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In large-scale multiple testing problems, data are often collected from heterogeneous sources and hypotheses form into groups that exhibit
different characteristics. Conventional approaches, including the pooled and separate analyses, fail to efficiently utilize the external grouping
information. We develop a compound decision theoretic framework for testing grouped hypotheses and introduce an oracle procedure that
minimizes the false nondiscovery rate subject to a constraint on the false discovery rate. It is shown that both the pooled and separate
analyses can be uniformly improved by the oracle procedure. We then propose a data-driven procedure that is shown to be asymptotically
optimal. Simulation studies show that our procedures enjoy superior performance and yield the most accurate results in comparison with
both the pooled and separate procedures. A real-data example with grouped hypotheses is studied in detail using different methods. Both
theoretical and numerical results demonstrate that exploiting external information of the sample can greatly improve the efficiency of a
multiple testing procedure. The results also provide insights on how the grouping information is incorporated for optimal simultaneous
inference.
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1. INTRODUCTION

Conventional multiple testing procedures, such as the false
discovery rate analyses (Benjamini and Hochberg 1995; Efron
et al. 2001; Genovese and Wasserman 2002; Storey 2002; van
der Laan, Dudoit, and Pollard 2004), implicitly assume that
data are collected from repeated or identical experimental con-
ditions, and hence hypotheses are exchangeable. However, in
many applications, data are known to be collected from hetero-
geneous sources and hypotheses intrinsically form into different
groups. The goal of this article is to study optimal multiple test-
ing procedures for grouped hypotheses in a compound decision
theoretical framework.

The following examples motivate our study. The adequate
yearly progress (AYP) study of California high schools (Ro-
gosa 2003) aimed to compare academic performances of so-
cioeconomically advantaged (SEA) versus socioeconomically
disadvantaged (SED) students. Standard tests in mathematics
were administered to 7867 schools and a z-value for compar-
ing SEA and SED students was obtained for each school. The
estimated null densities of the z-values for small, medium, and
large schools are plotted on the left panel of Figure 1. It is in-
teresting to see that the null density of the large group is much
wider than those of the other two groups. The differences in the
null distributions have significant effects on the outcomes of
multiple testing procedures. See more detailed analysis of this
example in Section 6. Another example is the brain imaging
study analyzed in Schwartzman, Dougherty, and Taylor (2008).
In this study, 6 dyslexic children and 6 normal children received
diffusion tensor imaging brain scans on the same 15,443 brain
locations (voxels). A z-value (converted from a two-sample t-
statistic) for comparing dyslexic versus normal children was
obtained for each voxel. The right panel in Figure 1 plots the
estimated null densities of the z-values for the front and back
halves of the brain. We can see that the null cases from two
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groups center on different means, and the density of the back
half is narrower. There are many other examples where the hy-
potheses are naturally grouped. For instance, in analysis of ge-
ographical survey data, individual locations are aggregated into
several large clusters; and in metaanalysis of large biomedical
studies, the data are collected from different clinical centers.
An important common feature of these examples is that data
are collected from heterogeneous sources and the hypotheses
being considered are grouped and no longer exchangeable. We
shall see that incorporating the grouping information is impor-
tant for optimal simultaneous inference with samples collected
from different groups.

The analysis of above examples involves simultaneous test-
ing of thousands of hypotheses. In large-scale multiple testing,
the false discovery rate (FDR, Benjamini and Hochberg 1995)
is often used to combine the Type I errors from individual tests
and serves as a target for control. The outcomes of a multiple
testing procedure can be summarized as in Table 1.

The FDR, defined as FDR = E(N10/R)P(R > 0), is the ex-
pected proportion of false positives among all rejections. The
marginal FDR (mFDR), defined as mFDR = E(N10)/E(R), is
an asymptotically equivalent measure to the FDR in the sense
that mFDR = FDR+O(m−1/2) under mild conditions (Gen-
ovese and Wasserman 2002), where m is the total number of
tests. A dual quantity of the FDR is the false nondiscovery rate
(FNR, Genovese and Wasserman 2002), which is defined as
FNR = E(N01/S|S > 0)Pr(S > 0), the expected proportion of
false negatives among all nonrejections. An FDR procedure is
said to be valid if it controls the FDR at a prespecified level α

and optimal if it has the smallest FNR among all FDR proce-
dures at level α.

The problem of combining the tests from several large groups
is conceptually complicated in an FDR analysis. On the one
hand, it is desirable in practice to define the FDR and FNR
as global measures by pooling together all tests from differ-
ent groups. On the other hand, it is beneficial to perform the
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Figure 1. Empirical null densities of the AYP study and the brain imaging study. The null densities of the school data in the left panel are
specified in Table 3 in Section 6. The null density of the large group is much wider than those of the other two densities. In the right panel, the
null densities of the front and back halves of the brain are N(0.06,1.092) and N(−0.29,1.012), respectively, which are centered at different
means.

analysis separately in some way when the groups are differ-
ent. For example, the implementation of the adaptive p-value
FDR procedure (Benjamini and Hochberg 2000; Genovese and
Wasserman 2004) requires the information about the proportion
of nonnulls, which may vary across groups.

Two natural strategies to testing grouped hypotheses have
been considered in the literature. The first approach, termed as
the pooled analysis, simply ignores the information of group
labels and conducts a global analysis on the combined sample
at a given FDR level α. It is argued by Efron (2008a) that a
pooled FDR analysis may distort inferences made for separate
groups because highly significant cases from one group may be
hidden among the nulls from another group, while insignificant
cases may be possibly enhanced. Another natural approach is
the so-called separate analysis which first conducts separately
the FDR analysis within each group at the same FDR level α,
and then combines the testing results from individual analy-
ses. It was shown by Efron (2008a) that the separate analysis
is valid. However, the choice of identical FDR levels for all
groups is somewhat arbitrary since there are many combina-
tions of group-wise FDR levels αi’s that lead to an overall FDR
level α. The choice of identical FDR levels αi = α for all groups
is merely one of the combinations, and is not optimal in general.

This article studies the optimal procedure for testing grouped
hypotheses in a compound decision theoretical framework and

Table 1. Classification of tested hypothesis

Claimed nonsignificant Claimed significant Total

Null N00 N10 m0
Nonnull N01 N11 m − m0

Total S R m

shows that both the pooled and separate analyses can be uni-
formly improved. We first introduce an oracle procedure in an
ideal setting where the distributional information of each group
is assumed to be known. It is shown that the oracle procedure is
optimal in a global sense, that is, it minimizes the overall FNR
subject to a constraint on the overall FDR level. Our approach is
different from conventional methods in that it is a hybrid strat-
egy that has combined features from both pooled and separate
analyses. The optimality of our new procedure is achieved by
utilizing the information of group labels to create efficient rank-
ings of all hypotheses, and adaptively weighting the FDR levels
among different groups to minimize the overall FNR level.

Figure 2 gives a comparison of the pooled, separate, and opti-
mal testing procedures. The left panel shows that all three pro-
cedures controls the FDR at the nominal level 0.10 (the three
lines are overlapped at 0.10). The right panel shows that nei-
ther the pooled nor the separate analysis is efficient, and both
are uniformly dominated by the optimal procedure. The pooled
analysis is inefficient because the information of group labels
can be exploited to construct more efficient tests. The separate
analysis with identical FDR levels is also inefficient because
different group-wise FDR levels should be chosen to minimize
the overall FNR level. The optimal group-wise FDR levels sug-
gested by our new procedure are given by the dashed and dash-
dotted lines in panel (a).

We then develop a data-driven procedure that mimics the or-
acle procedure by plugging in consistent estimates of the un-
known parameters. It is shown that the data-driven procedure
controls the overall FDR at the nominal level and attains the
FNR level of the oracle procedure asymptotically. In this sense,
it is asymptotically valid and optimal. Consistent estimates of
the optimal FDR levels for separate groups are also provided
based on the data-driven procedure. Simulations are conducted
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Figure 2. A comparison of the pooled, separate, and optimal analyses in a two-group model: the group sizes are m1 = 3000, m2 = 1500; the
group densities are f1 = 0.8N(0,1) + 0.2N(μ1,1) and f2 = 0.9N(0,1) + 0.1N(2,0.52). In panel (a), the FDR levels are plotted as functions of
μ1 (!, pooled analysis; �, separate analysis; +, optimal analysis; dashed line, optimal FDR levels for group 1; dash-dotted line, optimal FDR
levels for group 2). In panel (b), the FNR levels are plotted as functions of μ1 (!, pooled analysis; �, separate analysis; +, optimal analysis).

in Section 5, showing that our procedures enjoy superior perfor-
mance and yield the most accurate results in comparison with
both the pooled and separate procedures.

An important issue here is that the assumption that all hy-
potheses are exchangeable, which has been implicitly used in
the multiple testing literature, often does not hold in practice
where hypotheses are grouped. It was conjectured by Morris
(2008) that when the exchangeability assumption does not hold,
the resulting rankings of the hypotheses should be different; this
conjecture is verified by the efficiency gain of our optimal test-
ing procedure over the conventional methods. Generally speak-
ing, testing procedures developed under the exchangeability as-
sumption are symmetric rules (defined in Section 7); examples
include the BH step-up procedure (Benjamini and Hochberg
1995), Efron’s local FDR procedure (Efron et al. 2001), and
Storey’s optimal discovery procedure (Storey 2007). When the
hypotheses are not exchangeable, even the optimal symmet-
ric rules may suffer from substantial efficiency loss. Recent
works by Efron (2008a) and Ferkinstad et al. (2008) suggest
that hypotheses should be analyzed separately when they are
not exchangeable. However, it is not discussed how to opti-
mally combine the testing results from separate groups. Our
new procedure not only gives the optimal rankings of all hy-
potheses, but also suggests an optimal way of combining test-
ing results (where group-wise FDR levels are automatically and
optimally determined and adaptively weighted among groups).
Therefore it provides a convenient and efficient approach to
testing grouped hypotheses.

The article is organized as follows. We begin in Section 2
with an introduction of the multiple-group model and the two
natural approaches to testing grouped hypotheses. Section 3
first introduces, under an ideal setting, an oracle procedure
which minimizes the overall FNR subject to a constraint on
the overall FDR, and then proposes a data-driven procedure
that asymptotically mimics the oracle procedure. In Section 4,
a compound decision-theoretic framework for testing grouped

hypotheses is developed and the optimality of the new testing
procedure is established. Simulation studies are carried out in
Section 5 to investigate the numerical performance of our pro-
cedure. The methods are illustrated in Section 6 for analysis of
the AYP study of California high schools. Section 7 discusses
the main findings of the article as well as some open problems.
The proofs are given in the Appendix.

2. POOLED AND SEPARATE FDR ANALYSIS

The random mixture model provides a convenient and effi-
cient framework for large-scale multiple testing and has been
widely used in many applications, especially in DNA microar-
ray analyses (Efron et al. 2001; Newton et al. 2004; Storey
2002). In a random mixture model, observations x1, . . . , xm are
assumed to be generated from a mixture distribution:

X ∼ (1 − p)F0(x) + pF1(x), (2.1)

where F0 and F1 are null and nonnull distributions, and p is
the proportion of nonnulls. The mixture density is denoted by
f (x) = (1 − p)f0(x) + pf1(x).

We begin by reviewing the optimal and adaptive testing pro-
cedures developed in Sun and Cai (2007) under the mixture
model (2.1). Then we introduce the multiple-group random
mixture model that extends model (2.1) to describe grouped hy-
potheses. Finally we discuss two natural methods, pooled and
separate FDR procedures, for testing grouped hypotheses.

2.1 Optimal Testing Procedures for
a Single Group Model

Conventional FDR procedures, such as the step-up procedure
(Benjamini and Hochberg 1995), the adaptive p-value proce-
dure (Benjamini and Hochberg 2000; Genovese and Wasser-
man 2002), and the augmentation procedure (van der Laan,
Dudoit, and Pollard 2004), are virtually all based on thresh-
olding the ranked p-values. However, the p-value ignores im-
portant distributional information in the sample and fails to
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serve as the fundamental building block in large-scale multiple
testing. Sun and Cai (2007) developed a compound decision-
theoretic framework for multiple testing and showed that the
optimal testing procedure is a thresholding rule based on the lo-
cal false discovery rate (Lfdr, Efron et al. 2001). The Lfdr, de-
fined as Lfdr(x) = p0f0(x)/f (x), is the posterior probability that
a case is null given the observed statistic. Sun and Cai (2007)
showed that the Lfdr produces more efficient rankings of hy-
potheses than the p-value, and the efficiency gain is substan-
tial when the nonnull distribution is concentrated or skewed.
Let δ = (δ1, . . . , δm) ∈ {0,1}m be a general decision rule, where
δi = 1 if we claim that case i is nonnull and δi = 0 otherwise.
Sun and Cai (2007) showed that when all distributional infor-
mation is known, the oracle testing procedure at FDR level α

that minimizes the FNR is

δ(Lfdr, cOR(α)1) = [
I{Lfdr(xi) < cOR(α)} : i = 1, . . . ,m

]
,

(2.2)

where cOR(α) = sup{c ∈ (0,1),FDR(c) ≤ α} is the optimal cut-
off for the Lfdr statistic at FDR level α. However, the ora-
cle procedure (2.2) is difficult to implement because the cut-
off cOR(α) is hard to compute. Denote by Lfdr(1), . . . ,Lfdr(m)

the ranked Lfdr values and H(1), . . . ,H(m) the corresponding
hypotheses. An asymptotically equivalent version of the oracle
procedure (2.2) is the following procedure:

Reject all H(i), i = 1, . . . , l,

where l = max

{
i : (1/i)

i∑
j=1

Lfdr(j) ≤ α

}
. (2.3)

The Lfdr procedure (2.3) is asymptotically valid and optimal
in the sense that it attains both the FDR and FNR levels of the
oracle procedure (2.2) asymptotically.

Implementation of the Lfdr procedure requires the knowl-
edge of population parameters such as the null density f0 and
proportion of nonnulls p, which may not be known in prac-
tice. Estimates of these unknown parameters for a normal mix-
ture model have been developed in the literature; see Efron
(2004) and Jin and Cai (2007). Let p̂, f̂0, and f̂ be estimates
of the unknown parameters and define the estimated Lfdr as
L̂fdr(x) = p̂f̂0(x)/f̂ (x). An adaptive procedure was proposed in
Sun and Cai (2007) which replaces the Lfdr statistics in (2.3) by
their estimates. It was shown that the adaptive procedure is as-
ymptotically valid and optimal when consistent estimates (e.g.,
Jin and Cai 2007’s estimates) are used to construct the tests. Nu-
merical results show that conventional p-value procedures can
be substantially improved by the adaptive procedure.

2.2 The Multiple-Group Model

The multiple-group random mixture model (Efron 2008a; see
Figure 3) extends the previous random mixture model (2.1) (for
a single group) to cover the situation where the m cases can be
divided into K groups. It is assumed that within each group, the
random mixture model (2.1) holds separately.

Let g = (g1, . . . ,gK) be a multinomial variable with associ-
ated parameters {π1, . . . , πK}, where gi = k indicates that case i
belongs to group k. We assume that prior to analysis, the group
labels g have been determined by external information derived

Figure 3. The multiple group model: the m hypotheses are di-
vided into K groups with prior probability πk; the random mixture
model (2.1) holds separately within each group, with possibly differ-
ent pk , fk0, and fk1.

from other data or a priori knowledge. Let θ = (θ1, . . . , θm)

be Bernoulli variables, where θi = 1 indicates that case i is a
nonnull and θi = 0 otherwise. Given g, θ can be grouped as
θ = (θ1, . . . , θK) = {(θk1, . . . , θkmk) : k = 1, . . . ,K}, where mk
is the number of hypotheses in group k. Different from g, θ
are unknown and need to be inferred from observations x. Let
θki, i = 1, . . . ,mk, be independent Bernoulli(pk) variables and
X = (Xki) be generated conditional on θ :

Xki|θki ∼ (1 − θki)Fk0 + θkiFk1,

i = 1, . . . ,mk, k = 1, . . . ,K. (2.4)

Hence within group k, the Xki’s, i = 1, . . . ,mk, are iid observa-
tions with mixture distribution Fk = (1 − pk)Fk0 + pkFk1. De-
note for group k the mixture density by fk, the null and nonnull
densities by fk0 and fk1, respectively. Then fk = (1 − pk)fk0 +
pkfk1.

We first consider the problem in an ideal setting where all
distributional information is assumed to be known. Pooled and
separate analyses are discussed in Sections 2.3 and 2.4, respec-
tively.

2.3 Pooled FDR Analysis

A natural and naive approach to testing grouped hypotheses
is to simply ignore the group labels and combine all cases into
a pooled sample. Denote by f the mixture density,

f =
∑

k

πk[(1 − pk)fk0 + pkfk1] = (1 − p)f ∗
0 + pf ∗

1 ,

where p = ∑
k πkpk is the nonnull proportion of the pooled

sample, and f ∗
0 = ∑

k[(πk − πkpk)/(1 − p)]fk0 and f ∗
1 =∑

k(πkpk/p)fk1 are the pooled or global null and nonnull den-
sities, respectively. Denote the pooled null distribution by
F∗

0 = ∑
k[(πk − πkpk)/(1 − p)]Fk0.

In a pooled analysis, the group labels are ignored and one
tests against the common pooled null distribution F∗

0 in all in-
dividual tests. Define the pooled Lfdr statistic (PLfdr) by

PLfdr(xi) = (1 − p)f ∗
0 (xi)

f (xi)
, i = 1, . . . ,m. (2.5)

The results in Sun and Cai (2007) imply that among all testing
procedures that adopt the pooled-analysis strategy, the optimal
one is

δ(PLfdr, cOR(α)1)

= [
I{PLfdr(xi) < cOR(α)} : i = 1, . . . ,m

]
, (2.6)
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where cOR(α) is the largest cutoff for the PLfdr statistic that
controls the overall FDR at level α. Let PLfdr(1), . . . ,PLfdr(m)

be the ranked PLfdr values and H(1), . . . ,H(m) the correspond-
ing hypotheses. An asymptotically equivalent version of (2.6)
is the PLfdr procedure:

Reject all H(i), i = 1, . . . , l,

where l = max

{
i : (1/i)

i∑
j=1

PLfdr(j) ≤ α

}
. (2.7)

The following theorem shows that the PLfdr procedure is valid
for FDR control when testing against the pooled null distribu-
tion F∗

0 .

Theorem 1. Consider the mixture model (2.4). Let PLfdr(i),
i = 1, . . . ,m, be the ranked PLfdr values defined in (2.5). Then
the PLfdr procedure (2.7) controls the FDR at level α when
testing against the pooled null distribution F∗

0 .

Remark 1. We should emphasize here that a pooled analysis
makes sense only when the null distributions Fk0 are the same
for all groups, in which case F∗

0 coincides with the common
group null. When Fk0 are different across groups, in general
the pooled null distribution F∗

0 differs from any of the group
null Fk0. In this case a pooled analysis is not appropriate at all
because for each individual case a rejection against F∗

0 does
not imply rejection against the null distribution Fk0 for a given
group. To further illustrate this important point, let us take the
most extreme case. Consider two groups where the null dis-
tribution of the first group is the alternative distribution of the
second, and vice versa. It is then impossible to decide whether
a case is a null or nonnull without knowing the grouping in-
formation. In this case F∗

0 is not the right null distribution to
test against for any individual tests and therefore it is entirely
inappropriate to perform a pooled analysis.

2.4 Separate FDR Analysis

Another natural approach to testing grouped hypotheses is
the separate analysis where each group is analyzed separately
at the same FDR level α. Define the conditional Lfdr for group k
as

CLfdrk(xki) = (1 − pk)fk0(xki)

fk(xki)
,

i = 1, . . . ,mk; k = 1, . . . ,K. (2.8)

Again implied by the results in Sun and Cai (2007), the optimal
procedure for testing hypotheses from group k is of the form

δk(CLfdrk, ck
OR(α)1)

= [
I{CLfdrk(xki) < ck

OR(α)} : i = 1, . . . ,mk
]
,

k = 1, . . . ,K, (2.9)

where ck
OR(α) is the largest cutoff for CLfdr statistic that con-

trols the FDR of group k at level α. By combining testing results
from separate groups together, we have δ = (δ1, . . . , δK).

Similarly we can propose the separated Lfdr (SLfdr) pro-
cedure that is asymptotically equivalent to (2.9). Denote by
CLfdrk

(1), . . . ,CLfdrk
(mk)

the ranked CLfdr values in group k and

Hk
(1), . . . ,Hk

(mk)
the corresponding hypotheses. The testing pro-

cedure for group k is

Reject all Hk
(i), i = 1, . . . , lk,

where lk = max

{
i : (1/i)

i∑
j=1

CLfdrk
(j) ≤ α

}
. (2.10)

The final rejection set of the SLfdr procedure is obtained by
combining the K rejection sets from all separate analyses:
RSLfdr = ⋃K

k=1{Hk
(i) : i = 1, . . . , lk}. The next theorem shows

that the SLfdr procedure is also valid for global FDR control.

Theorem 2. Consider the random mixture model (2.4). Let
CLfdrk

(i), i = 1, . . . ,mk, k = 1, . . . ,K, be the ranked CLfdr
values defined by (2.8) for group k. Then the SLfdr proce-
dure (2.10) controls the global FDR at level α.

3. OPTIMAL FDR PROCEDURES FOR TESTING
GROUPED HYPOTHESES

In Section 2 we discussed two natural approaches to test-
ing grouped hypotheses: the pooled analysis and the separate
analysis. Although both procedures are valid, they are ineffi-
cient in reducing the overall FNR. In this section, we begin by
considering an ideal setting where all distributional informa-
tion is known and propose an optimal (oracle) FDR procedure
that uniformly outperforms both the pooled and separate proce-
dures. We then turn to the situation where the distributions are
unknown and introduce a data-driven procedure that is asymp-
totically valid and optimal.

3.1 Oracle Procedure

In Section 4, we will show that the optimal testing procedure
that minimizes the overall FNR subject to a constraint on the
overall FDR level is the following oracle procedure:

δ[CLfdr, cOR(α)1] = [
I{CLfdrk(xki) < cOR(α)} :

i = 1, . . . ,mk, k = 1, . . . ,K
]
, (3.1)

where cOR(α) = sup{c ∈ (0,1) : FDR(c) ≤ α} is the optimal
cutoff for the CLfdr statistic that controls the overall FDR at
a given level α. Note that different from (2.9), the oracle proce-
dure (3.1) suggests using a universal cutoff for all CLfdr statis-
tics regardless of their group identities.

However, for a given FDR level, it is difficult to calculate the
optimal cutoff cOR(α) directly. An asymptotically equivalent
procedure to (3.1) is the CLfdr procedure derived in Section 4.3.
The CLfdr procedure involves the following three steps:

1. Calculate the CLfdr values for separate groups based
on (2.8).

2. Combine and rank the CLfdr values from all groups. De-
note by CLfdr(1), . . . ,CLfdr(m) the ranked CLfdr values
and H(1), . . . ,H(m) the corresponding hypotheses.

3. Reject all H(i), i = 1, . . . , l, where l = max{i : (1/i) ×∑i
j=1 CLfdr(j) ≤ α}.

Remark 2. It is important to note that in step 1, the external
information of group labels is utilized to calculate the CLfdr
statistic; this is the feature from a separate analysis. However,
in steps 2 and 3, the group labels are dropped and the rankings
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of all hypotheses are determined globally; this is the feature
from a pooled analysis. Therefore the CLfdr procedure is a hy-
brid strategy that enjoys features from both pooled and separate
analyses.

Remark 3. Unlike for the separate analysis, the group-wise
FDR levels of the CLfdr procedure are in general different from
α. In addition to its validity for a pooled FDR analysis, one
may be interested in knowing the actual group-wise FDR lev-
els FDRk yielded by the CLfdr procedure; this can be conve-
niently obtained based on the quantities that we have already
calculated. Specifically, let Rk be the number of rejections in
group k. The actual FDRk’s can be consistently estimated by

F̂DRk = 1

Rk

Rk∑
i=1

CLfdrk
(i) . (3.2)

The result is formally stated in Theorem 4.

Theorem 3 shows that the CLfdr is a valid procedure for
global FDR control.

Theorem 3. Consider the random mixture model (2.4). Then
the CLfdr procedure controls the global FDR at level α.

The next theorem, together with Theorem 3, shows that the
CLfdr procedure is asymptotically equivalent to the oracle pro-
cedure (3.1).

Theorem 4. Consider the random mixture model (2.4) and
the CLfdr procedure, then:

(i) The FNR level yielded by the CLfdr procedure at FDR
level α is FNROR(α) + o(1), where FNROR(α) is the
mFNR level of the oracle procedure (3.1).

(ii) The group-wise FDR levels of the CLfdr procedure can
be consistently estimated by F̂DRk = FDRk

OR +op(1),

where F̂DRk is defined by (3.2), and FDRk
OR is the

group-wise FDR level of the oracle procedure (3.1).

3.2 Data-Driven Procedure

The CLfdr oracle procedure requires the distributional in-
formation of all individual groups. However, this information
is usually unknown in practice. A commonly used strategy is
to first estimate the unknown distributions and then plug in
the estimates. Estimates of the null distribution and proportion
of nonnulls in a normal mixture model are provided in Efron
(2004) and Jin and Cai (2007). Consider the following normal
mixture model

Xi ∼ (1 − p)N(μ0, σ
2
0 ) + pN(μi, σ

2
i ), (3.3)

where (μi, σ
2
i ) follows some bivariate distribution F(μ,σ 2).

This model can be used to approximate many mixture distri-
butions and is found in a wide range of applications; see, for
example, Magder and Zeger (1996). Jin and Cai (JC, 2007) de-
veloped a procedure for estimating both the null distribution
N(μ0, σ

2
0 ) and proportion of nonnull effects p in model (3.3)

based on the empirical characteristic function and Fourier
analysis. JC’s method can be applied to separate groups di-
rectly, and the estimates are uniformly consistent over a wide
class of parameters. Let p̂k, f̂k0, and f̂k be estimates obtained for

separate groups, the data-driven procedure is given as follows:

1. Calculate the plug-in CLfdr statistic ĈLfdrk(xki) = (1 −
p̂k)f̂k0(xki)/f̂k(xki).

2. Combine and rank the plug-in CLfdr values from all
groups. Denote by ĈLfdr(1), . . . , ĈLfdr(m) the ranked val-
ues and H(1), . . . ,H(m) the corresponding hypotheses.

3. Reject all H(i), i = 1, . . . , l, where l = max{i : (1/i) ×∑i
j=1 ĈLfdr(j) ≤ α}.

The actual group-wise FDR levels of the data-driven pro-
cedure can be consistently estimated as F̂DRk = (1/Rk) ×∑Rk

i=1 ĈLfdrk
(i), where Rk is the number of rejections in group k.

The next theorem shows that the data-driven procedure is
asymptotically valid and optimal in the sense that both the
FDR and FNR levels of the oracle procedure are asymptotically
achieved by the data-driven procedure.

Theorem 5. Consider the multiple group model (2.4). Let p̂k,
f̂k0, and f̂k be consistent estimates of pk, fk0, and fk such that

p̂k
p→ pk, E‖f̂k0 − fk0‖2 → 0, E‖f̂k − fk‖2 → 0, k = 1, . . . ,K.

Let ĈLfdrk(xki) = (1 − p̂)f̂0(xki)/f̂ (xki), i = 1, . . . ,mk, k =
1, . . . ,K. Combine all test statistics from separate groups and
let ĈLfdr(1), . . . , ĈLfdr(m) be the ranked values. Then

(i) The mFDR and mFNR levels of the data-driven pro-
cedure are respectively α + o(1) and mFNROR +o(1),
where mFNROR is the mFNR level of the oracle proce-
dure (3.1).

(ii) The mFDR level of the data-driven procedure in group k
can be consistently estimated as F̂DRk = (1/Rk) ×∑Rk

i=1 ĈLfdrk
(i). In addition, F̂DRk = mFDRk

OR +o(1),

where mFDRk
OR +o(1) is the mFDR level of the oracle

procedure (3.1) in group k.

4. COMPOUND DECISION THEORY FOR
SIMULTANEOUS TESTING OF

GROUPED HYPOTHESES

In this section, we develop a compound decision theoretic
framework for testing hypotheses arising from the multiple
group model (2.4), and derive the optimal (oracle) testing pro-
cedure. We then show that the CLfdr procedure is an asymp-
totically equivalent version of the optimal procedure, hence the
superiority of the CLfdr procedure is justified.

4.1 Compound Decision Problem

Consider an inference problem for the multiple group
model (2.4) where the goal is to select interesting cases from
each group with the overall FDR level controlled at α and the
overall FNR level minimized. A solution to this problem can
be represented by a general decision rule δ = (δki) ∈ {0,1}m,
where δki = 1 indicates that we claim case i in group k is a non-
null and δki = 0 otherwise. In an FDR analysis, the m decisions
are combined and evaluated as a whole; this is referred to as a
compound decision problem (Robbins 1951).

Since hypotheses within each group are exchangeable, we
consider a decision rule defined in terms of statistic T =
{Tk(xki) : k = 1, . . . ,K; i = 1, . . . ,mk} and threshold t such that
δ(T, t) = (δki) = (I{Tk(xki) < t} : k = 1, . . . ,K; i = 1, . . . ,mk),
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where the function Tk is the same for all observations in group k
but may be different across groups. We allow Tk to depend on
unknown quantities, such as the nonnull proportion and null,
nonnull distributions in group k. In addition, Tk are standard-
ized so that the threshold t is universal for all tests.

The multiple testing problem is closely connected to a
weighted classification problem. Suppose the relative cost of
a false positive (Type I error) to a false negative (Type II error)
is known to be λ. Let δ = (δki : k = 1, . . . ,K; i = 1, . . . ,mk) ∈
{0,1}m be a classification rule, where δki = 1 indicates that we
classify case i of the kth group as a nonnull and δki = 0 other-
wise. Define the loss function

L(θ , δ) = (1/m)

K∑
k=1

mk∑
i=1

λ(1 − θki)δki + θki(1 − δki). (4.1)

The goal in a weighted classification problem is to find δ ∈
{0,1}m that minimizes the classification risk E[Lλ(θ , δ)]. We
will show that the optimal procedure for testing grouped hy-
potheses can be conveniently derived by studying the optimal
classification rule for the multiple group model (2.4).

Note that {Xki : i = 1, . . . ,mk} are iid random variables, we
assume that Tk(Xki) ∼ Gk = (1 − pk)Gk0 + pkGk1, where Gk0
and Gk1 are the conditional cdf’s of Tk(Xki) under the null dis-
tribution Fk0 and alternative distribution Fk1, respectively. The
pdf of Tk(Xki) is gk = (1 − pk)gk0 + pkgk1, with gk0 and gk1

the corresponding conditional pdf’s. Let G̃k(t) = 1 − Gk(t),
G̃k1(t) = 1 − Gk1(t), ḡ0(t) = ∑

k[πk(1 − pk)/(1 − p)]gk0(t),
and ḡ1(t) = ∑

k(πkpk/p)gk1(t). For a given test statistic T, the
mFDR and mFNR are functions of the threshold t:

mFDR(t) =
∑

k πk(1 − pk)Gk0(t)∑
k πkGk(t)

and

(4.2)

mFNR(t) =
∑

k πkpkG̃k1(t)∑
k πkG̃k(t)

.

We consider a class of test statistics T satisfying the
monotone ratio condition (MRC):

ḡ1(t)/ḡ0(t) is decreasing in t. (4.3)

The following shows that the MRC is a desirable condition.

Proposition 1. Consider the random mixture model (2.4).
Let T = {Tk(xki)} be a statistic that satisfies the MRC (4.3).

(i) Suppose T is used for the multiple testing problem, then
the mFDR (mFNR) level of testing procedure δ = I(T <

t1) increases (decreases) in the threshold t. Therefore the
mFNR is decreasing in the mFDR.

(ii) Suppose T is used for the weighted classification prob-
lem, then c(λ), the optimal cutoff for T that minimizes
the classification risk, is decreasing in λ, where λ is the
relative weight of a false positive to a false negative.

The first part of Proposition 1 implies that in a multiple test-
ing problem, we shall choose the largest mFDR/cutoff to min-
imize the mFNR level when the MRC holds. This property
is useful to determine a cutoff for this constrained minimiza-
tion problem, and is conceptually reasonable as a requirement
for a multiple testing procedure. In addition, the MRC class
T is fairly general. For example, the condition in Genovese

and Wasserman (2002, 2004) and Storey (2002) that the non-
null cdf of p-value is concave implies that the p-value vector
P = (P1, . . . ,Pm) belong to the MRC class T . See Sun and Cai
(2007) for more discussions about the MRC condition.

4.2 Multiple Testing via Weighted Classification

We now connect the multiple testing and weighted clas-
sification problems by showing that the two problems are
“equivalent” under mild conditions. We then derive the opti-
mal weighted classification rule and propose the optimal testing
procedure. Consider a class of decision rules D that are of the
form δ = I(T < t1) with T ∈ T . The next theorem shows that
under mild conditions, the optimal weighted classification rule
is also optimal for multiple testing.

Theorem 6. Consider the random mixture model (2.4). Sup-
pose the classification risk with the loss function L(θ , δ) =
(1/m)

∑K
k=1

∑mk
i=1 λ(1 − θki)δki + θki(1 − δki) is minimized by

δλ(T, c(λ)) = I(T < c(λ)1), so that T is the optimal statistic
in the weighted classification problem. If T belongs to T , then
T is also the optimal statistic in the multiple-testing problem
in the sense that for each global mFDR level α, there exists a
unique c(α) such that δα(T, c(α)) = I(T < c(α)1) controls the
global mFDR at level α with the smallest global mFNR among
all decision rules in D at global mFDR level α.

We consider an ideal setting where an oracle knows pk, fk0,
and fk1, k = 1, . . . ,K. In this case, the optimal classification rule
is given by the next theorem.

Theorem 7. Consider the random mixture model (2.4). Sup-
pose pk, fk0, fk1 are known. Then the classification risk with loss
function (4.1) is minimized by δλ = (δki), where

δki = I

{
�k(xki) = (1 − pk)fk0(xki)

pkfk1(xki)
<

1

λ

}
. (4.4)

Note that �k(x) = CLfdrk(x)/[1 − CLfdrk(x)] is strictly in-
creasing in CLfdrk(x), where CLfdrk(x) is the conditional local
false discovery rate defined in (2.8), an equivalent optimal test
statistic is CLfdr = [CLfdrk(xki) : i = 1, . . . ,mk, k = 1, . . . ,K].
Theorems 6 and 7 together imply that the optimal testing pro-
cedure is of the form δ[CLfdr < c(α)]. Proposition 1 indi-
cates that the cutoff should be chosen as cOR(α) = sup{c ∈
(0,1) : mFDR(c) ≤ α}. Therefore the optimal (oracle) proce-
dure for multiple group hypothesis testing is

δ[CLfdr, cOR(α)] = [
I{CLfdrk(xki) < cOR(α)} :

i = 1, . . . ,mk, k = 1, . . . ,K
]
. (4.5)

For a given FDR level, it is difficult to calculate the optimal
cutoff cOR(α) directly. The difficulty can be circumvented by
using the CLfdr procedure proposed in Section 3.1, where cOR

is estimated consistently based on a simple step-up procedure.

4.3 The Derivation of the CLfdr Procedure

This section demonstrates that the CLfdr procedure can be
used to approximate the oracle procedure (3.1). The essential
idea in the derivation is to first evaluate the distributions of
the CLfdr statistic empirically, then estimate the mFDR for a
given cutoff, and finally choose the largest cutoff c subject to
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the constraint m̂FDR(c) ≤ α. Let Gk and Gk0 be the marginal
cdf and null cdf of CLfdrk(Xki), then the mFDR of testing rule
δ(CLfdr, c1) is

mFDR(c) =
∑

k πk(1 − pk)Gk0(c)∑
k πkGk(c)

. (4.6)

Note that
∑

k πkGk(c) = ∑
k πk

∫
I[CLfdrk(x) < c]fk(x)dx;

hence it can be estimated by

K∑
k=1

πk
1

mk

mk∑
i=1

I[CLfdrk(xki) < c]

= (1/m)

K∑
k=1

mk∑
i=1

I[CLfdrk(xki) < c].

Next note that∑
k

πk(1 − pk)Gk0(c)

=
K∑

k=1

πk

∫
I[CLfdrk(x) < c](1 − pk)fk0(x)dx

=
K∑

k=1

πk

∫
I[CLfdrk(x) < c]CLfdrk(x)fk(x)dx,

which can be estimated by (1/m)
∑K

k=1
∑mk

i=1 I[CLfdrk(xki) <

c]CLfdrk(xki). Therefore the mFDR(c) can be estimated by

m̂FDR(c) =
∑K

k=1
∑mk

i=1 I[CLfdrk(xki) < c]CLfdrk(xki)∑K
k=1

∑mk
i=1 I[CLfdrk(xki) < c] .

(4.7)

Suppose a total of R hypotheses are rejected, then (4.7) re-
duces to m̂FDR = (1/R)

∑R
j=1 CLfdr(j), where CLfdr(1), . . . ,

CLfdr(m) are obtained by the ranking all m CLfdr values (cal-
culated for separate groups): {CLfdrk(xki) : i = 1, . . . ,mk, k =
1, . . . ,K}. The group labels are no longer needed and hence
dropped. Note m̂FDR(R) = (1/R)

∑R
j=1 CLfdr(j) is strictly in-

creasing in R (since m̂FDR(R + 1) − m̂FDR(R) = [1/(R2 +
R)]∑R

j=1(CLfdr(R+1) −CLfdr(j)) > 0), we choose the largest R
such that the mFDR is controlled at level α. Hence a natural
testing procedure is

Reject all H(i), i = 1, . . . , l,

where l = max

{
i : (1/i)

i∑
j=1

CLfdr(j) ≤ α

}
.

Thus we have derived the CLfdr procedure from the oracle pro-
cedure (3.1).

5. NUMERICAL RESULTS

Now we turn to the numerical performance of the PLfdr,
SLfdr, and CLfdr procedures. Section 5.1 compares the three
procedures under a two-group model in an oracle setting. More
complicated settings are considered in Section 5.2 where (i) the
number of groups is greater than two, and (ii) the null and non-
null distributions are unknown and need to be estimated. A real
data analysis is discussed in Section 6.

5.1 Comparison of Oracle Procedures in
a Two-Group Model

Consider the following two-group normal mixture model:

Xki ∼ (1 − pk)N(μk0, σ
2
k0) + pkN(μk, σ

2
k ), k = 1,2. (5.1)

The numerical performances of the PLfdr, SLfdr, and CLfdr
procedures are investigated in the next two simulation studies.
The nominal global FDR level is 0.10 for all simulations.

Simulation study 1 (Identical null distributions). The null
distributions of both groups are fixed as N(0,1). Three sim-
ulation settings are considered: (i) The group sizes are m1 =
3000 and m2 = 1500; the group mixture pdf’s are f1 = (1 −
p1)N(0,1) + p1N(−2,1) and f2 = 0.9N(0,1) + 0.1N(4,1). We
vary p1, the proportion of nonnulls in group 1, and plot the FDR
and FNR levels as functions of p1. (ii) The groups sizes are also
m1 = 3000 and m2 = 1500; the group mixture pdf’s are f1 =
0.8N(0,1) + 0.2N(μ1,1) and f2 = 0.9N(0,1) + 0.1N(2,0.52).
The FDR and FNR levels are plotted as functions of μ1.
(iii) The marginal pdf’s are f1 = 0.8N(0,1) + 0.2N(−2,0.52)

and f2 = 0.9N(0,1) + 0.1N(4,1). The sample size of group 2
is fixed at m2 = 1500, the FDR and FNR levels are plotted as
functions of m1. The simulation results with 500 replications
are given in Figure 4. The top row compares the actual FDR
levels of the three procedures; the results for settings (i), (ii),
and (iii) are shown in panels (a), (b), and (c), respectively. The
group-wise FDR levels of the CLfdr procedure are also pro-
vided (the dashed line for group 1 and dotted line for group
2). The bottom row compares the FNR levels of the three pro-
cedures; the results for settings (i), (ii), and (iii) are shown in
panels (d), (e), and (f), respectively.

We can see that all three procedures control the global FDR
level at the nominal level 0.10, indicating that all three proce-
dures are valid. It is important to note that the CLfdr procedure
chooses group-wise FDR levels automatically [dashed and dot-
ted lines in panels (a)–(c)], and the levels are in general dif-
ferent from the nominal level 0.10. The relative efficiency of
PLfdr versus SLfdr is inconclusive (depends on simulation set-
tings). For example, the SLfdr procedure yields lower FNR lev-
els in panel (d), but higher FNR levels in panel (f). However, all
simulations show that both the PLfdr and SLfdr procedures are
uniformly dominated by the CLfdr procedure.

Next we consider the situation where the null distributions of
the observations are different. It was argued by Efron (2008a)
that in this case a pooled FDR analysis becomes problematic
since highly significant nonnull cases from one group may be
hidden among the nulls from the other group. See Remark 1 in
Section 2.3.

Simulation study 2 (Disparate null distributions). We con-
sider three situations where the null distributions of the two
groups may differ: (i) The null means are different. The group
sizes are m1 = 3000 and m2 = 1500; the group mixture pdf’s
are f1 = 0.8N(μ10,1) + 0.2N(−2,1) and f2 = 0.9N(0,1) +
0.1N(2,0.52). (ii) The null means are the same, but one null is
more dispersed. The group sizes are m1 = 3000 and m2 = 1500;
the group mixture pdf’s are f1 = 0.8N(0, σ 2

10) + 0.2N(−4,1)

and f2 = 0.9N(0,1) + 0.1N(2,1). (iii) Both the null means
and null variances differ. The group sizes are m1 and 2000;
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Figure 4. Results for Simulation study 1: the top row compares the FDR levels and the bottom row compares the FNR levels (!, PLfdr;
�, SLfdr; +, CLfdr). The optimal group-wise FDR levels suggested by the CLfdr procedure are provided together with the global FDR levels
(dashed line, group 1; dotted line, group 2).

the group pdf’s are f1 = 0.8N(1.5,1) + 0.2N(−2,1) and f2 =
0.9N(0,0.82) + 0.1N(2,0.52). The simulation results with 500
replications are shown in Figure 5. The top row compares the
actual FDR levels of the three procedures and the bottom row
compares the FNR levels of the three procedures. Again, the
group-wise FDR levels of the CLfdr procedure are provided to-
gether with the global FDR levels. Results for settings (i), (ii),
and (iii) are displayed in columns 1, 2, and 3, respectively.

From Figure 5 it can be similarly seen that (i) all three proce-
dures are valid in terms of the FDR control, (ii) the group-wise
FDR levels of the CLfdr procedure are different from the nomi-
nal level and from each other, and (iii) both the PLfdr and SLfdr
procedures are uniformly dominated by the CLfdr procedure.
It is interesting to note that in panel (d), the PLfdr procedure
is at first more efficient than the SLfdr for small σ10, but be-
comes less and less efficient as σ10 increases (since more and
more nonnull cases from group 2 are hidden in the nulls from
group 1). It is imporant to note that in this case the PLfdr proce-
dure and the SLfdr procedure are testing against different null
distributions.

5.2 Extended Comparisons

In practice, the number of groups is often greater than two,
and the distributional information for individual groups may
be unknown. This section extends our previous comparisons to
cover these new situations.

Simulation study 3. (i) More groups. The number of groups
is chosen to be K = 5. We consider three simulation settings,
whose distributional information is summarized in the top half
of Table 2. We apply the PLfdr, SLfdr, and CLfdr procedures to
the simulated data and obtain the FDR and FNR levels. (ii) Un-
known distributions. The number of groups is chosen to be
K = 5. The nonnull proportions and mixture densities are un-
known. We first take the approach in Jin and Cai (2007) to es-
timate the unknown quantities and then apply the data-driven
procedures. We consider three simulation settings, whose dis-
tributional information is summarized in the bottom half of Ta-
ble 2. The simulation results are displayed in Figure 6.

Similar to the two-group case, all three procedures control
the FDR at the nominal level 0.1 when we have more groups.
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Figure 5. Results for Simulation study 2: the top row compares the FDR levels and the bottom row compares the FNR levels (!, PLfdr;
�, SLfdr; +, CLfdr). The optimal group-wise FDR levels suggested by the CLfdr procedure are provided together with the global FDR levels
(dashed line, group 1; dotted line, group 2).

The FNR levels of the three procedures for the three settings
considered in the first row of Table 2 are displayed in panels (a),
(b), and (c) of Figure 6, respectively. We can see that both the
PLfdr and SLfdr procedures are dominated by the CLfdr proce-
dure. When the distributions are unknown and data-driven pro-

cedures are used, the FDR levels of the three procedures are
approximately 0.10. The FNR levels of the three procedures
for the three settings considered in the second row of Table 2
are displayed in panels (d), (e), and (f), respectively. Again we
can see that at the same FDR level 0.10, the FNR of the CLfdr

Table 2. Settings for Simulation study 3: (a)–(e) the sample sizes of all individual groups are 2000; (f) the sample sizes are
m1 = m2 = m3 = 2000, m4 = m5 = mk . The number of replications is 500

Group Panel (a) Panel (b) Panel (c)

1 0.7N(0, σ 2) + 0.3N(−4,1) 0.9N(0,0.52) + 0.1N(−4,1) 0.7N(0,1) + 0.3N(−4,1)

2 0.8N(0, σ 2) + 0.2N(−2,1) 0.85N(0,0.52) + 0.15N(−2,1) 0.8N(0,1) + 0.2N(−2,1)

3 0.8N(0, σ 2) + 0.2N(−1,1) 0.8N(0,0.52) + 0.2N(−1,1) 0.8N(0,1) + 0.2N(1,1)

4 0.9N(0,0.52) + 0.1N(1,1) 0.75N(0, σ 2) + 0.25N(1,1) 0.9N(μ,0.52) + 0.1N(1,1)

5 0.7N(0,0.52) + 0.3N(2,1) 0.7N(0, σ 2) + 0.3N(2,1) 0.7N(μ,0.52) + 0.3N(2,1)

Panel (d) Panel (e) Panel (f)

1 0.7N(0,1) + 0.3N(−4,1) 0.7N(0,1) + 0.3N(−4, σ 2) 0.7N(0,1) + 0.3N(−4,1)

2 0.8N(0,1) + 0.2N(−2,1) 0.8N(0,1) + 0.2N(−2, σ2) 0.8N(0,1) + 0.2N(−2,1)

3 0.8N(0,1) + 0.2N(−1,1) 0.8N(0,1) + 0.1N(−1, σ2) 0.8N(0,1) + 0.2N(1,1)

4 0.9N(0,1) + 0.1N(μ,1) 0.9N(0,1) + 0.2N(1,0.52) 0.9N(0,1) + 0.1N(1,0.52)

5 0.7N(0,1) + 0.3N(μ + 1,1) 0.7N(0,1) + 0.3N(2,0.52) 0.7N(0,1) + 0.3N(2,0.52)
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Figure 6. Results for Simulation study 3. The FNR levels of PLfdr, SLfdr, and CLfdr procedures are plotted as functions of model parameters
(!, PLfdr; �, SLfdr; +, CLfdr). The first row compares oracle procedures and the second row compares data-driven procedures. Detailed
simulation settings are summarized in Table 2.

procedure is uniformly smaller than those of the other two pro-
cedures.

6. APPLICATIONS TO THE ADEQUATE YEARLY
PROGRESS STUDY OF CALIFORNIA HIGH SCHOOLS

We now return to the adequate yearly progress (AYP) study
mentioned in the Introduction. In this section, we analyze the
data collected from m = 7867 of California high schools (Ro-
gosa 2003) by using the three multiple testing procedures dis-
cussed in detail in earlier sections, namely the PLfdr, SLfdr, and
CLfdr procedures.

The association between socioeconomic status (SES) and
academic performance of students is an important topic in soci-
ological research (Sparkes 1999; Considine and Zappalà 2002).
One goal of the AYP study is to compare the success rates in
Math exams of socioeconomically advantaged (SEA) versus so-
cioeconomically disadvantaged (SED) students. Since the av-
erage success rates of the SEA students are in general (7370
out of 7867 schools) higher that the SED students, it is of in-
terest to identify a subset of schools in which the advantaged-
disadvantaged performance differences are unusually small or
large. Given the limited financial and educational resources, the
correct identification of these “unusual” schools is important
for making policies to reduce social exclusion and promote the
overall performance of all students.

Denote by Xi and Yi the success rates, and ni and n′
i the num-

bers of scores reported for SEA and SED students in school i,
i = 1, . . . ,m. Define the centering constant 	 = median(Xi) −

median(Yi). A z-value for comparing the SEA students versus
the SED students can be computed for each school:

zi = Xi − Yi − 	√
Xi(1 − Xi)/ni + Yi(1 − Yi)/n′

i

(6.1)

for i = 1, . . . ,m. We claim school i is “interesting” if the ob-
served |zi| is large.

The AYP data has been analyzed by Efron (2007, 2008b),
where he first estimated the global null density f̂0, then searched
for interesting cases in the tail areas of f̂0. This pooled-analysis
strategy ignores the fact that the hypotheses formed for differ-
ent schools are not exchangeable. In particular, the number of
scores reported by each school varies from less than a hundred
to more than ten thousands. A pooled analysis tends to over-
select too many large schools, which often express themselves
as “very significant” in the tail areas due to small denomina-
tors in (6.1). In contrast, small schools are likely to be hid-
den in the central area of f̂0 and appear “uninteresting.” This
is not desirable because, in practice, investigators are interested
in identifying significant differences from all schools, not only
from large schools. As we shall see, an important feature of
the AYP data is that the empirical null distributions of the z-
values are substantially different for small and large schools,
therefore a pooled analysis is inappropriate and one should per-
form a separate analysis to take into account the effect of school
size. Based on a preliminary cluster analysis, we divide all
schools into three groups according to the number of scores re-
ported (ni + n′

i): small schools (ni + n′
i ≤ 120), medium schools
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Table 3. Group characteristics in the AYP data: 7867 schools in total. The global null density is f̂0 = N(−0.59,1.592)

Group Group definition Group size Proportion Empirical null

Small ni + n′
i ≤ 120 516 6.6% f̂10 = N(−0.51,1.272)

Medium 120 < ni + n′
i ≤ 900 6514 80.6% f̂20 = N(−0.61,1.542)

Large ni + n′
i > 900 837 12.8% f̂30 = N(−0.95,3.162)

(120 < ni + n′
i ≤ 900), and large schools (ni + n′

i > 900). The
group characteristics are summarized in Table 3, where the
empirical null distributions are estimated using Jin and Cai
(2007)’s method. Note that the variance of the empirical null
distribution for the scores from the large schools is more than
four times than those for the scores from the other two groups.
See also Figure 1 in the Introduction.

We then apply the PLfdr, SLfdr, and CLfdr procedures to the
AYP data at different FDR levels. The results are summarized
in Table 4.

The PLfdr procedure claims the most discoveries, followed
by the CLfdr and then SLfdr procedure. It is important to
emphasize that the PLfdr procedure is inappropriate here be-
cause the pooled null distribution is not the correct null to test
against. See Remark 1 in Section 2.3. The PLfdr procedure is
too liberal for the large group yet too conservative for the small
group: around 50%–70% significant schools come from the
large group, although its population proportion is only 13%; in
contrast, only around 1% interesting cases come from the small
group, although its population proportion is more than 6%. The
SLfdr procedure considers the groups separately; large schools
are no longer over-selected and more small schools are iden-
tified. The CLfdr procedure further improves the SLfdr proce-
dure by efficiently exploiting the important grouping informa-
tion and weighting the numbers of discoveries among groups.
The optimal group-wise FDR levels estimated by the CLfdr
procedure at different nominal FDR levels are plotted in Fig-
ure 7, suggesting that we should choose higher FDR levels for
the medium group and lower FDR level for the large group.
Note that the SLfdr procedure uses the same FDR level for all
groups, the CLfdr procedure usually identifies more cases from
the medium group, but fewer cases from the large group.

7. DISCUSSION

We have developed a compound decision theoretic frame-
work for testing grouped hypotheses arising from the random

mixture model (2.4). Both numerical and theoretical results
demonstrate that conventional testing procedures can be sub-
stantially improved. In this section, we discuss how the rank-
ings of hypotheses may be affected when hypotheses are not
exchangeable; this provides additional insights on the efficiency
gain of the optimal CLfdr procedure.

The concept of symmetric rules in compound decision the-
ory is closely connected to the exchangeability assumption in
multiple testing. Let δ(x) be a general decision rule. Then δ is
symmetric if δ[τ(x)] = τ [δ(x)] for all permutation operator τ

(Copas 1974). Most multiple testing procedures in the literature
are symmetric rules, which implicitly assume that the hypothe-
ses are exchangeable. However, when the hypotheses are not
exchangeable (e.g., groups are heterogeneous), even the opti-
mal symmetric rule may suffer from severe efficiency loss. To
further illustrate the point, let us consider the following “opti-
mal” procedures in the multiple testing literature.

Lfdr. The Lfdr, which corresponds to the PLfdr defined in
(2.5), was shown to provide optimal rankings when all hypothe-
ses are independent and exchangeable (Sun and Cai 2007). In
practical situations such as the AYP study, the exchangeability
assumption obviously fails to hold. However, testing procedures
that threshold the PLfdr statistic are symmetric rules, imply-
ing that the hypotheses are ranked only based on observed z-
values. This is inappropriate in the AYP study, where the same
observed z-values from small and large schools may indicate
different significance levels (since the null distributions are dif-
ferent). The PLfdr statistic is no longer optimal because the
grouping information can be exploited to construct more effi-
cient rankings of all hypotheses.

Storey’s ODP. Suppose the null hypotheses are true for tests
i = 1, . . . ,m0 and the alternative is true for tests i = m0 +
1, . . . ,m. The null densities and nonnull densities are denoted
respectively by f1, . . . , fm0 and gm0+1, . . . ,gm. Storey’s optimal

Table 4. Numbers of interesting cases identified by PLfdr, SLfdr, and CLfdr procedures

From small group From medium group From large group Total

FDR PLfdr SLfdr CLfdr PLfdr SLfdr CLfdr PLfdr SLfdr CLfdr PLfdr SLfdr CLfdr

0.01 2 6 6 59 47 51 171 42 39 232 95 96
0.025 6 7 6 89 67 75 203 54 50 298 128 131
0.04 6 9 9 123 89 98 215 64 58 344 162 165
0.055 6 10 10 152 109 122 222 71 64 380 190 196
0.07 7 12 12 176 130 146 233 76 66 416 218 224
0.085 7 13 12 203 150 173 241 80 69 451 243 254
0.10 7 15 15 230 173 195 249 85 72 486 273 282
0.115 8 16 18 253 194 217 259 90 75 520 300 310



Cai and Sun: Multiple Testing of Grouped Hypotheses 1479

Figure 7. AYP study. Optimal group-wise FDR levels estimated by
the CLfdr procedure.

discovery procedure (ODP, Storey 2007) rejects hypothesis i if
SODP(xi) ≥ λ, where

SODP(x) = gm0+1(x) + · · · + gm(x)

f1(x) + · · · + fm0(x)
. (7.1)

It was shown by Storey that the ODP maximizes the expected
number of true positives (ETP) for each fixed expected number
of false positives (EFP) among all single-thresholding proce-
dures (STPs). It can be shown that all STPs (hence the ODP)
are symmetric rules; therefore the optimality of the ODP is only
claimed for a subclass of decision rules (symmetric rules), and
can be outperformed by other asymmetric rules when hypothe-
ses come from heterogeneous groups. There are other issues
for the ODP procedure, and we briefly point out the following:
(i) One needs to know which hypotheses are true and the den-
sities of the individual test statistics in (7.1); this assumption
is extremely impractical. (ii) The ODP depends on unknown
quantities that cannot be estimated from the data. The actual
ODP procedure is based on an ad hoc estimate of the threshold-
ing function, where the optimality is lost at the estimation step.
(iii) The optimal threshold is difficult to determine for a given
FDR/ETP level.

Spjøtvoll’s optimal procedure. Spjøtvoll (1972, theorem 1)
proposed an “optimal” procedure that maximizes the “ETP”
subject to a constraint on the “EFP.” In our setting, the testing
procedure is reduced to the following form

δ = (δ1, . . . , δm) = [
I{fk0(x) > cfk1(x)} : i = 1, . . . ,m

]
. (7.2)

Spjøtvoll’s procedure (7.2) is not symmetric, and suggests uni-
versal thresholding of the likelihood ratio (LR) statistic. In
contrast, the CLfdr procedure suggests thresholding a constant
(1 − pk) times the LR. The two procedures are different when
pk varies across groups. As argued by Storey (2007), the set-
ting considered in Spjøtvoll (1972) is problematic because of
the wrong definitions of “ETP” and “EFP,” which do not repre-
sent the underlying reality. It can be shown that this wrong for-
mulation naturally leads to a procedure that ignores pk, which
provides important information for ranking the hypotheses.

Asymmetric testing rules have been recently proposed un-
der different settings by Genovese, Roeder, and Wasserman
(2006), Efron (2008a), and Sun and Cai (2008), among oth-
ers. These works indicate that it is beneficial to treat hypothe-
ses differently when some prior or structural information of the
sample are available. The efficiency of a testing procedure can
thus be improved by weighting the conventional test statistics
(such as the weighted p-values, Genovese, Roeder, and Wasser-
man 2006) or introducing new test statistics to incorporate the
prior/structural information (the CLfdr statistic; the local in-
dex of significance, Sun and Cai 2008). This article studies the
multiple testing problem from a compound decision theoretical
perspective, which provides additional insights on the benefit
of extending one’s attention to a wider class of decision rules
when hypotheses are grouped.

APPENDIX A: PROOFS OF MAIN RESULTS

We shall prove here the main results, Theorems 1–5. The proofs of
other results are given in Appendix B.

Proof of Theorem 1

Denote the group labels by g = (g1, . . . ,gm), that is, gi = k if case i
comes from group k. Suppose the group labels are unknown, we have

P(θi|xi) =
∑

k

P(θi|gi = k, xi)P(gi = k|xi)

=
∑

k

(1 − pk)fk0(xi)

fk(xi)

πkfk(xi)∑
k πkfk(xi)

=
∑

πk(1 − pk)fk0(xi)∑
k πkfk(xi)

≡ PLfdr(xi).

Let R and N10 be the number of rejections and number of false posi-
tives of the PLfdr procedure. Note E(N10|x) = ∑m

i=1 I(δi = 1)P(θi =
0|x) = ∑R

i=1 PLfdr(i), we have

FDRPLfdr = E(N10/R)P(R > 0) = E[(1/R)E(N10|x)]P(R > 0)

= E

[
1

R

R∑
i=1

PLfdr(i)

]
P(R > 0).

The claim follows by noting that the PLfdr procedure guarantees that
(1/R)

∑R
i=1 PLfdr(i) ≤ α for all realizations of x.

Proof of Theorem 2

Let Rk and N10k be the number of rejections and the number of
false positives in group k. Note that E(N10k|g,x) = ∑mk

i=1 I(δki =
1)P(θki = 0|xki) = ∑Rk

i=1 CLfdrk
(i), and that the SLfdr procedure guar-

antees (1/Rk)
∑Rk

i=1 CLfdrk
(i) ≤ α for all realizations of x, we have

FDRSLfdr = E

(∑
k N10k∑

k Rk

)
P

(∑
k

Rk > 0

)

= E

{
1∑
k Rk

∑
k

E(N10k|g,x)

}
P

(∑
k

Rk > 0

)

≤ E

{
1∑
k Rk

(∑
k

αRk

)}
P

(∑
k

Rk > 0

)
≤ α.
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Proof of Theorem 3

Let R and N10 be the number of rejections and number of
false positives. Then E(N10|g,x) = ∑m

i=1 I(δi = 1)P(θi = 0|xi,gi) =∑R
i=1 CLfdr(i). The SLfdr procedure guarantees that (1/R) ×∑R
i=1 CLfdr(i) ≤ α for all realizations of x, it follows that

FDRCLfdr = E(N10/R)P(R > 0)

= E{E(N10/R|g,x)}P(R > 0)

≤ E

{
1

R

R∑
i=1

CLfdr(i)

}
P(R > 0) ≤ α.

Proof of Theorem 4

(i) In the CLfdr procedure, the group labels were only used for
calculating the CLfdr statistics and then dropped afterwards. Hence
when the interest is to evaluate global FDR and FNR levels of the
CLfdr procedure, the group labels provide no information, that is, let
Ti = CLfdr(xi), then {Ti : i = 1, . . . ,m} can be viewed as a random
sample from GOR, the cdf of the pooled sample. The null, nonnull
cdf’s of Ti are denoted by GOR

0 and GOR
1 , respectively. Let tOR and

t̂OR be the thresholds of the oracle procedure and CLfdr procedure,
respectively. Note

mFNROR = pPH1(Ti > tOR)

P(Ti > tOR)
and

mFNRCLfdr = pPH1(Ti > t̂OR)

P(Ti > t̂OR)
.

It is sufficient to show that t̂OR
p→ tOR.

Let QOR(t) = (1 − p)G0(t)/G(t) and Q̂OR(t) = {∑i I(Ti < t)Ti}/
{∑i I(Ti < t)}. Applying law of large numbers, we have (1/m) ×∑

i I(Ti < t)
p→ E(Ti < t) = GOR(t) and (1/m)

∑m
i=1 I(Ti < t)Ti

p→
E{I(Ti < t)Ti} = E[E{I(Ti < t)Ti|gi}] = πk(1 − pk)G

OR
k0 (t) = (1 −

p)GOR
0 (t). It follows that Q̂OR(t)

p→ QOR(t). Subsequent arguments
are similar to the proof of lemma A.5 in Sun and Cai (2007). Note
that Q̂OR(t) is a step function with jump at T(i). For T(k) < t < T(k+1),

we construct an envelope for Q̂OR(t) using two monotone continuous
functions:

Q̂−
OR(t) = T(k+1) − t

T(k+1) − T(k)
Q̂OR

(
T(k−1)

)
+ t − T(k)

T(k+1) − T(k)
Q̂OR

(
T(k)

);
Q̂+

OR(t) = T(k+1) − t

T(k+1) − T(k)
Q̂OR

(
T(k)

)
+ t − T(k)

T(k+1) − T(k)
Q̂OR

(
T(k+1)

)
.

It can be shown that (i) Q̂+
OR(t) ≥ Q̂OR(t) ≥ Q̂−

OR(t), (ii) Q̂+
OR(t) and

Q̂−
OR(t) are strictly increasing in t, and (iii) |Q̂+

OR(t) − Q̂−
OR(t)| ≤

1/R(t)
p→ 0. Note that Q̂OR(t)

p→ QOR(t), we have Q̂−
OR(t)

p→ QOR(t)

and Q̂+
OR(t)

p→ QOR(t).

Now define t̂−OR = sup{t ∈ (0,1) : Q̂−
OR(t) ≤ α} and t̂+OR = sup{t ∈

(0,1) : Q̂+
OR(t) ≤ α}; then t̂+OR ≤ t̂OR ≤ t̂−OR. We claim that t̂−OR

p→ tOR.

If not, there exists ε0 and η0 such that for any M > 0, P(|t̂−OR −
tOR| > ε0) ≥ 4η0 holds for some Z+ � m ≥ M. Suppose P(K1

m) =
P(t̂−ORtOR > ε0) ≥ 2η0. The MRC implies that QOR(t) is strictly in-
creasing in t and QOR(tOR) = α. Let 2δ0 = QOR(tOR + ε0) − α.

Q̂OR(t)
p→ QOR(t) implies that there exists M such that P(K2

m) =

P(|Q̂−
OR(tOR + ε0) − QOR(tOR + ε0)| < δ0) ≥ 1 − η0 holds for all

m ≥ M. Consider Km = K1
m ∩ K2

m, then there exists m ∈ Z+ such that
P(Km) ≥ η0. However, note Q̂−

OR(t) is strictly increasing in t, on Km

we must have α = Q̂−
OR(t̂−OR) > Q̂−

OR(tOR + ε0) > QOR(tOR + ε0) −
η0 = α + δ0. Hence Km cannot have positive measure. This is a con-
tradiction. Therefore we must have t̂−OR

p→ tOR. Similarly we can show

that t̂+OR
p→ tOR. Note t̂+OR ≤ t̂OR ≤ t̂−OR, it follows that t̂OR

p→ tOR.

(ii) Since t̂OR
p→ tOR, the group-wise FDR level yielded by the

CLfdr procedure converges in probability to the FDR level of the
oracle procedure. Next, let 0 < λ < 1 be a threshold and Rk be
the number of rejections in group k. Then (1/Rk)

∑Rk
i=1 CLfdrk

(i) =
[∑mk

i=1 I(CLfdri > λ)CLfdri]/[∑mk
i=1 I(CLfdri > λ)] p→ E[I(CLfdri <

λ)CLfdri]/E[I(CLfdri < λ)]. In Section 4.3 we have shown that
(1−pk)Gk0(λ) = E[I(CLfdri < λ)CLfdri] and Gk(λ) = E[I(CLfdri <

λ)]. Therefore (1/Rk)
∑Rk

i=1 CLfdrk
(i)

p→ (1 − pk)Gk0(λ)/Gk(λ) =
mFDRk

OR = FDRk
OR +o(1).

Proof of Theorem 5

(i) Define the plug-in statistic T̂i = ĈLfdr(xi). Let Q̂PI(t) =
{∑i I(T̂i < t)Ti}/{

∑
i I(T̂i < t)}. The threshold of the data-driven pro-

cedure can be defined as t̂PI = sup{t ∈ (0,1) : Q̂PI(t) ≤ α}. Lemma A.1

in Sun and Cai (2007) implies that T̂i
p→ Ti. We only need to show

that t̂PI
p→ tOR. Similar to lemma A.4 of Sun and Cai (2007), it can

be shown that Q̂PI(t)
p→ QOR(t). Then by using the same construc-

tions and arguments as in Theorem 6, we can obtain that t̂PI
p→ tOR.

(ii) Note that T̂i
p→ Ti and t̂PI

p→ tOR, the proof follows similar lines
to the part (ii) of Theorem 4.

APPENDIX B: PROOF OF OTHER RESULTS

Proof of Proposition 1

(i) Define G0 and G1 as before. Let G = (1 − p)G0 + pG1. It
follows that mFDR(t) = (1 − p)G0(t)/G(t) and mFNR(t) = (1 −
p)G̃0(t)/G̃(t). Note that the MRC implies that

G0(t)

G1(t)
=

∫ t
0 ḡ0(s)ds∫ t
0 ḡ1(s)ds

=
∫ t

0 ḡ0(s)ds∫ t
0{ḡ1(s)/ḡ0(s)}g0(s)ds

<

∫ t
0 ḡ0(s)ds∫ t

0{ḡ1(t)/ḡ0(t)}g0(s)ds
= ḡ0(t)

ḡ1(t)
.

Hence ḡ0G1 > ḡ1G0. Likewise, ḡ0G̃1 < ḡ1G̃0. The result follows by
taking derivatives:

mFDR′(t) = p(1 − p)(ḡ0G1 − ḡ1G0)

G2(t)
> 0 and

mFNR′(t) = p(1 − p)(ḡ0G̃1 − ḡ1G̃0)

G̃2(t)
< 0.

(ii) For classification rule δ = {I(Tki < c)}, we have E[(1 −
θki)δki] = E[(1−θki)E{δki|θki}] = (1−pk)Gk0(c). Similarly, E[θki(1−
δki)] = pkG̃k1(c). Then the classification risk is

Rλ = 1

m
E

{ K∑
k=1

mk∑
i=1

λ(1 − θki)δki + θki(1 − δki)

}

= λ
∑

k

πk(1 − pk)Gk0(c) +
∑

k

πkpkG̃k1(c)

= λ(1 − p)G0(c) + pG1(c),

where G0 = {1/(1−p)}∑
k πk(1−pk)Gk0 and G1 = (1/p)

∑
k πkpk ×

Gk1. The cutoff c(λ) for T that minimizes Rλ satisfies λ(1−p)ḡ0(c) =
pḡ1(c). Suppose λ1 < λ2, and ci solves the previous equation when λi
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is chosen, i = 1,2. It is sufficient to show that c1 > c2. This must
be true since otherwise we have c1 ≤ c2 and hence λ1 = {p/(1 −
p)}{ḡ1(c1)/ḡ0(c1)} ≥ {p/(1 − p)}{ḡ1(c2)/ḡ0(c2)} = λ2, which con-
tradicts λ1 < λ2.

Proof of Theorem 6

Proposition 2 implies that for any T ∈ T and a given α, there exists
a unique t(α) such that the mFDR level of δ(T, t(α)1) is α. Let r(α) be
the expected number of rejections of procedure δ(T, t1). Now consider
the optimal classification statistic �. Proposition 1 implies that the op-
timal cutoff γ for �, and hence the expected number of rejections r, is
decreasing in λ. Therefore for a given r(α), there exists a unique λ(α)

that defines a weighted classification problem whose classification risk
is minimized by δ{�, γ (α)1}.

Suppose that δ{�, γ (α)1} is used in the multiple testing problem.
Let v� and u� (vT and uT) be the expected number of false and
true positives of δ{�, γ (α)1} (δ(T, t(α)1)). Then for the weighted
classification problem with weight λ(α), the classification risks of
δ{�, γ (α)1} and δ(T, t(α)1) are R� = p + (1/m){λ(α)v� − u�} and
RT = p + (1/m){λ(α)vT − uT}, respectively. Note that by construc-
tion, we have r(α) = v� + u� = vT + uT; hence v� ≤ vT and u� ≥
uT. Therefore mFDR� = v�/r ≤ vT/r = α and mFNR� = (m1 −
u�)/(m − r) ≤ (m1 − uT)/(m − r) = mFNRT. Since T can be any
test statistic satisfying the MRC, we have shown the optimality of � in
the multiple testing problem.

Proof of Theorem 7

The posterior distribution of θ given x and g is

P(θ |x,g) =
K∏

k=1

mk∏
i=1

Pθki|Xki (θki|xki),

where Pθki|Xki (θki|xki) = {(1 − θki)(1 − pk)fk0(xki) + θkipkfk1(xki)}/
fk(xki). Hence the posterior risk is

Eθ |X,gL(θ , δ) = 1

m

K∑
k=1

mk∑
i=1

Eθki|Xki {λ(1 − θki)δki + θki(1 − δki)}

= 1

m

K∑
k=1

mk∑
i=1

pkfk1(xki)

fk(xki)

+ 1

m

K∑
k=1

mk∑
i=1

(1 − pk)fk0(xki) − pkfk1(xki)

fk(xki)
δki.

It is easy to see that the classification risk is minimized by

δ{�, c(λ)1} = (δki) =
[

I

{
(1 − pk)fk0(xki)

pkfk1(xki)
<

1

λ

}
:

k = 1, . . . ,K; i = 1, . . . ,mk

]
.

[Received July 2008. Revised January 2009.]
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