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Large-Scale Multiple Testing of Correlations
T. Tony CAI and Weidong LIU

Multiple testing of correlations arises in many applications including gene coexpression network analysis and brain connectivity analysis.
In this article, we consider large-scale simultaneous testing for correlations in both the one-sample and two-sample settings. New multiple
testing procedures are proposed and a bootstrap method is introduced for estimating the proportion of the nulls falsely rejected among all
the true nulls. We investigate the properties of the proposed procedures both theoretically and numerically. It is shown that the procedures
asymptotically control the overall false discovery rate and false discovery proportion at the nominal level. Simulation results show that the
methods perform well numerically in terms of both the size and power of the test and it significantly outperforms two alternative methods.
The two-sample procedure is also illustrated by an analysis of a prostate cancer dataset for the detection of changes in coexpression patterns
between gene expression levels. Supplementary materials for this article are available online.
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1. INTRODUCTION

Knowledge of the correlation structure is essential for a wide
range of statistical methodologies and applications. For exam-
ple, gene coexpression network plays an important role in ge-
nomics and understanding the correlations between the genes is
critical for the construction of such a network. See, for example,
Kostka and Spang (2004), Carter et al. (2004), Lai et al. (2004),
and de la Fuente (2010). In this article, we consider large-scale
multiple testing of correlations in both one- and two-sample
cases. A particular focus is on the high-dimensional setting
where the dimension can be much larger than the sample size.

Multiple testing of correlations arises in many applications,
including brain connectivity analysis (Shaw et al. 2006) and
gene coexpression network analysis (Zhang, Li, and Deng 2008;
de la Fuente 2010), where one tests thousands or millions of
hypotheses on the changes of the correlations between genes.
Multiple testing of correlations also has important applications
in the selection of the significant gene pairs and in correlation
analysis of factors that interact to shape children’s language de-
velopment and reading ability; see Lee, Hsu, and Sajdak (2004),
Carter et al. (2004), Zhu et al. (2005), Dubois et al. (2010), Hirai
et al. (2007), and Raizada et al. (2008).

A common goal in multiple testing is to control the false dis-
covery rate (FDR), which is defined to be the expected propor-
tion of false positives among all rejections. This testing prob-
lem has been well studied in the literature, especially in the
case where the test statistics are independent. The well-known
step-up procedure of Benjamini and Hochberg (1995), which
guarantees the control of the FDR, thresholds the p-values of
the individual tests. Sun and Cai (2007) developed under a mix-
ture model an optimal and adaptive multiple testing procedure
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that minimizes the false nondiscovery rate subject to a constraint
on the FDR. See also Storey (2002), Genovese and Wasserman
(2004), and Efron (2004), among many others. The multiple
testing problem is more complicated when the test statistics
are dependent. The effects of dependency on FDR procedures
have been considered, for example, in Benjamini and Yekutieli
(2001), Storey, Taylor, and Siegmund (2004), Qiu, Klebanov,
and Yakovlev (2005), Farcomeni (2007), Wu (2008), Efron
(2007), and Sun and Cai (2009). In particular, Qiu, Klebanov,
and Yakovlev (2005) demonstrated that the dependency effects
can significantly deteriorate the performance of many FDR pro-
cedures. Farcomeni (2007) and Wu (2008) showed that the FDR
is controlled at the nominal level by the Benjamini–Hochberg
step-up procedure under some stringent dependency assump-
tions. The procedure in Benjamini and Yekutieli (2001) allows
the general dependency by paying a logarithmic term loss on
the FDR, which makes the method very conservative.

For large-scale multiple testing of correlations, a natural start-
ing point is the sample correlation matrix, whose entries are
intrinsically dependent even if the original observations are in-
dependent. The dependence structure among these sample cor-
relations is rather complicated. The difficulties of this multiple
testing problem lie in the construction of suitable test statistics
for testing the individual hypotheses and more importantly in
constructing a good procedure to account for the multiplicity of
the tests so that the overall FDR is controlled. To the best of
our knowledge, existing procedures cannot be readily applied
to this testing problem to have a solid theoretical guarantee on
the FDR level while maintaining good power.

In the one-sample case, let X = (X1, . . . , Xp)′ be a p-
dimensional random vector with mean µ and correlation ma-
trix R = (ρij )p×p, and one wishes to simultaneously test the
hypotheses

H0ij : ρij = 0 versus H1ij : ρij ̸= 0,

for 1 ≤ i < j ≤ p, (1)

based on a random sample X1, . . . , Xn from the distribution
of X . In the two-sample case, let X = (X1, . . . , Xp)′ and Y =
(Y1, . . . , Yp)′ be two p-dimensional random vectors with means
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µ1 and µ2 and correlation matrices R1 = (ρij1)p×p and R2 =
(ρij2)p×p, respectively, and we are interested in the simultaneous
testing of correlation changes,

H0ij : ρij1 = ρij2 versus H1ij : ρij1 ̸= ρij2,

for 1 ≤ i < j ≤ p, (2)

based on two independent random samples, X1, . . . , Xn1 from
the distribution of X and Y 1, . . . , Yn2 from the distribution of
Y , where c1 ≤ n1/n2 ≤ c2 for some c1, c2 > 0.

We shall focus on the two-sample case in the following
discussion. The one-sample case is slightly simpler and
will be considered in Section 4. The classical statistics for
correlation detection are based on the sample correlations.
For the two independent and identically distributed random
samples {X1, . . . , Xn1} and {Y 1, . . . , Yn2}, denote by Xk =
(Xk,1, . . . , Xk,p)′ and Y k = (Yk,1, . . . , Yk,p)′. The sample cor-
relations are defined by

ρ̂ij1 =
∑n1

k=1(Xk,i − X̄i)(Xk,j − X̄j )
√∑n1

k=1(Xk,i − X̄i)2
∑n1

k=1(Xk,j − X̄j )2
,

and

ρ̂ij2 =
∑n2

k=1(Yk,i − Ȳi)(Yk,j − Ȳj )
√∑n2

k=1(Yk,i − Ȳi)2
∑n2

k=1(Yk,j − Ȳj )2
,

where X̄i = 1
n1

∑n1
k=1 Xk,i and Ȳi = 1

n2

∑n2
k=1 Yk,i . The sam-

ple correlations ρ̂ij1 and ρ̂ij2 are heteroscedastic and the null
distribution of ρ̂ij1 and ρ̂ij2 depends on unknown parame-
ters. A well-known variance stabilization method is Fisher’s
z-transformation,

Ẑ = 1
2

ln
1 + ρ̂

1 − ρ̂
,

where ρ̂ is a sample correlation coefficient. In the two-sample
case, it is easy to see that under the null hypothesis H0ij :
ρij1 = ρij2 and the bivariate normal assumptions on (Xi,Xj )
and (Yi, Yj ),

Fij ≡
√

n1n2

2
√

n1 + n2

[
ln

(
1 + ρ̂ij1

1 − ρ̂ij1

)
− ln

(
1 + ρ̂ij2

1 − ρ̂ij2

)]

→ N (0, 1). (3)

See, for example, Anderson (2003). To perform multiple test-
ing (2), a natural approach is to use Fij as the test statis-
tics and then apply a multiple testing method such as the
Benjamini–Hochberg procedure or the Benjamini–Yekutieli
procedure to the p-values calculated from Fij . See, for ex-
ample, Shaw et al. (2006) and Zhang, Li, and Deng (2008).
However, the asymptotic normality result in (3) heavily de-
pends on the bivariate normality assumptions on (Xi,Xj ) and
(Yi, Yj ). The behavior of Fij in the nonnormal case is compli-
cated with the asymptotic variance of Fij depending on EX2

i X
2
j

and EY 2
i Y 2

j even when ρij1 = ρij2 = 0; see Hawkins (1989).
As will be seen in Section 5, the combination of Fisher’s z-
transformation with either the Benjamini–Hochberg procedure
or the Benjamini–Yekutieli procedure does not in general per-
form well numerically.

In this article, we propose a large-scale multiple testing proce-
dure for correlations that controls the FDR and the false discov-

ery proportion (FDP) asymptotically at any prespecified level
0 < α < 1. The multiple testing procedure is developed in two
stages. We first construct a test statistic for testing the equal-
ity of each individual pair of correlations, H0ij : ρij1 = ρij2. It
is shown that the test statistic has standard normal distribution
asymptotically under the null hypothesis H0ij and it is robust
against a class of nonnormal population distributions of X and
Y . We then develop a procedure to account for the multiplicity
in testing a large number of hypotheses so that the overall FDR
and FDP levels are under control. A key step is the estimation
of the proportion of the nulls falsely rejected by the procedure
among all the true nulls at any given threshold level. A bootstrap
method is introduced for estimating this proportion.

The properties of the proposed procedure are investigated
both theoretically and numerically. It is shown that, under reg-
ularity conditions, the multiple testing procedure controls the
overall FDR and FDP at the prespecified level asymptotically.
The proposed procedure works well even when the components
of the random vectors are strongly dependent and hence provides
theoretical guarantees for a large class of correlation matrices.

In addition to the theoretical properties, the numerical per-
formance of the proposed multiple testing procedure is also
studied using both simulated and real data. A simulation study
is carried out in Section 5.1, which shows that this procedure
performs well numerically in terms of both the size and power
of the test. In particular, the procedure significantly outperforms
the methods using Fisher’s z-transformation together with either
the Benjamini–Hochberg procedure or the Benjamini–Yekutieli
procedure, especially in the nonnormal case. The simulation
study also shows that the numerical performance of the pro-
posed procedure is not sensitive to the choice of the bootstrap
replication number. We also illustrate our procedure with an
analysis of a prostate cancer dataset for the detection of changes
in the coexpression patterns between gene expression levels.
The procedure identifies 1341 pairs of coexpression genes (out
of a total of 124,750 pairs) and 1.07% nonzero entries of the
coexpression matrix. Our method leads to a clear and easily
interpretable coexpression network.

The rest of the article is organized as follows. Section 2 gives
a detailed description of the proposed multiple testing proce-
dure. Theoretical properties of the procedure are investigated in
Section 3. It is shown that, under some regularity conditions,
the procedure controls the FDR and FDP at the nominal level
asymptotically. Section 4 discusses the one-sample case. Nu-
merical properties of the proposed testing procedure are studied
in Section 5. The performance of the procedure is compared
to that of the methods based on the combination of Fisher’s z-
transformation with either the Benjamini–Hochberg procedure
or the Benjamini–Yekutieli procedure. A real dataset is analyzed
in Section 5.2. A discussion on extensions and related problems
is given in Section 6 and all the proofs are contained in the
supplementary material.

2. FDR CONTROL PROCEDURE

In this section, we present a detailed description of the mul-
tiple testing procedure for correlations in the two-sample case.
The theoretical results given in Section 3 show that the procedure
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controls the FDR and FDP at the prespecified level asymptoti-
cally.

We begin by constructing a test statistic for testing each in-
dividual pair of correlations, H0ij : ρij1 = ρij2. In this article,
we shall focus on the class of populations with the elliptically
contoured distributions (see Condition (C2) in Section 3), which
is more general than the multivariate normal distributions. The
test statistic for general population distributions is introduced
in Section 6.3. Under Condition (C2) and the null hypothesis
H0ij : ρij1 = ρij2, as (n1, n2) → ∞,

ρ̂ij1 − ρ̂ij2√
κ1
n1

(1 − ρ2
ij1)2 + κ2

n2
(1 − ρ2

ij2)2
→ N (0, 1) (4)

with

κ1 ≡ 1
3

E(Xi − µi1)4

[E(Xi − µi1)2]2
and κ2 ≡ 1

3
E(Yi − µi2)4

[E(Yi − µi2)2]2
,

where (µ11, . . . , µp1)′ = µ1 and (µ12, . . . , µp2)′ = µ2. Note
that κi ≥ 1

3 for i = 1, 2 and they are related to the kurtosis

with κ1 = 1
3κX + 1, where κX = E(Xi−µi1)4

[E(Xi−µi1)2]2
−3 is the kurtosis of

X. For multivariate normal distributions, κ1 = κ2 = 1.
In general, the parameters ρij1, ρij2, κ1, and κ2 in the denom-

inator are unknown and need to be estimated. In this article, we
estimated κ1 and κ2, respectively, by

κ̂1 = 1
3p

p∑

i=1

n1
∑n1

k=1(Xk,i − X̄i)4

[ ∑n1
k=1(Xk,i − X̄i)2

]2

and

κ̂2 = 1
3p

p∑

i=1

n2
∑n2

k=1(Yk,i − Ȳi)4

[ ∑n2
k=1(Yk,i − Ȳi)2

]2 .

To estimate ρij1 and ρij2, taking into account of possible sparsity
of the correlation matrices, we use the thresholded version of
the sample correlation coefficients

ρ̃ij l = ρ̂ij lI

⎧
⎨

⎩
|ρ̂ij l|√

κ̂l

nl

(
1 − ρ̂2

ij l

)
2

≥ 2

√
log p

nl

⎫
⎬

⎭ , l = 1, 2,

where I {·} denotes the indicator function. Let ρ̃2
ij =

max{ρ̃2
ij1, ρ̃

2
ij2} and we use ρ̃2

ij to replace ρ2
ij1 and ρ2

ij2 in (4). We
propose the test statistic

Tij = ρ̂ij1 − ρ̂ij2√
κ̂1
n1

(
1 − ρ̃2

ij

)2 + κ̂2
n2

(
1 − ρ̃2

ij

)2
(5)

for testing the individual hypotheses H0ij : ρij1 = ρij2. Note
that under H0ij , ρ̃2

ij is a consistent estimator of ρij1 and ρij2. On
the other hand, under the alternative H1ij ,

√
κ̂1
n1

(1−ρ̃2
ij )2+ κ̂2

n2
(1−ρ̃2

ij )2≤
√

κ̂1
n1

(1−ρ̃2
ij1)2+ κ̂2

n2
(1−ρ̃2

ij2)2. Hence, Tij will be more powerful than
the test statistic using ρ̃ij1 and ρ̃ij2 to estimate ρij1 and ρij2,
respectively.

Before introducing the multiple testing procedure, it is helpful
to understand the basic properties of the test statistics Tij , which
are in general correlated. It can be proved that, under the null
hypothesis H0ij and certain regularity conditions,

sup
0≤t≤b

√
log p

∣∣∣∣
P(|Tij | ≥ t)
2 − 2$(t)

− 1
∣∣∣∣ → 0 as (n1, n2) → ∞

uniformly in 1 ≤ i < j ≤ p and p ≤ nr for any b > 0 and r >

0, where $ is the cumulative distribution function of the standard
normal distribution; see Proposition 1 in Section 3.

Denote the set of true null hypotheses by

H0 = {(i, j ) : 1 ≤ i < j ≤ p, ρij1 = ρij2}.

Since the asymptotic null distribution of each test statistic Tij is
standard normal, it is easy to see that

P( max
(i,j )∈H0

|Tij | ≥ 2
√

log p) → 0 as (n1, n2, p) → ∞. (6)

We now develop the multiple testing procedure. Let t be the
threshold level such that the null hypotheses H0ij are rejected
whenever |Tij | ≥ t . Then the false discovery proportion (FDP)
of the procedure is

∑
(i,j )∈H0

I {|Tij | ≥ t}

max
{∑

1≤i<j≤p I {|Tij | ≥ t}, 1
} .

An ideal threshold level for controlling the false discovery pro-
portion at a prespecified level 0 < α < 1 is

t̃1 = inf

{

0 ≤ t ≤ 2
√

log p :

×
∑

(i,j )∈H0
I {|Tij | ≥ t}

max
{∑

1≤i<j≤p I {|Tij | ≥ t}, 1
} ≤ α

⎫
⎬

⎭ ,

where the constraint 0 ≤ t ≤ 2
√

log p is used here due to the
tail bound (6).

The ideal threshold t̃1 is unknown and needs to be estimated
because it depends on the knowledge of the set of the true null
hypotheses H0. A key step in developing the FDR procedure is
the estimation of G0(t) defined by

G0(t) := 1
q0

∑

(i,j )∈H0

I {|Tij | ≥ t}, (7)

where q0 = Card(H0). Note that G0(t) is the true proportion
of the nulls falsely rejected by the procedure among all the
true nulls at the threshold level t. In some applications such
as the PheWAS problem in genomics, the sample sizes can be
very large. In this case, it is natural to use the tail of normal
distribution G(t) = 2 − 2$(t) to approximate G0(t). In fact,
we have

sup
0≤t≤bp

∣∣∣∣
G0(t)
G(t)

− 1
∣∣∣∣ → 0 (8)

in probability as (n1, n2, p) → ∞, where bp =
√

4 log p − ap

and ap = 2 log(log p). The range 0 ≤ t ≤ bp is nearly optimal
for (8) to hold in the sense that ap cannot be replaced by any
constant in general.

Large-Scale Correlation Tests With Normal Approximation
(LCT-N). Let 0 < α < 1 and define

t̂ = inf

⎧
⎨

⎩0 ≤ t ≤ bp:
G(t)(p2 − p)/2

max
{∑

1≤i<j≤p I {|Tij | ≥ t}, 1
} ≤ α

⎫
⎬

⎭ ,

(9)
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where G(t) = 2 − 2$(t). If t̂ does not exist, then set t̂ =√
4 log p. We reject H0ij whenever |Tij | ≥ t̂ .

Remark 1. In the above procedure, we use G(t) to estimate
G0(t) when 0 ≤ t ≤ bp. For t > bp, G(t) is not a good approxi-
mation of G0(t) because the convergence rate of G0(t)/G(t) →
1 is very slow. Furthermore, G(t) is not even a consistent esti-
mator of G0(t) when t ≥

√
4 log p − log(log p) + O(1) since

p2G(t) is bounded. Thus, we threshold the test |Tij | with√
4 log p directly to control the FDP.
Note that Benjamini–Hochberg (BH) procedure with p-values

G(|Tij |) is equivalent to rejecting H0ij if |Tij | ≥ t̂BH, where

t̂BH = inf

⎧
⎨

⎩t ≥ 0 :
G(t)(p2 − p)/2

max
{∑

1≤i<j≤p I {|Tij | ≥ t}, 1
} ≤ α

⎫
⎬

⎭ .

It is important to restrict the range of t to [0, bp] in (9). The BH
procedure uses G(t) to estimate G0(t) for all t ≥ 0. As a result,
when the number of true alternatives |Hc

0| is fixed as p → ∞,
the BH method is unable to control the FDP with some positive
probability, even in the independent case. To see this, we let
H01, . . . , H0m be m null hypotheses and m1 be the number of
true alternatives. Let FDPBH be the true FDP of the BH method
with independent true p-values and the target FDR = α. If m1 is
fixed as m → ∞, then Proposition 2.1 in Liu and Shao (in press)
proved that, for any 0 < β < 1, there exists some constant c > 0
such that limm→∞ P(FDPBH ≥ β) ≥ c.

Remark 2. In the multiple testing procedure given above, we
use p(p − 1)/2 as the estimate for the number q0 of the true
nulls. In many applications, the number of the true significant
alternatives is relatively small. In such “sparse” settings, one
has q0/((p2 − p)/2) ≈ 1 and the true FDR level of the testing
procedure would be close to the nominal level α. See Section 5
for discussions on the numerical performance of the procedure.

The normal approximation is suitable when the sample sizes
are large. On the other hand, when the sample sizes are small,
the following bootstrap procedure can be used to improve the
accuracy of the approximation. LetX ∗ = {X∗

k, 1 ≤ k ≤ n1} and
Y∗ = {Y ∗

k, 1 ≤ k ≤ n2} be resamples drawn randomly with re-
placement from {Xk, 1 ≤ k ≤ n1} and {Y k, 1 ≤ k ≤ n2}, re-
spectively. Set X∗

k = (X∗
k,1, . . . , X

∗
k,p)′, 1 ≤ k ≤ n1 and Y ∗

k =
(Y ∗

k,1, . . . , Y
∗
k,p)′, 1 ≤ k ≤ n2. Let

ρ̂∗
ij1 =

∑n1
k=1

(
X∗

k,i − X̄∗
i

)(
X∗

k,j − X̄∗
j

)
√∑n1

k=1

(
X∗

k,i − X̄∗
i

)2 ∑n1
k=1

(
X∗

k,j − X̄∗
j

)2
,

where X̄∗
i = 1

n1

∑n1
k=1 X∗

k,i and Ȳ ∗
j = 1

n2

∑n2
k=1 Y ∗

k,j . We define
ρ̂∗

ij2 in a similar way. Let

T ∗
ij =

ρ̂∗
ij1 − ρ̂∗

ij2 − (ρ̂ij1 − ρ̂ij2)
√

κ̂1
n1

(
1 − ρ̂∗2

ij1

)2 + κ̂2
n2

(
1 − ρ̂∗2

ij2

)2
. (10)

For some given positive integer N, we replicate the above pro-
cedure N times independently and obtain T ∗

ij,1, . . . , T
∗
ij,N . Let

G∗
N,n(t) = 2

N (p2 − p)

N∑

k=1

∑

1≤i<j≤p

I
{∣∣T ∗

ij,k

∣∣ ≥ t
}
.

In the bootstrap procedure, we use the conditional (given the
data) distribution of ρ̂∗

ij1 − ρ̂∗
ij2 − (ρ̂ij1 − ρ̂ij2) to approximate

the null distribution. The signal is not present because the condi-
tional mean of (ρ̂∗

ij1 − ρ̂∗
ij2) − (ρ̂ij1 − ρ̂ij2) is zero. Proposition

1 in Section 3 shows that, under some regularity conditions,

sup
0≤t≤bp

∣∣∣∣
G∗

N,n(t)

G0(t)
− 1

∣∣∣∣ → 0 (11)

in probability. Equation (11) leads us to propose the following
multiple testing procedure for correlations.

Large-Scale Correlation Tests With Bootstrap (LCT-B). Let
0 < α < 1 and define

t̂ = inf

⎧
⎨

⎩0 ≤ t ≤ bp :

×
G∗

n,N (t)(p2 − p)/2

max
{∑

1≤i<j≤p I {|Tij | ≥ t
}

, 1}
≤ α

⎫
⎬

⎭ . (12)

If t̂ does not exist, then let t̂ =
√

4 log p. We reject H0ij

whenever |Tij | ≥ t̂ .
The procedure requires to choose the bootstrap replication

time N. The theoretical analysis in Section 3 shows that it can
be taken to be any positive integer. The simulation shows that the
performance of the procedure is quite insensitive to the choice
of N.

3. THEORETICAL PROPERTIES

We now investigate the properties of the multiple testing pro-
cedure for correlations introduced in Section 2. It will be shown
that, under mild regularity conditions, the procedure controls
the FDR asymptotically at any prespecified level 0 < α < 1. In
addition, it also controls the FDP accurately.

Let FDP(t̂) and FDR(t̂) be, respectively, the false discovery
proportion and the false discovery rate of the multiple testing
procedure defined in (9) and (12),

FDP(t̂) =
∑

(i,j )∈H0
I {|Tij | ≥ t̂}

max
(∑

1≤i<j≤p I {|Tij | ≥ t̂}, 1
)

and

FDR(t̂) = E(FDP(t̂)).

For given positive numbers kp and sp, define the collection
of symmetric matrices A(kp, sp) by

A(kp, sp) =
{
(aij )p×p : aij = aji, Card{1 ≤ i ≤ p :

× |aij | ≥ kp} ≤ sp, ∀ 1 ≤ j ≤ p
}
. (13)

We introduce some conditions on the dependence structure of
X and Y .

(C1) Suppose that, for some 0 < θ < 1, γ > 0, and 0 < ξ <

min{(1 − θ )/(1 + θ ), 1/3}, we have max1≤i<j≤p |ρijh| ≤
θ , h = 1, 2, and Rh ∈ A(kp, sp), h = 1, 2, for some kp =
(log p)−2−γ and sp = O(pξ ).
The assumption max1≤i<j≤p |ρijh| ≤ θ , h = 1, 2, is nat-
ural as the correlation matrix would be singular if
max1≤i<j≤p |ρijh| = 1. The assumption Rh ∈ A(kp, sp)
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means that every variable can be highly correlated (i.e.,
ρij l ≥ kp) with at most sp other variables. The conditions
on the correlations in (C1) are quite weak.
Besides the above dependence conditions, we also need
an assumption on the covariance structures of X and Y .
Let (σij1)p×p and (σij2)p×p be the covariance matrices of
X and Y , respectively.

(C2) Suppose that there exist constants κ1 ≥ 1
3 and κ2 ≥ 1

3 such
that for any i, j, k, l ∈ {1, 2, . . . , p},

E(Xi − µi1)(Xj − µj1)(Xk − µk1)(Xl − µl1)
= κ1(σij1σkl1 + σik1σj l1 + σil1σjk1),

E(Yi − µi2)(Yj − µj2)(Yk − µk2)(Yl − µl2)
= κ2(σij2σkl2 + σik2σj l2 + σil2σjk2). (14)

It is easy to see that κ1 ≡ 1
3 E(Xi − µi1)4/[E(Xi −

µi1)2]2 and κ2 ≡ 1
3 E(Yi − µi2)4/[E(Yi − µi2)2]2 . Con-

dition (C2) holds, for example, for all the elliptically
contoured distributions (Anderson 2003). Note that the
asymptotically normality result (4) holds under Condi-
tion (C2) and the null H0ij : ρij1 = ρij2.
We also impose exponential type tail conditions on X and
Y .

(C3) Exponential Tails: There exist some constants η > 0 and
K > 0 such that

E exp
(
η
∣∣Xi − µi1

∣∣/σ
1/2
ii1

)
≤ K and

E exp
(
η
∣∣Yi − µi2

∣∣/σ
1/2
ii2

)
≤ K for all i.

Let n = n1 + n2. We first show that under p ≤ nr for some
r > 0, (C2) and (C3), the distributions of Tij and G∗

n,N (t) are
asymptotic normally distributed and G0(t) is well approximated
by G∗

N,n(t).

Proposition 1. Suppose p ≤ nr for some constant r > 0. Un-
der Conditions (C2) and (C3), we have for any r > 0 and b > 0,
as (n, p) → ∞,

sup
(i,j )∈H0

sup
0≤t≤b

√
log p

∣∣∣∣
P(|Tij | ≥ t)
2 − 2$(t)

− 1
∣∣∣∣ → 0, (15)

sup
0≤t≤bp

∣∣∣∣
G∗

N,n(t)

2 − 2$(t)
− 1

∣∣∣∣ → 0, (16)

and

sup
0≤t≤bp

∣∣∣∣
G∗

N,n(t)

G0(t)
− 1

∣∣∣∣ → 0 (17)

in probability, where $ is the cumulative distribution function
of the standard normal distribution.

We are now ready to state our main results. For ease of nota-
tion, we use FDP and FDR to denote FDP(t̂) and FDR(t̂), respec-
tively. Recall that H0 = {(i, j ) : 1 ≤ i < j ≤ p, ρij1 = ρij2}
and q0 = Card(H0). Let H1 = {(i, j ) : 1 ≤ i < j ≤ p, ρij1 ̸=
ρij2}, q1 = Card(H1), and q = (p2 − p)/2.

Theorem 1. Assume that p ≤ nr for some r > 0 and q1 ≤ cq

for some 0 < c < 1. Under (C1)–(C3),

lim
(n,p)→∞

FDR ≤ α, lim
(n,p)→∞

P(FDP ≤ α + ε) = 1 (18)

for any ε > 0.

Theorem 1 shows that the procedures proposed in Section 2
control the FDR and FDP at the desired level asymptotically. It
is quite natural to assume q1 ≤ cq. For example, if q1/q → 1,
then the number of the zero entries of R1 − R2 is negligible
compared with the number of the nonzero entries and the trivial
procedure of rejecting all of the null hypotheses controls FDR
at level 0 asymptotically. Note that r in Theorem 1 can be
arbitrarily large so that p can be much larger than n (p ≫ n).

A weak condition to ensure t̂ in (9) and (12) exists is Equation
(19), which imposes the condition on the number of significant
true alternatives. The next theorem shows that, when t̂ in (9)
and (12) exists, the FDR and FDP tend to αq0/q, where q =
(p2 − p)/2.

Theorem 2. Suppose that for some δ > 0,

Card

{

(i, j ) :
|ρij1 − ρij2|√

κ1 + κ2
≥ 4

√
(n1 + n2) log p

n1n2

}

≥
(

1√
8πα

+ δ

) √
log(log p). (19)

Then, under the conditions of Theorem 1, we have

lim
(n,p)→∞

FDR
αq0/q

= 1 and
FDP

αq0/q
→ 1

in probability as(n, p) → ∞. (20)

From Theorem 2, we see that if R1 − R2 is sparse such that
the number of nonzero entries is of order o(p2), then q0/q → 1.
So the FDR tends to α asymptotically. The sparsity assumption
is commonly imposed in the literature on estimation of high-
dimensional covariance matrix. See, for example, Bickel and
Levina (2008) and Cai and Liu (2011).

The multiple testing procedure in this article is related to
that in Storey, Taylor, and Siegmund (2004). Let p1, . . . , pq be
the p-values. Storey, Taylor, and Siegmund (2004) estimated
the number of true null hypotheses q0 by q̂0 =

∑q
k=1 I {pi ≥

λ}/(1 − λ) with some well-chosen λ and then incorporate q̂0 into
the BH method for FDR control. It is possible to use similar idea
to estimate q0 and improve the power in our problem. However,
the theoretical results in Storey, Taylor, and Siegmund (2004)
are not applicable in our setting. In their Theorem 4, to control
FDR, they required F̂DR

∞
λ (t) < α, which implies the number

of true alternative hypotheses q1/q → π1 with some positive
π1 > 0. This excludes the sparse setting q1 = o(q), which is of
particular interest in this article. They assumed that the true p-
values are known. This is a very strong condition and will not be
satisfied in our setting. Moreover, their dependence condition is
imposed on the p-values by assuming the law of large numbers
(7) in Storey, Taylor, and Siegmund (2004). Note that we only
have the asymptotic distributions G∗

n,N (t) and N (0, 1) for the test
statistic. Our dependence condition is imposed on the correlation
matrix, which is more natural.
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4. ONE-SAMPLE CASE

As mentioned in the introduction, multiple testing of correla-
tions in the one-sample case also has important applications. In
this section, we consider the one-sample testing problem where
we observe a random sample X1, . . . , Xn from a p-dimensional
distribution with mean µ and correlation matrix R = (ρij )p×p,
and wish to simultaneously test the hypotheses

H0ij : ρij = 0 versus H1ij : ρij ̸= 0,

for 1 ≤ i < j ≤ p. (21)

As mentioned in the introduction, Fisher’s z-transformation does
not work well for non-Gaussian data in general. Using the same
argument as in the two-sample case, we may use the following
test statistic for testing each H0ij : ρij = 0,

|ρ̂ij |√
κ̂
n

(
1 − ρ̂2

ij

) ,

where κ̂ = 1
3p

∑p
i=1

n
∑n

k=1(Xk,i−X̄i )4

(
∑n

k=1(Xk,i−X̄i )2)2 is an estimate of κ ≡
1
3

E(Xi−µi )4

[E(Xi−µi )2]2 . The false discovery rate can be controlled in a
similar way as in Section 2 and all the theoretical results in
Section 3 also hold in the one-sample case.

There is in fact a different test statistic that requires weaker
conditions for the asymptotic normality for the one-sample test-
ing problem (21). Note that (21) is equivalent to

H0ij : σij = 0 versus H1ij : σij ̸= 0,

for 1 ≤ i < j ≤ p. (22)

Hence, we propose to use the following normalized sample
covariance as the test statistic

Tij =
∑n

k=1(Xki − X̄i)(Xkj − X̄j )
√

nθ̂ij

, (23)

where

θ̂ij = 1
n

n∑

k=1

[
(Xki − X̄i)(Xkj − X̄j ) − σ̂ij

]2

is a consistent estimator of the variance θij = var((Xi −
µi)(Xj − µj )). Note that Cai and Liu (2011) used a similar
idea to construct an adaptive thresholding procedure for estima-
tion of sparse covariance matrix. By the central limit theorem
and the law of large numbers, we have Tij converging in law
to N (0, 1) under the null H0ij and the finite fourth moment
condition, E(Xi − µi)4/σ 2

ii < ∞.
When the sample size is large, the normal approximation

can be used as in (9). On the other hand, if the sample size is
small, then we can use a similar bootstrap method to estimate
the proportion of the nulls falsely rejected among all the true
nulls,

1
q0

∑

(i,j )∈H0

I {|Tij | ≥ t},

where H0 = {(i, j ) : 1 ≤ i < j ≤ p, ρij = 0} and
q0 = Card(H0). Let X ∗

j = {X∗
kj , 1 ≤ k ≤ n} be a re-

sample drawn randomly with replacement from
{Xkj , 1 ≤ k ≤ n}. Let the resamples X ∗

j , 1 ≤ j ≤ p, be
independent given {Xkj , 1 ≤ k ≤ n, 1 ≤ j ≤ p} and set

X∗
k = (X∗

k1 − X̄1, . . . , X
∗
kp − X̄p)′, 1 ≤ k ≤ n. We construct

the bootstrap test statistics T ∗
ij from X∗

1, . . . , X∗
n as in (23). The

above procedure is replicated N times independently, which
yields T ∗

ij,1, . . . , T
∗
ij,N . Let

G∗
n,N (t) = 2

N (p2 − p)

N∑

k=1

∑

1≤i<j≤p

I {|T ∗
ij,k| ≥ t}. (24)

Finally, we use the same FDR control procedure as defined in
(12).

In the one-sample case, the dependence condition (C1) can
be weakened significantly.

(C1∗) Suppose that for some γ > 0 and ξ > 0, we have

Card{(i, j ) : 1 ≤ i < j ≤ p, |ρij | ≥ (log p)−2−γ }
≤ Cp2/(log p)1+ξ .

In (C1∗), the number of pairs of strong correlated variables
can be as large as p2/(log p)1+ξ . Similar to Theorems 1 and 2 in
the two-sample case, we have the following results for the one-
sample case. Let H1 = {(i, j ) : 1 ≤ i < j ≤ p, ρij ̸= 0}, q1 =
Card(H1), and q = (p2 − p)/2.

Theorem 3. Assume that p ≤ nr for some r > 0 and q1 ≤ cq

for some 0 < c < 1. Suppose the distribution of X satisfies
Condition (C1∗), (C2), and (C3), then

lim
(n,p)→∞

FDR ≤ α and lim
(n,p)→∞

P(FDP ≤ α + ε) = 1

(25)
for any ε > 0.

Theorem 3 shows that for simultaneous testing of the corre-
lations in the one-sample case, the dependence condition (C1)
can be substantially weakened to (C1∗). As in Theorem 2, if
the number of significant true alternatives is at least of order√

log(log p), then Theorem 4 shows that the FDR and FDP will
converge to αq0/q.

Theorem 4. Suppose that for some δ > 0,

Card

{

(i, j ) :
|σij |√

θij

≥ 4

√
log p

n

}

≥
(

1√
8πα

+ δ

)√
log(log p).

Then, under conditions of Theorem 3,

lim
(n,p)→∞

FDR
αq0/q

= 1 and

FDP
αq0/q

→ 1 in probability as (n, p) → ∞. (26)

5. NUMERICAL STUDY

In this section, we study the numerical properties of the mul-
tiple testing procedure defined in Section 2 through the analysis
of both simulated and real data. Section 5.1 examines the per-
formance of the multiple testing procedure by simulations. A
real data analysis is discussed in Section 5.2.

5.1 Simulation

We study in this section the performance of the testing proce-
dure by a simulation study. In particular, the numerical per-
formance of the proposed procedure is compared with that
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of the procedures based on Fisher’s z transformation (3) to-
gether with the Benjamini–Hochberg method (Benjamini and
Hochberg 1995) and Benjamini–Yekutieli method (Benjamini
and Yekutieli 2001). We denote these two procedures by Fz-B-H
and Fz-B-Y, respectively.

5.1.1 Two-Sample Case: Comparison With Fz-B-H and Fz-
B-Y. The sample correlation matrix is invariant to the vari-
ances. Hence, we only consider the simulation for σii1 = σii2 =
1, i = 1, . . . , p. Two covariance matrix models are considered.

• Model 1. R1 = !1 = diag(D1, D2 . . . , Dp/5), where Dk

is a 5 × 5 matrix with 1 on the diagonal and ρ

for all the off-diagonal entries. R2 = !2 = diag(I, A),
where I is a (p/4) × (p/4) identity matrix and A =
diag(Dp/20+1, . . . , Dp/5).

• Model 2. R1 = !1 = diag(D̂1, D̂2 . . . , D̂[p/m2], Î), where
D̂k is an m1 × m1 matrix with 1 on the diago-
nal and ρ for all the off-diagonal entries. Î is
a (p − m1[p/m1]) × (p − m1[p/m1]) identity matrix.
R2 = !2 = diag(D̃1, D̃2 . . . , D̃[p/m2], Ĩ), where D̃k is an
m2 × m2 matrix with 1 on the diagonal and ρ for all
the off-diagonal entries. Ĩ is a (p − m2[p/m2]) × (p −
m2[p/m2]) identity matrix.

The value of ρ will be specified in different distributions for
the population. We will take (m1,m2) = (80, 40) in Model 2 to
consider the strong correlation case. The following four distri-
butions are considered.

• Normal mixture distribution. X = U1 Z1 and Y = U2 Z2,
where U1 and U2 are independent uniform random vari-
ables on (0, 1) and Z1 and Z2 are independent random
vectors with distributions N (0,!1) and N (0,!2), respec-
tively. Let ρ = 0.8.

• Normal distribution. X and Y are independent random
vectors with distributions N (0,!1) and N (0,!2), respec-
tively. Let ρ = 0.6.

• t distribution. Z1 and Z2 are independent random vec-
tors with iid components having t6 distributions. Let
X = !

1/2
1 Z1 and Y = !

1/2
2 Z2 with ρ = 0.6.

• Exponential distribution. Z1 and Z2 are independent ran-
dom vectors with iid components having exponential dis-
tributions with parameter 1. Let X = !

1/2
1 Z1 and Y =

!
1/2
2 Z2 with ρ = 0.6.

The normal mixture distribution (κ1 ̸= 1 and κ2 ̸= 1) allows
us to check the influence of nonnormality of the data on the
procedures based on Fisher’s z transformation. We also give
the comparison between our procedure and the one based on
Fisher’s z transformation when the distribution is truly multi-
variate normal distributed.

Note that the normal mixture distribution and the normal
distribution satisfy the elliptically contoured distributions con-
dition. On the other hand, the t distribution and exponential
distribution generated by the above way do not satisfy (C2) and
the t distribution does not satisfy (C3) either. So it allows us to
check the influence of conditions (C2) and (C3) on our method.

In the simulation, we generate two groups of independent
samples from X and Y . Let the sample sizes n1 = n2 = 50 and
n1 = n2 = 100 and let the dimension p = 250, 500, and 1000.

The number of the bootstrap resamples is taken to be N = 50
and the nominal false discovery rate α = 0.2. Based on 100
replications, we calculate the average empirical false discovery
rates

Average

⎧
⎨

⎩

∑
(i,j )∈H0

I {|Tij | ≥ t̂}

max
{∑

1≤i<j≤p I {|Tij | ≥ t̂}, 1
}

⎫
⎬

⎭

and the average empirical powers

Average

{ ∑
(i,j )∈H1

I {|Tij | ≥ t̂}
∑

1≤i<j≤p I {ρij1 ̸= ρij2}

}

,

where H1 = {(i, j ) : 1 ≤ i < j ≤ p, ρij1 ̸= ρij2}.
The simulation results for Model 1 in terms of the empirical

FDR are summarized in Table 1 and the results on the empirical
powers are given in Table 2. It can be seen from the two tables
that, for the normal mixture distribution, the proposed proce-
dure with bootstrap approximation (LCT-B) has significant ad-
vantages on controlling the FDR. It performs much better than
the proposed procedure with normal approximation (LCT-N)
when the sample size is small. Note that the performance of
LCT-N becomes better as n increases. Both procedures in (9)
and (12) outperform the one based on Fisher’s z transformation
(3) on FDR control. For the multivariate normal distribution, our
methods have more power than Fz-B-H and Fz-B-Y. The latter
method is also quite conservative. For the other two distributions
that do not satisfy (C2), the empirical FDRs of Fz-B-H are larger

Table 1. Empirical false discovery rates (α = 0.2), Model 1

Normal mixture N(0,1)

p\n1 = n2 50 100 50 100

250 Fz-B-H 0.9519 0.9479 0.3084 0.2511
Fz-B-Y 0.6400 0.6136 0.0411 0.0256
LCT-B 0.2267 0.1096 0.1068 0.1045
LCT-N 0.4897 0.3065 0.3270 0.2450

500 Fz-B-H 0.9750 0.9721 0.3253 0.2511
Fz-B-Y 0.7293 0.6714 0.0341 0.0249
LCT-B 0.2368 0.0935 0.1039 0.0834
LCT-N 0.5137 0.2977 0.3204 0.2334

1000 Fz-B-H 0.9871 0.9861 0.3669 0.2594
Fz-B-Y 0.8052 0.7629 0.0428 0.0226
LCT-B 0.2420 0.0620 0.1012 0.0567
LCT-N 0.5479 0.2804 0.3304 0.2227

t6 Exp(1)

250 Fz-B-H 0.3204 0.2473 0.3738 0.2846
Fz-B-Y 0.0430 0.0278 0.0693 0.0351
LCT-B 0.0703 0.0890 0.0943 0.0817
LCT-N 0.0903 0.0323 0.0721 0.0097

500 Fz-B-H 0.3487 0.2530 0.4328 0.3040
Fz-B-Y 0.0384 0.0255 0.0768 0.0345
LCT-B 0.0612 0.0639 0.0915 0.0568
LCT-N 0.0868 0.0228 0.0845 0.0065

1000 Fz-B-H 0.3870 0.2711 0.4975 0.3309
Fz-B-Y 0.0523 0.0261 0.0958 0.0396
LCT-B 0.0565 0.0434 0.1050 0.0355
LCT-N 0.0907 0.0165 0.1018 0.0046
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Table 2. Empirical powers (α = 0.2), Model 1

Normal mixture N(0,1)

p\n1 = n2 50 100 50 100

250 Fz-B-H 0.9889 1.0000 0.5375 0.9405
Fz-B-Y 0.9113 0.8782 0.2125 0.8072
LCT-B 0.9245 0.9968 0.6445 0.9712
LCT-N 0.9729 0.9995 0.7798 0.9792

500 Fz-B-H 0.9906 1.0000 0.4433 0.9247
Fz-B-Y 0.8945 0.9985 0.1521 0.7576
LCT-B 0.9074 0.9944 0.5741 0.9572
LCT-N 0.9671 0.9996 0.7268 0.9751

1000 Fz-B-H 0.9894 1.0000 0.3593 0.8866
Fz-B-Y 0.8768 0.9977 0.1027 0.6876
LCT-B 0.8920 0.9979 0.5048 0.9381
LCT-N 0.9583 0.9992 0.6784 0.9646

t6 Exp(1)

250 Fz-B-H 0.5465 0.9477 0.5981 0.9565
Fz-B-Y 0.2329 0.8252 0.2762 0.8432
LCT-B 0.6397 0.9647 0.5593 0.9525
LCT-N 0.6562 0.9462 0.5357 0.8806

500 Fz-B-H 0.4679 0.9228 0.5104 0.9273
Fz-B-Y 0.1684 0.7645 0.1884 0.7763
LCT-B 0.5536 0.9490 0.4781 0.9206
LCT-N 0.6047 0.9244 0.4656 0.8300

1000 Fz-B-H 0.4717 0.8925 0.4405 0.9049
Fz-B-Y 0.1134 0.6965 0.1334 0.7208
LCT-B 0.4699 0.9273 0.4118 0.8754
LCT-N 0.5373 0.8984 0.4067 0.7873

than α while the empirical FDRs of our method are smaller than
α. However, the powers of our method are quite close to those
of Fz-B-H. Note that Fz-B-Y has the lowest powers although it
is able to control the FDR.

The correlation in Model 2 is much stronger than that in
Model 1 and the number of true alternatives is also larger. As we
can see from Tables 3 and 4, our method can still control the FDR
efficiently and the powers are comparable to those of Fz-B-H
and much higher than those of Fz-B-Y. As the numerical results
for Model 1, the empirical FDRs of Fz-B-H are much larger
than α for the normal mixture distribution. The performance of
Fz-B-H is improved on the other three distributions although its
empirical FDRs are somewhat higher than α when p = 1000
and n = 50.

5.1.2 One Sample Case. To examine the performance of
our method in the one-sample case, we consider the following
model.

• Model 3. R = ! = diag(D1, D2 . . . , Dp/5), where Dk is
a 5 × 5 matrix with 1 on the diagonal and ρ for all the
off-diagonal entries.

We consider four types of distributions and ρ is taken to be
the same values as in the two-sample case. In the simulation,
we let n = 50 and p = 500. The number of the bootstrap re-
samples is taken to be N = 50 and the nominal false discovery
rate α = 0.2. The empirical FDRs of three methods based on
100 replications are summarized in Table 5. As we can see

Table 3. Empirical false discovery rates (α = 0.2), Model 2

Normal mixture N(0,1)

p\n1 = n2 50 100 50 100

250 Fz-B-H 0.4582 0.4476 0.1944 0.1797
Fz-B-Y 0.1406 0.1356 0.0212 0.0189
LCT-B 0.2095 0.2063 0.1845 0.1824
LCT-N 0.2934 0.2433 0.2454 0.2163

500 Fz-B-H 0.6264 0.5993 0.2226 0.1968
Fz-B-Y 0.2187 0.1924 0.0239 0.0174
LCT-B 0.1722 0.1951 0.1612 0.1836
LCT-N 0.3309 0.2694 0.2607 0.2214

1000 Fz-B-H 0.7275 0.7174 0.2436 0.2131
Fz-B-Y 0.2700 0.2456 0.0245 0.0177
LCT-B 0.1349 0.1632 0.1222 0.1600
LCT-N 0.3297 0.2698 0.2626 0.2278

t6 Exp(1)

250 Fz-B-H 0.1976 0.1753 0.2058 0.2051
Fz-B-Y 0.0242 0.0171 0.0257 0.0253
LCT-B 0.1928 0.1924 0.2111 0.2039
LCT-N 0.1924 0.1398 0.1497 0.1100

500 Fz-B-H 0.2340 0.2067 0.2372 0.2163
Fz-B-Y 0.0253 0.0201 0.0282 0.0215
LCT-B 0.1694 0.1745 0.1699 0.1945
LCT-N 0.1883 0.1377 0.1313 0.0810

1000 Fz-B-H 0.2425 0.2171 0.2597 0.2255
Fz-B-Y 0.0234 0.0181 0.0275 0.0201
LCT-B 0.1235 0.1675 0.1343 0.1667
LCT-N 0.1644 0.1211 0.1101 0.0640

from Table 5, the empirical FDRs of Fz-B-H are higher than α,
especially for the normal mixture distribution. Fz-B-Y is also
unable to control the FDR for the normal mixture distribution.
Our method controls FDR quite well for all four distributions.
Even when (C2) is not satisfied, our method can still control
FDR efficiently.

We now carry out a simulation study to verify that the FDP
control in the one-sample case can get benefit from the correla-
tion. Consider the following matrix model.

• Model 4. ! = diag(D1, D2 . . . , Dk, I), where Dk is a 5 ×
5 matrix with 1 on the diagonal and 0.6 for all the off-
diagonal entries.

We take k = 1, 5, 10, 20, 40, 80 such that the correlation in-
creases as k grows. Let X = !1/2 Z, where Z is the standard
normal random vector. We take n = 50 and p = 500. The proce-
dure in Section 4 with the bootstrap approximation is used in the
simulation. To evaluate the performance of the FDP control, we

use the l2 distance SD :=
√∑100

i=1(FDPi − αq0/q)2/100, where
FDPi is the FDP in the ith replication. As we can see from Ta-
ble 6, the distance between FDP and αq0/q becomes small as k
increases.

5.2 Real Data Analysis

Kostka and Spang (2004), Carter et al. (2004), and Lai et al.
(2004) studied gene–gene coexpression patterns based on cancer
gene expression datasets. Their analyses showed that several
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Table 4. Empirical powers (α = 0.2), Model 2

Normal mixture N(0,1)

p\n1 = n2 50 100 50 100

250 Fz-B-H 0.9970 1.0000 0.9208 0.9963
Fz-B-Y 0.9730 0.9997 0.6640 0.9658
LCT-B 0.9879 1.0000 0.9096 0.9977
LCT-N 0.9932 0.9999 0.9381 0.9978

500 Fz-B-H 0.9955 1.0000 0.8637 0.9941
Fz-B-Y 0.9658 0.9996 0.5482 0.9506
LCT-B 0.9819 0.9999 0.8482 0.9943
LCT-N 0.9901 0.9999 0.8954 0.9967

1000 Fz-B-H 0.9936 1.0000 0.8037 0.9900
Fz-B-Y 0.9498 0.9996 0.4479 0.9257
LCT-B 0.9753 0.9999 0.7920 0.9926
LCT-N 0.9836 0.9999 0.8492 0.9947

t6 Exp(1)

250 Fz-B-H 0.9136 0.9965 0.9165 0.9971
Fz-B-Y 0.6548 0.9678 0.6861 0.9704
LCT-B 0.9047 0.9972 0.8710 0.9957
LCT-N 0.9013 0.9957 0.8607 0.9920

500 Fz-B-H 0.8576 0.9924 0.8641 0.9929
Fz-B-Y 0.5498 0.9430 0.5771 0.9467
LCT-B 0.8441 0.9946 0.8000 0.9912
LCT-N 0.8394 0.9907 0.7774 0.9813

1000 Fz-B-H 0.8015 0.9881 0.8105 0.9875
Fz-B-Y 0.4639 0.9232 0.4890 0.9196
LCT-B 0.7655 0.9886 0.7254 0.9827
LCT-N 0.7857 0.9856 0.7110 0.9679

transcriptional regulators, which are known to be involved in
cancer, had no significant changes in their mean expression
levels but were highly differentially coexpressed. As pointed
out by de la Fuente (2010), these results strongly indicated that,
besides differential mean expressions, coexpression changes are
also highly relevant when comparing gene expression datasets.

In this section, we illustrate the proposed multiple testing
procedure with an application to the detection of the changes in
coexpression patterns between gene expression levels using a
prostate cancer dataset (Singh et al. 2002). The dataset is avail-
able at http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

This dataset consists of two classes of gene expression data
that came from 52 prostate tumor patients and 50 prostate normal
patients. There are a total of 12,600 genes. We first choose 500
genes with the smallest absolute values of the two-sample t test
statistics for the comparison of the means

ti = |X̄i − Ȳi |
/√

ŝ2
1i/n1 + ŝ2

2i/n2,

Table 5. Empirical FDRs for one-sample tests (α = 0.2), Model 3

U*N(0,1) N(0,1) t(6) Exp(1)

Fz-B-H 0.9093 0.2923 0.3019 0.3601
Fz-B-Y 0.5304 0.0339 0.0361 0.0714
LCT-B 0.1733 0.1895 0.1859 0.1769

Table 6. Empirical distance between FDP and αq0/q (α = 0.2)

k 1 5 10 20 40 80

SD 0.3426 0.1784 0.0836 0.0433 0.0281 0.0221

where ŝ2
1i and ŝ2

2i are the sample variances of the ith gene. All
of the p-values P(|N (0, 1)| ≥ |ti |) of 500 genes are greater than
0.87; see Figure 1(a). Hence, it is very likely that all of the
500 genes are not differentially expressed in the means. The
proposed multiple testing procedure is applied to investigate
whether there are differentially coexpressed gene pairs between
these 500 genes. As in Kostka and Spang (2004), Carter et al.
(2004), and Lai et al. (2004), the aim of this analysis is to verify
the phenomenon that additional information can be gained from
the coexpressions even when the genes are not differentially
expressed in the means.

Let rN
ij (rT

ij ) denote the Pearson correlation coefficient be-
tween the expression levels of gene i and gene j of the prostate
normal (tumor) patients. We wish to test the hypotheses H0ij :
rN
ij = rT

ij , 1 ≤ i < j ≤ 500. The pair of genes i and j is identified
to be differentially coexpressed if the hypothesis H0ij is rejected.
See de la Fuente (2010). We compare the performance between
our procedure (the number of the bootstrap resamples N = 50)
and those based on Fisher’s z transformation with the nominal
FDR level α = 0.05. Our procedure (Figure 1(b)) identifies 1341
pairs of coexpression genes and 1.07% nonzero entries of the co-
expression matrix (estimation of support of R1 − R2). As noted
by Yeung and Tegne (2002), gene regulatory networks in most
biological systems are expected to be sparse. Our method thus
leads to a clear and easily interpretable coexpression network. In
comparison, Fz-B-H and Fz-B-Y identify, respectively, 26,373
(21.14%) and 13,794 (11.06%) pairs of coexpression genes and
the estimates of the support of R1 − R2 are very dense and dif-
ficult to interpret (Figure 1(c) and 1(d)). This is likely due to
the nonnormality of the dataset so that (3) fails to hold. As a
result, the true FDR level of Fz-B-H and Fz-B-Y may be much
larger than the nominal level, which leads to the large number
of rejections.

6. DISCUSSION

In this article, we introduced a large-scale multiple testing
procedure for correlations and showed that the procedure per-
forms well both theoretically and numerically under certain
regularity conditions. The method can also be used for testing
the cross-correlations, and some of the conditions can be further
weakened. We discuss in the section some of the extensions and
the connections to other work.

6.1 Multiple Testing of Cross-Correlations

In some applications, it is of interest to carry out multi-
ple testing of cross-correlations between two high-dimensional
random vectors, which is closely related to the one-sample
case considered in this article. Let X = (X1, . . . , Xp1 )′ and
Y = (Y1, . . . , Yp2 )′ be two random vectors with dimension p1

and p2, respectively. We consider multiple correlation tests be-
tween Xi and Yj

H0ij : cov(Xi, Yj ) = 0 versus H1ij : cov(Xi, Yj ) ̸= 0
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Figure 1. (a) p-Values of 500 genes. (b) Coexpression matrix (C-L). (c) Coexpression matrix (Fz-B-H). (d) Coexpression matrix (Fz-B-Y).

for 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2. We can construct similar test
statistics

Tij =
∑n

k=1(Xki − X̄i)(Ykj − Ȳj )
√

nθ̂ij

,

where

θ̂ij = 1
n

n∑

k=1

[(Xki − X̄i)(Ykj − Ȳj ) − σ̂ijXY ]2,

σ̂ijXY = 1
n

n∑

k=1

(Xki − X̄i)(Ykj − Ȳj ).

The normal distribution can be used to approximate the null dis-
tribution of Tij when the sample size is large. If the sample size
is small, we can use G∗

n,N (t) to approximate the null distribution
of Tij , where

G∗
n,N (t) = 1

Np1p2

N∑

k=1

p1∑

i=1

p2∑

j=1

I {|T ∗
ij,k| ≥ t}.

Here T ∗
ij,k are constructed by the bootstrap method as in (24).

The multiple testing procedure is as follows.
FDR control procedure. Let 0 < α < 1 and define

t̂ = inf

⎧
⎨

⎩0 ≤ t ≤ bp :
G∗

n,N (t)p1p2

max
{∑p1

i=1

∑p2
j=1 I {|Tij | ≥ t}, 1

} ≤ α

⎫
⎬

⎭ .

If t̂ does not exist, then let t̂ =
√

2 log(p1p2). We reject H0ij

whenever |Tij | ≥ t̂ .
Let H0 = {(i, j ) : cov(Xi, Yj ) = 0} and H1 = {(i, j ) :

cov(Xi, Yj ) ̸= 0}. We assume the following condition holds for
X and Y .

(C4). For any A = {i, j, k, l}, if (i, j ) ∈ H0 and (k, l) ∈ H0,
then

E[(Xi − EXi)(Yj − EYj )(Xk − EXk)(Yl − EYl)]
= τAE[(Xi − EXi)(Xk − EXk)]E[(Yj − EYj )(Yl − EYl)]

for some positive constant τA.

Let R1 and R2 be the correlation matrices of X and Y ,
respectively. Denote p = p1 + p2, q = p1p2, q0 = Card(H0),
and q1 = Card(H1). Suppose that p1 ≍ p2. Then the following
theorem holds.

Theorem 5. Assume that p ≤ nr for some r > 0 and q1 ≤ cq

for some 0 < c < 1. Under (C1), (C3), and (C4),

lim
(n,p)→∞

FDR ≤ α, lim
(n,p)→∞

P(FDP ≤ α + ε) = 1

for any ε > 0. Furthermore, if

Card

{

(i, j ) :
|cov(Xi, Yj )|

√
θij,XY

≥ 4

√
log p

n

}

≥
(

1√
8πα

+ δ

) √
log(log p),

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f P

en
ns

yl
va

ni
a]

 a
t 0

6:
26

 0
6 

Ju
ne

 2
01

6 



Cai and Liu: Large-Scale Multiple Testing of Correlations 239

then

lim
(n,p)→∞

FDR
αq0/q

= 1 and

FDP
αq0/q

→ 1 in probability as (n, p) → ∞,

where θij,XY = var[(Xi − EXi)(Yj − EYj )].

6.2 Relations to Owen (2005)

A related work to the one-sample correlation test is Owen
(2005), which studied the variance of the number of false dis-
coveries in the tests on the correlations between a single re-
sponse and p covariates. It was shown that the correlation would
greatly affect the variance of the number of false discoveries.
The goal in our article is different from that in Owen (2005).
Here, we study the FDR control on the correlation tests between
all pairs of variables. In our problem, the impact of correlation
is much less serious and is even beneficial to the FDP control
under the sparse setting (C1∗). To see this, set N = {(i, j ) :
1 ≤ i < j ≤ p, |ρij | ≥ (log p)−2−γ } for some γ > 0. In other
words, N denotes the pairs with strong correlations. Suppose
that Card(N ) = pτ for some 0 < τ < 2. The larger τ indicates
the stronger correlations among the variables. It follows from
the proof of Theorem 2 that P(0 ≤ t̂ ≤

√
(4 − 2τ ) log p) → 1.

By the proof in the supplementary materials, we can see that
the difference FDP − αq0/q depends on the accuracy of the
approximation

sup
0≤t≤

√
(4−2τ ) log p

∣∣∣∣∣

∑
(i,j )∈H0

I {|Tij | ≥ t}
|H0|G∗

n,N (t)
− 1

∣∣∣∣∣ .

Generally, a larger τ provides a better approximation be-
cause the range 0 ≤ t ≤

√
(4 − 2τ ) log p becomes smaller and

|H0|G∗
n,N (

√
(4 − 2τ ) log p) becomes larger. Hence, as τ in-

creases, the FDP is better controlled. Simulation results in Sec-
tion 5.1.2 also support this observation.

6.3 Relax the Conditions

In Sections 2 and 3, we require the distributions to satisfy
the moment condition (C2), which is essential for the validity
of the testing procedure. An important example is the class of
the elliptically contoured distributions. This is clearly a much
larger class than the class of multivariate normal distributions.
However, in real applications, (C2) can still be violated. It is
desirable to develop test statistics that can be used for more
general distributions. To this end, we introduce the following
test statistics that do not need the condition (C2).

Let X′
ki = (Xki − µi)/σ

1/2
ii1 . It can be proved that, under the

finite 4th moment condition E(Xki − µi1)4/σ 2
ii1 < ∞,

2
√

n1

θij1
(ρ̂ij1 − ρij1) → N (0, 1), (27)

where i ̸= j and

θij1 = 1
n1

n1∑

k=1

(
2X′

kiX
′

kj − ρ̂ij1X
′2
ki − ρ̂ij1X

′2
kj

)2
.

We can estimate µi and σii1 in θij1 by their sample versions. Let
X̂ki = (Xki − X̄i)/σ̂

1/2
ii1 , where σ̂ii1 = 1

n1

∑n1
k=1(Xki − X̄i)2, and

let

θ̂ij1 = 1
n1

n1∑

k=1

(2X̂kiX̂kj − ρ̂ij1X̂
2
ki − ρ̂ij1X̂

2
kj )2.

θ̂ij2 is defined in the same way by replacing X with Y . So the
test statistic

T ′
ij = 2(ρ̂ij1 − ρ̂ij2)

√
θ̂ij1/n1 + θ̂ij2/n2

(28)

can be used to test the individual hypothesis H0ij : ρij1 = ρij2.
We have the following proposition.

Proposition 2.

1. Suppose that E(Xki − µi1)4/σ 2
ii1 < ∞ and E(Yki −

µi2)4/σ 2
ii2 < ∞. Under the null hypothesis H0ij : ρij1 =

ρij2, we have T ′
ij ⇒ N (0, 1).

2. Suppose that p ≤ nr for some r > 0 and (C3) holds. For
any b > 0, we have

sup
(i,j )∈H0

sup
0≤t≤b

√
log p

∣∣∣∣
P(|T ′

ij | ≥ t)

2 − 2$(t)
− 1

∣∣∣∣ → 0,

Proposition 2 can be used to establish the FDR control result
for multiple tests (2) by assuming some dependence condition
between the test statistics T ′

ij . However, we should point out
that, although T ′

ij does not require (C2), numerical results show
that it is less powerful than the test statistic Tij in Section 2.

SUPPLEMENTARY MATERIALS

In the supplement, we prove the main theorems and the key
technical result, Proposition 1.

[Received February 2013. Revised November 2014.]
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