular, if /# is Gaussian, [say
N(a, b)), then [/ (12 ()] < O(&n - [ta()] - n77*) and is al-
gebraically small.

We note here that sparsity, heteroscedasticity, and the
smoothness of & can occur simultaneously, making convergence
even faster. In a sense, our approach combines the strengths of
sparsity, heteroscedasticity, and smoothness of the density A.
Thus the approach can be viewed as an extension of Efron’s
approach, because it is consistent not only in the asymptot-
ically vanishingly sparse case, but also in many interesting
nonsparse cases. In addition, in the asymptotically vanishingly
sparse case, the convergence rates of our estimators can be sub-
stantially faster than those of Efron. This may occur when the
dataset is both sparse and heteroscedastic, for example.

Remark. The theory developed in Sections 2.1-2.3 can be
naturally extended to the Gaussian hierarchical model, which
is the Bayesian counterpart of model (1)—(2) and has been
widely used in the literature (see, e.g., Efron 2004; Genovese
and Wasserman 2004). The model treats the test statistics X; as
samples from a two-component Gaussian mixture,

X;j~ (1 —N(uo.0f) +eN(uj, o), 1<j<n, (20
where the (uj,07) are samples from a bivariate distribution
F(u, o). The previous results can be naturally extended to this
model.
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2.4 Extension to Dependent Data Structures

We now consider the proposed approach for dependent data.
Because the discussions are similar, we focus on o&(w; 1.(1)).
Recall that the estimation error splits into a stochastic compo-
nent and a nonstochastic component, |002((pn; () — 002| <
106 (@ns 1a(¥)) = 05 (@3 ta ()| + |05 (93 1a()) — 0 |. Note that
the nonstochastic component contains only marginal effects
and is unrelated to dependence structures. Thus we need only
study the stochastic component, or to extend Theorem 1. In
fact, once Theorem 1 is extended to the dependent case, the
extension of Theorem 2 follows directly by arguments simi-
lar to those given in the proof of Theorem 2. For reasons of
space, we focus on two dependent structures: the strongly («)-
mixing case and the short-range dependent case. Denote the
strongly mixing coefficients by (k) = sup(j<;<, (0 (Xs, s <
1),0Xs, s > t+k)), where o (-) is the o-algebra generated by
the random variables specified in the brackets and (X1, ¥») =
SUP(g, ex, . Eyex,) IPIEL N Ex} — P{EI}P{EL}| for any two o-
algebras ¥ and X,. In the strongly mixing case, we suppose
that a (k) < Bk~ for some positive constants B and d. In the
short-range dependent case, we suppose that a(k) = 0 when
k > n' for some constant T € (0, 1).

Now, fix constants a > 0, B > 0, g > 3, and A > 0, in-
troduce the following set of parameters, which we denote by
An(a, B, q,A) = An(a, B, q, A; €, (o, 00):

[(M’ O) S Ikn(qﬂ‘; MO’ 007 60)3
max il + o]} <Blo < ]
{1<,<n}{|ﬂjl |Uj|} 2" (n)

Note that this technical condition is not essential and can be
relaxed. The following theorem treats the strongly mixing case
and was proven by Jin and Cai (2006, sec. 7).

Theorem 3. Fixd > 1.5,qg> 3,y € (0, %), A>0,a>
0, and B > 0. Suppose that « (k) §~Bk_d forall 1 <k <n. As
n — oo, uniformly for all (i1, o) € Ay(a, B, g,A), except for an

event with asymptotically vanishing probability,
|O'(?((pn; /t\n(y)) - 002(g0; tn(y))| < a(ny71/2)’

|10 (@n: 10 (1)) — o(@: ta(¥))] < 3(n? ~112).

An interesting question is whether this result holds for all y €
(0, 1/2); we leave this for future study. The following theorem
concerns the short-range dependent case, the proof of which is
similar to that of Theorem 3 and thus is omitted.

Theorem4. Fixq>3,7€(0,1),y € (0, 55),A>0,a> 0,
and B > 0. Suppose that «(k) = 0 for all k > n". As n — oo,
uniformly for all (u¢,0) € ]\,,(a, B, g,A), except for an event
with asymptotically vanishing probability,

| (0ns 1n (V) — g (@5 ta(¥)) | < B(n? ~17D/2),

|160(0n: 1 (1)) — 10(@3 ta(¥))| < 0(n? 1 79/2).

We mention that consistency for more general dependent
settings is possible provided that the following two key re-
quirements are satisfied. First, there must be an exponential-
type inequality for the tail probability of |p,(f) — ¢(¢)| for
all ¢ € (0,logn); we use Hoeffding’s (1963) inequality in the
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proof for the independent case, and use (Bosq 1998, thm. 1.3)
in the proof of Theorem 3. Second, the standard deviation of
on(t,(y)) must have a smaller order than that of ¢(#,(y)), so
that the approximation ¢, (#,(y))/¢(t,(y)) =~ 1 is accurate to
the first order.

3. ESTIMATING THE PROPORTION OF
NONNULL EFFECTS

The development of useful estimator for the proportion
of nonnull effects, together with the corresponding statistical
analysis, poses many challenges. Recent work includes that of
Meinshausen and Rice (2006), Swanepoel (1999), Cai et al.
(2007), and Jin (2006) (see also Efron et al. 2001; Genovese and
Wasserman 2004). The first two approaches provide consistent
estimators only under a condition that Genovese and Wasser-
man (2004) called “purity.” These approaches do not perform
well in the current setting, because the purity condition is not
satisfied; see Lemma 1 for details. Cai et al. (2007) focused
largely on a very sparse setting, and so a more specific model
is needed. Jin (2006) considered estimating the proportion of
nonzero normal means but concentrated on the homoscedastic
case with known null parameters. This motivates careful study
of estimation of the proportion in the current setting.

We begin by first assuming that the null parameters are
known. In this case the approach of Jin (2006) can be extended
to the heteroscedastic setting here. Fix y e (0, %). The follow-
ing estimator was proposed by Jin (2006) for the homoscedastic
case:

él’l()/) = én()/, le .. ’Xnv Vl)
= sup {1 -9, X,...,X,,n}, 210
{0<t<.2ylogn}

where Q,(;X1,...,X,,n) = [, (1 — |E)(Re(pn(t; X1, ...,

. 2.2¢2 . . .
Xy, n)e HE+OG1EY/2y) ge This estimator continues to be con-
sistent for the current heteroscedastic case. Set

O,(y; q,A, wo, 00, €0)
= {(M o) € Ay(q,A; o, 00, €0),

- loglogn

n—

logn

where A, = A,(n,0) =
2,2 2
Kol a|0j U()l}}-

Theorem 5. For any y € (0,1/2), g > 1, and A > 0,
except for an event with algebraically small probability,

Ming: (u;,05)#(uo.00)} {max{|w; —

lim’HOO(SuP{@)n(V;q,A,Mo,ffo,eo)}{|% —1h=0.

Roughly speaking, the estimator is consistent if the propor-
tion is asymptotically larger than 1/./n. The case in which the
proportion is asymptotically smaller than 1/./n is very chal-
lenging, and in most cases constructing consistent estimates is
very difficult without a more specific model (see Cai et al. 2007;
Donoho and Jin 2004 for more discussion).

We now turn to the case in which the null parameters
(mo,00) are unknown. A natural approach is to first use the
proposed procedures in Section 2.1 to obtain estimates for (g
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and o (say 1o and 6p) and then plug them into (21) to esti-
mate the proportion. This yields the estimate €' (y; Lo, 6p) =
€:(y; o, 60, X1, ..., Xy, n). Theorem 6 describes how (6o,
fio) affects the estimation accuracy of €.

Theorem 6. Fix €9 € (0,1/2), y € (0,1/2),g>1,and A >
0. As n — oo, suppose that except for an event B,, with al-
gebraically small probability, max{|io — uol®, |602 — 002|} =
o(lo;n)' Then there are a constant C = C(y, q, A, o, 09, €9) >
0 and an event D,, with algebraically small probability, such that
over B, N D,

n’

€, (V1 [lo, 60) — €n(y)]
<C- [log_3/2(n) " "12 £ logn - |802 — 002|

+ /logn - |0 — pol]-

Results in previous sections show that under mild conditions,
the estimation errors of ({ig, 6p) are algebraically small, as is
€ (y)—éu(y). In the nonsparse case, such differences are negli-
gible, and both €,(y) and €} (y) are consistent. The sparse case
is more subtle, especially when the proportion is algebraically
small. In this case, a more specific model is often needed (see
Cai et al. 2007).

‘We now compare our procedure with those of Meinshausen
and Rice (2006) and Cai et al. (2007). We begin by introduc-
ing the aforementioned purity condition. If we model the p
values of the test statistics as samples from a mixing density
(1 —€)U(0, 1) + €h, where U(0, 1) and & are the marginal den-
sities of the p values for the null effects and nonnull effects.
The purity condition is defined as essinfjg<p<1)2(p) = 0. Mein-
shausen and Rice (2006) proposed a confidence lower bound
for € that is valid for all A. Despite this advantage, however, the
lower bound is generally conservative and inconsistent. In fact,
the purity condition is necessary for the lower bound to be con-
sistent. Similar results were given by Genovese and Wasserman
(2004). Unfortunately, the purity condition generally does not
hold in our settings.

Lemma 1. Let the test statistics X; be given as in (20). If the
marginal distribution F(u, o) satisfies either Pr{o > 1} # 0 or
Pr{ioc =1} =1, but Pr{w > 0} # 0 and Pr{u < 0} # 0, then
the purity condition does not hold.

Cai et al. (2007) considered a very sparse setting for a two-
point Gaussian mixture model in which the proportion is mod-
eled as n~# with B e (%, 1). Their estimator is consistent when-
ever consistent estimation is possible, and it attains the optimal
rate of convergence. In a sense, their approach complements our
method; the former deals with a very sparse but more specific
model, and the latter deals with a more general model in which
the level of sparsity is much lower.

4. SIMULATION EXPERIMENTS

We now turn to the numerical performance of our estima-
tors of the null parameters. The goal of the simulation study is
threefold: to investigate how different choices of y affect the
estimation errors, to compare the performance of our approach
with that of Efron (2004), and to investigate the performance of
the proposed approach for dependent data. We leave the study
for real data to Section 5.
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We first investigate the effect of y on the estimation errors.
We set og = 1/+/2 and pg = —1/2 throughout this section. We
take n = 10,000, € = .1, and a = .75, 1.00, 1.25, and 1.50 for
the following simulation experiment:

Step 1. (Main step). For each a, first generate ne pairs of
(), 0j) with p; from N(O, 1) and o; from the uni-
form distribution U(a,a + .5), and then generate
a sample from N(u;, sz) for each pair of (u;, 0j).
These ne samples represent the nonnull effects. In
addition, generate - (1 —€) samples from N(ug, 002)
to represent the null effects.

For the samples obtained in step 1, implement
6(y) = 00(@n: 1a(¥)) and f1o(y) = po(@n: 1n(¥))
for each y = .01, .02,...,.5.

Step 3. Repeat steps 1 and 2 for 100 independent cycles.

Step 2.

The results, reported in Figure 3, suggest that the best choice
of y for both 6¢(y) and fig(y) are in the range (.1, .15). With y
in this range, the performance of the estimators is not very sen-
sitive to different choices of y, and both estimators are accurate.
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Taking y = .1, for example, the mean squared errors (MSEs)
for oo(y) and j19(y) are of magnitude 10~* and 1073, These
suggest using the following estimators for simplicity, where we
take y = .1:

65 =00(@n; 1n(.1))  and g5 = po(@a: 1a(1).  (22)

We now compare (6, fi;) with the estimators of Efron
(2004). Recall that one major difference between the two ap-
proaches is that Efron’s estimators are not consistent for the
nonsparse case, whereas ours are. It is thus of interest to make
comparisons at different levels of sparsity. To do so, we set
a at 1, and let € take four different values (.05, .10, .15, and
.20) to represent different levels of sparsity. For each €, we
first generate samples according to the main step in the afore-
mentioned experiment, then implement (6}, fi;;) and the esti-
mators of Efron (2004), and finally repeat the experiment for
100 independent cycles. The results are reported in Figures 4
and 5.

12}

Q8|

04

Py

0.15 02 025 0.3 0.35 04 045 05
(d)

&

0 Leseee
0 0.05 01

x 1072
25

Q5 r

0
0 0.02 0.04 0.06 0.08 O. 0.12 0.14 0.16 0.18 0.2

Figure 3. MSE for 6o(y) (a) and f1o(y) (b) for y €(0, 1/2]. The four different curves (—, —-— -, » x*, and oo o) correspond to a= .75, 1.00, 1.25,

and 1.50. [(c) and (d)] Zoom in.
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Figure 4. Histograms for the Estimation Errors of Efron’s Estimator for 6 (top row) and 6 (bottom row). From left to right: € = .05, .10, .15, and

.20.

The results show that our estimator of 002 is more accu-
rate than that of Efron (2004), with the difference becoming
more prominent as € increases. In fact, when € ranges be-
tween .05 and .2, the estimation errors of 86" are of the order
10~2, whereas those of Efron’s estimator could become as large
as the order 10~!. On the other hand, the two estimators of
o are almost equally accurate, and the estimation errors for

both approaches fluctuate around .02 across different choices
of €.

But, the foregoing comparison is only for moderately large
n. With a much larger n, Theorem 2 predicts that the estimation
errors of (6, fi;;) will become substantially smaller, because
(64, i1y is consistent for (o9, f10). In comparison, the errors
of Efron’s estimators will not become substantially smaller, be-

12 12 12 12
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8 8
6 6
4 4
2 2
Ry 0 0.1 . Ry 0 0.1
12 12 12 12
10 10 10 10
8 8 8 8
6 6 6 6
4 4 4 4
2 2 2 2
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Figure 5. Histograms for the Estimation Errors of Efron’s Estimator for [io (top row) and (1}, (bottom row). From left to right: € = .05, .10, .15, and

.20.
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Table 1. MSE for Various Values of n

n 104 4% 10* 1.6x10° 6.4x10°
MSE for o9 Efron’s 9.100 8.564 8.415 8.567
approach
Our .816 .276 .047 .031
approach
MSE for 1o Efron’s 8.916 5.905 3.957 3.617
approach
Our 5.807 3.019 1.106 .538
approach

NOTE: The corresponding MSE equals the value in each cell times 10—4.

cause the estimators are not consistent. To illustrate this point,
we carry out a small-scale simulation experiment. We take
€ =.1and a =1 as before and let n = 10*, 4 x 10*, 1.6 x 10,
and 6.4 x 103, For each n, we generate samples according to
the main step, calculate the MSEs, and repeat the process for
30 independent cycles. The results, reported in Table 1, support
the asymptotic analysis.

Finally, we investigate the performance of the proposed pro-
cedures for dependent data. We fix n = 10, e=.1,and a =1
and let L range from 0 to 250 in increments of 5. For each L,
we generate n + L samples wi, wa, ..., w4 from N(O, 1) and
letzj = (Z:ZJFL wi)/~/L+ 1, so that {z;}_, are blockwise de-
pendent (blocksize equal to L+ 1) and the marginal distribution
of each z; is N(0, 1). At the same time, we generate the mean
vector u and the vector of standard deviations o according to
the main step, let X; = u; + o; - 7, and implement (i, 6;) to
{Xj}j'.'=1 . We then repeat the process for 100 independent cycles.
The results, reported in Figure 6, suggest that the estimation er-
rors increase as the range of dependency increases. But, when
L < 100, for example, the estimation errors are still relatively
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small, especially those for o). This suggests that the procedures
are relatively robust to short-range dependency.

5. APPLICATIONS TO MICROARRAY ANALYSIS

We now apply the proposed procedures to the analysis of
the breast cancer and HIV microarray datasets analyzed by
Efron (2004). The R code for our procedures is available
at http://www.stat.purdue.edu/~jinj/Research/software. The z
scores for both datasets can be downloaded from this site as
well; they were kindly provided by Bradley Efron. The R
code for Efron’s procedures and related software can be down-
loaded from http://cran.rproject.org/src/contrib/Descriptions/
locfdr.html. For reasons of space, we focus on the breast can-
cer data and comment only briefly on the HIV data.

The breast cancer data were based on 15 patients diagnosed
with breast cancer, 7 with the BRCA1 mutation and 8 with the
BRCA?2 mutation. Each patient’s tumor was analyzed on a sepa-
rate microarray, and the microarrays were reported on the same
set of N = 3,226 genes. For the jth gene, the two-sample ¢ test
comparing the seven BRCA1 responses with the eight BRCA2
responses was computed. The ¢ score, y;, was first converted
to the p value by p; = F13(y;), and was then converted to the
z scale (Efron 2004), X; = ®~!(pj) = @~ (F13(y;)), where
and F3 are the survival functions of N(0, 1) and ¢ distribution
with 13 degrees of freedom.

We model X; as N(Mj,ojz) variables with weakly depen-
dent structure, and for a pair of unknown parameters (g, 09),
(1), 07) = (uo, op) if and only if the jth gene is not differen-
tially expressed. Because X; is transformed from the ¢ score,
which has been standardized by the corresponding standard er-
ror, it is reasonable to assume that the null effects are homoge-
neous and that all effects are homoscedastic (see, e.g., Cui and
Churchill 2003; Efron 2004). The normality assumption is also

0.25 T T

0.2

0.15

0.1

0.05

0 1 |

1 1

0 50 100

150 200 250

Figure 6. Root MSE for i}, (— — —) and 6}, (—).
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reasonable here, because the marginal density of nonnull effects
generally can be well approximated by Gaussian mixtures (see
Efron 2004, p. 99). In particulary, it is well known that the set
of all Gaussian mixing densities is dense in the set of all density
functions under the ¢! metric.

We now proceed with the data analysis. The analysis com-
prises three parts: estimating the null parameters (o9, (o), esti-
mating the proportion of nonnull effects, and implementing the
local FDR approach proposed by Efron et al. (2001).

The first part is estimating (09, io). We apply (675, iig) [de-
fined in (22)] as well as the estimators used by Efron (2004)
to the z scores. For the breast cancer data, our procedure yields
(64, gy = (1.5277, —.0525), whereas Efron’s estimators give
(60, f1o) = (1.616, —.082).

The second part of the analysis involves estimating the pro-
portion of nonnull effects. We implement our procedure as well
as the approaches of Meinshausen and Rice (2006) and Cai
et al. (2007) (which we denote by MR and CJL for short) to
the z scores of the breast cancer data. The bounding function
a’ for the MR estimator is set as 1.25 x /2loglogn/+/n, and
the a, for the CJL estimator is set as 4/2Toglogn//n (see Cai
et al. 2007 for details). Using the estimated null parameters ob-
tained using either Efron’s approach or our approach, we apply
each of these procedures to the z scores. In addition, the local
FDR approach also automatically provides an estimate for the
proportion. The results are reported in Table 2.

In the last part of the analysis, we implement the local FDR
thresholding procedure proposed by Efron et al. (2001) with
the z scores of the breast cancer data. For any given FDR-
control parameter g € (0, 1), the procedure simultaneously cal-
culates a score for each data point and determines a threshold
t4. A hypothesis is rejected if the score exceeds the threshold
and is accepted otherwise. If we call a rejected hypothesis a
“discovery,” then the local FDR thresholding procedure con-
trols the expected FDR at level ¢, E[ (#false discoveries)/ (#total
discoveries)] < g (see Efron et al. 2001 for details).

With Efron’s estimated null parameters, for any fixed g €
(0, 1), the local FDR procedures report no rejections for the
breast cancer dataset. Also, three different estimators for the
proportion report 0. These suggest that either the proportion of
signals (differentially expressed genes) is small or the signal is
very weak.

In contrast, with our estimated null parameters, the esti-
mated proportions are small but nonzero. Furthermore, the lo-
cal FDR procedures report rejections when g > .91. For ex-
ample, the number of total discoveries is 167 when g = .92
and 496 when g = .94. Take g = .94, for example, because for
any g € (0, 1), the number of true discoveries is approximately
equal to (1 — g) times the number of total discoveries (Efron
2004), so we have approximately a total of 30 true discoveries.
The result is consistent with biological discoveries. Among the
496 genes identified as being differentially expressed by the lo-
cal FDR procedures, 17 of them have been discovered in the

Table 2. Estimated Proportion of Nonnull Effects for the Breast

Cancer Data
Qur estimator ~ Local FDR MR CJL
Our estimated null .0040 .0128 .0033 0
Efron’s estimated null 0 0 .0098 0
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study by Hedenfalk et al. (2001). The corresponding Unigene
cluster IDs are Hs.182278, Hs.82916, Hs.179661, Hs.119222,
Hs.10247, Hs.469, Hs.78996, Hs.11951, Hs. 79078, Hs.9908,
Hs.5085, Hs.171271, Hs. 79070, Hs.78934, Hs.469, Hs. 197345,
and Hs.73798. We also identified several genes whose functions
are associated with the cell cycle, including PCNA, CCNA2,
and CKS2. These genes were found to be significant by Storey
et al. (2007). The results indicate that our estimated null para-
meters lead to reliable identification of differentially expressed
genes.

Similarly, for the HIV data, our estimators give (6, 1) =
(.7709, —.0806), whereas Efron’s method gives (69, fig) =
(.738, —.082). With g = .05, the local FDR procedures report
59 total discoveries with our estimated null parameters and 80
with Efron’s estimated null parameters; the latter yields slightly
more signals.

APPENDIX: PROOFS OF THE MAIN RESULTS

We now prove Theorems 1, 2, and 5. The proof of Theorem 6 is
similar to those of Theorems 2 and 5 and thus is omitted. Because the
proofs for the estimators of ag and pq are similar, we focus on og.
We first collect a few technical results and outline the basic ideas. The
proofs of these preparatory lemmas were given by Jin and Cai (2006).

Lemma A.1. Let og(-; -) and puq(-; -) be defined as in (7). Fix t >
0. For any differentiable complex-valued functions f and g satisfying

lf ()] #0and |g(r)| #0,
log (f. 1) — o3 (g, 1)

F{©]
T Hlf)?

F40)
20 D lf( —g®l

A

[<2t- log (5. 0] +

+IF ) -0l + rf,”m]
and

lo(f, 1) — no(g, vl

lg ()] [(2
— D+
= O lno(g. Dl

FIF -0+ (z)],

F40)
8(®)

D If() —g@]

where 73! (1) = 2l 11103 (2. D1 [f (1) = () 2+ 1 () — g 01 ()
g Ol and 12 (1) = oy - (8. 01 - If©) = gOF + [f(®) — g(0)] -
7@ — g Oll.

Heuristically, |¢(in)|/I@a(n)1> ~ 17, 08(@. 1) ~ od. ¢/ (n)l/
|¢(in)| ~ 031y, and

|§0n(;n) - (ﬂ(;n)| < Op(y logn/ﬁ),

| (i) — @' (in)| < Op(y/logn//n).
Applying Lemma A.1 with f = ¢, g=¢,and t = 1.(y), we have

(A.1)

|08 @n, (1)) — 03 (@, 1 (1)

.’ <3a§|¢n<in<y>> )]

1 > PN
+ W|‘pn([n()/)) -9 (tn(V))|>
~0(n" =12 logn),

and Theorem 1 follows. We now study (A.1) in detail.
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Lemma  A.2. Set  Wylgn;n) = Wolen;n, Xq,...,.Xy) =

SUPg<s<logn [9n(H) — @I Fix q1 > 3. Let An(q, A; 1o, 00, €9) be
given as in Theorem 1. When n — oo,

sup P{Wo(pn; n) = v/2q1 logn//n}

{(n,0)€AR(g,A; 10,00,€0)}
<4log>(n) -n~ /3. (1 4 o(1)).

Lemma A.2 implies that except for an event with algebraically
small probability, |¢(7n) — ¢ (ta)| < Wo(¢n; n) < v/2q1 Togn/+/n. This
naturally leads to a precise description of the stochastic behavior of
[Z,(y) — tn(y)| given in the following lemma.

Lemma A.3. Let g1 > 0 and let A,(q, A; j1g, 00, €0), (), and
ta(y) be given as in Theorem 1. When n — oo,

sup Hin() = 1 Lo gyimy <2 Togn/ v
{(n,0)€An(q,A;10,00,€0)}

1
< — [T =12(1 4 o1y).
ooV vV

We now study |}, () — ¢
and set

'(i,)|. Pick a constant 7 > a_o‘/‘h/

Wi(en, v, mos n, X1, - -, Xn)

lon () — ¢’ ()]

Wilen, v, mo;n) =

= sup

|[_[t1(7/)|§770‘"y71/2
By Lemma A.3, except for an event with algebraically small proba-
bility, (74 (y) — ta(y)| < 7o - n¥ ~1/2, and, consequently, |¢}, (in(y)) —
o' & (¥)| < Wi (@n, v, mo; n). The following lemma describes the tail
behavior of Wj.

Lemma A4. Fix y € (0,1/2), my > =/qi/y and set 55 =
n E[Xz] There exist constants Cj and Cy > 0 such that for
any (N’ U) e An(qu MOvUO’ 60) sn S Cla

V(g —2)logn+ 25 <G .ne@y),
NG <
where ci(q,y) is as in Theorem 1. As a result, except for an
event with algebraically small probability, |¢},(#:(¥)) — ¢’ Gn(¥))| <
Wi(gn, v, m;n) < O(/logn/\/n).

We have now elaborated the inequalities in (A.1). The only miss-
ing piece is the following lemma, which gives the basic properties of
o (@i 1) and 1o (@: 1).

Lemma A.5. Fix ¢ > 3 and A > 0, with ¥ (¢) and 7, as defined
in (18) and (19) write ¥ (r) = €,¢(¢) and r(z) = li"en r(t). For all
(g, 00, €0)-eligible (4, o) and all ¢ > 0, there is a constant C > 0
such that

1

P{Wl(wn,y,no;n)zfvn-

_ ol 1410

IGO (p, 1) — |_ TRy <Cly' 0|/t (A2)
and
/ L+ r(0|
1) — < <C A3
lo(p, 1) — pol < [r ()] - T roR [/ (@)l (A.3)

In addition, uniformly for all (u, o) € Ax(q, A; Lo, 00, €g) and all £ >
0, the following hold:

al) Jg0] < @2 < 1 1g0)] < A, /(0] < CL+ A2),
|g/”(t)| < C(1 + A3, and |g(0)] < Ae~™/2 & min{A2e— ™l /2,
&)

(a2) Consequently, |¢'(1)|/]@(t)] = ag -t-(14+o0(1))

(a3) The second derivative of a&((p; t) is uniformly bounded, and
O'g((p; 1) — ag, %og((p; t) — 0ast— oo.
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Similarly, both wg(e; ) and its first two derivatives are uniformly
bounded for all ¢ > 0, and %Mo(‘ﬂ: 1) — 0if puo(e; 1) = -

We now prove Theorems 1, 2, and 5.
Proof of Theorem 1

Because the arguments are similar, we prove the first claim only.
Write ;, = 1, (¥), thn = ty (), and W} (@n; n) = W} (¢n, ¥, wo; n). Pick
constants g1 and mg such that 1 < g;/max{3, (g —1 —2y)} <2 and
T > %«/ql /vy . Introduce events

By = {Wo(¢n; n) < /2q1 logn},

sny/ (g —2)logn + ZS%
Jn

Note that the choice of g satisfies ¢ (¢, ¥) < ¢1/3 and ¢z (0¢, ¢, ) >
Ué«/Zq , where c1(q,y) and cp(0g, q, y) are as defined in Theo-
rem 1. Use Lemmas A.2 and A4, P{Bg} <o(n~1/3) and P{B{} <
o(n=c1@)); because ¢1(q,y) < q1/3, P{BGUB{} < o(n—c1@)),
We now focus on By N Bj. By the triangle inequality, |og(<p,,, ) —
00 (@3 )] < log (gns In) = oG (93 in)| + log (93 In) — 05 (93 ). Note
that by the choice of my and Lemma A.3, [ty — ta] < o - n’ 1/2
for sufficiently large n, it follows from Lemma A.5 that |a§ (@; 1) —

By = {1 Wi(gn;n) <

o3 (@i tw)| ~ o(lin — tl) = 0(n? ~1/2). Recall that c3(00.q.) >
U&«/qu ; thus, to show the claim, it suffices to show that as n — o0,

|0 (@n3 1) — 03 (@3 )| <303 - 2q1 logn -n? ~Y2 . (1 + o(1))

over B NBy. (A.4)

We now show (A.4). Over the event By N By, recall that [t, —
| < ﬂonyfl/z, so by (13), &, ~ t, ~ /2y logn/og; by Lemma A.5,
this implies that o8 (@, 1,) ~ of and |’ (in)|/ |9 ()| ~ 0Fin ~ oG tn.
Moreover, because |, () — @(in)| < /2q; logn//n, it follows that
@)/ (inlen(in)|?) ~ (1/t)n? . Finally, by Lemma A4, |¢}, (i) —
@' (tn)| < O(/Togn/+/n). Combining these, (A.4) follows directly by
applying Lemma A.1 with f = ¢, g = ¢, and t = 7,.

Proof of Theorem 2

Note that by the triangle inequality, |00 (Qn; T (y)) — o | < IGO (¢n;

ta(y) — o ((p, th(y)| + |O‘g(<p, th(y)) — agl. Theorem 2 now follows
directly from Theorem 1 and Lemma A.5.

Proof of Theorem 5
Without loss of generality, set ug = 0 and o9 = 1. Write 1, =

2y logn, en = en(,0), on(t) = on(t; X1, ..., Xn, 1), @) = ¢(t;
w,o.n), Q) = Qut;X1,...,Xp,n), and O = Ou(y:q,A

10, 00, €0)- Set (1) = E[Q, ()], Wi (1) = supjo<s<s} {1 —n(s)}, and
() = sup(o< sgt}{l — Q(s)}. Note that it is sufficient to show that
when n — oo, (a) except for an event with algebraically small prob-
ability, SUP{(11,5)€0,} |‘~I/*(ln) - \I/*(ln)| < 0(10g73/2(n) . yﬂ/*l/z)7
and (b) sup((,..5)e®,) |¥ < ) _ 1| =o(1).

We first show (a). By symmetry, |W¥(z,) — W*(z,)| does not exceed

sup  [$2,(r) — (1)

0<t<t,
< 2/ 1 -

Moreover, similar to the proof of lemma 7.2 of Jin (2006), we
have that for fixed ¢ > 3/2, supy(, o)e0,} SUP{0<t<r,} IRe(@n (D) —
Re(p(?))| < O(y/logn//n), except for an event with probability ~
210g2(n) .n24/3, Elementary calculus yields |W,s(t,) — W*(1,)| <
O(/Togn//n) - o (1 = £)eV 1026 g = O(1og=2(n) - n?~1/2),

and (a) follows.

£)en5’/2 sup [Re(ga(r) — Re(p(n)| dt.

0<t<t,

(A.5)



506

We now show (b). Let f‘ be the Fourier transform of f, and let
¢5;(1)(x) be the density function of N(0, 5].2(1)) with 8;(t) = t(0j2 -

D12, Set p(x) = 2(1 — cos(x))/x% for x # 0 and p(0) = 1. Ele-
mentary calculus shows that d35j(,) (&) = exp((1 — a/.2)t2€2/2) and
p(&) = max{l — |&|,0}. So, by the Fourier inversion theorem (Mal-
lat 1998, p. 22),

1 n 1 1- 02)1252
Q0 =~ Z/ (- |$|>exp(+> cos(tjué) d§
j=1""

I (1 .
=3[ @@ costug de
n

1 n
= Zl bs;(r) * (1),
]:

where * is the usual convolution. Because ¢5/.(1) * p(tpj) = 1 when
(1, a7) = (0, 1),

1= Q@) =en - Aveyj: (u;,0:)(0,1)) {1- Ps;(1) * p(tu))}. (A.6)

Note that ¢g, * p(bp) — 0 for any sequences {an}>> ; and {bn}>2,
satisfying max{ay,, b,} — 00, and thus by (A.6) and the definition of
O SUP((1, ) ey} | ) — 1] = o(1). Note that 0 < ¢bs;(p) * Y (1) <

€,

1 for all 7, so by (A.6) and the definition of W*, Q (1) < V*(1,) < €p;
*
as a result, |#H(t") -1 < |% — 1], and (b) follows directly.
[Received May 2006. Revised November 2006. ]
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