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Abstract
Nonparametric goodness-of-fit testing in the white-noise-with-drift model under federated
differential privacy (FDP) constraints is studied. In this framework, data is distributed
across multiple locations, with each submitting a differentially private summary to a central
server–encompassing both local and central differential privacy.

We quantify the cost of privacy in the federated setting by establishing matching lower
and upper bounds, up to a logarithmic factor, on the minimax separation rate. This optimal
rate benchmarks the difficulty of the testing problem, factoring in model characteristics such
as the number of observations, noise level, and regularity of the signal class, along with the
strictness of the pϵ, δq-DP requirement and the degree to which the data is distributed.

Our results demonstrate interesting and novel phase transition phenomena: where the
cost of DP is minimal for testing in more centralized settings, it can significantly affect
distributed scenarios. Furthermore, it is revealed that distributed one-shot protocols with
access to shared randomness outperform those without access to shared randomness. We
also construct a data-driven testing procedure that can adapt to an unknown regularity
parameter over a large collection of function classes with minimal additional cost, while
adhering to the same set of DP constraints.
Keywords: Differential Privacy, Nonparametric Goodness-of-Fit Testing, Federated
Learning, Distributed Inference, Minimax Theory

1 Introduction

Differential privacy (DP), introduced by Dwork et al. (2006), provides a rigorous mathe-
matical guarantee that analyses can be made publicly available without revealing sensitive
information about individuals. Many differentially private statistical methods have since
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been developed. See, for example, Arachchige et al. (2019); Dwork and Smith (2010); Dwork
et al. (2017). While several other privacy frameworks exist, DP holds a prominent position
both theoretically and practically, finding application within industry giants like Google,
Microsoft, Apple, as well as governmental entities such as the US Census Bureau, see e.g.
Panavas et al. (2024) and references therein.

In parallel, the growing need to analyze data distributed across multiple entities has pro-
pelled the emergence of federated learning, a collaborative approach to distributed machine
learning. Instead of pooling raw data, federated learning enables organizations or devices to
train a shared model while keeping local data private. Applications span healthcare (where
patient records reside in multiple hospitals), finance (with customer data spread across
numerous branches), and modern technologies like smartphones and autonomous vehicles
Beaufays et al. (2019).

Federated learning naturally raises the question of how to incorporate differential privacy
in a distributed environment—leading to the notion of federated differential privacy (FDP).
Under FDP, each data holder produces a differentially private summary of its local dataset
for aggregation. A special case is local DP, in which privacy protection is applied at the
level of individual data entries. This is a stringent form of DP because each item of data is
independently given privacy protection. In the other extreme, central DP, only the inference
output needs to satisfy the DP constraint, meaning that if the output is a test, only the
final decision needs to satisfy a DP constraint. The FDP framework offers flexibility in
defining what constitutes private information (e.g., individual records versus institutional
datasets), thereby unifying the central and local DP paradigms.

In this paper, we investigate nonparametric goodness-of-fit testing under FDP con-
straints. Goodness-of-fit testing is a fundamental statistical problem, aiming to determine
whether observed data are consistent with a specified (null) distribution or should be re-
jected in favor of a composite alternative. Nonparametric goodness-of-fit testing has been
extensively studied without privacy considerations, see Ingster and Suslina (2003a) for an
overview. However, differential privacy introduces fundamental challenges: while the test
ultimately produces only a binary decision (reject or fail to reject), achieving optimal power
requires access to the complete dataset. When data are distributed across multiple servers,
FDP’s privacy requirements further restrict information sharing, making near-optimal per-
formance even more challenging.

We quantify the cost of privacy in the canonical nonparametric goodness-of-fit testing
setting, establishing the theoretical performance limits under FDP constraints and optimal
private testing procedures in an oracle scenario, assuming known regularity parameters.
Specifically, we derive the minimax separation rate, which serves as a benchmark for the
difficulty of the testing problem. Comparing these results with prior findings for federated
nonparametric estimation Cai et al. (2023a) reveals notable differences between testing and
estimation under differential privacy.

In addition to oracle rates – derived under regularity parameters that are rarely known
in practice – we ask: Without the knowledge of the regularity parameters, is it possible to
construct a test that is as good as when the parameters are known? This inquiry concerns
adaptation, a major goal in nonparametric statistics. To address it, we propose a data-
driven test that, while adhering the same FDP constraints, adapts to unknown regularity
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parameters with only minimal additional cost compared to the performance of the oracle
procedure.

1.1 Testing under federated differential privacy
We begin by formally introducing the general framework of federated inference under DP
constraints. Consider a family of probability measures tPfufPF on the measurable space
pX ,X q, parameterized by f P F . We consider a setting where N “ mn i.i.d. observations
are drawn from a distribution Pf and distributed across m servers. Each server j “ 1, . . . ,m
holding an equal amount (n many) observations.

Let us denote byXpjq “ pX
pjq

i qni“1 the n realizations from Pf on the j-th server. Based on
Xpjq, each server outputs a (randomized) transcript Y pjq to the central server that satisfies
the privacy constraint. The central server, utilizing all transcripts Y :“ pY p1q, . . . , Y pmqq,
decides between a null hypothesis and an alternative hypothesis, through means of a test
T “ T pY q. Since we are concerned with testing between a null and alternative hypothesis,
we shall consider the decision space t0, 1u, where 0 corresponds to do not reject and 1
with reject. A test is then simply to be understood as a statistic taking values in t0, 1u.
Figure 1 gives an illustration of a federated pϵ, δq-DP-constrained testing procedure.
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Figure 1: Illustration of the pϵ, δq-FDP-constrained testing.

The transcript Y pjq satisfies an pϵ, δq-DP constraint, which, loosely speaking, means that
the transcript Y pjq cannot differ too much depending on whether a specific individual is in
the data set or not. This is achieved through randomization, independent of the data.

We will consider two types of sources for randomization; independently among the
servers or through a shared source of randomness U (e.g., the same random seed). Formally,
a shared source of randomness means that the law of the transcript is given by a distribution
conditionally on Xpjq and U , A ÞÑ PpY pjq P A|Xpjq, Uq, defined on a measurable space
pY,Y q. The presence of shared randomness is a slight, but important extension of protocols
where Y pjq is allowed to be random only through locally generated randomness. To ensure
that the source of shared randomness does not erode the notion of privacy, only the local
source of randomness is used in the privacy mechanism, i.e. to guarantee privacy. We
formalize this as follows.
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Definition 1. The transcript Y pjq is pϵ, δq-differentially private (pϵ, δq-DP) if for all A P

Y pjq, u P U and data sets x, x1 P X n differing in at most one individual datum1 it holds that

P
´

Y pjq P A|Xpjq “ x,U “ u
¯

ď eϵP
´

Y pjq P A|Xpjq “ x1, U “ u
¯

` δ. (1)

If the transcripts Y pjq are pϵ, δq-DP for j “ 1, . . . ,m, we say that the testing protocol
pY, T q is pϵ, δq-FDP. If m “ 1, the setting reduces to the central DP setting, where all data
is available on a single server. For n “ 1, the setting corresponds to the local DP setting,
where each server holds a single observation. For n,m ą 1, the setting encompasses sce-
narios where multiple parties hold sensitive data and each publishes a differentially private
summary without sharing raw data —- for example, separate hospitals with samples from
the same population, where privacy concerns prevent direct data pooling.

We also note that in Definition 1, a shared source of randomness U does not compro-
mise privacy guarantees, even if it is publicly available. This is because U is not used in
the privacy mechanism itself; rather, it serves to ‘synchronize’ the transcripts. Such coor-
dination enables the transcripts to be more informative about the underlying signal while
each individual transcript reveals less about its local data.

1.2 Nonparametric goodness-of-fit testing
The white-noise-with-drift model serves as a benchmark model for nonparametric testing
and has been extensively studied in the non-private setting Ermakov (1990); Ingster (1993);
Lepskii (1992); Spokoiny (1996). Furthermore, the problem bares a close relationship with
“classical” nonparametric goodness-of-fit testing developed by Kolmogorov (1933); Smirnov
(1948) —- of which it can be viewed as the asymptotic limit and it also connects to broader
nonparametric testing problems through asymptotic equivalence (see Section 1.4 in Ingster
and Suslina (2003a) and references therein).

In the distributed version of the white-noise-with-drift model, the j “ 1, . . . ,m servers
each observe i “ 1, . . . , n i.i.d. Xpjq

i taking values in X Ă L2r0, 1s; subject to the stochastic
differential equation

dX
pjq

t;i “ fptqdt` σdW
pjq

t;i (2)

under Pf , with t ÞÑ W
p1q

t;i , . . . , t ÞÑ W
pmq

t;i i.i.d. Brownian motions, f P L2r0, 1s and with
σ ą 0 the known noise level for each observation. When m “ 1, we recover the classical
white-noise-with-drift model. We denote the total number of observations as N “ mn
throughout the paper and will consider asymptotic regimes where N Ñ 8.

We consider the canonical signal detection problem, where the goal is to test for the
presence or absence of the “signal component” f . More formally, we consider testing the
null hypothesis H0 : f ” 0 against the alternative hypothesis that

f P Hs,R
ρ :“

!

f P Bs
p,q : }f}L2 ě ρ and }f}Bs

p,q
ď R

)

. (3)

Here, the alternative hypothesis consists of s-smooth functions in a Besov space, with
} ¨ }Bs

p,q
denoting the Besov-ps, p, qq-norm and Bs

p,q Ă L2r0, 1s corresponds to the Besov

1. Local datasets x, x1 P Xn differ in at most one individual datum are said to be neighboring; which
formally means that they are at most one apart in Hamming distance (see Section 1.6 for a definition).
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space, see Section D in the Appendix for the definitions. Besov spaces, where 2 ď p ď 8,
1 ď q ď 8, are a very rich class of function spaces. They offer a framework for functions
in (2) with specific smoothness characteristics. They include many traditional smoothness
spaces such as Hölder and Sobolev spaces as special cases. We refer the reader to Triebel
(1992) for a detailed discussion on Besov spaces.

Using a wavelet transform, the above testing problem is equivalent the observations
under the Gaussian sequence model, where each of the j “ 1, . . . ,m machines observes
i “ 1, . . . , n observations Xpjq

i :“ pX
pjq

lk;iqlě1,k“1,...,2l

X
pjq

lk;i “ flk ` σZ
pjq

lk;i, (4)

where the Zpjq

lk;i’s are i.i.d. standard Gaussian. The equivalent hypotheses (3) in the sequence
model simply follows by replacing the L2r0, 1s-norm with the ℓ2pNq-norm and the Besov ball
Bs,R
p,q set to tf P ℓ2pNq : }f}Bs

p,q
ď Ru, where the Besov norm on the sequence space ℓ2pNq is

defined as

}f}Bs
p,q

:“

$

’

’

&

’

’

%

ˆ

8
ř

l“1

ˆ

2lps`1{2´1{pq
›

›

›
pflkq2

l

k“1

›

›

›

p

˙q˙1{q

for 1 ď q ă 8,

sup
lě1

2lps`1{2´1{pq
›

›

›
pflkq2

l

k“1

›

›

›

p
for q “ 8.

(5)

In other words, the results for testing under FDP derived for the sequence model of (4)
with hypothesis (3) apply to the model described by (2) also, with the same corresponding
hypothesis.

Given a t0, 1u valued test T , where T pY q “ 1 corresponds to rejecting the null hy-
pothesis, we define the testing risk sum of the type I and worst case type II error over the
alternative class;

RpHs,R
ρ , T q “ P0T pY q ` sup

fPHs,R
ρ

PfT pY q.

For the range of values 2 ď p ď 8, 1 ď q ď 8, the minimax separation rate in the
non-private case is known to be ρ — pσ2{Nq

s
2s`1{2 (see e.g. Ingster (1993)). This means

that, for ρ " pσ2{Nq
s

2s`1{2 , there exists a sequence of consistent tests T ” TN such that
RpHs,R

ρ1 , T q Ñ 0, whilst no such sequence of tests exists whenever ρ ! pσ2{Nq
s

2s`1{2 .
The minimax separation rate captures how the testing problem becomes easier, or more

difficult, for different model characteristics. For pϵ, δq-FDP testing protocols T pϵ,δq, the
minimax separation rate depends on the stringency of the privacy requirement, given by
ϵ, δ ą 0, as well as the model characteristics m,n, s and σ. That is, we aim to find ρ as a
function of m,n, s, σ, ϵ, δ, such that inf

TPT pϵ,δq
RpHs

ρ1,R, T q converges to either 0 or 1 depending
on whether ρ1 ! ρ or ρ1 " ρ.

1.3 Main results and our contribution
For a quick overview, the main contributions of the paper are as follows:

• We derive the minimax separation rates for nonparametric goodness-of-fit testing
under FDP constraints (Theorems 2 and 3), tight up to logarithmic factors.
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• We exhibit adaptive FDP testing methods that achieve the oracle rates derived in
Section 2 (Theorem 6).

• The theoretical lower bound derived (Theorem 12) involves several technical innova-
tions necessitated by the FDP setting, which we summarize in Section 5.

Our findings offer entirely new insights when applied to both the purely local or purely
central DP settings: By formulating our results in the more general FDP framework, we
are able to address both settings at once, on top of bridge the gap between the local and
central regimes.

Our analysis uncovers several intriguing findings, which we briefly highlight here. The
performance guarantees for the methods demonstrated in Section 3, along with the lower
bounds established in Section 5, indicate that the pϵ, δq-FDP testing problem for the hy-
potheses given in (3) is governed by the minimax separation rate (up to logarithmic factors)

ρ2 —

ˆ

σ2

mn

˙

2s
2s`1{2

`

ˆ

σ2

mn3{2ϵ
?
1 ^ nϵ2

˙

2s
2s`1

^

¨

˝

˜

σ2
?
mn

?
1 ^ nϵ2

¸
2s

2s`1{2

`
σ2

mn2ϵ2

˛

‚. (6)

The precise statement is deferred to Theorem 2.
The derived rate reveals multiple phase transitions in the distributed testing problem

under privacy constraints. These transitions create distinct regimes where privacy con-
straints affect the detection boundary differently. A smaller ϵ (stronger privacy2) increases
the detection threshold, but its impact varies: while in some regimes a small ϵ substantially
affects the rate, in others it has no effect on the detection boundary.

Which regime dominates depends on the degree of data distribution across servers. In
the central DP setting (m “ 1), privacy only affects the rate polynomially when ϵ À 1{

?
n;

otherwise, we recover the non-private minimax rate ρ — pσ2{nq
s

2s`1{2 . In contrast, in the
local DP setting (n “ 1), privacy constraints substantially affect the rate whenever ϵ À 1.
In the general federated setting (m " 1), we observe similar effects: m and n enter the
minimax rate with different powers whenever ϵ2 À σ

1
2s`1m

1
4s`1n

1{2´2s
4s`1 . This demonstrates

that distributing N “ mn observations across more servers makes the task more challenging
than concentrating them on fewer servers – aligning with the intuition that privacy is easier
to maintain with larger samples.

While the impact of data distribution across servers mirrors findings in nonparametric
regression estimation Cai et al. (2023a), the phase transitions we observe are unique to
testing. Notably, there are regimes where privacy constraints have a much smaller effect
on the testing rate compared to analogous estimation settings. This difference stems from
the nature of the problems: testing can leverage aggregated private test statistics, while
nonparametric estimation inherently concerns a high-dimensional inference goal, which re-
quires more extensive information sharing. We provide a detailed interpretation of these
phase transitions in Section 2.

2. For a δ that decreases polynomially with N , its impact on the detection boundary is limited to a
logarithmic factor, making its effect on the error rate minor compared to that of ϵ.
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Our analysis also reveals that the minimax rate obtained in Theorem 2 becomes worse
without access to shared randomness. This is revealed by Theorem 2 in Section 2. For
certain values of ϵ, we show that the performance is strictly worse for methods that use
only local randomness, and we exhibit optimal local and shared randomness methods for
these regimes, respectively, in Sections 3.2 and 3.3.

1.4 Related Work

In the context of hypothesis testing, several works have studied testing under local differen-
tial privacy (DP) for discrete distributions Gaboardi et al. (2016); Sheffet (2018); Acharya
et al. (2018b, 2019); Berrett and Butucea (2020); Acharya et al. (2020b, 2021). In this
setting, each server holds a single multinomial observation. This framework has been ex-
tended to a nonparametric setting where servers hold a single draw a from continuous
distribution on the unit interval. For such continuous settings, goodness-of-fit testing has
been studied in Dubois et al. (2023); Lam-Weil et al. (2022), with the latter work also
addressing adaptation. Related work by Butucea et al. (2023) examines the estimation of
quadratic functionals under local DP constraints in the same setting, which has connections
to goodness-of-fit testing. While there is some overlap in terms of rates, they do not capture
the full spectrum of goodness-of-fit testing. For a detailed comparison with our results, see
Remark 4.

For hypothesis testing under central differential privacy, where the complete dataset
resides on a single server, Canonne et al. (2019) investigates simple hypothesis testing, while
Acharya et al. (2018a) addresses uniformity and independence testing in the multinomial
model. Alabi and Vadhan (2022) explores hypothesis testing in linear regression. Perhaps
most relevant to our work in the central DP setting are Canonne et al. (2020) and Narayanan
(2022b), which study signal detection in the many-normal-means model. Our results recover
their rate as a special case, discussed in more detail in Remark .

Local DP estimation has been extensively studied across various settings: the many-
normal-means model, discrete distributions, and parametric models Duchi et al. (2013,
2018); Acharya et al. (2020a); Ye and Barg (2018). Density estimation under local DP
constraints has been examined by several authors Duchi et al. (2018); Sart (2023); Kroll
(2021); Butucea et al. (2020), with the latter three works addressing adaptation. Central DP
estimation has been investigated for various high-dimensional and nonparametric problems
Smith (2011); Dwork et al. (2014b); Bassily et al. (2014); Kamath et al. (2019, 2020); Cai
et al. (2021); Narayanan (2022a); Brown et al. (2023); Cai et al. (2024), while Lalanne et al.
(2023) focuses on nonparametric density estimation with known smoothness.

Research in the broader federated setting has been more limited. For estimation, works
include studies of discrete distributions Liu et al. (2020); Acharya et al. (2023), mean es-
timation Levy et al. (2021); Narayanan et al. (2022), nonparametric regression Cai et al.
(2023a), and sparse linear regression Li et al. (2024). In the context of testing, Canonne
and Sun (2023) examines discrete distribution testing in a two-server setting (m “ 2) with
varying DP constraints.
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1.5 Organization of the paper
The rest of the paper is organized as follows. In Section 2, we present the main results of the
paper, for the known smoothness case and the adaptive setting. Next, Section 3 presents
the methods that achieve the optimal rates derived in Section 2. In Section 4, we extend
these methods to be adaptive in the case that the smoothness is unknown. In Section 5,
we present the lower bound theorems for the testing problem and give a sketch of its proof.
Further proofs are deferred to the Appendix of the article.

1.6 Notation, and notions
Throughout the paper, we shall write N :“ mn. For two positive sequences ak, bk we write
ak À bk if the inequality ak ď Cbk holds for some universal positive constant C. Similarly,
we write ak — bk if ak À bk and bk À ak hold simultaneously and let ak ! bk denote
that ak{bk “ op1q. We use the notations a _ b and a ^ b for the maximum and minimum,
respectively, between a and b. For k P N, rks shall denote the set t1, . . . , ku. We use c and
C to denote universal constants whose value can differ from line to line. The Euclidean
norm of a vector v P Rd is denoted by }v}2. For a matrix M P Rdˆd, the norm M ÞÑ }M}

is the spectral norm and TrpMq is its trace. Furthermore, we let Id denote the d ˆ d
identity matrix. The Hamming distance on X n is defined as dHpx, x̆q :“

řn
i“1 1 txi ‰ x̆iu

for x “ pxiq
n
i“1, x̆ “ px̆iq

n
i“1 P X n. Furthermore, for a vector space X and x “ pxiqiPrns P X n,

we shall write x for the average n´1
řn

i“1 xi.
Formally, shared randomness independent of the data means U is defined on a separate

probability space pU ,U ,PU q and for the joint law with the data we shall take the product
space. No shared randomness corresponds to U being degenerate, i.e., U “ tH,Uu. We
denote by T

pϵ,δq
SHR the class of pϵ, δq-FDP shared randomness testing protocols pT, Y, Uq, where

the law of Y satisfies Definition 1. The local randomness subclass, is denoted T
pϵ,δq

LR .

2 Minimax optimal testing rates under privacy constraints
In this section, we discuss the main results in detail. We start the discussion with results
for the oracle case where the regularity parameter is known in Section 2.1. Section 2.2
describes the main results for when the regularity is not known.

2.1 Description of the minimax separation rate
We first give a precise statement concerning the minimax separation rate shown in (6).

Theorem 2. Let s,R ą 0 be given and consider any sequences of natural numbers m ” mN

and n :“ N{m such that N “ mn Ñ 8, 1{N ! σ ” σN “ Op1q, ϵ ” ϵN in pN´1, 1s and
δ ” δN À N´p1`ωq for any constant ω ą 0. Let ρ ą 0 a sequence of numbers satisfying (6).

Then,

inf
TPT

pϵ,δq
SHR

RpHs,R
ρMN

, T q Ñ

#

0 for any M2
N " log logpNq log3{2pNq logp1{δq,

1 for any MN Ñ 0.

The proof of the theorem is given in Section B.4 of the Appendix. It is based on a
combination of upper and lower bounds, where the lower bound is established in Section 5.
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The upper bound is given in Section 3, where we present an pϵ, δq-DP testing protocol that
attains the rate in Theorem 2. These upper and lower bounds are in fact non-asymptotic,
meaning that they do not require the assumption that N Ñ 8.

Theorem 2 shows multiple regime changes, where the distributed testing problem under
privacy constraints undergoes a change in the minimax separation rate. Later on in this
section, we highlight the different regimes and give an interpretation to each of them.

Theorem 2 considers the minimax rate for the class of distributed protocols with access
to shared randomness, T

pϵ,δq
SHR . Theorem 3 below considers the minimax rate for the (strictly

smaller) class of distributed protocols without access to shared randomness, T
pϵ,δq

LR . Here,
transcripts depend only on their local data and possibly a local source of randomness.

Theorem 3. Let s,R ą 0 be given and consider any sequences of natural numbers m ” mN

and n :“ N{m such that N “ mn Ñ 8, 1{N ! σ ” σN “ Op1q and ϵ ” ϵN in pN´1, 1s

and δ ” δN À N´p1`ωq for any constant ω ą 0. Let ρ ” ρN a sequence of positive numbers
satisfying

ρ2 —

ˆ

σ2

mn

˙

2s
2s`1{2

`

ˆ

σ2

mn2ϵ2

˙

2s
2s`3{2

^

¨

˝

˜

σ2
?
mn

?
1 ^ nϵ2

¸
2s

2s`1{2

`

ˆ

σ2

mn2ϵ2

˙

˛

‚. (7)

Then,

inf
TPT

pϵ,δq
LR

RpHs,R
ρMN

, T q Ñ

#

0 for any M2
N " log logpNq log3{2pNq logp1{δq,

1 for any MN Ñ 0.

The proof of Theorem 3 is given in Section B.4 of the Appendix. The theorem shows
that, depending on the value of ϵ, the minimax rate for protocols that do not have access to
shared randomness is strictly worse than those for protocols that do have access to shared
randomness.

To facilitate comparison between these theorems, Table 1 organizes our results into
six distinct regimes, each representing a fundamentally different behavior of the minimax
separation rate. Each of the regimes correspond to the dominating term in the minimax
separation rates of Theorems 2 and 3. The dominant term in each regime is determined
by complex interplay between ϵ, in comparison to n,m, σ, s and the availability of shared
randomness.

The six regimes naturally partition into two groups based on their privacy budget re-
quirements and the role of shared randomness. Regimes 4, 5, and 6 – which we term the
“low privacy-budget” regimes – occur when ϵ is relatively small. In these regimes, both
types of protocols achieve identical rates through the same testing procedure, indicating
that shared randomness offers no advantage when privacy constraints are stringent.

In contrast, Regimes 1, 2, and 3 – the “high privacy-budget” regimes – emerge when
ϵ is relatively large. Table 1 reveals that shared randomness protocols achieve strictly
better rates than local randomness protocols in Regimes 2 and 3, demonstrating how server
coordination through shared randomization can meaningfully improve performance under
moderate privacy constraints. This advantage disappears in the low privacy-budget case
(Regimes 4, 5, and 6), where both protocols achieve identical rates, though the privacy
thresholds ϵ at which regime transitions occur still differ between the two types of protocols.

9



Cai, Chakraborty and Vuursteen

Regime Rate ρ2 Range for ϵ
Using Shared Randomness

1
´

σ2

mn

¯
2s

2s`1{2
ϵ ě σ´ 2

4s`1m
1

4s`1n
1{2´2s
4s`1

2
´

σ2

mn3{2ϵ

¯
2s

2s`1

σ´ 2
4s`1m´ 2s

4s`1n
1{2´2s
4s`1 ď ϵ ă σ´ 2

4s`1m
1

4s`1n
1{2´2s
4s`1 , ϵ ě n´1{2

3
´

σ2

mn2ϵ2

¯
2s

2s`1

σ´ 1
2sm´ 1

2n
1´2s
4s ď ϵ ă n´1{2

4
´

σ2
?
mn

¯
2s

2s`1{2
n´1{2 ď ϵ ă σ´ 2

4s`1m´ 2s
4s`1n

1{2´2s
4s`1

5
´

σ2
?
mn3{2ϵ

¯
2s

2s`1{2
σ

1
2s`1m´ 1

2n´ 1`s
2s`1 ď ϵ ă σ´ 1

2sm´ 1
2n

1´2s
4s , ϵ ă n´1{2

6 σ2

mn2ϵ2 ϵ ă σ
1

2s`1m´ 1
2n´ 1`s

2s`1

Using Only Local Randomness

1
´

σ2

mn

¯
2s

2s`1{2
ϵ ě σ´ 2

4s`1m
1

4s`1n
1{2´2s
4s`1

2
´

σ2

mn2ϵ2

¯
2s

2s`3{2
σ´ 2

4s`1m
1{4´s
4s`1 n

1{2´2s
4s`1 ď ϵ ă σ´ 2

4s`1m
1

4s`1n
1{2´2s
4s`1 , ϵ ě n´1{2

3
´

σ2

mn2ϵ2

¯
2s

2s`3{2
σ´ 4

4s´1m´ 1
2n

5{2´2s
4s´1 ď ϵ ă n´1{2

4
´

σ2
?
mn

¯
2s

2s`1{2
n´1{2 ď ϵ ă σ´ 2

4s`1m
1{4´s
4s`1 n

1{2´2s
4s`1

5
´

σ2
?
mn3{2ϵ

¯
2s

2s`1{2
σ

1
2s`1m´ 1

2n´ 1`s
2s`1 ď ϵ ă σ´ 4

4s´1m´ 1
2n

5{2´2s
4s´1 , ϵ ă n´1{2

6 σ2

mn2ϵ2 ϵ ă σ
1

2s`1m´ 1
2n´ 1`s

2s`1

Table 1: Minimax separation rates and their corresponding ϵ ranges for both shared and
local randomness settings. The rates are given up to logarithmic factors.

A particular distinction between shared and local randomness protocols emerges when
examining the smoothness parameter regime s ď 1{4. While shared randomness protocols
can still achieve the high privacy-budget rates for sufficiently large ϵ, local randomness
protocols remain trapped in the low privacy-budget regime across our entire parameter
range (N´1 À σ À 1 and N´1 ă ϵ À 1). This limitation arises from the condition

ˆ

σ2

mn2ϵ2

˙

2s
2s`3{2

—

ˆ

σ2
?
mn3{2ϵ

˙

2s
2s`1{2

ðñ ϵ
2s´1{2
2s`3{2 — σ

´ 1
2s`3{2m

1
2s`3{2n

5{4´s
2s`3{2 ,

which cannot be satisfied when s ď 1{4, ϵ Á pmnq´1 and σ2 “ Op1q. As a result, the
minimax rate without shared randomness and s ď 1{4 consolidates to Regimes 4, 5, and 6.
This means in particular that the minimax rates corresponding to the high privacy-budget
regimes cannot be attained for any value of ϵ when s ď 1{4 and shared randomness is not
available.

Within the low privacy-budget range, we observe three distinct regimes with remarkable
properties. In Regime 4, the rate takes the form p σ2

?
mn

q
2s

2s`1{2 . While this rate is polynomially
worse in m than the unconstrained rate, it exhibits a surprising independence from privacy
comes ‘for free’ through the locally optimal test statistic.

10
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We achieve this rate through an pϵ, δq-DP testing protocol detailed in Section 3.1. The
protocol operates in two steps: first computing locally optimal private test statistics from
each server’s data, then averaging these statistics to combine their power. Roughly speaking,
the strategy’s effectiveness under stringent privacy constraints stems from the idea that
sharing a single private real-valued test statistic can preserve privacy more effectively than
sharing private approximations of the full data.

The behavior changes dramatically when ϵ À n´1{2, where ϵ begins to affect the rate
polynomially. Most striking is Regime 6, where the rate equals σ2

mn2ϵ2
, which is indepen-

dent of the regularity parameter s. This independence arises because signals of size σ2

mn2ϵ2

dominate the local estimation rate of pσ
2

n q
2s

2s`1{2 . In this regime, the privacy constraint –
not the high-dimensional nature of the problem – becomes the sole bottleneck, as signals
can be estimated locally with high accuracy.

The mathematical techniques required to establish optimality differ between the local
and shared randomness protocol types. We construct explicit protocols achieving these
optimal rates in Sections 3.2 and 3.3, while the corresponding lower bounds – which also
require distinct proof techniques for local versus shared randomness – are developed in
Section 5.

Remark 4. Our results in Theorems 2 and 3 invite comparison with recent work on lo-
cal differential privacy: Dubois et al. (2023); Lam-Weil et al. (2022), who study non-
parametric goodness-of-fit testing, and Butucea et al. (2023), who examines the related
question quadratic functional estimation. These papers consider the setting where each
server holds a single observation (n “ 1) from an s-smooth density f on r0, 1s. In their
framework, the minimax rates take the form:

ρ2 —

$

&

%

`

1
mϵ2

˘
2s

2s`1 for interactive protocols
`

1
mϵ2

˘
2s

2s`3{2 for non-interactive protocols

These rates correspond to Regime 2 in our Table 1. We observe a richer set of phenomena,
even when σ “ 1 and n “ 1. This is surprising, as the model (2) is asymptotically equivalent
to the density setting as observations tend to infinity (see e.g. Nussbaum (1996)). We
conjecture that additional complexity would emerge if their framework is extended to each
server observing Xpjq “ pX

pjq

k qKk“1 with i.i.d. X
pjq

k „ f and Xpjq as unit of privacy, or if
extended to the full FDP framework.

The distinction they observe between interactive and non-interactive protocols parallels
our findings about shared versus local randomness. Indeed, when sequential- or interactive
protocols are allowed, shared randomness can be employed in particular, suggesting that in
non-interactive applications, shared randomness should be employed whenever possible.

Remark 5. Within the central DP setting, another relevant comparison is with Canonne
et al. (2020) and Narayanan (2022b), who investigate the many-normal-means model. Al-
though their finite-dimensional framework does not require adaptation to unknown smooth-
ness, we can compare our oracle rates by setting m “ 1 and truncating our model (4) at a
known threshold d. In this specialized scenario, our intermediate results recover the rates
from those works (see Section B.4), with a logarithmic-factor improvement.

11
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2.2 Adaptation

In the previous section, we derived the minimax separation rate for the nonparametric
distributed testing problem. However, the proposed tests constructed in Section 3 require
knowledge of the regularity parameter s of the underlying f . Typically, the regularity of
the function is unknown in practice, necessitating the use of data-driven methods to find
the best adaptive testing strategies.

Given that the regularity of the underlying signal class is unknown, it makes sense to
consider the minimax testing risk

sup
sPrsmin,smaxs

R
´

Hs,R
MN,sρs

, T
¯

,

for certain predetermined values 0 ă smin ă smax ă 8. Here, we consider separation
rates ρs depending on the underlying smoothness. In the case that the true underlying
smoothness is s “ smin, the separation rate is relatively larger than when (for example)
s “ smax. In the case that the true smoothness s is larger than smin, we would like to attain
the smaller of the two rates ρs.

In the non-privacy constraint setting, adaptation for the above risk can be achieved with
only a minor additional cost in the separation rate (a log logN factor). See for example
Theorem 2.3 in Spokoiny (1996) or Section 7 in Ingster and Suslina (2003a). Theorem 6
below shows that also under privacy constraint, the optimal private rate can be attained
by a protocol that is adaptive to the regularity parameter s, with minimal additional cost;
at most a logarithmic factor.

Theorem 6. Let 0 ă smin ă smax ă 8, R ą 0 be given and consider any sequences of
natural numbers m ” mN and n :“ N{m such that N “ mn Ñ 8, 1{N ! σ ” σN “ Op1q,
ϵ ” ϵN in pN´1, 1s and δ ” δN À N´p1`ωq for any constant ω ą 0.

If ρ a sequence of positive numbers satisfies (6), there exists a sequence of pϵ, δq-FDP
testing protocols TN such that

sup
sPrsmin,smaxs

RpHs,R
ρMN

, TN q Ñ

#

0 for any M2
N " log logpNq log5{2pNq logp1{δq

1 for any MN Ñ 0.

Furthermore, whenever ρ satisfies (7), there exists a sequence of pϵ, δq-FDP testing protocols
TN using only local randomness such that the above display holds as well.

We construct such adaptive pϵ, δq-FDP testing protocols in Section 4 and their resulting
performance proofs the above theorem. The adaptive methods can be seen as extensions
of the methods exhibited in Section 3 for when the smoothness is known. The adaptive
methods can essentially be seen as a multiple testing extension of the known smoothness
methods, testing along a grid of smoothness levels between smin and smax. The strain on
the privacy budget stemming from conducting multiple testing procedures is limited, due
to the fact that the cardinality of this grid is order logpNq. The Type I error control is
assured by a Bonferroni correction, which leverages the exponential bounds on the Type I
error of the individual “known smoothness tests”.
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3 Optimal differentially private testing procedures
In this section, we construct pϵ, δq-FDP testing procedures that attain the minimax separa-
tion rates derived in Section 2.

The testing procedures are constructed in three steps. First, in Section 3.1, we construct
a pϵ, δq-FDP testing procedure that uses only local randomness and that is optimal in the
low privacy-budget regime described in the previous section. We refer to this procedure
as TI. Second, we construct two pϵ, δq-FDP testing procedures that use local randomness
and shared randomness, respectively, and that are optimal in their respective high privacy-
budget regimes. We refer to these procedures as TII and TIII and describe them in Sections
3.2 and 3.3, respectively.

The testing procedures differ in terms of the testing strategy. In the low privacy-budget
case where TI is optimal, the testing strategy can be seen to consist of first computing a
locally optimal private test statistic in each machine; that is, a test statistic that would
result in the optimal private test using just the local data. The locally optimal test statistic
is based on the squared Euclidean norm of the truncated observation. To deal with the
nonlinearity of the Euclidean norm, the strategy appropriately restricts the domain of the
clipped locally optimal test statistic, after which we employ a Lipschitz-extension to obtain
a test statistic that is well-defined on the sample space and more robust to outliers than
the Euclidean norm itself. The noisy version of this test statistic is locally optimal under
privacy constraints, in the sense that a corresponding (strict) p-value test attains the lower
bound rate (up to a logarithmic factor) as established by Theorem 3 for the case where
m “ 1. When m ą 1, the final test statistic is obtained by averaging the locally optimal
private test statistics.

In the large ϵ regime, instead of computing a locally optimal test statistic, both TII and
TIII are based on truncated, clipped and noisy versions of the local observations. The key
difference between the two is that the latter uses the same random rotation of the local
observations, which is made possible by the availability of shared randomness.

Together, the methods prove Theorem 7 below, which forms the “upper bound” part of
the minimax separation rate described by Theorems 3 and 2. Unlike the formulation of the
latter theorems, we note that the result is not asymptotic.
Theorem 7. Let s,R ą 0 be given. For all α P p0, 1q, there exists a constant Cα ą 0 such
that if

ρ2 ě Cα

ˆ

σ2

mn

˙

2s
2s`1{2

`

ˆ

σ2

mn2ϵ2

˙

2s
2s`3{2

^

¨

˝

˜

σ2
?
mn

?
1 ^ nϵ2

¸
2s

2s`1{2

`

ˆ

σ2

mn2ϵ2

˙

˛

‚, (8)

there exists a pϵ, δq-FDP testing protocol T ” Tm,n,s,σ such that

RpHs,R
ρMN

, T q ď α, (9)

for all natural numbers m,N and n “ N{m, σ P r1{N, σmaxs, ϵ P pN´1, 1s, δ ď N´p1`ωq for
any constant ω ą 0, σmax ą 0 and a nonnegative sequence M2

N Á log logpNq log3{2pNq logp1{δq.
Similarly, for any α P p0, 1q, there exists a constant Cα ą 0 such that if

ρ2 ě Cα

ˆ

σ2

mn

˙

2s
2s`1{2

`

ˆ

σ2

mn3{2ϵ
?
1 ^ nϵ2

˙

2s
2s`1

^

˜

ˆ

σ2
?
mn

˙

2s
2s`1{2

`

ˆ

σ2

mn2ϵ2

˙

¸

, (10)
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we have that there exists a pϵ, δq-FDP shared randomness testing protocol T ” Tm,n,s,σ such
that

RpHs,R
ρMN

, T q ď α, (11)

for all natural numbers m,N and n “ N{m, σ P r1{N, σmaxs, ϵ P pN´1, 1s, δ ď N´p1`ωq

for any constant ω ą 0 and a nonnegative sequence M2
N Á log logpNq log3{2pNq logp1{δq.

The proof of the theorem follows directly from the guarantees proven for each of the three
testing protocols; we defer it to Section B in the supplement. Before giving the detailed
construction of the three tests, we introduce some common notation. Let ΠL denote the
projection of elements RN onto the first dL :“

řL
l“1 2

l coordinates, where the elements as
ordered and indexed as ΠLx “ px11, . . . , x12, x21, . . . , x14, . . . , xL1, . . . , xL2L , 0, 0, 0, . . . q.

We shall also use the notation dL :“
řL

l“1 2
l and let Xpjq

L;i denote vector in RdL formed
by the first dL coordinates of ΠLX

pjq

i and let Xpjq

L “ pX
pjq

L;iqiPrns. Furthermore, we recall
that for v “ pv1, . . . , vnq P X n for a vector space X , v̄ denotes the vector space average
n´1

řn
i“1 vi.

In order to obtain statistics with (uniformly) bounded sensitivity it is useful to bound
quantities between certain thresholds. Formally, for a, b, x P R with a ă b, let rxsba denote
x clipped between a and b, that is rxsba “ maxpa,minpb, xqq.

The distributed privacy protocols under consideration in this paper can be seen as noisy
versions of statistics of the data. Roughly put, the “amount” of noise added depends on the
sensitivity of the statistics. This brings us to the concept of sensitivity. Formally, consider a
metric d on a set Y. Given n elements x “ px1, . . . , xnq in a sample space X , the d-sensitivity
at x of a map S : X n Ñ Y is ∆Spxq :“ supx̆PXn:dHpx,x̆qď1d pSpxq, Spx̆qq, where dH is the
Hamming distance on X n (see Section 1.6 for a definition). The d-sensitivity of S is defined
as ∆S :“ supx∆Spxq. In this paper, the main noise mechanism is the Gaussian mechanism.
The Gaussian mechanism yields pϵ, δq-differentially private transcripts for statistics that
have bounded L2-sensitivity, with the noise variance scaling with the L2-sensitivity. See
Dwork et al. (2014a) for a thorough treatment. We remark that for the rates in Regime 3
up until 6 in Table 1, pϵ, 0q-DP can be attained by employing a Laplace mechanism instead.
That is, for the values of ϵ for which Regime 3 up until 6 in Table 1 are optimal, the test
statistics in the sections have matching L1- and L2-sensitivity, so the Gaussian mechanism
can be replaced by the Laplace mechanism instead in these regimes.

3.1 Private testing procedure I: low privacy-budget strategy
In the classical setting without privacy constraints (and m “ 1), a rate optimal test for the
hypotheses of (3) is given by

1

!

S
pjq

L ą κα

)

, where Spjq

L :“
1

a

dL

˜

›

›

›

›

σ´1?
nX

pjq

L

›

›

›

›

2

2

´ dL

¸

, (12)

where dL :“
řL

l“1 2
l and the rate optimal choice of L is L˚ “

Q

1
2s`1{2 log2pN{σ2q

U

. Under

the null hypothesis, Spjq

L˚
is Chi-square distributed degrees of freedom. Under the alternative

hypothesis, the test statistic picks up a positive “bias” as }σ´1?
nX

pjq

L˚
}2 „ χ2

L˚
p}ΠL˚f}22q
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under Pf , which could surpass the critical value κα if σ´2n}ΠL˚f}22 is large enough. Con-
sequently, the level of the test is controlled by setting κα appropriately large. For a proof
of its rate optimality, see e.g. Gine and Nickl (2016).

As is commonly the case for superlinear functions, the test statistic Spjq

L;τ has poor sensi-
tivity uniformly over the sample space, meaning that a change in just one datum can result
in a large change in the test statistic. This means that it forms a poor candidate to base a
privacy preserving transcript on. For example, one would need to add a substantial amount
of noise guarantee DP for the statistic. To remedy this, we follow a similar strategy as pro-
posed in Canonne et al. (2020) and improved upon by Narayanan (2022b). We construct
a clipped and symmetrized version of the test statistic above, which has small sensitivity
on a set CL;τ , in which Xpjq takes values with high probability. We define the test statistic
explicitly on CL;τ only. By a version of the McShane–Whitney–Extension Theorem, we
obtain a test statistic with the same sensitivity that is defined on the entire sample space.

Consider for τ ą 0, L P N, dL :“
řL

l“1 2
l and V

pjq

L;τ „ χ2
dL

independent of Xpjq the
random map from pRdLqn to R defined by

S̃
pjq

L;τ pxq “

„

1
?
dL

´

›

›σ´1?
nx

›

›

2

2
´ V

pjq

L;τ

¯

ȷτ

´τ

. (13)

For any τ , this test statistic S̃pjq

L;τ pX
pjq

L q can be seen to have mean zero and bounded variance
under the null hypothesis, by similar reasoning as for the test statistic in (12) (see the proof
of Lemma 8 for details).

Loosely speaking, the test statistic S̃
pjq

L;τ pX
pjq

L q retains the signal as long as τ ą 0 is
chosen appropriately in comparison to the signal size (i.e. }ΠLf}22) and has good sensitivity
for “likely” values of Xpjq under Pf , but not uniformly over the sample space. We make the
latter statement precise as follows.

Let Kτ “ r2τD´1
τ s and consider the set CL;τ “ AL;τ X BL;τ , where

AL;τ “

"

pxiq P pR8qn :

ˇ

ˇ

ˇ

ˇ

}σ´1ř

iPJ ΠLxi}
2
2 ´ kdL

ˇ

ˇ

ˇ

ˇ

ď 1
8kDτn

?
dL @J Ă rns, |J | “ k ď Kτ

*

,

(14)

BL;τ “

"

pxiq P pR8qn :
ˇ

ˇxσ´1ΠLxi, σ
´1ř

k‰iΠLxky
ˇ

ˇ ď
1

8
kDτn

a

dL, @i “ 1, . . . , n

*

.

Lemma 26 in the supplement shows that Xpjq concentrates on CL;τ when the underlying
signal is, roughly speaking, not too large compared to τ (in particular under the null hy-
pothesis).

It can be shown that, on the set CL;τ , x ÞÑ Spjqpxq is Dτ -Lipschitz with respect to the
Hamming distance, see Lemma 27 in the supplement. Lemma 28 in the supplement shows
that there exists a measurable function S

pjq

L;τ : pRdLqn Ñ R, Dτ -Lipschitz with respect to
the Hamming distance, such that Spjq

L;τ pX
pjq

L q “ S̃
pjq

L;τ pX
pjq

L q whenever Xpjq P CL;τ . Lemma
28 is essentially the construction of McShane McShane (1934) for obtaining a Lipschitz
extension with respect to the Hamming distance, but our lemma verifies in addition the
Borel measurability of the resulting map.
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The Lipschitz constant upper bounds the sensitivity of a test statistic that is Lipschitz
continuous with respect to the Hamming distance. Specifically, we have that

∆Spjq “ sup
x,x̆Pℓ2pNqn:dHpx,x̆qď1

ˇ

ˇ

ˇ
Spjqpxq ´ Spjqpx̆q

ˇ

ˇ

ˇ
ď Dτ .

Using the Gaussian mechanism, the transcripts

Y
pjq

L;τ “ γτ S̆
pjq

L;τ pX
pjq

L q `W pjq
τ , where W pjq

τ „ Np0, 1q independent for j P rms, (15)

γτ “ ϵ{pDτ

a

2c logp2{δqq and τ ą 0, are pϵ{
?
c, δq-differentially private for any ϵ ą 0 (see

e.g. Dwork et al. (2014a)). These transcripts are mean zero and have bounded variance
under the null hypothesis, so a test of the form

φτ :“ 1

#

1
?
m

m
ÿ

j“1

Y
pjq

L;τ ě κpγτ _ 1q

+

(16)

has an arbitrarily small level for large enough κ ą 0 (see Lemma 29 in the supplement).
Furthermore, the lemma below shows that, if the signal size is large enough in the

řL
l“1 2

l

first coordinates, the above test enjoys a small Type II error probability as well.

Lemma 8. Consider the test φτ as defined by (16). If

τ{4 ď
n}fL}22

logpNq
a

2c logp2{δqσ2
?
d

ď τ{2 (17)

and

}ΠLf}22 ě Cακ logpNq
a

c logp1{δq

˜ ?
2L

σ2
?
N

?
np

?
nϵ^ 1q

¸

ł

ˆ

1

σ2Nnϵ2

˙

(18)

for Cα ą 0 large enough, it holds that Pf p1 ´ φτ q ď α.

A proof of the above lemma is given in Section B.1 of the supplement. The above test is
calibrated for the detection of signals size between τ{4 and τ{2. In order to detect signals
of any size larger than the right-hand side of (18), we follow what is essentially a multiple
testing procedure. For large signals, we need a larger clipping to detect them, as well as
a larger set CL;τ to assure that the data is in CL;τ with high probability, as larger signals
increase the probability of “outliers” from the perspective of the sensitivity of the L2-norm.

It turns out that a sufficient range of clipping thresholds to consider (for detecting the
signals f P Bs,R

p,q under consideration in Lemma 9) is given by

τ P TL :“

#

2´k`2np1 ´ 2´sq2´2{qR2

σ2
?
2L

: k “ 1, . . . , r1 ` 2 log2pNR{σqs

+

. (19)

The pϵ, δq-differentially private testing procedure TI is now constructed as follows. For each
τ P TL, the machine transfers (15) with c “ |TL|. By the independence of the Gaussian noise
added in (15) for each τ P TL, the transcript Y pjq “ tY

pjq

L;τ : τ P TLu is pϵ, δq-differentially
private (see e.g. Theorem A.1 in Dwork et al. (2014a)).
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The test

TI :“ 1

#

max
τPTL

1
?
m

m
ÿ

j“1

Y
pjq

L;τ ě κα

˜

ϵ

Dτ

a

2|TL| logp2{δq
_ 1

¸

a

log |TL|

+

(20)

then satisfies P0TI ď α via a union bound and sub-exponential tail bound, we defer the
reader to the proof of Lemma 9 for details. Furthermore, for f P Bs,R

p,q , we have }ΠLf}2 ď

}f}2 À R. If f in addition satisfies (18), there exists τ˚ P TL such that (17) is satisfied and
consequently Pf p1 ´ TIq ď Pf p1 ´ φτ˚q ď α{2.

The optimal choice of L depends on the regularity level of the signal f , balancing the
approximation error }f ´ ΠLf}22 and the right-hand side of (18), for which we defer the
details to Section B.1 in the supplement. To summarize, we have obtained the following
lemma.

Lemma 9. For all R ą 0, α P p0, 1q there exists κα ą 0 and Cα ą 0 such that the test TI
defined in (20) satisfies P0TI ď α. Furthermore, if f P Bs,R

p,q is such that for some L and
MN,δ,τ “ logpNq

a

log logpNR{σq logpNR{σq logp1{δq,

}ΠLf}22 ě CαMN,δ,τ

˜ ?
2L

σ2
?
N

?
np

?
nϵ^ 1q

¸

ł

ˆ

1

σ2Nnϵ2

˙

,

we have that Pf p1 ´ TIq ď α.

3.2 Private testing procedure II: high privacy-budget strategy
In the high-privacy budget regime, we construct a testing procedure that consists essentially
of two steps. In the first step, the data is truncated, clipped and averaged over the coor-
dinates, after which Gaussian noise is added to obtain a private summary of the original
data. Then, as a second step, the transcripts are averaged, and based on this average, a
test statistic that is reminiscent of a chi-square test is computed in the central server. This
is in contrast to the strategy of the previous section, where each server computes a (private
version of) a chi-square test statistic.

The approach taken here is to divide the servers equally over the first dL coordinates (i.e.
as uniformly as possible), where we recall the notation dL :“

řL
l“1 2

l. That is to say, for
L,KL P N, we partition the coordinates t1, . . . , dLu into approximately dL{KL sets of size
KL. The servers are then equally divided over each of these partitions and communicate
the sum of the clipped X

pjq

L;i’s coefficients corresponding to their partition, were we also
recall that the notation X

pjq

L;i denotes the vector in RdL formed by the first dL coordinates
of ΠLX

pjq

i .
More formally, take KL “ rnϵ2 ^ dLs and consider sets Jlk;L Ă rms for indexes pl, kq P

tl “ 1, . . . , L, k “ 1, . . . , 2lu “: IL, such that |Jlk;L| “ rmKL
dL

s and each j P t1, . . . ,mu is in
Jlk;L for at least KL different indexes k P t1, . . . , dLu. For pl, kq P IL, j P Jlk;L, generate
the transcripts according to

Y
pjq

lk;L|Xpjq ” Y
pjq

lk;LpXpjqq “ γL

n
ÿ

i“1

rσ´1pX
pjq

i qlksτ´τ `W
pjq

lk (21)
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with γL “ ϵ{p2
a

2KL logp2{δqτq, τ “ κ̃α
a

logpN{σq and pW
pjq

lk qjPrms,pl,kqPIL i.i.d. standard
Gaussian noise.

Since x ÞÑ
řn

i“1rσpx
pjq

i qlksτ´τ has sensitivity bounded by 2τ , for k “ 1, . . . ,K, releasing

Y
pjq

L pXpjqq “ pY
pjq

L,l1k1
pXpjqq, . . . , Y

pjq

L,lKL
kKL

pXpjqqq

satisfies pϵ, δq-DP, see Lemma 31 in the supplement for details.
If the privacy budget were of no concern, submitting the above transcripts with 2L —

N1{p2s`1{2q would be sufficient to construct a test statistic that attains the unconstrained
rate of ρ2 — N´2s{p2s`1{2q. Under (more stringent) privacy constraints, however, the optimal
number of coordinates to be transmitted should depend on the privacy budget. Whenever
ϵ À 1{

?
n, it turns out that submitting just one coordinate is in fact rate optimal. Sending

more than one coordinate leads to worse rates as the noise overpowers the benefit of having
a higher dimensional transcript. As ϵ increases, the optimal number of coordinates to be
transmitted increases as well. Whenever ϵ Á σ´ 2

4s`1m
1

4s`1n
1{2´2s
4s`1 , the optimal number of

coordinates to be transmitted is 2L — N1{p2s`1{2q.
The test

TII “ 1

$

&

%

1
?
dL

ÿ

pl,kqPIL

»

–

¨

˝

1
a

|Jlk;L|

ÿ

jPJlk;L

Y
pjq

lk;L

˛

‚

2

´
nϵ2

4KLτ2
´ 1

fi

fl ě κα

ˆ

nϵ2

4KLτ2
_ 1

˙

,

.

-

(22)
satisfies P0TII ď α by Lemma 32 in the supplement whenever κ̃α ą 0 and κα ą 0 are chosen
large enough.

The power that the test attains depends on the signal size up until resolution level L,
i.e. }ΠLf}2. Specifically, the test Type II error Pf p1 ´ TIIq ď α whenever

}ΠLf}22 ě Cα
log logpNq logpNq logp1{δq2p3{2qL

mn2ϵ2
. (23)

The optimal choice of L for is determined by the trade-off between the approximation error
}f ´ ΠLf}22 and the right-hand side of (23). The proof of the following lemma is given in
Section B.2 of the supplement.

Lemma 10. Take α P p0, 1q. Suppose f satisfies (23) and that ϵ ě 2L`1
?
mn

for some L P N.
Then, the pϵ, δq-FDP testing protocol TII of level α has Type II error Pf p1 ´ T q ď α for a
large enough constant Cα ą 0 and κ̃α ą 0, depending only on α.

3.3 Private testing procedure III: high privacy-budget shared randomness
strategy

In this section, we construct a testing procedure that is based on the same principles as the
one in the previous section, but with the difference that the servers a source of randomness.
The transcripts are still based on the clipped and averaged coordinates of the truncated
data, but instead of dividing the servers across the coordinates, we apply the same random
rotation across the servers.
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Next, we describe the testing procedure in detail. Consider for L P N the quantities
dL “

řL
l“1 2

l and KL “ rnϵ2 ^ dLs and let UL denote a random rotation uniformly drawn
(i.e. from the Haar measure) on the group of random orthonormal dL ˆ dL-matrices.

For IL :“ tpl, kq : l “ 1, . . . , rlog2pKLqs, k “ 1, . . . , 2lu, pl, kq P IL and j “ 1, . . . ,m,
generate the transcripts according to

Y
pjq

lk;L|pXpjq, Uq “ γL

n
ÿ

i“1

rpUX
pjq

L;iqlksτ´τ `W
pjq

lk , (24)

with γL “ ϵ

2
?

2KL logp2{δq logpNqτ
, τ “ κ̃α

a

logpN{σq, κ̃α ą 0 and pW
pjq

l qj,l i.i.d. cen-

tered standard Gaussian noise. By an application of Lemma 33, the transcript Y pjq

L :“

pY
pjq

lk;Lqpl,kqPIL is pϵ, δq-differentially private.
In the shared randomness strategy above, we essentially only send the first

řrlog2pKLqs

l“1 2l

coordinates. The random rotation UL ensures that, roughly speaking, a sufficient amount
of the signal is present in these first coordinates, with high probability.

We then construct the test

TIII “ 1

$

&

%

1
?
KL

ÿ

pl,kqPIL

»

–

˜

1
?
m

m
ÿ

j“1

Y
pjq

lk;L

¸2

´ nγ2L ´ 1

fi

fl ě κα
`

nγ2L _ 1
˘

,

.

-

, (25)

which satisfies P0φ ď α{2 by Lemma 34 in the supplement, for κα ą 0 large enough. The
lemma below is proven in Section B of the supplement, and yields that the Type II error
of the test satisfies Pf p1 ´ TIIIq ď α whenever the coordinates up to resolution level L are
of sufficient size. The optimal value for L depends on the truncation level s, and is chosen
by balancing the approximation error }f ´ ΠLf}22 and the right-hand side of (26), we defer
the reader to Section B.3 of the supplement for details.

Lemma 11. The testing protocol TIII, with level α and has corresponding Type II error
probability Pf p1 ´ TIIIq ď α whenever

}ΠLf}22 ě Cα
2L logp1{δq logpNq

mn
?
nϵ2 ^ 2L

?
nϵ2 ^ 1

(26)

for constant Cα ą 0 and κ̃α ą 0 depending only on α.

4 Adaptive tests under DP constraints
In the previous section we have derived methods that match (up to logarithmic factors) the
theoretical lower bound established in Section 2. The proposed tests, however, depend on
the regularity parameter s of the functional parameter of interest f .

In this section we derive an pϵ, δq-FDP testing protocol that adapts to the regularity
when it is unknown. This method attains the optimal rate of Theorem 6, and consequently
proves the aforementioned theorem.

The adaptive procedure builds on the tests constructed in Section 3 and combines them
using essentially a multiple testing strategy. Roughly speaking, the method consists of
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taking approximately a 1{ logN -mesh-size grid in the regularity interval rsmin, smaxs, con-
structing optimal tests for each of the grid points and combining them using a type of
Bonferroni’s correction. By design, the tests constructed in Section 3 are based on sub-
exponential private test statistics, which allows a combination of the test statistics with a
Bonferroni correction of the order of log logN .

Combining logN many pϵ1, δq-differentially private transcripts using Gaussian mecha-
nisms, results in a pϵ, δq-differentially private protocol, with ϵ “ ϵ1

?
logN . This means that

the erosion of the privacy budget by conducting a test for each grid-point is limited to a
logarithmic factor, means the method greatly improves over the potentially polynomially
worse rate of a non-adaptive method.

The detailed adaptive testing procedures are given as follows. Let ρs equal the right-
hand side of (7) in case there is access to local randomness only, or the right-hand side of (6)
in case shared randomness is available. Let Ls “ ts´1 log2p1{ρsqu_1 and define furthermore
S :“ tLsmin , . . . , Lsmaxu such that Ls P S for all s P rsmin, smaxs. Furthermore, we note that
the resulting “collection of resolution levels” satisfies |S| ď Csmax logN for some constant
Csmax ą 0 depending only on smax.

Consider the first the case without access to shared randomness. We partition the
collection of resolution levels S, depending on the model characteristics, as follows.

SLOW
LR “

!

L P S : 2L ď ϵ
?
mnp1 `

?
n1t

?
nϵą1uq

)

, SHIGH
LR “ SzSLOW

LR . (27)

If the true regularity s0 is such that Ls0 P SLOW, the low privacy-budget test of Section 3.1
(with L “ Ls0) is a rate optimal strategy. If Ls0 P SHIGH, the high privacy-budget test of
Section 3.2 is rate optimal.

For the case of shared randomness, the phase transitions occur for different values of
s P rsmin, smaxs, or their respective resolution levels Ls. So in this case, we partition the
collection of resolution levels as

SLOW
SHR “

␣

L P S : 2L ď ϵ2mn
(

, SHIGH
SHR “ SzSLOW

SHR . (28)

Consider some S 1 Ă S and let T YLPS1 TL, where TL is as defined in (19). The “adaptive
version” of the low privacy-budget test defined in (20) takes the form

TS
I :“ 1

#

max
LPS1, τPT

1
?
m pγL _ 1q

a

log |T||S 1|

m
ÿ

j“1

Y
pjq

L;τ ě κα

+

, (29)

where Y pjq

L “ tY
pjq

L;τ : τ P TLu is generated according to (15) for L P S with

γτ “
ϵ

2Dτ

a

|T||S 1| logp4{δq
.

The above choice of ϵ yields that pY
pjq

L qLPS is pϵ{2, δ{2q-DP due to the Gaussian mechanism.
The enlargement of the critical region, which is now effectively rescaled by

a

log |T||S 1|

instead of
a

log |T|, accounts for the potentially larger set of test statistics over which the
maximum is taken. In the case of having access only to local sources of randomness, we
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set S 1 “ SLOW
LR . If SLOW

LR is empty, we set TI “ 0 instead, which forms an p0, 0q-differentially
private protocol.

In the case of having access to local sources of randomness only; if SHIGH
LR is non-empty,

the adaptive version of the high privacy-budget test defined in (B.3) is given by

TII “ 1

$

&

%

max
LPSHIGH

LR

1
?
dL pηL _ 1q

ÿ

pl,kqPIL

»

–

¨

˝

1
a

|Jlk;L|

ÿ

jPJlk;L

Y
pjq

lk;L

˛

‚

2

´ ηL ´ 1

fi

fl ě κα
a

log |SHIGH|

,

.

-

,

(30)
where the transcripts are generated according to (95) for L P SHIGH, with γL “ ϵ{p4

a

|SHIGH|KL logp4{δqτq,
ηL “ nϵ2

4KLτ2
, τ “ κ̃α

a

logpN{σq. Due to the Gaussian mechanism, the transcripts satisfy
an pϵ{2, δ{2q-DP constraint. As before, if SHIGH is empty, set TII “ 0 instead.

In the case of having access to local randomness only, the adaptive testing procedure
then consists of computing the tests TSLOW

I and TII, for which the released transcripts satisfy
pϵ, δq-DP. The final test is then given by

T “ TSLOW

I _ TII. (31)

In Section B in the supplement, it is shown that this test is adaptive and rate optimal (up
to logarithmic factors), proving the first part of Theorem 6.

In case of shared randomness, the adaptive version of the high privacy-budget test
defined in (103) is given by

TIII “ 1

$

&

%

max
LPSHIGH

SHR

1
?
KL

`

nγ2L _ 1
˘

ÿ

pl,kqPIL

»

–

˜

1
?
m

m
ÿ

j“1

Y
pjq

lk;L

¸2

´ nγ2L ´ 1

fi

fl ě κα
a

log |S|

,

.

-

,

(32)
where the transcripts are generated according to (102) for L P SHIGH

SHR , γL “ ϵ

4
?

KL|SHIGH
SHR | logp4{δq logpNqτ

,

τ “ κ̃α
a

logpN{σq. By similar reasoning as earlier, the transcripts tY
pjq

L : L P §HIGH
SHR u are

pϵ{2, δ{2q-DP. If SHIGH
SHR is empty, we set TIII “ 0 instead.

The adaptive testing procedure in the case of shared randomness then consists of com-
puting the tests TSLOW

I and TIII, for which the released transcripts satisfy pϵ, δq-DP. The final
test is then given by

T “ T
SLOW

SHR
I _ TIII. (33)

In the supplement’s Section B, we prove that this test is adaptive, attaining the optimal
rate for shared randomness protocols (up to logarithmic factors), giving us the second
statement Theorem 6.

5 The minimax private testing lower bound
In this section, we present a single theorem outlining the lower bound for the detection
threshold for testing protocols that adhere to DP constraints, with and without the use of
shared randomness. The theorem directly yields the “lower bound part” of Theorems 3 and
2 presented in Section 2. In conjunction with Theorem 7, the theorem shows that the tests
constructed in Section 3 are rate optimal up to logarithmic factors.
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Theorem 12. Let s,R ą 0 be given. For all α P p0, 1q, there exists a constant cα ą 0 such
that if

ρ2 ď cα

ˆ

σ2

mn

˙

2s
2s`1{2

`

ˆ

σ2

mn2ϵ2

˙

2s
2s`3{2

^

¨

˝

˜

σ2
?
mn

?
1 ^ nϵ2

¸
2s

2s`1{2

`

ˆ

σ2

mn2ϵ2

˙

˛

‚, (34)

it holds that
inf

TPT pϵ,δq
RpHs,R

ρ , T q ą 1 ´ α, (35)

for all natural numbers m,N and n “ N{m, σ ą 0, ϵ P pN´1, 1s and δ ď N´p1`ωq for any
constant ω ą 0.

Similarly, for any α P p0, 1q, there exists a constant cα ą 0 such that if

ρ2 ď cα

ˆ

σ2

mn

˙

2s
2s`1{2

`

ˆ

σ2

mn3{2ϵ
?
1 ^ nϵ2

˙

2s
2s`1

^

˜

ˆ

σ2
?
mn

˙

2s
2s`1{2

`

ˆ

σ2

mn2ϵ2

˙

¸

, (36)

we have that there exists a pϵ, δq-FDP shared randomness testing protocol T ” Tm,n,s,σ such
that

inf
TPT

pϵ,δq
SHR

RpHs,R
ρ , T q ą 1 ´ α, (37)

for all natural numbers m,N and n “ N{m, σ ą 0, ϵ P pN´1, 1s and δ ď N´p1`ωq for any
constant ω ą 0.

The theorem states that, whenever the signal-to-noise ratio ρ is below a certain threshold
times the minimax separation rate, no testing protocol can achieve a combined Type I and
Type II error rate below α. Its proof is lengthy and involves a combination of various
techniques. We defer the full details of the proof to Section A of the supplement, but
provide an overview of the main steps below.

For Steps 1, 2 and 3, there is no distinction between local and shared randomness. We
use the same notation for distributed protocols in these steps, but simply assume U is
degenerate in the case of local randomness.

Step 1: The first step is standard in minimax testing analysis: we lower bound the testing
risk by a Bayes risk,

inf
TPT

RpHρ, T q ě inf
TPT

sup
π

ˆ

P0pT pY q “ 1q `

ż

Pf pT pY q “ 0qdπpfq ´ πpHc
ρq

˙

, (38)

where T denotes either the class of local randomness or shared randomness pϵ, δq-DP
protocols. This inequality allows the prior π to be chosen adversarially to the distribu-
tion of the transcripts. This turns out to be crucial in the context of local randomness
protocols, as is further highlighted in Step 4. The specific prior distribution is chosen
to be a centered Gaussian distribution, with a finite rank covariance, where the rank
is of the order 2L, for some L P N. This covariance is constructed in a way that it
puts most of its mass in the dimensions in which the privacy protocol is the least
informative, whilst at the same time it assures that the probability mass outside of
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the alternative hypothesis πpHc
ρq is small. The particular choice for a Gaussian prior

(instead of e.g. the two point prior in Ingster and Suslina (2003b)) is motivated by
Step 3.

Step 2: In this step, we approximate the distribution of the transcripts with another distri-
bution that results in approximately the same testing risk, but has two particular
favorable properties for our purposes.

• Whenever the distribution of a transcript satisfies an pϵ, δq-DP constraint with
δ ą 0, the transcript’s density can be unbounded on a set of small probability
mass (proportional to δ). Consequently, the local likelihood of the transcript can
have erratic behavior in the tails. To remedy this, we consider approximations
to the transcript with a bounded likelihood. These approximating transcripts
satisfy a pϵ, 2δq-DP privacy constraint. These bounded likelihoods enable the
argument of Step 5.

• Similarly, whenever δ ą 0, the distribution of the data conditionally on the
transcript no longer has a bounded density. For the argument employed in Step
3, we require a uniform abound on the density of the distribution of X|Y . We
mitigate this by approximating the transcript with another one such that the
data has a bounded density conditionally on the approximating transcript. The
approximating transcript satisfies a pϵ, 3δq-DP constraint.

Furthermore, we show that both approximations can be done in a way that the ap-
proximating transcript distribution is pϵ, 6δq-DP.

Step 3: By standard arguments, on can further lower bound the testing risk in (38) for a
particular transcript distribution PY |X,U “

Âm
j“1 PY pjq|Xpjq,U and prior distribution π

by a quantity depending on the chi-square divergence between PY |U“u
π and PY |U“u

0 ;

1 ´

¨

˚

˝

g

f

f

f

ep1{2q

ż

EY |U“u
0

¨

˝

˜

dPY |U“u
π

dPY |U“u
0

¸2

´ 1

˛

‚

2

dPU puq ` πpHc
ρq

˛

‹

‚

. (39)

The likelihood ratio of the transcripts depends on the privacy protocol, and is diffi-
cult to analyze directly. We employ the technique developed in Szabó et al. (2023).
Specifically, Lemma 10.1 in Szabó et al. (2023), which states, roughly speaking, that
the inequality

EY |U“u
0

˜

dPY |U“u
π

dPY |U“u
0

¸2

ď G
m
Π
j“1

EY pjq|U“u
0

˜

dPY pjq|U“u
π

dPY pjq|U“u
0

¸2

(40)

holds for a finite constant 0 ă G ă 8 and equality with the smallest possible G
is attained whenever the conditional distribution of the data given the transcripts
is Gaussian in an appropriate sense (we defer the details here to Section A.3 in the
supplement). This result is a type of Brascamp-Lieb inequality of Lieb (1990). That
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(40) has a “Gaussian maximizer” allows tractable analysis of the chi-square divergence
in (39), yielding that the latter display is further lower bounded by

1 ´

d

p1{2q

ż

pAπ
uB

π
u ´ 1q dPU puq ` πpHc

ρq, (41)

where

Aπ
u :“

ż

ef
J
řm

j“1 Ξ
j
ugdpπ ˆ πqpf, gq, Bπ

u :“
m
Π
j“1

EY pjq|U“u
0

˜

dPY pjq|U“u
π

dPY pjq|U“u
0

¸

, (42)

where Ξj
u denotes the covariance of (a subset of) the data X

pjq

L (defined as in (43))
conditionally on the transcript Y pjq and U “ u;

Ξj
u :“ EY pjq|U“u

0 E0

«

n
ÿ

i“1

σ´1X
pjq

L;i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff

E0

«

n
ÿ

i“1

σ´1X
pjq

L;i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ffJ

. (43)

Whilst the quantities Au and Bπ
u are still not fully tractable, sharp bounds for both

are possible and form the content of Steps 4 and 5, respectively.

Step 4: As remarked earlier, class of local randomness protocols is a strictly smaller class. To
attain the sharper (i.e. larger) lower bound for local randomness protocols, we exploit
the fact that Step 2 allows us to choose the prior adversarially to the distribution of the
transcripts. In particular, since U is degenerate in the case of local randomness only,
this means that the covariance of π to be more diffuse in the directions in which Ξj

u

is the smallest. When considering shared randomness protocols, U is not degenerate,
and the lower bound follows by taking the covariance of π to be an order 2L-rank
approximation of the identity map on ℓ2pNq. The bounds for Aπ

u are

Aπ
u “ exp

ˆ

C
ρ4

cα23L
Tr pΞuq

2

˙

and Aπ
u ď exp

ˆ

C
ρ4

cα22L
}Ξu}Tr pΞuq

˙

(44)

for local randomness protocols and shared randomness protocols, respectively.

Step 5: So far, Steps 1-4 have not used the fact that the transcripts are necessarily less infor-
mative than the original data, as a consequence of the transcripts being pϵ, δq-DP. In
this step, we exploit the privacy constraint to argue that Aπ

u and Bπ
u are small at the

detection boundary for ρ.

In order to capture the information loss due to privacy in Aπ
u, it suffices to bound

the trace and operator norm of Ξu. The quantity Ξu can be seen as the Fisher
information of the finite dimensional submodel spanned by the covariance of π. This
quantity, loosely speaking, captures how much information the transcript contains
on the original data. In order to analyze Ξu, we rely on a “score attack” type of
technique, as employed in Cai et al. (2023b,a).

24



Federated Nonparametric Private Testing

The quantity Bπ
u corresponds to the (product of) the local likelihoods of the tran-

scripts. Whenever ϵ ě 1{
?
n, it suffices to consider the trivial bound

EY pjq|U“u
0

˜

dPY pjq|U“u
π

dPY pjq|U“u
0

¸

ď EXpjq|U“u
0

˜

dPXpjq

π

dPXpjq

0

¸

, (45)

and further bounding the right-hand side without privacy specific arguments. When-
ever ϵ ă 1{

?
n, more sophisticated methods are need to capture the effect of privacy.

Our argument uses a coupling method, which, combined with the fact that the likeli-
hoods of the transcripts are bounded in our construction, allows us to obtain a sharp
bound for Bπ

u. After obtaining the bounds in terms of the rank 2L and ρ, the proof
is finished by choosing L such that the second and third term in (39) are balanced
(minimizing their sum).

6 Discussion
The findings in this paper highlight the trade-off between statistical accuracy and privacy
in federated goodness-of-fit testing under federated differential privacy (FDP) constraints.
We characterize the problem in terms of the minimax separation rate, which quantifies
the difficulty of the testing problem based on the regularity of the underlying function,
the sample size, the degree of data distribution, and the stringency of the DP constraint.
The minimax separation rate varies depending on whether the testing protocol has access
to local or shared randomness. Furthermore, we construct data-driven adaptive testing
procedures that achieve the same optimal performance, up to logarithmic factors, even
when the regularity of the functional parameter is unknown.

One possible extension of this work is to consider a more general distribution of the
privacy budget across the servers. Our current analysis supports differing budgets to the
extent that ϵj — ϵk, δj — δk, and nj — nk. However, one could explore more heterogeneous
settings where severs differ significantly in their differential privacy constraints and number
of observations. Although this would complicate the presentation of results, the techniques
developed in this paper could, in principle, be extended to such settings.

Another interesting direction is to consider multiple testing problems, where the goal
is to test multiple hypotheses simultaneously. We anticipate that the framework, insights,
and theoretical results provided in the current paper will serve as valuable resources for
future studies in this domain.

Regarding adaptation, not much is known about the cost of fundamental privacy. Inter-
estingly, the cost of adaptation is minimal in the privacy setting considered in this paper.
It remains an open question whether this minimal cost is a general phenomenon, whether
it can be characterized exactly, or whether the cost of adaptation is more severe in other
settings. We leave these questions for future research.
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Appendix A. Proof of the lower bound Theorem 12
In this section, we provide a proof for Theorem 12. The proof is divided into several steps,
following the outline provided in Section 5.

It is convenient to introduce the following notation. Given an pϵ, δq-DP protocol triplet

pT, t
´

PY pjq|Xpjq“x,U“u
¯

xPXn,uPU
umj“1, pU ,U ,PU qq,

we shall use the notation Pf “ PXpjq

f . For the Markov kernel pA, px, uqq ÞÑ PY pjq|pXpjq,Uq“px,uqpAq,
we shall use the shorthand pA, px, uqq ÞÑ KjpA|px, uqq. If the transcript Y pjq is pϵ, δq-DP,
the Markov kernel satisfies

KjpA|x1, . . . , xi, . . . , xn, uq ď eϵKjpA|x1, . . . , x
1
i, . . . , xn, uq ` δ

for all A P Y , x1
i, x1, . . . , xi, . . . , xn P X , i P t1, . . . , nu.

For local randomness protocols, the probability space pU ,U ,PU q has the trivial sigma-
algebra; U “ tH,Uu. This allows streamlining the argument for both lower bounds of
Theorem 12.

When the parameter underlying the true distribution of the data F is drawn from a
prior distribution on ℓ2pNq, we obtain that the distributed testing protocol satisfies the
Markov chain F Ñ pX,Uq Ñ Y Ñ T , with PY pjq|U“u

f “ PfK
jp¨|Xpjq, uq for all j P rms. Let

Ku “
Âm

j“1K
jp¨|¨, uq denote the product conditional distribution with U “ u, such that

distribution of the collection of transcripts conditionally on U “ u then satisfies PY |U“u
f “

Pm
f Kupq.

A.1 Step 1: Lower bounding the testing risk by the Bayes risk
As a first step, we lower bound the testing risk by the Bayes risk. Following the nota-
tion introduced above, let T ” pT, tKjumj“1, pU ,U ,PU qq be an pϵ, δq-DP distributed testing
protocol and let Ku “

Âm
j“1K

jp¨|¨, uq. The testing risk for T can be written as

RpHs,R
ρ , T q “

ż

Pm
0 KuTdPU puq ` sup

fPHs,R
ρ

ż

Pm
f Kup1 ´ T qdPU puq. (46)

Consider L P N, dL “
řL

l“1 2
l and consider π “ Np0, c

´1{2
α d´1

L ρ2Γ̄q for a symmetric idem-
potent matrix Γ̄ P RdLˆdL . Consider also the linear operator ΨL : RdL Ñ ℓ2pNq defined by
ΨLf̃ “ f for flk “ f̃ lk ¨ 1tl ď Lu, f̃ “ pf̃11, . . . , f̃L2Lq P RdL . Since ΨL is measurable, any
probability distribution πL on R2L , πL ˝ Ψ´1

L defines a probability measure on the Borel
sigma algebra of ℓ2pNq.

Using that 0 ď T ď 1, the above testing risk is lower bounded by the Bayes risk
ż
ˆ

Pm
0 KuT `

ż

Pm
f Kup1 ´ T qdπ ˝ Ψ´1

L pfq

˙

dPU puq ´ π ˝ Ψ´1
L

`

pHs,R
ρ qc

˘

. (47)

We highlight here that Γ̄ can depend on tKjumj“1.
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To lower bound the testing risk further, it suffices to show that the prior π has little mass
outside of Hs,R

ρ . This follows by a standard Gaussian concentration argument, provided
in Lemma 13 below, from which it follows that, for cα ą 0 small enough, it holds that
π ˝ Ψ´1ppHs,R

ρ qcq ď α{4. This yields that (47) is lower bounded by
ż
ˆ

Pm
0 KuT `

ż

Pm
f Kup1 ´ T qdπ ˝ Ψ´1

L pfq

˙

dPU puq ´ α{4. (48)

Lemma 13. Suppose ρ À cα2
´Ls. Then, for any cα ą 0 small enough, it holds that

π ˝ Ψ´1
L ppHs,R

ρ qq ď α{4.

Proof Let f P ℓ2pNq. It holds that f P Hs,R
ρ if and only if }f}22 ě ρ2 and }f}Bs

p,q
ď R. For

the first of these events, we have that

π ˝ Ψ´1
L pf : }f}22 ě ρ2q “ Pr

`

ZJΓ̄Z ě
?
cαdL

˘

, (49)

where Z „ Np0, IdLq. Using that Γ̄ is idempotent, the right-hand side of the above display
can be made arbitrarily small for small enough choice of cα ą 0, by a concentration argument
for Chi-square random variables, see e.g. Lemma A.13 in Szabó et al. (2023).

To assure that f „ π ˝ Ψ´1
L concentrates on a Besov ball, we recall the definition of the

Besov norm as given in (5). We have that

π ˝ Ψ´1
L pf : }f}Bs

p,q
ď Rq “ π ˝ Ψ´1

L

ˆ

2Lps`1{2´1{pq
›

›

›
pfLkq2

l

k“1

›

›

›

p
ď R

˙

“ Pr
´

2´L{p }Z}p ď CR{c3{4
α

¯

where Z „ Np0, I2Lq and C ą 0 a constant. The right-hand side of the above display can be
made arbitrarily small for small enough choice of cα ą 0, following from the fact that Z is a
standard normal vector E}Z}

p
p À 2L, where the constant depends on p (see e.g. Proposition

2.5.2 in Vershynin (2018)) and Markov’s inequality.

The larger L, the larger the effective dimension of the signal under the alternative
hypothesis. Setting L such that 2L — ρ´1{s means that the requirement of the above lemma
are satisfied and consequently the Gaussian prior most of it its mass in the alternative
hypothesis. Recalling that dL — 2L, the condition (34) in the case of local randomness
protocols can be written as

ρ2 À cασ
2

˜

d
3{2
L

mnpnϵ2 ^ dLq

ľ

˜ ?
dL

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (50)

and in the case of shared randomness protocols, (36) can be written as

ρ2 À cασ
2

˜

dL

mn
?
nϵ2 ^ 1

a

nϵ2 ^ dL

ľ

˜ ?
dL

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

. (51)
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A.2 Step 2: Approximating the distribution of the transcripts
In Step 3, we aim to use the Brascamp-Lieb type inequality Lemma 10.1 of Szabó et al.
(2023), which we restate as Lemma 20 below. However, the forward-backward channel
corresponding to Ku, px1, x2q ÞÑ qupx1, x2q, defined as

qupx1, x2q :“

ż

dKp¨|x1, uq

dPY |U“u
0

pyq
dKp¨|x2, uq

dPY |U“u
0

pyqdPY |U“u
0 pyq, (52)

is possibly unbounded when δ ą 0. To overcome this, we use Lemma 14 below to construct
pϵ, 3δq-DP Markov kernels tK̃jumj“1 such that the corresponding forward-backward channel
q̃upx1, x2q is bounded. The construction of tK̃jumj“1 is such that the total variation distance
between K̃j and K̃j is small.
Lemma 14. For any α P p0, 1q and pϵ, δq-DP collection of Markov kernels tKjumj“1, there
exists a collection of pϵ, 3δq-DP kernels tK̃jumj“1 such that for some fixed constant C ą 0,

sup
xPXn

dK̃jp¨|xq

dP0K̃jp¨|Xpjqq
pyq ă C, P0K̃

jp¨|Xpjqq-almost surely, (53)

whilst
}Pf pKjp¨|Xpjqq ´ K̃jp¨, Xpjqqq}TV ď

α

2m
.

Proof For any x P X n and set A P Y pjq, we have that

KjpA|xq “

ż

A

dKjp¨|xq

dP0Kjp¨|Xpjqq
pyqdP0K

jpy|Xpjqq ď 1,

where we note that the density of the integrand exists. So, by Markov’s inequality, there
exists a set AM

x P Y pjq such that
dKjp¨|xq

dP0Kjp¨|Xpjqq
pyq ď M on AM

x ,

whilst
Kj

`

pAM
x qc|x

˘

ď 1{M. (54)
Define for all x P X ,

K̃jpB|xq :“ Kj
`

B XAM
x |x

˘

`Kj
`

pAM
x qc|x

˘ KjpB XAM
x |xq

KjpAM
x |xq

. (55)

Then, K̃j is pϵ, 3δq-DP whenever M ą 4δ´1; for any x, x1 P X n that are Hamming distance
1-apart and B P Y pjq,

K̃jpB|xq ď Kj pB|xq `Kj
`

pAM
x qc|x

˘ Kj
`

B XAM
x |x

˘

Kj pAM
x |xq

“ Kj
`

B XAM
x1 |x

˘

`Kj
`

B X pAM
x1 qc|x

˘

`Kj
`

pAM
x qc|x

˘ Kj
`

B XAM
x |x

˘

Kj pAM
x |xq

ď eϵKj
`

B XAM
x1 |x1

˘

` eϵKj
`

B X pAM
x1 qc|x1

˘

` 2δ `
1

M

ď eϵK̃j
`

B|x1
˘

` p1 ` eϵqM´1 ` 2δ,
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where the second to last inequality follows by (54) and the last inequality follows by simply
adding the nonnegative second term in (55). Furthermore, its Radon-Nikodym derivative
satisfies

dK̃jp¨|xq

dP0K̃jp¨|Xpjqq
pyq ď 21AM

x

dKjp¨|xq

dP0Kjp¨|Xpjqq
pyq ď 2M

P0K̃
jp¨|Xpjqq-almost surely. Moreover, it holds for any f P ℓ2pNq that

}Pn
f pKjp¨|Xpjqq ´ K̃jp¨, Xpjqqq}TV ď

ż

}Kjp¨|xq ´ K̃jp¨|xq}TVdP
n
f pxq

ď 2

ż

|Kj
`

pAM
x qc|x

˘

|dPn
f pxq ď

2

M
.

Since a choice M ą δ´1 _ 2m{α yields the bound uniformly in x P X n, the result follows.

By standard arguments (see also Lemma 17), the first term in (48) can be lower bounded
as follows;

Pm
0 KuT “ Pm

0 K̃uT ` Pm
0 KuT ´ Pm

0 K̃uT

ě Pm
0 K̃uT ´

m
ÿ

j“1

}P0K̃
jp¨|Xpjqq ´ P0K

jp¨|Xpjqq}TV.

The same argument on the second term yields that, we obtain that (48) is lower bounded
by

ż
ˆ

Pm
0 K̃uT `

ż

Pm
f K̃up1 ´ T qdπ ˝ Ψ´1

L pfq

˙

dPU puq ´ 3α{8, (56)

for an pϵ, 3δq-DP distributed testing protocol T̃ “ pT, tK̃jumj“1, pU ,U ,PU qq.
Another issue suffered by pϵ, δq-DP Markov kernels with δ ą 0, is that one has very poor

control over the higher moments of the local likelihoods

Lj
π,upyq :“

dPπK̃
jp¨|Xpjq, uq

dP0K̃jp¨|Xpjq, uq
pyq,

where PπpAq :“
ş

Pf pAqdπ ˝ Ψ´1
L pfq, which are required to sufficiently bound the corre-

sponding quantity Bu defined in (70) in Step 5. Using similar ideas as in the proof of
Lemma 14, we can construct approximating kernels tK̆jumj“1 such that the likelihoods Lj

π,u

are bounded. This is the content of the following lemma.

Lemma 15. Let α P p0, 1q, π “ Np0, c
´1{2
α d

´1{2
L ρ2Γ̄q for an arbitrary positive semidefinite

Γ̄ and let tKjumj“1 correspond to a pϵ, δq-DP distributed protocol T (i.e. Kj satisfies (??)).
Furthermore, assume that ϵ ď 1{

?
n and define for j “ 1, . . . ,m the events

Aj,u :“
!

y : |Lj
π,upyq ´ 1| ď 4m1{2α´1

)

and
K̃jpB|x, uq :“ KjpB XAj,u|x, uq `KjpAc

j,u|x, uq
P0K

jpB XAj,u|Xpjq, uq

P0KjpAj,u|Xpjq, uq
.

Suppose in addition that δ ď cα{m. Then,
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(a) The collection tK̃jumj“1 are pϵ, 2δq-DP Markov kernels.

(b) It holds P0K̃
jp¨|Xpjq, uq-a.s. that L̃j

π,upyq :“
ş dK̃jpy|x,uq

dP0K̃jpy|Xpjq,uq
dPn

π pxq satisfies

|L̃j
π,upyq ´ 1| ď

5m1{2

α
. (57)

(c) If ρ satisfies (34) or (36) with cα ą 0 small enough, it holds that

Pm
0 KT `

ż

Pm
f Kp1 ´ T qdπ ˝ Ψ´1

L pfq ě Pm
0 K̃T `

ż

Pm
f K̃p1 ´ T qdπ ˝ Ψ´1

L pfq ´ α,

where K̃ is the product kernel corresponding to tK̃jumj“1.

(d) If Kj satisfies (53), then K̃j satisfies the same bound for some constant C ą 0.

We prove this lemma at the end of this section. The lemma above, in combination with
the same argument as before (e.g. Lemma 17) allows us to replace the pϵ, 3δq-DP Markov
kernel K̃j of (56) with an pϵ, 6δq-DP Markov kernel K̆j , whose transcripts have bounded
likelihoods in the sense of (57). Furthermore, by part (c) of the lemma, the Bayes risk of
(56) is further lower bounded by

ż
ˆ

Pm
0 K̆uT `

ż

Pm
f K̆up1 ´ T qdπ ˝ Ψ´1

L pfq

˙

dPU puq ´ α{2, (58)

where the K̆j ’s satisfy (53).

A.2.1 Proof of Lemma 15

Proof The first statement follows by Lemma 16 below. For the second statement, we first
note that by Lemma 25 proven in Section A.5, it holds that

c
1{4
α

m1{2
` δ `

cα

m3{2
ě pPπ ´ P0qKj

´

t|Lj
π,u ´ 1| ě 4m1{2{αu|Xpjq, u

¯

“ P0K
j
´

pLj
π,u ´ 1q1t|Lj

π,u ´ 1| ě 4m1{2{αu|Xpjq, u
¯

ě 4
m1{2

α
P0K

j
´

|Lj
π,u ´ 1| ě 4m1{2{α|Xpjq, u

¯

,

where the second inequality follows from the fact that m1{2{α ě 1 and Lj
π,u ě 0. Using

that δ ď cα{m, we obtain that

P0K
jpAc

j,u|Xpjq, uq ď p4mq´1αpc1{4
α ` cαp1 `m´1qq :“ ηα. (59)

Since KjpB|x, uq ď K̃jpB|x, uq for all measurable B Ă Aj,u and P0K̃
jp¨|Xpjq, uq has no

support outside of Aj,u, it holds that

dKjp¨|x, uq

dP0K̃jp¨|Xpjq, uq
pyq ď

dKjp¨|x, uq

dP0Kjp¨|Xpjq, uq
pyq,
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for all y P Aj,u (and hence P0K̃
jp¨|Xpjq, uq-a.s.). Similarly, we have for Pπ-a.s. all x’s that

KjpAc
j,u|x, uq

P0KjpAj,u|Xpjq, uq

dP0K
jp¨ XAj,u|Xpjq, uq

dP0K̃jp¨|Xpjq, uq
pyq ď

KjpAc
j,u|x, uq

P0KjpAj,u|Xpjq, uq
ď

1

1 ´ ηα
,

using that Kj ď 1 and P0K
jpAj,u|Xpjq, uq ě 1´ ηα. By standard arguments and the above

two statements, it follows that
ż

dK̃jpy|x, uq

dP0K̃jpy|Xpjq, uq
dPn

π pxq ď 1Aj,upyq

ż

dKjpy|x, uq

dP0Kjpy|Xpjq, uq
dPn

π pxq `
1

1 ´ ηα

“ 1Aj,upyqLj
π,upyq ` p1 ´ ηαq´1.

Applying the definition of the event Aj,u and using that α ď 1, we obtain that for cα ą 0

small enough L̃j
π,u ´1 ď α´14m1{2 ` p1 ´ ηαq´1 ´1 ď 5m1{2α´1. Using that L̃j

π,u ´1 ě ´1,
we obtain (57), proving statement (b).

For the third statement, we will aim to apply Lemma 17. By the construction of K̃j

and the triangle inequality,

}P0K
jp¨|Xpjq, uq ´ P0K̃

jp¨|Xpjq, uq}TV ď 2
›

›

›
P0K

jp¨ XAc
j,u|Xpjq, uq

›

›

›

TV
.

The latter is bounded by α{p2mq (see (59)). Similarly,

}PπK
jp¨|Xpjq, uq ´ PπK̃

jp¨|Xpjqq}TV ď 2PπK
jpAc

j,u|Xpjq, uq.

By Lemma 25,

PπK
jpAc

j,u|Xpjq, uq ď

´

1 ` c1{4
α m´1{2

¯

P0K
jpAc

j |X
pjq, uq ` δ `m´3{2cα.

Again using (59) and the fact that δ ď cα{m yield that the latter is also bounded by α{4m
for cα ą 0 small enough. The condition and small enough choice of cα ą 0 yields that the
conditions of Lemma 17 and the conclusion of (c) follows. Finally, if Kj satisfies (53), the
last statement follows directly by the construction of K̃j .

We finish the section by providing the two technical lemmas mentioned in the earlier
proofs above. We omit the presence of the shared randomness U in the statement of the
lemmas, as it is of no consequence to the arguments below.

Lemma 16. Let K be a Markov kernel from pX ,X qn to pY,Y q satisfying an pϵ, δq-DP
constraint (i.e. (??)) and define for a A P Y and a probability measure µ on Y

K̃pB|xq :“ KpB XA|xq `KpAc|xqµpBq, for x P X , B P Y .

Then, K̃ is a Markov kernel pX ,X q to pY,Y q satisfying an pϵ, 2δq-DP constraint.

Proof First, K̃ can be seen to be a Markov kernel, as the necessary measurability assump-
tions hold by construction and K̃pY|xq “ KpY X A|xq ` KpAc|xq “ 1, where it is used
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that µ is a probability measure. Furthermore, for arbitrary B and x, x1 P X n such that
dHpx, x1q ď 1, it holds that

K̃pB|xq ď eϵKpB XA|x1q ` δ ` eϵKpAc|x1qµpBq ` µpBqδ ďď eϵK̃pB|x1q ` 2δ.

Lemma 17. Let α P p0, 1q be given. Let pT, tKjumj“1q be a distributed testing protocol and
suppose that there exist kernels tK̃jumj“1 such that for j “ 1, . . . ,m,

}PIpKjp¨|Xpjq, uq ´ K̃jp¨|Xpjq, uqq}TV ď
α

2m
PU -a.s,

where µ P tδ0, πu. Then,

PUPm
0 KpT pY q|X,Uq ` PU

ż

Pm
f Kp1 ´ T pY q|X,Uqqdπpfq ě

PUPm
0 K̃pT pY q|X,Uq ` PU

ż

Pm
f K̃p1 ´ T pY q|X,Uqqdπpfq ´ α,

for the same collection of distributions.

Proof We omit the dependence of u in the proof, as it is of no consequence to the arguments
below. We have that

Pm
0 KpT pY q “ 1|Xq `

ż

Pm
f KpT pY q “ 0|Xqdπpfq ě

Pm
0 K̃pT pY q “ 1|Xq `

ż

Pm
f K̃pT pY q “ 0|Xqdπpfq´}Pm

0 pKp¨|Xq ´ K̃p¨|Xqq}TV

´ }Pm
π pKp¨|Xq ´ K̃p¨|Xqq}TV.

Standard arguments (see e.g. Lemma 13 in Vuursteen (2024)) yield

}Pm
π pKp¨|Xq ´ K̃p¨|Xqq}TV ď

m
ÿ

j“1

}PπpKjp¨|Xpjqq ´ K̃jp¨|Xpjqqq}TV.

By applying the same lemma to }Pm
0 pKp¨|Xq´K̃p¨|Xqq}TV, combined with what is assumed

in this lemma, we obtain the result.

A.3 Step 3: Bounding the Chi-square divergence using the Brascamp-Lieb
inequality

We proceed with lower bounding (58), where in a slight abuse of notation, we shall denote
K̆j by Kj for the remainder of the section.
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To lower bound the Bayes risk, in light of the Neyman-Pearson lemma, it should suffice
to show that LY |U“u

π pY q is close to 1 with high probability. This is made precise below by
showing that the right-hand side of (58) is further bounded from below by

1 ´

˜

d

p1{2q

ż

EY |U“u
0

´

LY |U“u
π pY q ´ 1

¯2
dPU puq ´ α{2

¸

. (60)

To see this, note that any T : Ym Ñ t0, 1u, we can write AT “ T´1pt0uq and note that

Pm
0 K̃uT pY q ` Pm

π K̃up1 ´ T pY qq “ 1 ´

´

Pm
0 K̃u pY P AT q ´ Pm

π K̃u pY P AT q

¯

.

We obtain that
ż
ˆ

Pm
0 K̃uT `

ż

Pm
f K̃up1 ´ T qdπ ˝ Ψ´1pfq

˙

dPU puq ě 1 ´ sup
A

|

ż

Pm
0 K̃upAq ´ Pm

π K̃upAqdPU puq|.

We find by Jensen’s inequality that }PY
0 ´PY

π }TV ď
ş

}PY |U“u
0 ´PY |U“u

π }TVdPU puq. Combin-
ing the above with Pinsker’s second inequality a standard bound for the Kullback-Leibler
divergence (see Lemma 2.7 of Tsybakov (2009)), we obtain (60).

This brings us to a crucial part of the proof; the application of Lemma 10.1 in Szabó
et al. (2023), which we restate as Lemma 18 below. We first introduce some notation.

We note that for f P RdL , it holds that

dPΨf

dP0
pX

pjq

i q
d
“
dN

`

f, σ2IdL
˘

dN p0, σ2IdLq
“: L ji

f pX
pjq

i q,

where the equality in distribution is true under PX
0 .

Denote the “local” and “global” likelihoods of the data as L j
f pXpjqq “

śn
i“1L

ji
f pX

pjq

i q,
Lf pXq :“

śm
j“1L

j
f pXpjqq, and the mixture likelihoods as L j

π pXq “
ş

Lf pXpjqqdπpfq and
LπpXq “

ş

Lf pXqdπpfq.
In view of the Markov chain structure, the probability measure dPπpx, u, yq disintegrates

as dPY |pX,Uq“px,uqdPX
f pxqdPU puqdπpfq. Using this, EY |U“u

0

´

L
Y |U“u
π pY q

¯2
can be seen to

equal

EY |U“u
0 E0

„

LπpXq

ˇ

ˇ

ˇ

ˇ

Y, U “ u

ȷ2

“

ż

˜

ż

Lπpxq
dKp¨|x, uq

dPY |U“u
0

pyqdPX
0 pxq

¸2

dPY |U“u
0 pyq, (61)

where it is used that Kp¨|x, uq ! PY |U“u
0 p¨q, PpX,Uq

f -almost surely. Using Fubini’s theorem
(“decoupling” in X), we can write the above display as

ż

Lπpx1qLπpx2qqupx1, x2qdpPX
0 ˆ PX

0 qpx1, x2q, (62)

where
qupx1, x2q :“

ż

dKp¨|x1, uq

dPY |U“u
0

pyq
dKp¨|x2, uq

dPY |U“u
0

pyqdPY |U“u
0 pyq. (63)
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Since Kp¨|x, uq and PY |U“u
0 are product measures on Y “ Ym, we can write qupx1, x2q “

Πm
j“1q

j
upx1, x2q where

qjupx1, x2q “

ż

Kjpyj |xj1, uqKjpyj |xj2, uq

PY j |U“u
0 pyjq

dPY pjq|U“u
0 pyq. (64)

The map px1, x2q ÞÑ qupx1, x2q can be seen as capturing the dependence between the original
data X and a random variable X 1 with conditional distribution

X 1|X “ x „

ż

dPX|pY,Uq“py,uq
0 dPY |pX,Uq“px,uq, (65)

which is sometimes referred to as the “forward-backward channel”, stemming from the fact
that X Ñ Y Ñ X 1 forms a Markov chain. An easy computation using the law of total
expectation shows that the covariance of qupx1, x2qdpP0 ˆ P0qpx1, x2q,

ż
ˆ

x1
x2

˙

`

xJ
1 xJ

2

˘

qupx1, x2qdpP0 ˆ P0qpx1, x2q P R2mndLˆ2mndL , (66)

is equal to Σu :“ Diag
`

Σ11
u , . . . ,Σ

1n
u , . . . ,Σ

m1
u , . . . ,Σmn

u

˘

P R2mndLˆ2mndL for

Σji :“ σ2

˜

IdL Ξji
u

Ξji
u IdL

¸

,

with Ξji
u :“ EY pjq|U“u

0 E0

„

σ´1X
pjq

L;i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ

E0

„

σ´1X
pjq

L;i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷJ

. Define also

Ξj
u :“ EY pjq|U“u

0 E0

«

σ´1
n
ÿ

i“1

X
pjq

L;i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ff

E0

«

σ´1
n
ÿ

i“1

X
pjq

L;i

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ffJ

. (67)

We are now ready to state the lemma that forms the crux of our distributed testing lower
bound proof.

Lemma 18. Suppose that px1, x2q ÞÑ qupx1, x2q is bounded and that π is a centered Gaussian
distribution on Rd. Then,

ş

Lπpx1qLπpx2qqupx1, x2qdpPX
0 ˆ PX

0 qpx1, x2q
m
Π
j“1

ş

L j
π pxj1qL j

π pxj2qqjupxj1, x
j
2qdpPXpjq

0 ˆ PXpjq

0 qpxj1, x
j
2q

(68)

is bounded above by
ş

Lπpx1qLπpx2qdNp0,Σqpx1, x2q
m
Π
j“1

ş

L j
π pxj1qL j

π pxj2qdNp0,Σjqpxj1, x
j
2q

.

The lemma has the following interpretation: the ratio of the second moment of the Bayes
factor of the “global Bayesian hypothesis test” that of the product of second moments of
the “local Bayes factors”, is maximized over the class of forward-backward channel with
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covariance Σ when the forward-backward channel is Gaussian. For a proof, we refer to
Lemma 10.1 in Szabó et al. (2023), which uses that the prior π is Gaussian, exploiting the
conjugacy between the prior and the model which enables the use of techniques from Lieb
(1990).

The main consequence of the above lemma is analytic expressions, which can be used
to upper bound the chi-square divergence in (60) which is the content of Lemma 19 below.

Lemma 19. Define
Aπ

u :“

ż

ef
J
řm

j“1 Ξ
j
ugdpπ ˆ πqpf, gq (69)

and
Bπ
u :“

m
Π
j“1

EY pjq|U“u
0 E0

„

Lπ

´

Xpjq
¯

ˇ

ˇ

ˇ

ˇ

Y pjq, U “ u

ȷ2

. (70)

If px1, x2q ÞÑ qupx1, x2q is bounded and if π is a centered Gaussian distribution on RdL, it
holds that

EY |U“u
0

´

LY |U“u
π pY q

¯2
ď Aπ

u ¨ Bπ
u.

The above lemma describes how the variance of the Bayes factor given U is bounded
by two factors. One factor depends on the Fisher information of the transcript’s likelihood
at f “ 0 given U “ u; Ξu :“

řm
j“1 Ξ

j
u. In this sense, Aπ

u captures how well the transcript
allows for “estimation” of f . The second factor can be seen as the m-fold product of the
local Bayes factors, capturing essentially the power of combining the locally most powerful
test statistics; the likelihood ratios.
Proof [Proof of Lemma 19] We start by noting that Bπ

u is equal to the denominator of (68).
By Lemma 18,

EY |U“u
0

´

LY |U“u
π pY q

¯2
ď

ş

Lπpx1qLπpx2qdNp0,Σqpx1, x2q
m
Π
j“1

ş

L j
π pxj1qL j

π pxj2qdNp0,Σjqpxj1, x
j
2q

¨ Bπ
u.

By the block diagonal matrix structure of Σ, the denominator in the first factor of the
right-hand side equals

m
Π
j“1

ż

e
1
2p}

?
Σjpf,gq}22´}pf,gq}22qdpπ ˆ πq pf, gq “

m
Π
j“1

ż

ef
JΞj

ugdpπ ˆ πqpf, gq

ě
m
Π
j“1

e
ş

fJΞj
ug dpπˆπqpf,gq “ 1.

Through the expression for the moment generating function of the Gaussian, the numerator
of Aπ

u is equal to
ş

ef
J
řm

j“1 Ξ
j
ugdpπ ˆ πqpf, gq.

A.4 Step 4: Adversarially choosing the prior based on shared or local
randomness

Suppose that for some constant c ą 0,

ϱ2}
a

Γ̄
J

Ξu

a

Γ̄} ď c. (71)
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If Γ̄ P RdLˆdL is symmetric, idempotent with rank proportional to dL and π “ Np0, ϱ2Γ̄q,
standard results for the Gaussian chaos, e.g. Lemma 6.2.2 in Vershynin (2018) combined
with (71) and the fact that }

?
Γ̄} ď 1, yield that

Aπ
u ď exp

ˆ

Cσ´2ϱ4Tr
ˆ

p
a

Γ̄
J

Ξu

a

Γ̄q2
˙˙

,

for a constant C ą 0 depending only on c. As a final step of the testing risk lower bound
technique, we use essentially a geometric argument to sharpen this bound in case the dis-
tributed protocol does not enjoy shared randomness. The dL ˆ dL matrix Ξu :“

řm
j“1 Ξ

j
u

geometrically captures how well Y allows to “reconstruct” the compressed sample X. When
U is degenerate, Ξu is “known” to the prior, and Γ̄ can be chosen to exploit “direction” in
which Ξu contains the least information. The lemma below makes this notion precise. For
a proof, we refer to Szabó et al. (2023), Section 9.

Lemma 20. Let α P p0, 1q and suppose that the map px1, x2q ÞÑ qupx1, x2q defined in (63)
is bounded for all distributed testing protocols in T . Let π “ Np0, ϱ2Γ̄q, with ϱ :“ ρ

c
1{4
α d

1{2
L

and Γ̄ P RdLˆdL is symmetric, idempotent with rank proportional to dL. Assume that ρ is
such that ϱ2}Ξu} ď c PU -a.s. for some constant c ą 0. Then, (44) holds for shared and
local randomness protocols respectively.

A.5 Step 5: Capturing the cost of privacy in trace of Ξu and the local Bayes
factors

The cost of privacy is captured through bounds on Aπ
u and Bπ

u. These bounds specifically
use the fact that the Markov kernels that underlie these quantities are pϵ, 6δq-differentially
private.

We start with the bound on Aπ
u, for which we proceed by a data processing argument

for the matrix Ξu under the pϵ, 6δq-DP constraint. This comes in the guise of Lemma 21
below. Its proof is deferred to the end of the section.

Lemma 21. Let 0 ă ϵ ď 1 and let Y pjq be a transcript generated by an pϵ, δq-DP constraint
distributed protocol, with 0 ă ϵ ď 1 and 0 ď δ ď

´´

ndL
´1 ^ n1{2dL

´1{2
¯

ϵ2
¯1`ω

for some

ω ą 0. The matrix Ξj
u as defined in (67) satisfies Tr

´

Ξj
u

¯

ď pCn2ϵ2q ^ pndLq for a fixed
constant C ą 0. Furthermore, it holds that Ξj

u ď nIdL.

The lemma implies in particular that }Ξj
u} ď pCn2ϵ2q ^ n, as Ξj

u is symmetric and
positive definite. Combining this with (51) and the triangle inequality, we obtain

ϱ2}Ξu} ď ϱ2
m
ÿ

j“1

}Ξj
u} ď

m
`

pCn2ϵ2q ^ n
˘

ρ2

σ2
?
cαdL

ď C
?
cα. (72)

Similarly, (50) yields

2ρ2
?
cαd2L

Tr
`

Ξj
u

˘

ď
m
`

pCn2ϵ2q ^ pndLq
˘

ρ2

σ2
?
cαd2L

ď C
?
cα{

a

dL. (73)
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The last two displays together finish the verification of the conditions of Lemma 20. The
above data processing inequalities for Ξj

u and bounds on ρ2 also yield a bound on Aπ
u as

defined in Lemma 20. In case of shared randomness protocols, using (??), (72), Lemma 21
and (51), we obtain Aπ

u ď exp
`

C2cα
˘

.
In case of local randomness protocols, combining (??) with (73) and (50) yields the

above bound on Aπ
u.

Next, we turn to Bπ
u. The first bound, given in Lemma 22, does not use privacy at

all. This bound is only tight whenever ϵ Á 1{
?
n (as a bound on Bπ

u), in which case it
corresponds to the regime where majority voting bares no privacy cost. The proof can be
found in Section 9 Step 2 of Szabó et al. (2023).

Lemma 22. Consider Bπ
u as in (70) with π “ Np0, ρ2c

´1{2
α d´1

L Γ̄q with Γ̄ idempotent. It
holds that

Bπ
u ď exp

ˆ

C
mn2ρ4

cασ2dL

˙

.

Whenever ϵ ď n´1{2, a much more involved data processing argument is needed than
the one above. In the argument that follows, we will use the bound on Lj

π,u obtained
through Lemma 15 in Step 2. The data processing argument leads to the bound of Lemma
23 below. Its proof is based on coupling arguments, where the two different couplings
constructed result in the different rates observed in the condition of the theorem.

Lemma 23. Let π “ Np0, d´1
L ρ2Γ̄q, with Γ̄ P RdLˆdL a symmetric idempotent matrix,

ρ2 ď σ2cαpd
1{2
L {p

?
mn

3
2 ϵq _ 1{pmn2ϵ2qq

and tKjumj“1 correspond to a pϵ, δq-DP distributed protocol with transcripts Y pjq such that
0 ă ϵ ď 1, δ À cαpm´1 ^ ϵq and |Lj

π,upyq ´ 1| ď 5m1{2

α P0K
jp¨|Xpjq, uq-a.s..

Then, there exists a universal constant C ą 0 such that Bπ
u ď eC

?
cα.

Combining the lemma above with the bound Bπ
u ď exppCmn2ρ4

σ2dL
q (which follows from

Lemma 22), we obtain that Bπ
u ď eC

?
cα whenever ρ satisfies (50) or (51). Combining this

with the bounds on Aπ
u derived earlier and considering (60) lower bounds the testing risk,

we obtain that RpHs,R
ρ , T q ą 1 ´ α for cα ą 0 small enough, from which the result of

Theorem 12 follows. To complete the proof, we provide the proofs of Lemmas 21 and 23 in
the following subsection.

A.5.1 Proof of Lemma 23

Before providing the proof of Lemma 23, we first develop additional tools.
First off is the following general coupling lemma that will be used in the proof of Lemma

23. The lemma is in essence Lemma 6.1 in Karwa and Vadhan (2017), but its proof might
be easier to verify and is provided for completeness in Section C.3.

Lemma 24. Consider random variables X1, . . . , Xn
i.i.d.
„ P1 and X̃1, . . . , X̃n

i.i.d.
„ P2 defined

on the same space. Write X “ pX1, . . . , Xnq, X̃ “ pX̃1, . . . , X̃nq and let K be a Markov ker-
nel between the sample space of X (equivalently X̃) and an arbitrary target space, satisfying
an pϵ, δq-DP constraint with ϵ ď 1.
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Suppose that there exists a coupling P of pX̃,Xq such that PX̃ “ Pn
1 , PX “ Pn

2 and

Di :“ 1

!

X̃i ‰ Xi

)

„ Ber ppq , i.i.d. for i “ 1, . . . , n, p P r0, 1s

under P. Then, it holds that

Pn
1 K

´

A|X̃
¯

ď e4ϵnpPn
2 K pA|Xq ` 2δe4npϵ. (74)

Next, we construct the coupling that will be used in the proof of Lemma 23, in con-
junction with Lemma 24 above. The couplings use similar ideas to the one constructed in
Narayanan (2022a). A proof is provided in Section C.2.

Lemma 25. Let Kj satisfy an pϵ, δq-DP constraint for 0 ă ϵ ď 1.
Consider π “ Np0, c

1{2
α d´1

L ρ2Γ̄q, with ρ2 satisfying (50) or (51), with ϵ ď 1{
?
n and

δ ď cαpm´1 ^ ϵq.
For all measurable sets A it holds that

PπK
j
´

A|Xpjq, u
¯

ď

´

1 ` c1{4
α m´1{2

¯

P0K
j
´

A|Xpjq, u
¯

` 2δ `
cα

m3{2
(75)

and
PπK

j
´

A|Xpjq, u
¯

ě

´

1 ´ c1{4
α m´1{2

¯

P0K
j
´

A|Xpjq, u
¯

´ 2δ ´
cα

m3{2
(76)

for all cα ą 0 small enough.

With the above two lemmas in hand, we are ready to prove Lemma 23.
Proof of Lemma 23: Write Lj

π,upY pjqq ” Lj
π and let Vπ ” V j

π :“ Lj
π ´ 1. Using that

E0LπpX̃pjqq “ 1 and that by the law of total probability

EY pjq|U“u
0 E0rLπpX̃pjqq | |Y pjq, U “ us “ 1,

it follows that EY pjq|U“u
0 Vπ “ 0 and

EY pjq|U“u
0

`

Lj
π

˘2
“ 1 ` EY pjq|U“u

0 Lj
πpLj

π ´ 1q “ 1 ` EY pjq|U“u
π Vπ.

Define V `
π :“ 0_Vπ and let V ´

π “ ´p0^Vπq, which are both nonnegative random variables,
with Vπ “ V `

π ´ V ´
π . We have

EY pjq|U“u
π V `

π “

ż T

0
PY pjq|U“u
π

`

V `
π ě t

˘

dt`

ż 8

T
PY pjq|U“u
π

`

V `
π ě t

˘

dt. (77)

Taking T “ 5m1{2

α , the second term is equal to zero as V `
π ď |Lj

π,upyq ´ 1| ď 5m1{2α´1,
P0K

jp¨|Xpjq, uq-a.s. and Pπ „ P0 (which in turn implies PY pjq|U“u
π „ PY pjq|U“u

0 ). The
integrand of the first term equals Pn

πK
jptVπ ě tu|Xpjq, uq. By Lemma 25, it holds that

PπK
jptVπ ě tu|Xpjq, uq ď p1 ` c1{4

α m´1{2qP0K
jptVπ ě tu|Xpjq, uq ` δ `

cα

m3{2
.
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It follows that (77) is bounded from above by
´

1 ` c1{4
α m´1{2

¯

ż T

0
PY pjq|U“u
0

`

V `
π ě t

˘

dt` Tδ ` T
cα

m3{2
ď

´

1 ` c1{4
α m´1{2

¯

EY pjq|U“u
0 V `

π ` Tδ ` T
cα

m3{2
.

Similarly, we have

EY pjq|U“u
π V ´

π “

ż T

0
PY pjq|U“u
π

`

V ´
π ě t

˘

dt`

ż 8

T
PY pjq|U“u
π

`

V ´
π ě t

˘

dt. (78)

Choosing T ě 1 here results in the second term being zero, as Lj
π ě 0. Applying Lemma

25, the right-hand side of the above display is further bounded from below by
´

1 ´ c1{4
α m´1{2

¯

ż T

0
PY pjq|U“u
0

`

V ´
π ě t

˘

dt´ Tδ ´ T
cα

m3{2
ě

´

1 ´ c1{4
α m´1{2

¯

EY pjq|U“u
0 V ´

π ´ Tδ ´ T
cα

m3{2
,

where the inequality uses V ´
π ď 1.

Combining the above bounds with the fact that V `
π ` V ´

π “ |Vπ| and EY pjq|U“u
0 Vπ “ 0

yields that

EY pjq|U“u
π Vπ “ EY pjq|U“u

π V `
π ´ EY pjq|U“u

π V ´
π ď

c
1{4
α EY pjq|U“u

0 |Vπ|
?
m

` 2Tδ ` 2T
cα

m3{2
.

Plugging in the choice of T “ 5m1{2{α and using that δ ď cαm
´3{2, we obtain

EY pjq|U“u
π Vπ ď m´1{2c1{4

α EY pjq|U“u
0 |Vπ| ` 20cαpmαq´1.

If EY pjq|U“u
0 |Vπ| À m´1{2, we obtain EY pjq|U“u

π Vπ À m´1pc
1{4
α ` cα{αq. Assume next that

EY pjq|U“u
0 |Vπ| Á m´1{2. Then, EY pjq|U“u

π Vπ À m´1{2c
1{4
α EY pjq|U“u

0 |Vπ|.
By the fact that EY pjq|U“u

π Vπ “ EY pjq|U“u
0 V 2

π and using that by Cauchy-Schwarz, EY pjq|U“u
0 |Vπ|

is bounded above by
b

EY pjq|U“u
0 V 2

π . Hence,
b

EY pjq|U“u
0 V 2

π À C 1c
1{4
α m´1{2, for a universal

constant C 1 ą 0 depending only on α. In both cases, we obtain that

Bπ
u “

m
Π
j“1

´

1 ` EY pjq|U“u
π Vπ

¯

“
m
Π
j“1

´

1 ` EY pjq|U“u
0 V 2

π

¯

ď eC
?
cα

for universal constant C ą 0, finishing the proof of the lemma.

Appendix B. Proofs related to the optimal testing strategies
The proofs concerning the three Sections 3.1, 3.2 and 3.3 are given in this section, divided
across the subsections B.1, B.2 and B.3 respectively.

We recall the notations dL “
řL

l“1 2
l for L P N, fL “ ΠLf for f P ℓ2pNq and X

pjq

L “

n´1
řn

i“1X
pjq

L;i for j “ 1, . . . ,m.
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B.1 Procedure I
We briefly recall the testing procedure outlined in Section 3.1. Let τ ą 0, L P N, dL :“
řL

l“1 2
l and V

pjq

L;τ „ χ2
dL

independent of Xpjq the random map from pRdLqn to R defined by

S̃
pjq

L;τ pxq “

„

1
?
dL

´

›

›σ´1?
nx

›

›

2

2
´ V

pjq

L;τ

¯

ȷτ

´τ

. (79)

Define furthermore

Dτ “ pn
a

dLq´1κ̃α logpNq

ˆ

b

n
a

dLτ _
a

ndL

˙

. (80)

Set Kτ “ r2τD´1
τ s and consider the set CL;τ “ AL;τ X BL;τ , where

AL;τ “
␣

pxiq P pR8qn :
ˇ

ˇ}σ´1ř

iPJ ΠLxi}
2
2 ´ kdL

ˇ

ˇ ď 1
8kDτn

?
dL @J Ă rns, |J | “ k ď Kτ

(

,

(81)

BL;τ “

"

pxiq P pR8qn :
ˇ

ˇxσ´1ΠLxi, σ
´1ř

k‰iΠLxky
ˇ

ˇ ď
1

8
kDτn

a

dL, @i “ 1, . . . , n

*

.

Lemma 26 below shows that Xpjq concentrates on CL;τ under the null hypothesis. We defer
its proof to Section C.1.

Lemma 26. Whenever σ´2n}ΠLf}22d
´1{2
L ď τ{2, τ ď nR2{

?
dL and κ̃α is taken large

enough, it holds that
Pf

´

Xpjq R CL;τ
¯

ď
α

2N
.

In Lemma 27, it is shown that x ÞÑ Spjqpxq is Dτ -Lipschitz with respect to the Hamming
distance on CL;τ , with Dτ as defined in (80).

Lemma 27. The map x ÞÑ S
pjq
τ pxq defined in (13) is Dτ -Lipschitz with respect to pRdqn-

Hamming distance on CL;τ .

Proof Consider x “ pxiqiPrns, x̆ “ px̆qiPrns P CL;τ with k :“ dHpx, x̆q. If k ą r2τD´1
τ s,

we have |S
pjq
τ pxq ´ S

pjq
τ px̆q| ď 2τ ď Dτk. If k ď r2τD´1

τ s, let J Ă rns denote the indexes
of columns in which x and x̆ differ. Define the sum of the elements that x and x̆ have in
common as v “ σ´1

ř

iPrnszJ xi, such that σ´1
n
ř

i“1
xi “ v ` w and σ´1

n
ř

i“1
x̆i “ v ` w̆. We

have

Spjq
τ pxq ´ Spjq

τ px̆q “
n

?
dL

´

›

›n´1pv ` wq
›

›

2
´ n´1V pjq

¯

´
n

?
dL

´

›

›n´1pv ` w̆q
›

›

2
´ n´1V pjq

¯

“
1

n
?
dL

´

2 xw, vy ´ 2 xw̆, vy ` }w}
2
2 ´ }w̆}

2
2

¯

.

The last two terms are bounded by kDτ {4 since x, x̆ P AL;τ . The first two terms equal

2

n
?
dL

´

xw, v ` wy ´ xw̆, v ` w̆y ` }w̆}
2
2 ´ }w}

2
2

¯

,
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where the last two terms are bounded by kDτ {2. It holds that

xw, v ` wy ´ xw̆, v ` w̆y “ σ´2
ÿ

iPJ
pxxi,

ÿ

iPrnszJ
xiy ´ xx̆i,

ÿ

iPrnszJ
x̆iy ` }xi}

2
2 ´ }x̆i}

2
2q,

which is bounded by kDτ {4 for x P AL;τ X BL;τ . Putting it all together and by symmetry
of the argument, we obtain that

ˇ

ˇ

ˇ
S

pjq
τ pxq ´ S

pjq
τ px̆q

ˇ

ˇ

ˇ
ď Dτk.

Lemma 28 below shows that there exists a measurable function S
pjq

L;τ : RdL Ñ R, Dτ -
Lipschitz with respect to the Hamming distance, such that Spjq

L;τ pX
pjq

L q “ S̃
pjq

L;τ pX
pjq

L q when-
ever Xpjq P CL;τ . That is, letting ΨL : R8 Ñ RdL be the coordinate projection for the
first dL coordinates, the lemma allows a Lipschitz extension of the test statistic defined in
(79) on ΨLCL;τ to all of RdL . The proof follows essentially the construction of McShane
McShane (1934) for obtaining a Lipschitz extension with respect to the Hamming distance,
but our lemma verifies in addition the Borel-measurability of the resulting map.

We follow a construction that is in essence that of McShane McShane (1934), whilst
also verifying that such an extension is Borel measurable. A proof is given in Section C.5.

Lemma 28. Let C Ă pRdLqn and S : C Ñ R be a (Borel) measurable D-Lipschitz map with
respect to the Hamming distance on pRdLqn. Then, there exists a map S̃ : pRdLqn Ñ R
measurable with respect to the Borel sigma algebra such that it is D-Lipschitz with respect
to the Hamming distance on pRdLqn and S̃ “ S on C.

B.1.1 Proof of Lemma 8

Consider the transcript of Section 3.1, which we recall here as

Y
pjq

L;τ “ γτ S̆
pjq

L;τ pXpjqq `W pjq
τ , with γτ :“

ϵ

Dτ

a

2c logp2{δq
, (82)

c ą 0, W pjq
τ „ Np0, 1q independent for j “ 1, . . . ,m and τ ą 0. These transcripts are

pϵ{c, δq-differentially private for any ϵ ą 0 (see e.g. Dwork et al. (2014a)). Define the test

φτ :“ 1

#

1
?
m

m
ÿ

j“1

Y
pjq

L;τ ě pγτ _ 1qκ

+

. (83)

We will prove the following more general version of Lemma 8.

Lemma 29. Consider the test φτ as defined by (16). Whenever τ{4 ď
n}fL}22
σ2

?
dL

ď τ{2 and

}fL}22 ě Cακσ
2
a

c logp1{δq logpNq

ˆ
?
dL

?
N

?
np

?
nϵ^ 1q

˙

ł

ˆ

1

Nnϵ2

˙

, (84)

for Cα ą 0 large enough, it holds that Pf p1 ´ φτ q ď α.
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Proof On the event that Xpjq P Cτ for all j P rms, we have that

m
ÿ

j“1

Y pjq
τ “

m
ÿ

j“1

´

γτ S̆τ pXpjqq `W pjq
τ

¯

“

m
ÿ

j“1

´

γτSτ pXpjqq `W pjq
τ

¯

. (85)

Consequently, Pf p1 ´ φτ q is bounded above by

Pf

˜

1
?
m

m
ÿ

j“1

´

γτSτ pXpjqq `W pjq
τ

¯

ě pγτ _ 1qκ

¸

` Pf

´

Dj : Xpjq R Cτ
¯

. (86)

By Lemma 26 and a union bound, the second term is bounded above by α{2.
Under Pf , it holds that

n
?
dL

˜

›

›

›

›

σ´1X
pjq

L

›

›

›

›

2

2

´
V pjq

n

¸

d
“
nσ´2}fL}22?

dL
` 2

?
n

?
dL

xZ, σ´1fy `
}Z}22 ´ V pjq

?
dL

, (87)

where Z „ Np0, IdLq. By assumption, n}fL}22?
dLσ2 ď τ{2, Varp

?
n

?
dL

xZ, σ´1fLyq “ nσ´2}fL}22{dL ď

τ{2 and p}Z}22 ´ V pjqq{
?
dL tends to a Gaussian with variance 4 for large dL. The second

and third term in (87) are symmetric in distribution about 0, have uniformly bounded den-
sities (since the Chi-square and normal densities are bounded, and the third term tends
weakly to a Gaussian in dL) and σ´2d

´1{2
L n}fL}22 ď τ{2, which means that the conditions

of Lemma 36 are satisfied. Applying said lemma (with µ “ σ´2d
´1{2
L n}fL}22), we get that

there exists a uniform constant c ą 0 such that

Ef
1

?
m

m
ÿ

j“1

´

γτSτ pXpjqq `W pjq
τ

¯

ě c

?
mn}fL}22γτ

σ2
?
dL

.

Under Pf , by independence of the data and the Gaussian noise,

Varf

˜

1
?
m

m
ÿ

j“1

γτSτ pXpjqq `W pjq
τ

¸

“ 1 ` Varf
´

γτSτ pXp1qq

¯

.

Since

Ef
n

?
dL

˜

›

›

›
σ´1Xpjq

L

›

›

›

2

2
´
V pjq

n

¸

“
nσ´2}fL}22?

dL
ď τ{2,

the fact that clipping reduces the variance yields

Varf
´

γτSτ pXp1qq

¯

ď γ2τVarf

˜

n
?
dL

˜

›

›

›
σ´1Xpjq

›

›

›

2

2
´
V pjq

n

¸¸

ď γ2τ

ˆ

4n}fL}22
σ2dL

` 4

˙

.

Assume now that for all Cα ą 0 large enough,

pγτ _ 1qκ ď c
1

2

?
mnσ´2}fL}22γτ {

a

dL, (88)
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which is a claim we shall prove later on. Then, the first term in (86) is bounded above by

Pf

˜

1
?
m

m
ÿ

j“1

´

γτSτ pXpjqq `W pjq
τ ´ Ef pSτ pXpjqq `W pjq

τ q

¯

ă ´c

?
mnσ´2}fL}22γτ

2
?
dL

¸

, (89)

which, by Chebyshev’s inequality is bounded by
ˆ?

mnσ´2}fL}22γτ?
dL

˙´2

`
`

mnσ´2}fL}22
˘´1

`

ˆ?
mnσ´2}fL}22?

dL

˙´2

.

For f satisfying (18), the last two terms are easily seen to be smaller than α{6 for a
large enough to choice for Cα. To see that this is also true for the first term, recall that
γτ :“ ϵ

Dτ

?
2c logp2{δq

, with Dτ “
κ̃α logpNqp

?
n

?
dLτ_

?
ndLq

n
?
dL

, which yields that the square root
of the first term equals

?
mnσ´2}fL}22ϵ?

dLDτ

a

2c logp2{δq
“

?
mn2σ´2}fL}22ϵ

κ̃α logpNqp
a

n
?
dLτ _

?
ndLq

a

2c logp2{δq
.

When the maximum is taken in
?
ndL, (84) leads to the latter being larger than Cα. When

the maximum is taken in
a

n
?
dLτ , using that 4σ´2n}f}22{

?
dL ě τ yields that the above

display is bounded from below by
?
mσ´1n}fL}2ϵ

κ̃α

b

logpNq
a

2c logp2{δq

ě Cα.

In either case, it follows that the Type II error (i.e. (89)) can be made arbitrarily small per
large enough choice of Cα ą 0.

We return to the claim of (88). When γτ ě 1, the claim is satisfied whenever κ À

logpNq
a

c logp1{δq for Cα ą 0 large enough. When γτ ă 1, it is required that
?
mσ´2nγτ }fL}22ϵ?

dL
“

?
mσ´2n2}fL}22ϵ

κ̃α logpNq
a

2c logp2{δqp
a

n
?
dLτ _

?
ndLq

Á κ,

which is satisfied whenever (84) holds.

B.1.2 Proof of Lemma 9

We start by recalling the notation, before proving a slightly more general result. Consider
for a set S Ă N the test

TI :“ max
LPS, τPTL

1

#

1
?
m

m
ÿ

j“1

Y
pjq

L;τ ě κα

˜

ϵ

Dτ

a

2|TL||S| logp2{δq
_ 1

¸

a

log |TL||S|

+

, (90)

where
TL :“

"

2´k`2 nR2

?
2L`1

: k “ 1, . . . , r1 ` 2 log2pNR{σqs

*

, (91)
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and Y
pjq

L “ tY
pjq

L;τ : τ P TLu is generated according to (82) with γτ “ ϵ

Dτ

?
2|TL||S| logp2{δq

. By
the same reasoning as in the proof of Lemma 29, the test TI is pϵ, δq-differentially private.
We will prove the following more general version of Lemma 9.

Lemma 30. For all M ą 0, α P p0, 1q there exists κα ą 0 and Cα ą 0 such that the test
defined by (90) satisfies P0TI ď α. Furthermore, for any f P Bs,R

p,q such that for some L˚ P C
it holds that

}fL˚}22 ě CαMN

˜ ?
2L˚

?
mnp

?
nϵ^ 1q

¸

ł

ˆ

1

mn2ϵ2

˙

, (92)

where MN Á logpNq
a

2 log logpNR{σq logpNR{σq|S| logp2{δq, we also have that Pf p1´TIq ď

α,where Cα ą 0 depends only on α.

Proof We start by proving that the level of the test is controlled. Using a union bound
and writing r “ pγτ _ 1q

a

log |TL||S|, we have that

P0TI “ P0

˜

max
LPS, τPTL

1

r
?
m

m
ÿ

j“1

rγLS̆
pjq

L;τ pXpjqq `W pjq
τ s ě κα

¸

(93)

ď P0

˜

max
LPS, τPTL

1

r
?
m

m
ÿ

j“1

rγLS̃
pjq

L;τ pXpjqq `W pjq
τ s ě κα

¸

` P0

´

Dpj, L, τq : Xpjq R CL;τ
¯

where it is used that the Lipschitz extension S̆pjq

L;τ of S̃pjq

L;τ equals the latter function on CL;τ .
By Lemma 26 and a union bound, the second probability on the right-hand side is bounded
above by αm|S||TL|{p2Nq, for a large enough choice of κ̃α ą 0.

Considering the first probability on the right-hand side of the inequality displayed above,

we first note that by Lemma 35, S̃pjq

L;τ pXpjqq “

«

1?
dL

˜

›

›

›

›

?
nX

pjq

L

›

›

›

›

2

2

´ V
pjq

L;τ

¸ffτ

´τ

is 1{p4
?
dLq-

sub-exponential, where the sub-exponentiality parameter follows from a straightforward
calculation (see e.g. Lemma Szabó et al. (2022)). Since W pjq

L;τ is independent Np0, 1q, it
follows by Bernstein’s inequality (see e.g. Theorem 2.8.1 in Vershynin (2018)) and a union
bound (e.g. Lemma 37) that the first probability in (93) is bounded as follows

P0

˜

max
LPS, τPTL

1

r
?
m

m
ÿ

j“1

rγLS̃
pjq

L;τ pXpjqq `W pjq
τ s ě κα

¸

ď
ÿ

LPS, τPTL

1

p|TL||S|qκ
2
α{2

,

which is less than α{2 for a large enough choice of κα ą 0. For f P Bs,R
p,q , Lemma 42 yields

that

}fL}2 ď }f}2 ď p1 ´ 2´sq1{q´1}f}s,p,q ď Rp1 ´ 2´sq1{q´1. (94)

Consequently, when f satisfies (18), it holds in particular that }fL}22 ě N´1. Thus, there
exists τ˚ P TL˚ such that the condition of Lemma 29 is satisfied, which now yields that
Pf p1 ´ TIq ď Pf p1 ´ φτ˚q ď α{2.
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B.2 Procedure II
Let ϵ, δ ą 0 and S Ă N be given. Consider for L P S, KL “ rnϵ2 ^ dLs and take sets
Jlk;L Ă rms such that |Jlk;L| “ rmKL

dL
s and each j P t1, . . . ,mu is in Jlk;L for KL different

indexes k P t1, . . . , dLu. For pl, kq P tl “ 1, . . . , L, k “ 1, . . . , 2lu “: IL, j P Jlk;L, generate
the transcripts according to

Y
pjq

L;lk|Xpjq “ γL

n
ÿ

i“1

σ´1
”

pX
pjq

L;iqlk

ıτ

´τ
`W

pjq

L;lk (95)

with γL “ ϵ

2
?

|S|KL logp2{δqτ
, τ “ κ̃α

a

logpNq and pW
pjq

L;lkqj,k i.i.d. standard Gaussian noise.

Define Y pjq

L :“ pY
pjq

L;lkqpl,kqPIL:jPJlk;L
and consider the transcripts Y pjq :“ pY

pjq

L qLPS , for
j “ 1, . . . ,m. The lemma below shows that Y pjq satisfies DP.

Lemma 31. The transcript defined Y pjq is pϵ, δq-differentially private.

Proof The rescaled and clipped sums have at most L2-sensitivity less than or equal to one:

sup
x̆PpRNqn:dHpx,x̆qď1

γL}p

n
ÿ

i“1

σ´1rpxiqlksτ´τ ´

n
ÿ

i“1

σ´1rpx̆iqlksτ´τ qpl,kqPIL,LPS}2 ď (96)

γL

d

ÿ

LPS

ÿ

pl,kqPIL

p sup
x̆PpRNqn:dHpx,x̆qď1

σ´1rpxiqlksτ´τ ´ σ´1rpx̆iqlksτ´τ q2 ď 1.

Consequently, the addition of the Gaussian noise assures that the transcript Y pjq is pϵ, δq-
differentially private (see e.g. Appendix A in Dwork et al. (2014a)).

Consider the test given by

TII :“ 1

$

&

%

max
LPS

1
?
dL

`

nγ2L _ 1
˘

ÿ

pl,kqPIL

»

–

¨

˝

1
a

|Jlk;L|

ÿ

jPJlk;L

Y
pjq

L;lk

˛

‚

2

´ νϵ,L

fi

fl ě κα log logpe_ |S|q

,

.

-

,

(97)
with νϵ,L :“ E0p|Jlk;L|´1{2

ř

jPJlk;L
Y

pjq

L;lkq2.

Lemma 32. For all M ą 0, α P p0, 1q there exists κα ą 0 and Cα ą 0 such that the test
defined by (97) satisfies P0TII ď α. Furthermore, for any f P Bs,R

p,q such that

}fL˚}22 ě Cα log logpe_ |S|q logpNq|S| logp1{δq

˜ ?
2p3{2qL˚

?
mnpnϵ2 ^ dL˚q

¸

ł

ˆ

1

mn2ϵ2

˙

, (98)

for some L˚ P S and Cα ą 0 large enough depending only on α, it holds that Pf p1´TIIq ď α.

Proof Under the null hypothesis, pX
pjq

L;iqlk are independent standard Gaussian for pl, kq P

IL, j P rms. Hence, by Lemma 35, the random variables Y pjq

L;lk are sub-gaussian, mean
zero and i.i.d. for k P rdLs, j P rms under the null hypothesis. More specifically, we have
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that 1?
|Jlk;L|

ř

jPJlk;L

Y
pjq

L;lk is p
?
nϵ

2
?

|S|KL logp2{δqτ
`1q-sub-gaussian, which in turn implies that the

random variables
1

?
dL

`

nγ2L _ 1
˘

ÿ

pl,kqPIL

rp
1

a

|Jlk;L|

ÿ

jPJlk;L

Y
pjq

L;lkq2 ´ νϵ,Ls

are C-sub-exponential for L P S, for some constant C ą 0 (see e.g. Section 2.7 in Vershynin
(2018)). It now follows from Lemma 37 that, for κα ą 0 large enough, P0TII ď α{2.

We now turn our attention to the Type II error. Assume now that, for L P S, f satisfies
(98). We have that

1´TII ď 1

$

&

%

1
?
dL

`

nγ2L _ 1
˘

ÿ

pl,kqPIL

»

–

¨

˝

1
a

|Jlk;L|

ÿ

jPJlk;L

Y
pjq

L;lk

˛

‚

2

´ νϵ,L

fi

fl ă κα log logpe_ |S|

,

.

-

q,

so it suffices to bound the Ef -expectation of the right-hand side.
Under Pf , pX

pjq

i qlk
d
“ flk ` σ´1Z

pjq

lk;i with i.i.d. Zpjq

lk;i „ Np0, 1q and is independent of the
centered i.i.d. W pjq

lk . Hence, the quantity

Vlk :“

¨

˝

1
a

|Jlk;L|

ÿ

jPJlk;L

«

γL

n
ÿ

i“1

σ´1pX
pjq

i qlk `W
pjq

lk

ff

˛

‚

2

is in distribution equal to
¨

˝γL

b

|Jlk;L|nσ´1flk ` γL
?
nη `

1
a

|Jlk;L|

ÿ

jPJlk;L

W
pjq

lk

˛

‚

2

under Pf , with η „ Np0, 1q independent. Therefore, a straightforward calculation shows
that Vlk has mean σ´1γ2Ln

2|Jlk;L|f2lk ` nγ2L ` EpW
pjq

lk q2 under Pf . Since EpZ
pjq

lk;iq
4 “ 3 and

EpW
pjq

lk q4 — 1, its variance equals

n2γ4LVar
`

η2
˘

` Varpp
1

a

|Jlk;L|

ÿ

jPJlk;L

W
pjq

lk q2q ` γ4L|Jlk;L|n3σ´2f2lkEη2 (99)

`γ2L|Jlk;L|n2σ´2f2lkEpW
pjq

l q2 ` nγ2LEpW
pjq

lk q2Eη2,

which is of the order

pγ4L|Jlk;L|n3σ´2f2lkq _ pγ2L|Jlk;L|n2σ´2f2lkq _ γ4Ln
2 _ 1. (100)

Since (94) holds, we have that for κ̃α large enough, max
ppl,kqPILq

|flk| ď τ{2/Consequently, an

application of the triangle inequality and a standard result for the maximum of Gaussian
vectors (see e.g. Lemma 16 in Vuursteen (2024)) yield that, for κ̃α ą 0 large enough,
we have with probability at least 1 ´ 2Ndle

´τ2{4 ě 1 ´ p1 ` Nq2´κ̃2
α{4 ě 1 ´ α{4 that
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max
iPrns,jPrms,pl,kqPIL

|pX
pjq

i qlk| ď τ . Consequently, under the null hypothesis (f “ 0), using that

|Jlk;L| “ |J1|, P0φ is bounded above by

P0

¨

˝

1
?
dL|J1dL;L|

ÿ

pl,kqPIL

rp
ÿ

jPJlk;L

pγLσ
´1pn ¯Xpjqqlk `W

pjq

lk qq2 ´ E0Vls ě κpγ2Ln_ 1q

˛

‚`
α

4
,

where we write κ “ κα log logpe_ |S|q. Chebyshev’s inequality yields that the first term on
the left-hand side is bounded α{4 for κα ą 0 large enough. In the case that max

ppl,kqPILq
|flk| ď

τ{2, we also have that Pf p1 ´ TIIq is bounded above by

Pr

¨

˝

1
?
dL|J1dL;L|

ÿ

pl,kqPIL

rp
ÿ

jPJlk;L

pγLpnflk `
?
nZq `W

pjq

lk qq2 ´ E0Vls ă κpγ2Ln_ 1q

˛

‚`
α

4
.

Subtracting d´1{2
L

ř

pl,kqPIL

γ2Ln
2|Jlk;L|σ´1f2lk on both sides, the first term is bounded above by

Pr
ˆ

1
?
dL|J1dL;L|

ÿ

pl,kqPIL

rp
ÿ

jPJlk;L

pγLpnσ´1flk `
?
nZq `W

pjq

l qq2 ´ EfVls ă ´
c

2

˙

with c “ σ´2 γ
2
Ln

2|Jlk;L|
?
dL

}fL}22, whenever

c ě 2κpγ2Ln_ 1q ðñ
2σ2κα log logpe_ |S|qpγ2Ln_ 1qdL

?
dL

γ2Ln
2mKL}fL}22

ď 1.

This follows from the assumed inequality (98) in the lemma’s statement.
An application of Chebyshev’s inequality, the variance bound computed in (100) and

plugging in |Jlk;L| — mKL{dL, γL “ ϵ

2
?

|S|KL logp2{δqτ
and τ “ κ̃α

a

logpNq now yields that
the probability in the second last display is of the order

p mϵ4

16KLdLΛ
2
N,δ,|S|

n3σ´2}fL}22q _ p mϵ2

4KLdLΛN,δ,|S|
n2σ´2}fL}22q _ p ϵ4

16KLΛ
2
N,δ,|S|

qn2 _ 1

acmϵ2n24KLdLΛN,δ,|S|

?
dLσ´2}fL}22q2

(101)

with ΛN,δ,|S| “ |S| logp2{δqκ̃2αlogpNq. For 1{
?
n À ϵ and nϵ2 À dL, this expression is of the

order
Λ2
N,δ,|S|

d3L
m2n4ϵ4}fL}42

, which is bounded by 1{C2
α when f satisfies (98). This can be seen to be

arbitrarily small whenever f is such that (98) by taking Cα ą 0 large enough. Lastly, when
nϵ2 Á dL, (107) is of the order κ2

αΛN,δ,|S|dL
m2n2}fL}42

, which also holds for Cα ą 0 large enough for f
satisfying (98). Consequently, we obtain that Pf p1 ´ T ϵ,δ

II q ď α{2 for Cα large enough, as
desired.
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B.3 Procedure III
Let S Ă N and consider for L P N, dL :“

řL
l“1 2

l, KL :“ rnϵ2 ^ 2Ls, IL :“ tpl, kq : l “

1, . . . , rlog2pKLqs, k “ 1, . . . , 2lu and j “ 1, . . . ,m the transcripts

Y
pjq

lk |pXpjq, ULq “ γL

n
ÿ

i“1

rpULX
pjq

L;iqlksτ´τ `W
pjq

lk , (102)

with γL “ ϵ

2
?

KL|S| logp2{δqτ
, τ “ κ̃α

a

logpNq, UL a dL-by-dL random rotation drawn

uniformly (i.e. from the Haar measure on the special orthogonal group in RdLˆdL) and
pW

pjq

lk qj,l,k i.i.d. centered standard Gaussian noise. By the same proof as Lemma 31, the
transcript is pϵ, δq-differentially private.

Lemma 33. The transcript defined in (102) is pϵ, δq-differentially private.

Based on these transcripts, one can compute

TIII “ 1

$

&

%

max
LPL

1
?
KLpnγ2L _ 1q

ÿ

pl,kqPIL

rp
1

?
m

m
ÿ

j“1

Y
pjq

lk q2 ´ νLs ě κα log logpe_ |S|q

,

.

-

, (103)

where νL “ nγ2L ` 1. The following lemma establishes the Type I and Type II error
probability guarantees for the above test.

Lemma 34. For all s,R ą 0, α P p0, 1q there exists κα, κ̃α ą 0 and Cα ą 0 such that the
test TIII defined by (103) satisfies P0TIII ď α. Furthermore, for any f P Bs,R

p,q such that

}fL˚}22 ě Cα log logpe_ |S|q logpNq|S| logp1{δq

˜

2L
˚

?
mnp

?
nϵ^ 1q

¸

ł

ˆ

1

mn2ϵ2

˙

, (104)

for some L˚ P S and Cα ą 0 large enough depending only on α, it holds that Pf p1´T ϵ,δ
II q ď α.

Proof Under Pf , pULX
pjq

L;iqlk
d
“ pULfqlk ` pULZ

pjq

L;iqlk, where Zpjq

L;i „ Np0, IdLq independent
of UL and the centered i.i.d. W

pjq

lk . Furthermore, ULZ
pjq

L;i
d
“ Z

pjq

L;i, pULZ
pjq

L;iqlk „ Np0, 1q,

still independent of pW
pjq

lk ql,k,j . We obtain that γL
n
ř

i“1
pULX

pjq

L;iqlk ` W
pjq

lk is in law equal to

γLnpULfLqlk ` γL
?
nη `W

pjq

lk , with η „ Np0, 1q and all three terms independent.
A first consequence of the relationship above is that under the null hypothesis, the

random variables Y
pjq

L;k are sub-gaussian, mean zero and i.i.d. for pl, kq P IL, j P rms

under the null hypothesis (see Lemma 35). More specifically, we have that 1?
m

m
ř

j“1
Y

pjq

lk

is p
?
nϵ

2
?

|S|KL logp2{δqτ
` 1q-sub-gaussian, which in turn implies that the random variables

1?
KL

ř

pl,kqPIL

rp 1?
m

m
ř

j“1
Y

pjq

L;kq2 ´ νLs are C-sub-exponential for L P S, for some constant C ą 0

(see e.g. Section 2.7 in Vershynin (2018)). It now follows from Lemma 37 that, for κα ą 0
large enough, P0TIII ď α{2.
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Next, we turn to the Type II error probability. Assume now that, for L P S, f satisfies
(98). We have that

1 ´ TIII ď 1

$

&

%

1
?
KL

ÿ

pl,kqPIL

»

–

˜

1
?
m

m
ÿ

j“1

Y
pjq

lk

¸2

´ νL

fi

fl ă κα
`

nγ2L _ 1
˘

log logpe_ |S|q

,

.

-

,

so it suffices to bound the Ef -expectation of the right-hand side. Since (94) holds, we have
that for κ̃α large enough, max

ppl,kqPILq
|flk| ď τ{2. By a similar computation as earlier, it suffices

to show that

Pf

¨

˝

1
?
KL

ÿ

pl,kqPIL

»

–

˜

1
?
m

m
ÿ

j“1

Y
pjq

lk

¸2

´ νL

fi

fl ă κα
`

nγ2L _ 1
˘

log logpe_ |S|q

˛

‚ď α{4, (105)

for Cα ą 0 large enough. Define Vlk :“

˜

1?
m

m
ř

j“1

„

γL
n
ř

i“1
pULX

pjq

i qlk `W
pjq

lk

ȷ

¸2

. Under PU ,

we have that pULfLqlk
d
“ }fL}2

Zlk
}Z}2

, for Z “ pZ11, . . . , Z1dLq „ Np0, IdLq. As
ř

pl,kqPIL
EZ2

lk{}Z}22 “

1, EZ2
lk{}Z}22 “ 1{dL by symmetry. Hence,

EfVlk “ γ2Lmn
2EU pULfLq2lk ` nγ2L ` EpW

pjq

lk q2 “
γ2Lmn

2
?
KL}fL}22

dL
` nγ2L ` EpW

pjq

lk q2.

Subtracting d´1γ2Lmn
2
?
KL}fL}22 on both sides, the first term in (105) is bounded above

by

Pr

¨

˝

1
?
KL

ÿ

pl,kqPIL

rVlk ´ EfVlks ă ´
γ2Ln

2m
?
KL}fL}22

2dL

˛

‚

whenever
γ2Lmn

2
a

KL}fL}22d
´1
L ě 2καpγ2Ln_ 1q. (106)

The latter is indeed satisfied whenever (104). Under the alternative hypothesis, a straight-
forward calculation shows that Vl has expectation conditionally on UL equal to γ2Lmn2pULfq2lk`

nγ2L ` EpW
pjq

lk q2. Since EpZL;iq
4
lk “ 3 and EpW

pjq

lk q4 — 1, its variance conditionally on UL

equals

n2γ4LVar
`

η2 | |UL

˘

` Varpp
1

?
m

m
ÿ

j“1

W
pjq

lk q2 | |ULq ` 2γ4Ln
3mpULfq2lkEη2

` 2γ2Lmn
2pULfq2lkEpW

pjq

lk q2 ` 2γ2LnEpW
pjq

lk q2Eη2,

which is of the order pγ4Lmn
3pULfq2lkq _ pγ2Lmn

2pULfq2lkq _ γ4Ln
2 _ 1. Consequently, by

applying Chebyshev’s inequality, the probability on the left-hand side of (105) is of the
order

ˆ

dL
mn

?
KL}fL}22

˙

_

ˆ

dLΛN,S,δκ̃
2
α

mn2ϵ2}fL}22

˙

_

ˆ

κ2αd
2
L

m2n2KL}fL}42

˙

_

˜

κ2ακ̃
4
αΛ

2
N,S,δd

2
L

m2n4ϵ4KL}fL}42

¸

, (107)
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where ΛN,S,δ :“ logpNq|S| logp1{δq log, and we have plugged in γL “ ϵ

2
?

KL|S| logp2{δqτ
, τ “

κ̃α
a

logpNq. The latter can be made arbitrarily small per choice of Cα ą 0 in (104).
To see this, first consider the case where ϵ ď n´1{2, such that KL — 1 and the above

display is of the order of the second and fourth term in the above display. Whenever f
satisfies (104), the first term is of the order 1{Cα. For 1{

?
n ď ϵ ď dL, KL — nϵ2 ^ dL Á 1

and (104), (107) is bounded by 1{C2
α. Lastly, when nϵ2 Á dL, it holds that KL — dL, so

(107) is of the order κ2αdL{pm2n2}fL}42q. When (104) holds, the above display is bounded
by 1{C2

α. We conclude that Pf p1 ´ TIIIq ď α{4 for Cα large enough, as desired.

B.4 Proofs of the theorems in Section 2 and Theorem 7

The proofs of Theorems 3 and 2 in Section 2 are direct consequences of Theorem 7 and 12.
To see this, note that for any sequences mN ” m, nN ” N{m, σN ” σ, ϵN ” ϵ and δN ” δ,
Theorem 12 and Theorem 7 can be applied with an arbitrarily slow decreasing sequence
αN Ñ 0 or αN Ñ 1 in order to obtain the desired convergence of the minimax risk.

Theorem 7 and Theorem 6 are consequences the lemmas proven earlier in the section.
Below, we tie together the results of these lemmas to obtain both theorems.

Proof of Theorem 7: Consider S “ tLu, for a given L P N which is to be determined.
In the case of local randomness only protocols, let T “ TI _ TII, where TI and TII are the
tests defined in (90) and (97), respectively, with their critical regions such that P0TI ď α{4
and P0TII ď α{4 (see the first statements of Lemma 30 and Lemma 32). If, for some L P N,
f satisfies

}fL}
2
2 ě CαMNσ

2

˜

2p3{2qL

mnpnϵ2 ^ 2Lq

ľ

˜ ?
2L

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

, (108)

where MN Á logpNq
a

2 log logpNq logpNq|S| logp2{δq, Lemma 30 and Lemma 32 yield that

Pf p1 ´ T q ď Pf p1 ´ TIq ` Pf p1 ´ TIIq ď α{2. (109)

In view of pa ` bq2{2 ´ b2 ď a2, }fL}22 ě
}f}22
2 ´ }f ´ fL}22. Since f P Bs,R

p,q , we have that
}f ´ fL}22 ď 2´2LsR2 (see e.g. Lemma 45). Consequently, taking L “ 1 _ r´1

s log2pρqs,

}fL}22 ě ρ2MNC
2
α{2 ´R22´2Ls ě ρM2

N pC2
α{2 ´R2q.

We note here that the latter bound could be sharper by choosing L “ 1_ r´1
s log2pρqs, but

we choose the simpler bound for the sake of clarity. Given the above display, this choice of
L means that (108) is satisfied for

ρ2 Á σ2

˜

p1 _ ρ´1{sq3{2

mnpnϵ2 ^ p1 _ ρ´1{sqq

ľ

˜

a

1 _ ρ´1{s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

. (110)

Solving this for ρ, we obtain the rate in Theorem 7, (8).
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In case of shared randomness, the same argument applies, with the only difference that
the test T “ TI _ TIII is used. Lemmas 30 and 34 yield that this test satisfies P0T ď α{2
and also Pf p1 ´ T q ď α{2 whenever

ρ2 Á σ2

˜

1 _ ρ´1{s

mn
?
nϵ2 ^ 1

a

nϵ2 ^ p1 _ ρ´1{sq

ľ

˜

a

1 _ ρ´1{s

?
mn

?
nϵ2 ^ 1

ł 1

mn2ϵ2

¸¸

and MN satisfying the condition of the theorem. Solving the above display for ρ, we obtain
the rate in Theorem 7, (10).

Proof of Theorem 6: The proof is similar to that of Theorem 7 in the sense that it
follows from the lemmas proven earlier in the section.

In the case of local randomness, consider T as defined in (31), with TI and TII as defined
in (29) and (30), respectively. Applying Lemma 30 with S “ SLOW and Lemma 32 with
S “ SHIGH yields that P0TI ď α{4 and P0TII ď α{4, so T has the correct level.

If f P Bs,R
p,q , with s P rsmin, smaxs, we have that Ls is either in SLOW or SHIGH. By applying

Lemma 30 and Lemma 32, a similar argument as given in the proof of Theorem 7 above
yields that Pf p1 ´ T q ď α{2. The shared randomness case is analogous, with T defined as
in (33).

Appendix C. Auxiliary lemmas and proofs
C.1 Proof of Lemma 26
Since CL;τ “ AL;τ XBL;τ , it suffices to show that Ac

L;τ and Bc
L;τ as defined in (81) are small

in Pf -probability for a large enough choice of κ̃α ą 0.
Define ητ :“ Dτn

?
dL{8. For both sets, we proceed via a union bound:

Pf

´

Xpjq R AL;τ

¯

“ Pf

˜

DJ Ă rns, |J | ď Kτ :

ˇ

ˇ

ˇ

ˇ

ˇ

}
ř

iPJ
σ´1X

pjq

L;i}
2
2 ´ |J |dL

ˇ

ˇ

ˇ

ˇ

ˇ

ą |J |ητ

¸

ď

Kτ
ÿ

k“1

ˆ

n

k

˙

Pr
´ˇ

ˇ

ˇ
}σ´1

?
kfL ´ Z}22 ´ dL

ˇ

ˇ

ˇ
ą ητ

¯

(111)

where we recall that fL is the projection of f onto its first dL coordinates and Z „ Np0, IdLq.
We have

}σ´1
?
kfL ´ Z}22 “ σ´2k}fL}22 ´ 2σ´1

?
kfJ

LZ ` }Z}22.

Recalling that Kτ “ r2τD´1
τ s, we obtain that

Kτ ď
2τn

?
dL

κ̃α logpNqp
a

n
?
dLτ _

?
ndLq

ď

a

n
?
dLτ

κ̃α logpNq
À

ητ
κ̃α logpNq

. (112)

By the assumptions of the lemma (σ´2n}fL}22 ď τ
?
dL{2 and τ ď nR2{

?
dL), we obtain that

σ´2k}fL}22 ď KτR
2. Consequently, we have that for κ̃α ą 0 large enough σ´2Kτ }fL}22 ă

ητ {2, so it holds that

Pr
´

}σ´1
?
kf ´ Z}22 ´ dL ą ητ

¯

ď Pr
´

}Z}22 ´ dL ´ 2σ´1
?
kfJ

LZ ą ητ {2
¯

.
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Using that PrpAXBq ` PrpAXBcq ď PrpA1q ` PrpAXBcq for AXB Ă A1, it follows that
the latter display is bounded above by

Pr
`

}Z}22 ´ dL ą ητ {4
˘

` Pr
´

´2σ´1
?
kfJ

LZ ą ητ {4
¯

.

By a standard concentration argument for Chi-square random variables, e.g. Lemma A.13 in
Szabó et al. (2023), the first probability is bounded by e´dητ {8. Again using Kτ }fL}22 ă ητ {2,
the second term is bounded by e´ητ {32, where we note that the second term equals zero in
the case that f “ 0. The bound

Pr
´

}σ´1
?
kfL ´ Z}22 ´ dL ă ´ητ

¯

ď e´dLητ {4 ` e´ητ {8

follows by similar reasoning. Combining the above with the elementary bound
řKτ

k“1

`

n
k

˘

ď

eKτ logpnq and (112) means that

Pf

´

Xpjq R AL;τ

¯

ď 2 exp

ˆ

Kτ logpNq ´
p1 ` dL{2qητ

4

˙

ď α{p4mnq.

Turning our attention to BL;τ , we find that Pf

`

Xpjq R BL;τ

˘

is equal to

Pf

¨

˝max
iPrns

σ´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPrnsztiu

xX
pjq

i , X
pjq

k y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą ητ

˛

‚ď nPr
ˆ

ˇ

ˇxσ´1f ` Z, pn´ 1qσ´1f `
?
n´ 1Z 1y

ˇ

ˇ ąητ

˙

,

where Z and Z 1 are independent Np0, Idq random vectors. Using another union bound, the
above is further bounded by

Prp
?
n´ 1xZ,Z 1y ą ητ {2 ´ pn´ 1q}σ´1fL}22q ` Prppn´ 1qxσ´1f, Z 1y `

?
n´ 1xσ´1f, Zy ą ητ {2q.

(113)

Using that n}σ´1fL}22 ď τ
?
dL{2 and τ ď nR2{

?
dL by assumption of the lemma, we see

that

n}σ´1fL}22 ď τ
a

dL{2 ď

b

n
?
dτ

a?
dτ

2
?
n

ď
R

logpNqκ̃α
ητ . (114)

For κ̃α ą 0, the latter can be seen to be larger than ητ {4. Consequently, the first term in
(113) can be seen to be bounded by

Prp
?
n´ 1xZ,Z 1y ą ητ {4q ď e

´
ητ

4
?

ndL ď e´κα logpNq,

where the inequality follows from Proposition 2.7.1 in Vershynin (2018). Since Z and Z 1

are independent standard Gaussian vectors, the second term in (113) is bounded above by

Prp
?
2pn´ 1qxσ´1f, Zy ą ητ {2q ď e

´
η2τ

8n2}σ´2fL}22 .

Since n}σ´1fL}22 ď τ
?
dL{2, n2}σ´1fL}22 ď nτ

?
dL{2 ď

η2τ
log2pNqκ̃2

α
. Hence, we have obtained

that Pf

`

Xpjq R BL;τ

˘

ď α
4mn , for κ̃α ą 0 large enough. This concludes the proof of the

lemma.
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C.2 Proof of Lemma 25
We suppress the dependence of the Markov kernels on the draw of the shared randomness u,
as it is of no relevance to the proof. Consider X̃pjq „ Pπ and Xpjq „ P0. Since Xpjq

L1k
d
“ X̃

pjq

L1k

for all L1 ą L, it suffices to construct couplings for pX̃
pjq

L , X
pjq

L q. We construct two couplings,
one for each of the different regimes of ϵ. That is, for each of the regimes, we derive a joint
distribution of pX̃

pjq

L , X
pjq

L q called Pπ,0 such that X̃pjq

L „ PX̃
pjq
L

π,0 “ Pπ and Xpjq

L „ PX
pjq
L

π,0 “ P0.
The specific couplings that we construct aim at assuring dHpX̃

pjq

L , X
pjq

L q is small with high
probability. When constructing the coupling below, it suffices to consider σ “ 1 without
loss of generality (i.e. by rescaling Xpjq and X̃pjq). After the construction of both the
couplings, the lemma follows by an application of Lemma 24.

Case 1: Consider 1{
?
n ě ϵ ě 1{

?
mndL. The construction we follow is similar to

that used in Theorem D.6 of Narayanan (2022b), whose dependencies are favorable for our
purpose.

If n “ 1, Pinsker’s inequality followed by bounding the KL-divergence by the Chi-
square-divergence (e.g. Lemma 2.7 of Tsybakov (2009)) and Lemma 22 applied with m “ 1
yields that

}P0 ´ Pπ}TV ď

c

1

2
Dχ2pP0;Pπq ď C

?
cαρ

2

?
dL

for a universal constant C ą 0 contingent only on }Γ̄}. By Lemma 39, there exists a coupling
Pπ,0 such that X̃pjq „ PX̃

pjq
L

π,0 “ Pπ and Xpjq „ PX
pjq
L

π,0 “ P0 and

p :“ P
´

X̃
pjq

L ‰ X
pjq

L

¯

ď

ˆ

C

?
cαρ

2

?
dL

˙

^ 1.

Applying Lemma 24, it follows that

Pn
πK

jpA|X̃
pjq

L q “ Eπ,0K
jpA|X̃

pjq

L q ď e4ϵnpP0K
jpA|X

pjq

L q ` 2δnpeϵnp.

By applying condition (50) or (51) and the bound on p, we obtain that exppC
?
cαϵρ2

d
1{2
L

q ď

1 ` C
?
cα{

?
m. Similarly, using that δ ď ϵ{

?
m, we get δpeϵp ď δ ` C 1cα{m3{2. The first

identity we wish to show, i.e. (75), now follows for n “ 1 and a sufficiently small enough
choice of cα ą 0.

For what follows, take n ą 1. Consider V a uniform draw from the unit sphere in RdL

and Z „ Np0, IdLq, both independent of the other random variables considered. We have

X
pjq

L :“
1

n

n
ÿ

i“1

X
pjq

L;i
d
“

}Z}2
?
n
V

for Xpjq

L „ PX
pjq
L

0 (see e.g. Vershynin (2018) Exercise 3.3.7). Similarly,

X̃
pjq

L
d
“ V ´1

›

›

›
pIdL ` n´1{2nc1{2

α ρ2dLΓ̄q1{2Z
›

›

›

2
.
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Next, we note that for η1, . . . , ηn „ Np0, IdLq independent of Xpjq “ pX
pjq
1 , . . . , X

pjq
n q, we

have

X
pjq

L
d
“

˜

Xpjq ` ηi ´
1

n

n
ÿ

i“1

ηi

¸

1ďiďn

. (115)

To see this, note that both the left- and right-hand side are mean zero Gaussian and

E

˜

X
pjq

L ` ηi ´
1

n

n
ÿ

i“1

ηi

¸˜

X
pjq

L ` ηk ´
1

n

n
ÿ

i“1

ηi

¸J

“ 1i“kIdL , (116)

which means that the covariances of the left-hand side and right-hand side of (115) are equal
too. Noting that X̃pjq

L
d
“ pF `X

pjq

L;iqiPrns and X̃pjq

L
d
“ F `X

pjq

L , where F „ Np0,
?
cαd

´1
L ρ2Γ̄q

is independent of Xpjq

L , it follows that X̃pjq

L
d
“ pX̃

pjq

L `ηi ´ 1
n

n
ř

i“1
ηiq1ďiďn by similar reasoning.

Since the matrix pI ´V V Jq is idempotent, we have that ηi “ V V Jηi ` pI ´V V Jqηi; where
V V Jηi is independent from pI ´ V V Jqηi and V Jηi is standard normally distributed, both
conditionally and unconditionally on V . We can write

ηi ´
1

n

n
ÿ

i“1

ηi “ V V Jηi ´
1

n

n
ÿ

i“1

V V Jηi `Gi,

where Gi ” Gipηiq :“ pI ´ V V Jqηi ´ 1
n

n
ř

i“1
pI ´ V V Jqηi and Gi independent of V V Jηi ´

1
n

n
ř

i“1
V V Jηi. Let η̃i be identically distributed to ηi, for i “ 1, . . . , n. Combining the above,

we have that

X
pjq

L
d
“

#

V

˜

}Z}2
?
n

` V Jηi ´
1

n

n
ÿ

i“1

V Jηi

¸

`Gi

+

iPrns

“: pCiqiPrns, (117)

X̃
pjq

L
d
“

#

V

˜

n´1{2}pId ` nc1{2
α ρ2d´1

L Γ̄q1{2Z}2 ` V Jη̃i ´
1

n

n
ÿ

i“1

V Jη̃i

¸

`Gi

+

iPrns

“: pC̃iqiPrns.

(118)

As further notations, we introduce ζi :“ }Z}2{
?
n` V Jηi ´ 1

n

n
ř

i“1
V Jηi and

ζ̃i :“ }pIdL ` nc1{2
α ρ2d´1

L Γ̄q1{2Z}2{
?
n` V Jη̃i ´

1

n

n
ÿ

i“1

V Jη̃i.

We have that ζi|Z „ N
´

}Z}2?
n
,
`

1 ´ 1
n

˘

¯

and

ζ̃i|Z „ N
´

n´1{2}pIdL ` d´1nc1{2
α ρ2Γ̄q1{2Z}2,

`

1 ´ n´1
˘

¯

.
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By e.g. Lemma 40, we find that their respective push forward measures Pζi|Z and Pζ̃i|Z

satisfy

}Pζi|Z ´ Pζ̃i|Z}TV ď
1

2p1 ´ 1{nq
?
n

|}Z}2 ´ }pIdL ` nc1{2
α ρ2d´1

L Γ̄q1{2Z}2|

ď

?
nc

1{2
α ρ2

dL

ZJΓ̄Z
a

ZJIdLZ `

b

ZJpIdL `
nc

1{2
α ρ2

dL
Γ̄qZ

ď }Γ̄}

?
nc

1{2
α ρ2

dL
}Z}2,

where the second inequality follows from n ą 1 in addition to the identity p
?
a´

?
bqp

?
a`?

bq “ a´ b and the final inequality follows from the fact that Γ̄ is positive semidefinite and
Γ̄ ď }Γ̄}IdL . By Lemma 39, there exists a coupling of ζi|Z and ζ̃i|Z such that

P
´

ζi ‰ ζ̃i|Z
¯

ď p
?
nc1{2

α ρ2}Γ̄}}Z}2p2dLq´1q ^ 1. (119)

Take Pζi,ζ̃i|Z satisfying (119), Gi “ G̃i and set pX
pjq

L , X̃
pjq

L q “ pC, C̃q under Pπ,0. We obtain
that pC̃i, Ciq is independent of pC̃k, Ckq for k ‰ i and ζ̃i “ ζi implies C̃i “ Ci. Consequently,
n
ř

i“1
1tC̃i ‰ Ciu | |ν „ Binpn, pνq, with ν “ pZ, n´1

řn
i“1 ηi, n

´1
řn

i“1 η̃iq. By (119), }Γ̄} — 1

and the fact that }Z}2 is
?
d-sub-exponential (using e.g. Proposition 2.7.1 in Vershynin

(2018)), we obtain that

p :“ P
´

C̃i ‰ Ci

¯

“ EZP
´

ζi ‰ ζ̃i|Z
¯

ď pC̃n1{2pc1{4
α ρq2d

´1{2
L q ^ 1,

for a universal constant C̃ ą 0. Since rζi “ ζ̃is implies rCi “ C̃is, we have that

p “ PpCi ‰ C̃iq ď EZP
´

ζi ‰ ζ̃i|Z
¯

ď C̃n1{2c1{4
α ρ2d

´1{2
L .

To summarize, we have now obtained that there exists a joint distribution Pπ,0 of pXpjq, X̃pjqq

such that
´

Xpjq, X̃pjq
¯

satisfy

Sν :“
n
ÿ

i“1

1tX̃
pjq

i ‰ X
pjq

i u | |ν „ Binpn, pνq, with p “ P
´

X
pjq

i ‰ X̃
pjq

i

¯

ď
C̃n1{2pc

1{4
α ρq2

d
1{2
L

^ 1.

Let Eπ,0 denote its corresponding expectation. Consequently, by applying Lemma 24, we
have for any measurable A that

Pn
πK

jpA|X̃pjqq “ Eπ,0K
jpA|X̃pjqq “ EX̃pjq,Xpjq

π,0 KjpA|X̃pjqq

ď Eνe4ϵnpνP0K
jpA|Xpjqq ` 2δnEνpνe

2ϵnpν .

It follows that Eνe4ϵnpν ď 1`C 1 ϵn3{2ρ2
?
cαd

1{2
L

, for a universal constant C 1 ą 0, where the inequality

follows from the fact that under the assumptions on ρ2 (i.e. condition (50) or (51)) that
d

´1{2
L ϵn3{2c

1{2
α ρ2 ď

?
cα{

?
m and a sufficiently small enough choice of cα ą 0. Similarly,

using that δ ď ϵ{
?
m, we have Eνδnpνe

2ϵnpν ď δ ` C 1cα{m3{2.
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Case 2: Consider ϵ ď 1{
?
mndL. We will make use of the total variation coupling

between X̃
pjq

i „ Npf, IdLq and X
pjq

i „ Np0, IdLq, as given by Lemma 39. Since

}Np0, IdLq ´Npf, IdLq}TV ď
1

2
}f}2 ^ 2

(see e.g. Lemma 40), we can couple the two data sets observation wise independently
(simply taking the product space) such that

n
ř

i“1
1tX̃

pjq

i ‰ X
pjq

i u|f „ Binpn, pf q, where

pf “ p}f}2{4q ^ 1. Given k P N, }f}2
d
“ d

´1{2
L c

1{4
α ρ}Np0, IdLq}2 and }Np0, IdLq}2 is

?
dL-

sub-exponential we obtain (using e.g. Proposition 2.7.1 in Vershynin (2018))
ż

pkfdπpfq ď

ż

p}f}2{4qkdπpfq ď C̃kkkpc1{4
α ρqk,

for a universal constant C̃ ą 0. The assumed condition on ρ yields ϵnc1{4
α ρ ď c

1{4
α {

?
m,

which by similar arguments as before implies

e4ϵnp ď 1 ` C 1c1{4
α {

?
m and δnpe2ϵnp ď δ ` C 1c1{2

α {m3{2,

for a universal constant C 1 ą 0. By applying the claim at the start of the lemma and using
the assumptions on ρ, we obtain that

Pn
πK

jpA|X̃pjqq “ Eπ,0K
jpA|X̃pjqq “

ż

Ef,0K
jpA|X̃pjqqdπpfq

ď p1 ` Cc1{4
α {

?
mqP0K

jpA|Xpjqq ` δ ` Cc1{2
α {m3{2

as desired. Again, (76) follows by similar steps.

C.3 Proof of Lemma 24
Let E denote expectation with respect to P and write D “ pDiqiPrns, S :“

řn
i“1Di. We

start by noting that
E
”

KpA|X̃q|S “ 0
ı

“ E rKpA|Xq|S “ 0s . (120)

Next, we show that for all k P rns,

e´ϵE
”

KpA|X̃q|S “ k ´ 1
ı

´ δ ď E
”

KpA|X̃q|S “ k
ı

ď eϵE
”

KpA|X̃q|S “ k ´ 1
ı

` δ.

(121)

Write vp´iq “ pviqrnsztiu for a vector v P Rn. Let k P rns be given and let Vk denote the
set of v P t0, 1un’s such that

řn
i“1 vi “ k. Using the definition of DP, the integrand in the

conditional expectation satisfies

e´ϵKpA|X̃1, . . . , X̆i, . . . , X̃nq ´ δ ď KpA|X̃q ď eϵKpA|X̃1, . . . , X̆i, . . . , X̃nq ` δ, (122)

for any random variable X̆i taking values in the sample space of X̃i. In particular, if vi “ 1
it holds that

E
”

KpA|x1, . . . , Xi, . . . , xnq
ˇ

ˇDi “ vi, X̃p´iq “ xp´iq, Dp´iq “ vp´iq

ı

ď

eϵE
”

KpA|x1, . . . , Xi, . . . , xnq
ˇ

ˇDi “ 0, X̃p´iq “ xp´iq, Dp´iq “ vp´iq

ı

` δ,
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for all x in the sample space of X̃. It follows by the law of total probability that

E
”

KpA|X̃q|D “ v
ı

ď eϵE
”

KpA|X̃q|Di “ 0, Dk “ vk for k P rnsztiu
ı

` δ,

for all i P rns. The event tD “ vu equals the event tD “ v, S “ ku, and similarly it holds
that

tDk “ vk for k P rnsztiu, Di “ 0u “ tDk “ vk for k P rnsztiu, Di “ 0, S “ k ´ 1u .

Consider now the sets

Vk´1pvq :“
␣

v1 P Vk´1 : vk “ v1
k except for one i P rns

(

for v P Vk,

Vkpv1q :“
␣

v P Vk : vk “ v1
k except for one i P rns

(

for v1 P Vk´1.

By what we have derived so far, it holds that any v P Vk and v1 P Vk´1pvq,

E
”

KpA|X̃q|D “ v, S “ k
ı

ď eϵE
”

KpA|X̃q|D “ v1, S “ k ´ 1
ı

` δ.

Consider tIkpvq : v P Vku independent random variables (on a possibly enlarged probability
space) taking values in rns such that PpIkpvq “ iq “ 1{k whenever vi “ 1. Combining the
above with the total law of probability we find that

E
”

KpA|X̃q|S “ k
ı

“

1
`

n
k

˘

ÿ

vPVk

E
”

KpA|X̃q|D “ v, S “ k
ı

ď

eϵ
1
`

n
k

˘

ÿ

vPVk

E
”

KpA|X̃q|DIpvq “ 0, D´Ipvq “ v´Ipvq, S “ k ´ 1
ı

` δ “

eϵ
1
`

n
k

˘

1

k

ÿ

vPVk

ÿ

v1PVk´1pvq

E
”

KpA|X̃q|D “ v1, S “ k ´ 1
ı

` δ “

eϵ
1
`

n
k

˘

1

k

ÿ

v1PVk´1

ÿ

vPVkpv1q

E
”

KpA|X̃q|D “ v1, S “ k ´ 1
ı

` δ “

eϵ
1

`

n
k´1

˘

ÿ

v1PVk´1

E
”

KpA|X̃q|D “ v1, S “ k ´ 1
ı

` δ “

eϵE
”

KpA|X̃q|S “ k ´ 1
ı

` δ,

where it is used that |Vk| “
`

n
k

˘

,

PpD1 “ v1, . . . , Dn “ vn|S “ kq “ PpD1 “ ṽ1, . . . , Dn “ ṽn|S “ kq

for all v “ pviqiPrns, ṽ “ pṽiqiPrns P Vk and for any v1 P Vk´1 there are n ´ k ` 1 ways to
obtain v P Vk such that vk “ v1

k except for one i P rns.
By applying the privacy lower bound of (122) and repeating the same steps, we also

find that
e´ϵE

”

KpA|X̃q|S “ k ´ 1
ı

´ δ ď E
”

KpA|X̃q|S “ k
ı

.
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This proves (121), which, applying iteratively, results in the bound

e´ϵkE
”

KpA|X̃q|S “ 0
ı

´ δk ď E
”

KpA|X̃q|S “ k
ı

ď eϵkE
”

KpA|X̃q|S “ 0
ı

` δkeϵk,

(123)

for k “ 0, 1, . . . , n. By symmetry of the argument, the same inequalities hold for X in place
of X̃. Using the above inequalities, we can bound

P1KpA|X̃q “ EKpA|X̃q “ ESE
”

KpA|X̃q|S
ı

,

by ESeSϵE
”

KpA|X̃q|S “ 0
ı

` δESeSϵ.. Similarly, applying (121) with X in place of X̃, we
find

P2KpA|Xq “ ESE rKpA|Xq|Ss ě ESe´SϵE rKpA|Xq|S “ 0s ´ EδS.

Combining the two inequalities with (120), we obtain that

P1KpA|X̃q ď
ESeSϵ

ESe´Sϵ

`

P2KpA|Xq ` ESδS
˘

` δESeSϵ. (124)

In view of the moment generating function of the binomial distribution,

ESeSϵ

ESe´Sϵ
“

ˆ

1 ` ppeϵ ´ 1q

1 ` ppe´ϵ ´ 1q

˙n

ď e4npϵ,

where the inequality follows from 0 ď ϵ, p ď 1, the inequality ex ´ e´x ď 3x for 0 ď x ď 1
and Taylor expanding logp1 ` xq “ x ´ x2{2 ` . . .. By Chebyshev’s association inequality
(e.g. Theorem 2.14 in Boucheron et al. (2013)), ESSESeSϵ ď ESSeSϵ. Consequently, using
the nonnegativity of S,

δ

ˆ

ESeSϵ

ESe´Sϵ
ESS ` ESeSϵ

˙

ď 2δESeSϵ.

Lemma 41 (a straightforward calculation) now finishes the proof.

C.4 Proof of Lemma 21
Proof Consider without loss of generality σ “ 1 (the general result follows by the σ´1

rescaling). The bound TrpΞj
uq ď ndL follows by the fact that conditional expectation

contracts the L2-norm; let v P RdL , then

vJΞj
uv “ EY pjq

0 EY |U“u
0 rvJp

n
ÿ

i“1

X
pjq

i q | |Y pjq, U “ us2.

Since the conditional expectation contracts the L2-norm, we obtain that the latter is
bounded by

E0v
Jp

n
ÿ

i“1

X
pjq

i qp

n
ÿ

i“1

X
pjq

i qJv “ n}v}22,
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which completes the proof of the statement “Ξj
u ď nIdL” and “TrpΞj

uq ď ndL”.
For second other bound on the trace, we start introducing the notationsXpjq

L “ n´1
řn

i“1X
pjq

L;i

and
Gi “ xE0rnXpjq

L | |Y pjq, U “ us, X
pjq

L;iy.

For the remainder of the proof, consider versions of Xpjq

L and Y pjq defined on the same
probability given U “ u, and we shall write as a shorthand

Pj ” PpXpjq,Y pjqq|U“u
0 and Ej ” EpXpjq,Y pjqq|U“u

0 .

Consider random variables V,W defined on the same probability space. It holds that
EWErW |V s “ EErW |V sErW |V s, since W ´ ErW |V s is orthogonal to ErW |V s. Combining
this fact with the linearity of the inner product and conditional expectation, we see that

TrpΞj
uq “ EY pjq|U“u

0

›

›

›
E0rnXpjq|Y pjq, U “ us

›

›

›

2

2
“

n
ÿ

i“1

EjGi. (125)

Define also Ği “

A

E0rnXpjq|Y pjq, U “ us, X̆
pjq

i

E

, where X̆pjq

i is an independent copy of Xpjq

i

(defined on the same, possibly enlarged probability space) and note that EjĞi “ 0. Write
G`

i :“ 0 _Gi and G´
i “ ´p0 ^Giq. We have

EjG`
i “

ż 8

0
Pj

`

G`
i ě t

˘

dt “

ż T

0
Pj

`

G`
i ě t

˘

`

ż 8

T
Pj

`

G`
i ě t

˘

ď eϵ
ż T

0
Pj

´

Ğ`
i ě t

¯

dt` Tδ `

ż 8

T
Pj

`

G`
i ě t

˘

ď

ż T

0
Pj

´

Ğ`
i ě t

¯

dt` 2ϵ

ż T

0
Pj

´

Ğ`
i ě t

¯

dt` Tδ `

ż 8

T
Pj

`

G`
i ě t

˘

ď

ż 8

0
Pj
0

´

Ğ`
i ě t

¯

dt` 2ϵ

ż 8

0
Pj

´

Ğ`
i ě t

¯

dt` Tδ `

ż 8

T
Pj

`

G`
i ě t

˘

,

where in the second to last inequality follows by Taylor expansion and the fact that ϵ ď 1.
Similarly, we obtain

EjG´
i ě

ż T

0
Pj

`

G´
i ě t

˘

ě e´ϵ

ż T

0
Pj

´

Ğ´
i ě t

¯

dt´ Tδ

ě

ż 8

0
Pj

´

Ğ´
i ě t

¯

dt´ 2ϵ

ż 8

0
Pj

´

Ğ´
i ě t

¯

dt´ Tδ ´

ż 8

T
Pj

´

Ğ´
i ě t

¯

dt.

Putting these together with Gi “ G`
i ´G´

i , we get

EjGi ď EjĞi ` 2ϵEj |Ği| ` 2Tδ `

ż 8

T
Pj

`

G`
i ě t

˘

dt`

ż 8

T
Pj

´

Ğ´
i ě t

¯

dt. (126)

The first term in the last display equals 0. For the second term, observe that

Ği

ˇ

ˇ

ˇ

ˇ

”

Y pjq, Xpjq, U “ u
ı

„ Np0, }E0rnXpjq|Y pjq, U “ us}22q,
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so by Cauchy–Schwarz, Ej |Ği| “ E}ErnXpjq|Y pjq, U “ us}2 ď

b

TrpΞj
uq. To bound the

last two terms in (126) we shall employ tail bounds, which follow after showing that Gi is
?
dLn-sub-exponential. To see this, note that by Jensen’s inequality followed by the law of

total probability,

Ejet|Gi| “

ż ż

et|xE0rnX
pjq
L |Y pjq“y,U“us,xy|dPXpjq|Y pjq“y,U“u

0 pxqdPY pjq|U“u
0 pyq

ď

ż ż

E0

„

et|xnX
pjq
L ,xy||Y pjq “ y, U “ u

ȷ

dPXpjq|Y pjq“y,U“u
0 pxqdPY pjq|U“u

0 pyq.

Since conditional expectation contracts the L1-norm and using that U is independent of
Xpjq, latter is further bounded by EXpjq

0 et|xnX
pjq

L,X
pjq
L;iy|. Next, we bound EXpjq

0 et|xnX
pjq
L ,X

pjq
L;iy|.

By the triangle inequality and independence,

EXpjq

0 et|xnX
pjq
L ,X

pjq
L;iy|

ď EXpjq

0 et|x
řn

k‰i X
pjq
L;k,X

pjq
L;iy|EX

pjq
i

0 et|xX
pjq
L;i,X

pjq
L;iy|.

The random variable xX
pjq

L;i, X
pjq

L;iy is χ2
dL

-distributed, so by standard computations (see e.g.
Lemma 12 in Szabó et al. (2022)) we obtain that

EX
pjq
i

0 et|xX
pjq
L;i,X

pjq
L;iy|

“

´

EetNp0,1q2y|
¯dL

ď etdL`2t2dL ,

whenever t ď 1{4. A straightforward computation shows that

EXpjq

0 et|x
řn

k‰i X
pjq
L;k,X

pjq
L;iy|

“

ˆ

Ee
t2pn´1q

2
Np0,1q2

˙dL

ď e
1
2

pt2pn´1qdL`t4pn´1q2dLq,

where the inequality follows again by e.g. Lemma 12 in Szabó et al. (2022) if t2pn´ 1q2 ď

1{2. By the fact that G`
i ď |Gi| and Markov’s inequality,

PjpG`
i ą T q ď Pjp|Gi| ą T q ď e´tTEjet|Gi|, for all T, t ą 0.

Combined with the above bounds for the moment generating function means that for δ “ 0,
the result follows from letting T Ñ 8. If δ ą 0, take T “ 8pd ` L _

?
ndLq logp1{δq to

obtain that
ş8

T Pj
`

G`
i ě t

˘

dt ď e´ logp1{δq.
It is easy to see that the same bound applies to

ş8

T Pj
0

´

Ğ´
i ě t

¯

dt. We obtain that
n
ÿ

i“1

EjGi ď 2nϵ

b

TrpΞj
uq ` 16δpdL _

a

ndLq logp1{δq ` 2nδ.

If
b

TrpΞj
uq ď nϵ, the lemma holds (there is nothing to prove). So assume instead that

b

TrpΞj
uq ě nϵ. Combining the above display with (125), we get

b

TrpΞj
uq ď 2nϵ` 16δ

dL _
?
ndL

nϵ
logp1{δq `

2

ϵ
δ.

Since xp logp1{xq tends to 0 as x Ñ 0 for any p ą 0, the result follows for δ ď

´´

n
dL

^ n1{2
?
dL

¯

ϵ2
¯1`p

for some p ą 0 as this implies that the last two terms are Opnϵq.
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C.5 Proof of Lemma 28

The case where C is empty is trivial, so we shall assume C to be nonempty. Consider the
map S̆ : pRdLqn Ñ r´8,8q given by

S̆pxq “

#

Spxq if x P C,
inf tSpcq `DdHpc, xq : c P Cu otherwise.

Fix any c1 P C. Since S is D-Lipschitz with respect to the Hamming distance, we have for
all c P C that

Spcq `DdHpc, xq ě Spc1q ´DdHpc1, cq `DdHpc, xq ě Spc1q ´DdHpc1, xq ą ´8

where the last step follows from the triangle inequality. So, S̆ is real valued. For all
x P pRdLqn and γ ą 0, there exists cγ P C such that S̆pxq ě Spcγq `DdHpcγ , xq ´ γ. So for
x, x1 P ℓ2pNqn,

S̆px1q ´ S̆pxq ď S̆pcγq `DdHpcγ , x
1q ´ S̆pcγq ´DdHpcγ , xq ` γ ď DdHpx, x1q ` γ.

By symmetry of the argument and since γ ą 0 is given arbitrarily, we conclude that S̆ is
D-Lipschitz with respect to the Hamming distance. Note however, that this construction
does not guarantee that S̆ is measurable.

For any map H : pRdLqn Ñ r´8,8s, let H˚ denote its minimal Borel-measurable
majorant. That is, a measurable map H˚ : pRdLqn Ñ r´8,8s such that

1. H ď H˚ and

2. H˚ ď T P0-a.s. for every measurable T : pRdLqn Ñ r´8,8s with T ě H.

Such a map exists by e.g. Lemma 1.2.1 in Van Der Vaart and Wellner (1996). The map
S̃ : pRdLqn Ñ R defined by

S̃pxq “ S̆˚pxq1xRC ` Spxq1xPC

is measurable and can be seen to be a Borel-measurable majorant of S̆; following from
the fact that sums and products of measurable functions are measurable, S̆ ď S̆˚ and
S̆pxq “ Spxq for x P C.

Furthermore, by combining the fact that S̃ is measurable with e.g. Lemma 1.2.2 in Van
Der Vaart and Wellner (1996), we get

|S̃pxq ´ S̃px1q| “ |pS̃pxq ´ S̃px1qq˚| ď |S̆pxq ´ S̆px1q|˚, (127)

where px, x1q ÞÑ |S̆pxq ´ S̆px1q|˚ is minimal Borel-measurable majorant of px, x1q ÞÑ |S̆pxq ´

S̆px1q|. Since S̆ is D-Lipschitz with respect to the Hamming distance px, x1q ÞÑ dHpx, x1q,
which is a measurable map, |S̆pxq ´ S̆px1q|˚ ď DdHpx, x1q. From (127) it follows that for all
x, x1 P pRdLqn, |S̃pxq ´ S̃px1q| ď DdHpx, x1q. We have obtained a map S̃ that is D-Lipschitz
with respect to the Hamming distance, measurable and S̃ “ S on C, concluding the proof.

66



Federated Nonparametric Private Testing

C.6 General privacy related lemmas

A random variable V is called ν-sub-gaussian if Pp|V | ě tq ď 2e´t2{ν2 , for all t ą 0. It is
well known (see e.g. Vershynin (2018)) that if EV “ 0, the above inequality holds if and
only if EetV ď eCν2t2 for all t ě 0 and a fixed constant C ą 0. A random variable V is called
ν-sub-exponential if Pp|V | ě tq ď 2e´t{ν , for all t ą 0. If EV “ 0, the above inequality holds
if and only if EetV ď eCν2t2 for all 0 ď t ď 1{pcνq, with constants c, C ą 0.

The following lemma shows that clipping symmetric, mean zero random variables pre-
serves sub-gaussianity and sub-exponentiality.

Lemma 35. Let V1, . . . , Vm denote independent random variables, each symmetrically dis-
tributed around zero. If

řm
j“1 Vj are sub-gaussian (resp. sub-exponential) with parameter

ν, then so are the random variables
řm

j“1rVjs
τ
´τ , for any τ ą 0.

Proof For any symmetric about 0 function g : R Ñ R such that x ÞÑ gpxq is increasing on
r0,8q, it holds that

g
`

rxsτ´τ

˘

ď g pxq , for all τ ą 0. (128)

Since Vj is symmetric about zero, so is rVjs
τ
´τ . For an independent Rademacher random

variable Rj , we have by the afformentioned symmetry about zero that rVjs
τ
´τ

d
“ RjrVjs

τ
´τ

and consequently
EetrVjsτ´τ “ EetRjrVjsτ´τ “ E cosh

`

trVjs
τ
´τ

˘

.

Using the fact that V1, . . . , Vm are independent, we obtain that

Ee
t

m
ř

j“1
Vj

“

m
ź

j“1

E cosh
`

trVjs
τ
´τ

˘

ď

m
ź

j“1

E cosh ptVjq ,

where the inequality follows from (128). The conclusion can now be drawn from the mo-
ment generating function characterization of sub-gaussianity (resp. sub-exponentiality).

The next lemma gives a lower bound on the expectation of a clipped random variable
that is symmetric around a real number µ ą 0.

Lemma 36. Let τ, µ ą 0 satisfy τ{4 ď µ ď τ{2, let V be a random variable symmetric about
zero (V d

“ ´V ) with Lebesgue density bounded by M ą 0 and Prp|V | ď 1
12M _ pτ{2qq ě c

for some constant c ą 0. It then holds that

E rµ` V s
τ
´τ ě pc^ 1{2qµ. (129)

Proof By definition of clipping, E rµ` V s
τ
´τ “ E rV s

τ´µ
´τ´µ ` µ. The first term equals

E rV s
τ´µ
´pτ´µq

` E1tV Pr´τ´µ,´τ`µsu

´

rV s
´τ`µ
´τ´µ ` pτ ´ µq

¯

ě

E rV s
τ´µ
´pτ´µq

´ pτ ` µqPr p´τ ´ µ ď V ď ´τ ` µq “

´pτ ` µqPr p´τ ´ µ ď V ď ´τ ` µq ,
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where the last equality follows from the symmetry of V . By the condition on the Lebesgue
density of V , the second term in the above display can be further bounded from below
by ´2Mpτ ` µqµ. When 3Mτ ă 1{2, we obtain (129) with the constant 1{2. Assume
3Mτ ě 1{2. Then, since µ ą 0 and V is symmetric about zero,

E rµ` V s
τ
´τ “ E pµ` V q1t|µ` V | ď τu ` τ pPr pµ` V ą τq ´ Pr pµ` V ă τqq

ě E pµ` V q1t|V | ď τ ´ µu ě E pµ` V q1t|V | ď τ{2u,

where the last inequality follows from µ ď τ{2. From the symmetry of V about zero, the
right-hand side equals µPr p|V | ď p1{12Mq _ pτ{2qq.

C.7 General auxiliary lemmas

The following lemmas are well known but included for completeness.
The following lemma is a standard tail bound for the maximum of sub-gaussian (resp.

sub-exponential) random variables that is used to control the type I error of the adaptive
tests. For a proof, see Vershynin (2018).

Lemma 37. Consider a sequence of subsets Sn Ă N and let SnpLq be ν-sub-Gaussian.
Then,

Pr
´

max
LPSn

|SnpLq| ě tn

¯

ď 2|Sn| exp
´

´
t2n
2ν2

¯

.

If, instead, SnpLq is ν-sub-exponential (with sub-exponentiality parameter ν), then for all
tn ą 0,

Pr
´

max
LPSn

|SnpLq| ě tn

¯

ď 2|Sn| ¨ exp
´

´min
!

t2n
2ν2

, tn
2ν

)¯

.

Consider the following formal definition of coupling.

Definition 38. Consider probability measures P and Q on a measurable space pX ,X q. A
coupling of P and Q is any probability measure P on pX ˆ X ,X b X q such that P has
marginals P and Q; P “ P ˝ π´1

1 , Q “ P ˝ π´1
2 , where πi : X ˆ X Ñ X is the projection

onto the i-th coordinate (i.e. πipx1, x2q “ xi for i “ 1, 2).

Lemma 39 below is a well known result showing that, for random variables X and X̃
defined on a Polish space, small total variation distance between their corresponding laws
guarantees the existence of a coupling such that they are equal with high probability.

Lemma 39. For any two probability measures P and Q on a measurable space pX ,X q with
X a Polish space and X its Borel sigma-algebra. There exists a coupling PX,X̃ such that
}P ´Q}TV “ 2PX,X̃pX ‰ X̃q.

For a proof, see e.g. Section 8.3 in Thorisson (2000).
The following lemma is well known and included for completeness, it follows from

Pinsker’s inequality and a straightforward calculation.
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Lemma 40. Let Pf denote the distribution of a Npf, σIdq distributed random vector for
f P Rd and let Pn

f denote the distribution of n i.i.d. draws (i.e. Pn
f “

Ân
i“1 Pf ).

It holds that
›

›Pn
f ´ Pn

g

›

›

TV
ď

n

2σ
}f ´ g}2 .

The following lemma bounds the maximum of a possibly correlated Gaussian random
vector.

Lemma 41. Let S „ Binpp, nq and 0 ď ϵ ď 1. It holds that ESeϵS ď e4ϵnp.

Proof Write S “
řn

i“1Bi, with B1, . . . , Bn
i.i.d.
„ Berppq. Then, ESeϵS can be written as

n
ÿ

i“1

EBie
ϵS “

n
ÿ

i“1

peϵEeϵ
ř

k‰i Bk “ npeϵ
`

EeϵB1
˘n´1

“ npeϵ p1 ` ppeϵ ´ 1qq
n´1

ď e4npϵ,

where the inequality follows from the fact that ex ´ 1 ď 2x for 0 ď x ď 1.

Appendix D. Appendix on Besov norms in sequence space
In this section we briefly introduce Besov spaces as subspaces of ℓ2pNq and collect some
properties used in the paper.

The definition of the Besov norm given in (5) is equivalent to the Besov norm as typi-
cally defined on a function space when considering the wavelet transform of a function in
L2r0, 1s, f “

ř8
j“j0

ř2j´1
k“0 fjkψjk, where

␣

ϕj0m, ψjk : m P t0, . . . , 2j0 ´ 1u, j ą j0, k P

t0, . . . , 2j ´ 1u
(

, are the orthogonal wavelet basis functions, for father ϕp.q and mother ψp.q
wavelets with N vanishing moments and bounded support on r0, 2N ´ 1s and r´N ` 1, N s,
respectively, following e.g. the construction of Cohen, Daubechies and Vial Cohen et al.
(1993); Daubechies (1992), with N ą s. The Besov norm on the function space is then
equivalent to the one defined above for the wavelet coefficients pfjkqjěj0,kPt0,...,2j´1u. See
e.g. Chapter 4 in Gine and Nickl (2016) for details.

Let Bs
p,qpRq Ă ℓ2pNq denote the Besov ball of radius R. The following lemmas are

standard results, see e.g. Chapter 9 in Johnstone (2019) for proofs.

Lemma 42. There exists a constant Cs,q ą 0 such that }f}2 ď Cs,qR for all f P Bs
p,qpRq

with 1 ď q ď 8 and 2 ď p ď 8.

Lemma 43. Let flk are the wavelet coefficients of the function f P Bα
p,qpRq. For any

1 ď q ď 8, 2 ď p ď 8, L ą 0, we have
ř

ląL

ř2l´1
k“0 f

2
lk ď cα2

´2LαR2, where cα ą 0 is a
universal constant depending only on α.

Lemma 44. There exists a constant Cα,R ą 0 such that }f}8 ď Cα,R for all f P Bα
p,qpRq

with α ´ 1{2 ´ 1{p ą 0, 1 ď q ď 8 and 2 ď p ď 8.

Lemma 45. Let flk are the wavelet coefficients of the function f P Bs
p,qpRq. For any

1 ď q ď 8, 2 ď p ď 8, L ą 0, we have
ř

ląL

ř2l´1
k“0 f

2
lk ď Cs,q2

´2LsR2, where Cs,q ą 0 is a
universal constant depending only on s and q.
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