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Abstract

This paper studies federated learning for nonparametric regression with distributed
samples across servers, each adhering to distinct differential privacy constraints. The
setting is heterogeneous, with varying sample sizes and privacy constraints across
servers. We consider both global and pointwise estimation, establishing optimal rates
of convergence over Besov spaces.

We propose distributed privacy-preserving estimators and investigate their min-
imax risk, establishing minimax lower bounds (up to a logarithmic factor) for both
global and pointwise estimation. Our findings are illustrated through simulations
and real data examples from the National Health and Nutrition Examination Survey
(NHANES), highlighting the effects of privacy budgets, number of servers, and sam-
ple sizes. The real data applications demonstrate the estimator’s utility in analyzing
non-linear relationships like lung function with age, and folate, vitamin B12, with
homocysteine levels.

Our findings highlight the trade-off between statistical accuracy and privacy, char-
acterizing the compromise in terms of privacy budgets and the loss from distributing
data within the privacy framework as a whole. This insight captures the folklore wis-
dom that it is easier to retain privacy in larger samples, and explores the differences
between pointwise and global estimation under distributed privacy constraints. Anal-
ogous optimality results for nonparametric density estimation are also established.

Keywords: Besov Spaces, Distributed Computation, Differential Privacy, Minimax Risk,
Nonparametric Regression, Function Estimation.

1 Introduction

In today’s data-driven world, the proliferation of personal data and technological advance-

ments has made the protection of privacy a matter of paramount importance. Developing
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statistical methods with privacy guarantees is becoming increasingly important. Differ-

ential privacy (DP), one of the most widely adopted privacy frameworks, ensures that

statistical analysis results do not divulge any sensitive information about the input data.

DP was introduced in the seminal work by Dwork et al. [29]. Since its inception, DP has

garnered significant academic attention [8, 30] and notable applications within industry

leaders, including Google [33], Microsoft [25], and Apple [55]. It has also been embraced

by governmental entities like the US Census Bureau [1].

A common setting in many real-life applications is the distributed nature of data collec-

tion and analysis. For example, medical data is spread across various hospitals in health-

care, customer data is stored in different branches or databases in financial institutions and

various modern technologies such as self driving cars rely on federated learning from net-

works of users, see for example [12] and Section A in the Supplementary Material for a list

of references. DP has found applications in many of these domains relating to, for example,

healthcare, finance, tech and social sciences, where preserving individuals’ data privacy is of

utmost concern. In such scenarios, it is vital to develop efficient estimation techniques that

respect privacy constraints while harnessing the collective potential of distributed data.

Federated learning is a machine learning paradigm designed to address the challenges

of data governance and privacy. It enables organizations or groups, whether from diverse

geographic regions or within the same organization, to collaboratively train and improve a

shared global statistical model without external sharing of raw data. The learning process

occurs locally at each participating entity, which we shall refer to as servers. The servers

exchange only characteristics of their data, such as parameter estimates or gradients, in

a way that preserves privacy of the individuals comprising their data. Federated learning

facilitates secure collaboration across industries like retail, manufacturing, healthcare, and

financial services, allowing them to harness the power of data analysis while upholding data

privacy and security.

Rigorous study of theoretical performance in federated learning settings with infor-
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mation and communication constraints has been conducted in, for example, bandwidth

constraint problems of which we provide a brief overview in Section A of the Supplemen-

tary Material. Under DP constraints, theoretical performance in federated learning settings

have been studied for various parametric estimation and testing problems [48, 5, 47, 51].

Federated learning settings where each server’s sample consists of one individual observation

(referred to as local differential privacy settings) have been studied in many-normal-means

model, discrete distributions and parametric models [27, 28, 10, 2, 57], nonparametric den-

sity estimation [53, 44, 16] and non-parametric regression setting [14, 35].

This paper investigates the statistical optimality of federated learning under a novel

privacy framework, Federated Differential Privacy (FDP), in the context of nonparametric

regression. We consider a setting where data is distributed among entities, such as hospitals,

that are concerned about sharing data due to privacy concerns. Each entity communicates

a transcript adhering to distinct DP requirements under FDP, and we assume a scenario

with m servers, each with nj observations, where j = 1, . . . ,m. Our framework provides

an intermediate privacy model between central and local DP.

Our goals are two-fold: first, we establish optimal rates of convergence, measured in

terms of minimax risk, for estimating the nonparametric regression function under FDP

constraints; second, we construct a rate-optimal estimator in this setting. We also propose

general information-theoretic lower bound techniques that demonstrate the optimality of

our results. These techniques are broadly applicable and could be useful in establishing

lower bounds for other problems beyond nonparametric regression, which may be of inde-

pendent interest to readers. We explore both global and pointwise estimation, providing

quantifiable measures of the trade-off between accuracy and privacy. Recognizing that

global estimation behaves differently than pointwise estimation under classical settings

[19], we characterize how FDP constraints impact global and pointwise estimation risks.

To further validate our theoretical findings, we conducted extensive simulation studies

and real-world experiments using data from the National Health and Nutrition Exami-
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nation Survey (NHANES). These empirical studies demonstrate the performance of our

estimators within the FDP framework, comparing their accuracy and privacy trade-offs

against classical non-private methods. Specifically, the real data applications examine im-

portant nonlinear relationships, such as those between lung function and age, and between

folate, vitamin B12, and homocysteine levels. These examples illustrate how privacy mech-

anisms impact estimation accuracy in practical settings, demonstrating how our approach

effectively balances privacy preservation with statistical accuracy in real-world applications.

1.1 Problem formulation

We will begin by formally introducing the general framework of distributed estimation

under privacy constraints. Consider a family of probability measures {Pf}f∈F on the

measurable space (Z,Z ), parameterized by f ∈ F . We consider a setting where N =∑m
j=1 nj i.i.d. observations are drawn from a distribution Pf and distributed across m

servers. Each server j = 1, . . . ,m holds nj observations.

Figure 1: An illustration of the federated learning framework.

Let us denote by Z(j) = {Z(j)
i }

nj
i=1 the nj realizations from Pf on the j-th server. For

each server, we output a (randomized) transcript T (j) based on Z(j), where the law of

the transcript is given by a distribution conditionally on Z(j), P(·|Z(j)) on a measurable

space (T ,T ). The transcript T = (T (j))mj=1 has to satisfy (ε, δ) ≡ (εj, δj)
m
j=1-federated

differentially privacy (FDP) constraint, which is defined as follows.

Definition 1.1. The transcript T = (T (j))mj=1 is (ε, δ)-federated differentially private (FDP)
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if for all j ∈ [m], A ∈ T 1 and z, z′ ∈ Znj differing in one individual datum it holds that

P
(
T (j) ∈ A|Z(j) = z

)
≤ eεjP

(
T (j) ∈ A|Z(j) = z′

)
+ δj.

In the above definition,“differing in one datum” refers to being Hamming distance

“neighbors.” Specifically, local datasets Z(j) and Z̃(j) are neighboring if their Hamming

distance is at most 1, calculated over Znj ×Znj . In other words, Z̃(j) can be derived from

Z(j) by modifying at most one observation among Z(j)1, . . . , Z(j)nj. The smaller the values

of εj and δj, the stricter the privacy constraint. We consider εj ≤ Cε for j = 1, . . . ,m, with

a fixed constant Cε > 0 that does not affect the derived rates.

The FDP framework applies to situations where sensitive data is held by multiple

parties, each generating an output while ensuring differential privacy. Within such a dis-

tributed protocol, the transcripts from each server depend only on its local data, with no

information exchanged between servers. This occurs, for example, when multiple trials

concerning the same population are conducted, but each location (e.g. hospital) does not

wish to pool their original data due to privacy concerns. The framework encapsulates the

commonly studied local DP setting (nj = 1), where privacy mechanisms are applied at the

individual level, as well as the central DP setting (m = 1), as special cases.

Each server transmits its transcript to the central server. The central server, utilizing

all transcripts T := (T (1), . . . , T (m)), computes an estimator f̂ : T m → F . We refer to the

pair (f̂ , {(P(·|z))z∈Z}mj=1) as a distributed estimation protocol, which we shall sometimes

just denote as f̂ . We denote the vector of the differing DP levels by (ε, δ) = {(εj, δj)}mj=1

and denote the class of distributed estimation protocols, i.e.
(
f̂ , {(P(·|z))z∈Z}mj=1

)
satisfy-

ing Definition 1.1, with M(ε, δ). We let Pf denote the joint law of transcripts and the

N =
∑m

j=1 nj i.i.d. observations generated from Pf . We let Ef denote the expectation

corresponding to Pf .

In the context of nonparametric regression, the distributed estimation problem arises

1Our lower bound results hold for transcripts in standard Borel spaces. Larger sigma-algebras can be
considered (making privacy constraints more strict), as long as the quantities in proofs remain measurable.
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when data is distributed among multiple servers. Specifically, for each server j, the data

Z(j) = {(Y (j)
i , X

(j)
i )}nji=1 consists of nj pairs of observations (Y

(j)
i , X

(j)
i ). Here, X

(j)
i rep-

resents the input variable, and Y
(j)
i represents the corresponding response variable. We

assume that under Pf , X
(j)
i and Y

(j)
i are generated by the relationship

Y
(j)
i = f

(
X

(j)
i

)
+ ξ

(j)
i , X

(j)
i ∼ U [0, 1]. (1)

Here, f is an unknown function representing the underlying relationship between the input

and response variables. The term ξ
(j)
i represents random noise, assumed to be independent

of X
(j)
i , and follows a Gaussian distribution with mean zero and known variance, which

we assume equal to one without loss of generality. The assumption that X
(j)
i ∼ U [0, 1] is

made for simplicity and can be relaxed, see Section D in the Supplementary Material for a

discussion on the general case.

The aim is to estimate the function f based on the distributed data. The difficulty

of this estimation task arises from both the distributed nature of the data and privacy

constraints that limit the sharing of information between servers. As in the conventional

decision-theoretical framework, for global estimation, the estimation accuracy of a dis-

tributed estimator f̂ ≡ f̂(T ) is measured by the integrated mean squared error (IMSE),

Ef‖f̂ − f‖2
2, where the expectation is taken over the randomness in both the data (under

Pf ) and construction of the transcripts. As in the conventional framework, a quantity

of particular interest in federated learning is the global minimax risk for the distributed

private protocols over function class F ,

inf
f̂∈M(ε,δ)

sup
f∈F

Ef‖f̂ − f‖2
2. (2)

The global risk characterizes the difficulty of the distributed learning problem over the

function class F when trying to infer the entire function underlying the data whilst adhering

to the heterogeneous privacy constraints.
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Besides global estimation, it is also of interest to estimate f at a fixed point x0 ∈ (0, 1)

under the mean squared error (MSE). The pointwise minimax risk in that case is given by

inf
f̂∈M(ε,δ)

sup
f∈F

Ef (f̂(x0)− f(x0))2, for x0 ∈ (0, 1), (3)

where f̂(x0) denotes the estimated function value at x0 ∈ (0, 1). The pointwise risk is

particularly useful in understanding the behavior of estimators at specific points within

the domain, which can be crucial in applications where certain regions are of particular

interest or have higher consequences associated with estimation errors. It is known that in

the classical setting, without privacy constraints, there are important differences between

the global risk and pointwise risk in terms of performance. See, for example, [18].

We consider estimating f over the Besov ball of radius R > 0, denoted as Bα,Rp,q [0, 1]

(defined in (S.9) in the supplement), where p ≥ 2, q ≥ 1 and α − 1/p > 1/2. This

Besov space offers a suitable framework for analyzing functions with specific smoothness

characteristics. Operating within this space allows us to encompass diverse function classes,

accommodating varying levels of smoothness and complexity.

1.2 Main contribution

We highlight our main contributions as follows:

• Optimal Nonparametric Estimation under FDP: We study the cost of dif-

ferential privacy in federated learning for nonparametric regression, introducing DP

estimators for the global and pointwise risks. We derive theoretical performance guar-

antees with matching minimax lower bounds, establishing their optimality. These

results reveal the principle phenomena in federated settings with varying privacy

budgets and sample sizes, capturing the cost of distributing data.

• General Information-Theoretic Optimality Techniques: We develop general

information-theoretic techniques to establish optimality results within the FDP frame-
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work. Whilst the majority of existing literature studying DP is divided into central

DP and local DP, our framework fully generalizes the unit of privacy and allows for a

unified treatment of these settings. Consequently, our FDP results also establish the

minimax rates for central DP and local DP constraints nonparametric regression (up

to log-factors) and tighten existing minimax rates for density estimation, as special

cases.

• Empirical Studies: To further support our theoretical findings, we conduct exten-

sive simulation studies and illustrate our methods on real-world data. These empirical

studies demonstrate the performance of our estimators within the FDP framework,

comparing their accuracy and privacy trade-offs against classical DP methods. Specif-

ically, we apply our approach to data from the National Health and Nutrition Exam-

ination Survey (NHANES), analyzing relationships such as lung function and age, as

well as folate, vitamin B12, and homocysteine levels.

Next, we briefly elaborate on the key theoretical results. We quantify the cost of

differential privacy in the federated setting for both the minimax global risk given by (2)

and the pointwise risk as in (3). To achieve this, we introduce two federated differentially

private estimators – one for global and one for pointwise estimation. We obtain matching

minimax lower bounds, up to logarithmic factors, thereby establishing their optimality.

Our analysis uncovers intriguing phenomena that go unnoticed in settings where servers

are assumed to have homogeneous privacy budgets. Further discussion on these broader

findings is deferred to Section 3.1. The results for the homogeneous case, where privacy

budgets are equal among servers (εj = ε, δj = δ, and nj = n for j = 1, . . . ,m), yield novel

insights. In this case, our results yield the following minimax rate for global estimation,

inf
f̂∈M(ε,δ)

sup
f∈Bα,Rp,q

Ef‖f̂ − f‖2
2 � min

{
Mm,n ·

(
(mn2ε2)−

2α
2α+2 + (mn)−

2α
2α+1

)
, 1
}
, (4)

where Mm,n ≥ 1 is a sequence at most of the order log(mn) · log(1/δ). The rate (mn)−
2α

2α+1
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is the minimax rate for the global risk in the unconstrained problem, and is attained

whenever nε2 & (mn)
1

2α+1 . The unconstrained optimal rate is attainable (up to a possibly

poly-logarithmic factor) under DP constraints in the homogeneous setting as long as nε2 &

(mn)
1

2α+1 . Whenever nε2 � (mn)
1

2α+1 , the first term dominates and the minimax rate

becomes (mn2ε2)−
2α

2α+2 . As expected in this regime, a smaller ε, which indicates a stronger

privacy guarantee, results in an larger minimax estimation error. Whenever ε� (
√
mn)−1,

consistent estimation ceases to be possible altogether.

When n > 1, the different powers with which n and m appear in the minimax rate

reveal an important difference between the general distributed setting and local DP; if one

distributes N = mn observations across m machines, the task becomes more challenging

as the N observations are spread over a greater number of machines, rather than having a

large number of observations on a smaller number of machines. This phenomenon has an

intuitive explanation; it is easier to retain privacy in larger samples, as each individual’s

data will have only a small influence on the aggregate statistics of interest.

For pointwise estimation, we establish the minimax rate in the homogeneous setting;

inf
f̂∈M(ε,δ)

sup
f∈Bα,Rp,q

Ef |f̂(x0)− f(x0)|2 � min
{
Mm,n ·

((
mn2ε2

)− 2ν
2ν+2 + (mn)−

2ν
2ν+1

)
, 1
}
, (5)

where Mm,n ≥ 1 is a sequence at most of the order log(mn). The rate reveals similar

phenomena as the one for the global risk above, where for n = 1 we recover the known

minimax rate for the problem of nonparametric density estimation for the pointwise risk

under local DP constraints as studied in [44]. An important difference is the quantity

ν = α− 1/p appearing in the exponent instead of α. This implies that privacy constraints

impact pointwise estimation differently than global estimation, with the Besov parameter p

influencing both the relative privacy cost and the distribution of the N = mn observations,

as discussed further in Section 3.1.

The estimation and lower bound techniques developed in our paper enables us to address

the related problem of nonparametric density estimation also, allowing us to derive the
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minimax rates displayed in (4) and (5) for global and pointwise minimax rates for the

setting of FDP density estimation as well. The minimax rates derived by our technique for

the global and pointwise risks in the density estimation setting match exactly (see Theorem

D.1). Due to space limitations, this discussion is deferred to Section D of the Supplementary

Material. Notably, our results improve over the existing central DP (m = 1) results of [45]

and local DP (n = 1) results of [16] and [53], which exhibit a logarithmic gaps between

their upper and lower bounds.

Our findings provide key insights for developing federated learning algorithms that

balance FDP with accuracy, optimizing privacy-accuracy trade-offs. This study advances

understanding of privacy-preserving machine learning in distributed settings.

1.3 Related Work

The nonparametric regression setting considered in this work bears relationships with that

of nonparametric density estimation as studied in the privacy setting for global risk [28,

53, 16] and pointwise risk [44]. The aforementioned papers consider the setting of local

DP, in which the privacy protection is applied at the level of individual data entries or

observations. This corresponds to the case wherein nj = 1 for j = 1, . . . ,m in our setting.

Federated DP as considered in this paper, where DP applies at the level of the local

sample consisting of multiple observations, has been studied in the homogeneous setting

for discrete distributions [48, 5] and parametric mean estimation [47, 51]. [23] considers

discrete distribution testing in a two server setting (m = 2) with differing DP constraints.

Settings in which the full data is assumed to be on a single server (i.e. m = 1), where a

single privacy constraint applies to all the observations, have also been studied for various

parametric high-dimensional problems [54, 32, 11, 41, 42, 21, 50]. The problem of mean

estimation with a single server having heterogeneous privacy constraints for each individual

observation have been studied in [34, 24].

Regarding existing lower bound techniques, several approaches have been developed
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specifically for private settings. For instance, [46] and [7] explore private versions of general

techniques, such as Fano, Assouad, and Le Cam methods, for establishing lower bounds

in the central DP setting. In contrast, [10] develops Van Trees-based lower bounds for

local DP, which do not extend directly to central DP. Similarly, the techniques in [3, 4] are

tailored to the local DP setting, with no straightforward extension to central DP.

1.4 Organization of the paper

The rest of the paper is organized as follows. We conclude this section with notation,

definitions, and assumptions. In Section 2, we present distributed estimation procedures

achieving optimal global and pointwise risks under distributed privacy constraints, along

with an upper bound on their statistical performance. The matching minimax lower bounds

for global and pointwise risks are established in Section 3. Section 4 presents simulation

studies and real-world data experiments to validate our theoretical findings.

In the Supplementary Material [20] to the article, we provide a discussion of future

directions (Section B), additional results concerning the heterogeneous setting (Section C)

and density estimation (Section D), additional simulations and real data examples (Section

E), as well as detailed proofs of our main results.

1.5 Notation, definitions and assumptions

Throughout this article, let N :=
∑m

j=1 nj and consider asymptotics in m, nj, and the

privacy budget (ε, δ) := {εj, δj}mj=1, assuming N → ∞. For positive sequences ak, bk, we

write ak . bk if ak ≤ Cbk for some universal constant C, and ak � bk if ak . bk and bk . ak.

We denote ak � bk when ak/bk = o(1).

We use a ∨ b and a ∧ b for the maximum and minimum of a and b, respectively. For

k ∈ N, [k] denotes the set {1, . . . , k}. Throughout, c and C are universal constants that

may change from line to line. The Euclidean norm of v ∈ Rd is ‖v‖2, and for M ∈ Rd×d,

‖M‖ is the spectral norm and Tr(M) its trace. Let Id be the d× d identity matrix.
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We assume ν := α − 1/p > 1/2, a necessary condition for Besov space estimation (see

[40]), and let Bα,Rp,q denote the Besov ball of radius R: {f ∈ Bαp,q[0, 1] : ‖f‖Bαp,q ≤ R}, where

R > 0 is constant (see Section F in the Supplementary Material for details).

2 Optimal Distributed Private Estimators

This section presents the construction of optimal distributed estimators under differential

privacy constraints. The estimator uses wavelet approximations up to a limited resolution

level. Section 2.1 briefly introduces wavelets. In Section 2.2, we construct the estimator

and provide theoretical guarantees for the global risk. Section 2.3 adapts the procedure for

optimal pointwise risk.

Wavelets are known to have many favourable properties when using them for function

estimation in classical settings, see for example [26, 38, 17]. Under DP constraints, wavelet

constructions have other desirable properties: they allow for exact control of the estimator’s

sensitivity to changes in the data. Loosely speaking, this allows us to control the “influence”

each individual observation has on the outcome of the estimator, whilst retaining the

information the full sample has to a large extent.

2.1 Wavelets and Besov spaces

In nonparametric regression, we aim to construct an optimal estimator for an unknown

function f based on distributed data, assuming f belongs to the Besov space Bαp,q. Roughly,

Bαp,q contains functions with α bounded derivatives in Lp-space, with q providing finer

control of smoothness. Wavelet bases allow characterization of Besov spaces, with α, p,

and q capturing the decay of wavelet coefficients. For further details, see Section F in the

Supplementary Material.

We consider the Cohen, Daubechies, and Vial construction of compactly supported,

orthonormal, A-regular wavelet basis of L2[0, 1], for A > α. The basis functions are given
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by φl0+1,m, ψlk for m ∈ {0, ..., 2l0+1 − 1}, l ≥ l0 + 1, and k ∈ {0, ..., 2l − 1}, with ψlk(x) =

2l/2ψ(2lx− k) and φl0+1,k(x) = 2l0+1φ(2l0+1x−m). For other values of k and m, functions

are specially constructed to form a basis with required smoothness, see Section F. Using

slight notation abuse, we denote the father wavelet by ψl0k = φl0+1,k and represent any

f ∈ L2[0, 1] as f =
∑∞

l=l0

∑2l−1
k=0 flkψlk, where flk = 〈f, ψlk〉 are wavelet coefficients. By

wavelet orthonormality, ‖f‖2
2 =

∑∞
l=l0

∑2l−1
k=0 f

2
lk.

We construct our estimators using an A-smooth wavelet basis (A > α) with compactly

supported ψ such that wavelets ψlk(x) = 2l/2ψ(2lx − k) for l ≥ l0 and k = 0, . . . , 2l − 1

form an orthonormal basis for Bαp,q[0, 1].

We describe briefly how wavelets are used to construct optimal global and pointwise

estimators, based on wavelet approximations up to a limited resolution level. Wavelets’

approximation properties in Besov spaces (see e.g. [37]) ensure that changes in data X
(j)
i

produce limited changes in the wavelet estimator size. The wavelets’ limited support shrinks

at higher resolution levels, controlling the number of coefficients affected by changes in X
(j)
i .

This ensures individual data changes have limited impact on the shared transcript, which

is key to privacy. A detailed description of these properties appears in Sections 2.2 and 2.3.

2.2 Constructing an optimal global estimator

We now construct the estimator using the wavelet transform, which allows representing

a function f in L2 as a linear combination of wavelet basis functions. We first introduce

some notation. For τ > 0 and x ∈ R, let [x]τ denote x clipped at the threshold τ :

[x]τ := max(−τ,min(τ, x)). Given L ∈ N and τ > 0, each machine j = 1, . . . ,m computes

the real numbers

f̂
(j)
lk;τ =

1

nj

nj∑
i=1

[
Y

(j)
i

]
τ
ψlk

(
X

(j)
i

)
, (6)

for l0 ≤ l ≤ L, 0 ≤ k ≤ 2l − 1. We will specify τ and L later. These numbers form the

vector f̂
(j)
L,τ :=

{
f̂

(j)
lk;τ : k = 0, . . . , 2l − 1, l = l0, . . . , L

}
, which will underlie our transcript.

To ensure privacy, we transmit a noisy version of this vector. Adding noise degrades
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the estimator, but sufficient noise ensures the transcript satisfies the privacy guarantee of

Definition 1.1. To control the required noise magnitude, it’s important that the statistic

doesn’t change drastically when a single data point changes. We formalize this in terms of

the sensitivity of the statistic f̂
(j)
L,τ .

The following lemma bounds the L1-sensitivity of the statistic f̂
(j)
L,τ , i.e., the difference

in L1 norm when applied to two neighboring datasets.

Lemma 2.1. For any neighboring datasets Z(j) and Z̃(j),
∥∥∥f̂ (j)

L,τ (Z
(j))− f̂ (j)

L,τ (Z̃
(j))
∥∥∥

1
is

bounded by cψ
τ
√

2L

nj
, where cψ depends only on the wavelet basis.

The proof is provided in Section H.1.1. The limited L1-sensitivity of f̂
(j)
L,τ arises from

two factors. The commonly approached strategy of clipping constrains changes in (6)

when changing a datum Y
(j)
i . Secondly, the wavelets have compact support, which shrinks

proportionally to when the resolution level l increases. Consequently, eventhough the

wavelet basis elements grow exponentially with resolution level l, their support shrinks

proportionally. By considering sum of products
[
Y

(j)
i

]
τ
ψlk

(
X

(j)
i

)
, this construction greatly

limits the number of terms affected in (6) between changes in the i-th datum.

The bounded L1-sensitivity ensures that f̂
(j)
L,τ (Z

(j)) combined with Laplace noise satisfies

(εj, 0)-differential privacy. Specifically, the j-th server outputs T
(j)
lk;τ = f̂

(j)
lk;τ + W

(j)
lk for k =

0, . . . , 2l−1 and l = l0, . . . , L, whereW (j) := (W
(j)
lk ) are i.i.d. Laplace with variance

2τ22Lc2ψ
n2
jε

2
j

.

Here, cψ := 4cA‖ψ‖∞, matching the constant from Lemma 2.1. Thus, the transcript

T
(j)
L,τ = f̂

(j)
L,τ (Z

(j)) +W (j) is (εj, 0)-differentially private.

The final estimator of f is obtained by carefully reweighting the transcripts, accounting

for heterogeneity between servers. The weights depend on the number of local observations

nj and the privacy constraint εj. Given the transcripts T = (T
(1)
L,τ , . . . , T

(m)
L,τ ), the final

estimator is

f̂L,τ (x) =
L∑
l=l0

2l−1∑
k=0

(
m∑
j=1

ujT
(j)
lk;τ

)
ψk,l(x), (7)
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with weights

uj =
vj∑
j vj

where vj =
(
n2
jε

2
j

)
∧
(
nj2

L
)
. (8)

The following theorem captures the global risk attained by the estimator f̂L,τ resulting

from the distributed (ε,0)-FDP procedure outlined above, with optimal selection of L and

a sufficiently large choice of τ . For the latter, a choice of Cα,R +
√

(2α + 1)L is adequate,

where Cα,R > 0 is a constant, as specified by Lemma H.6.

The variance of the Laplace noise vectors W (j), which yield the privacy guarantee,

increases with L. Consequently, the optimal choice of L is not just governed by the classical

bias variance trade-off, but also by the trade-off in the additional noise required to guarantee

privacy. The optimal choice of L is taken as follows. Let D > 0 be the number solving the

equation

D2α+2 =
m∑
j=1

(
n2
jε

2
j

)
∧ (njD) . (9)

Setting L = (l0 +1)∨dlog2(D)e yields the optimal performance as described by the theorem

below, in terms of a bias-variance-sensitivity trade-off.

Theorem 2.2. Set τ = Cα,R+
√

(2α + 1)L and take L = (l0 +1)∨dlog2(D)e, where D > 0

is the solution to (9). Then, the L2-risk of the distributed (ε,0)-DP protocol f̂L,τ satisfies

sup
f∈Bα,Rp,q

Ef
∥∥∥f̂L,τ − f∥∥∥2

2
≤ Cψ log(N)2−2Lα,

where Cψ denotes a constant depending on ψ.

We briefly comment on the derived result. It is important to note that a unique positive

solution to (9) always exists, as the exponent 2α+ 2 > 2 implies that the left-hand side is

smaller than the right-hand side for D > 0 small enough, whilst the right-hand side grows

linearly for small enough D > 0. Furthermore, the right-hand side increases sublinearly in

D, whilst the left-hand side increases superlinearly (strictly so).

When the privacy budget is large enough (e.g. εj = ∞ for j = 1, . . . ,m), D would
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be proportional to the number of wavelet coefficients needed to obtain a wavelet estimator

that attains the optimal estimation rate, see for example [26]. For α > 0 smooth functions

in a Besov space, the optimal resolution level of a wavelet estimator would correspond to

(1 + 2α)−1dlog2Ne for the global risk. However, under privacy constraints, the effective

resolution level changes to (2 + 2α)−1dlog2De, which can be substantially different from

the case without privacy constraints.

In the next section, it is shown that the performance described above is the theoretically

best possible in a minimax sense (up to a logarithmic factor).

2.3 Constructing an optimal estimator of f at a point

We now turn to the task of estimating the unknown function f ∈ Bα,Rp,q at a given point

x0 ∈ (0, 1). That is to say, we will construct an estimator f̂ such that Ef (f̂(x0)− f(x0))2

achieves the optimal rates as predicated by Corollaries 2 and 1.

The plug-in estimator from the previous section, f̂L,τ (x0), where f̂L,τ is constructed as

described earlier, forms a natural starting point for constructing the pointwise estimator.

However, the optimal choice of L for the pointwise risk may differ from the one used to

attain the optimal rate for the global risk. As was the case with the estimator of global

risk as presented in Section 2.2, there is a trade-off between bias, variance and sensitivity.

This trade-off is different in the case of pointwise risk in Besov spaces with p < ∞. Here,

optimal choice of L is governed by L = (l0 + 1) ∨ dlog2(D)e, where D > 0 be the number

solving the equation

D2ν+2 =
m∑
j=1

(
n2
jε

2
j

)
∧ (njD) . (10)

The following theorem describes the performance of the pointwise estimator f̂L,τ (x0) on

the basis of the (ε,0)-FDP transcript T = (T
(1)
L,τ , . . . , T

(m)
L,τ ) for L chosen as above and

τ = Cν,R +
√

2(2ν + 1)L, with Cν,R > 0 as given by Lemma H.6.

Theorem 2.3. Set τ = Cν,R +
√

2(2ν + 1)L and L = (l0 + 1) ∨ dlog2(D)e, where D is
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governed by (10). Then, the pointwise risk of the distributed (ε,0)-DP protocol f̂L,τ satisfies

sup
f∈Bα,Rp,q

Ef (f̂L,τ (x0)− f(x0))2 ≤ Cψ log(N)2−2Lν .

The rate attained by the choice of L as directed by (10) does not just yield the best

possible bias-variance-sensitivity trade-off for the estimator class under consideration, but

it turns out to be minimax optimal (up to a logarithmic factor) as established in the lower

bound of Theorem 3.5 in the following section.

3 Minimax Lower Bounds and Optimality of the Es-

timators

Theorems 2.2 and 2.3 provide the convergence rates for the proposed estimators of f and

f(x0). In this section, we establish two minimax lower bounds, matching these rates up

to logarithmic factors, for both global and pointwise estimation. Together, the upper and

lower bounds confirm the minimax rate for FDP estimation, summarized in Theorem 3.1

in Section 3.1. The derivation of each lower bound uses distinct techniques, elaborated in

Sections 3.2 and 3.3. For global risk, the technique is reminiscent of the score attack of

[21, 22], a generalization of the tracing adversary method [15, 31]. For pointwise risk, we

use a coupling argument [6, 43] with Le Cam’s two-point method, detailed in Section 3.3.

Formal proofs are in Section H.2 of the Supplementary Material.

3.1 Implications of the minimax optimal rates of convergence

In this section, we present our primary findings regarding the minimax rate of convergence

under DP constraints. Our results address both the global and pointwise risks.

For the global risk, the minimax rates are encapsulated in the upper bound of Theorem

2.2 and the lower bound of Theorem 3.2, derived in Sections 2.2 and 3.2. Similarly, for
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the pointwise risk, our findings are summarized in Theorems 2.3 and 3.5, in the form of

an upper bound and lower bound respectively, in Sections 2.3 and 3.3. Together, these

theorems are summarized by the following result.

Theorem 3.1. For γ > 0, let D > 0 be the number solving the equation

D2γ+2 =
m∑
j=1

(
n2
jε

2
j

)
∧ (njD) . (11)

Taking γ = α, the minimax rate for the global risk is given by

inf
f̂∈M(ε,δ)

sup
f∈Bα,Rp,q

Ef‖f̂ − f‖2
2 �

(
MND

−2α ∧ 1
)
,

whenever for all j = 1, . . . ,m we have δj . (n
1/2
j ε2

j(D∨ 1)−1)1+κ for some κ > 0 and where

MN ≥ 1 is a sequence of the order at most log(N) log(1/minj∈[m] δj).

For γ = ν, the minimax rate for the pointwise risk is given by

inf
f̂∈M(ε,δ)

sup
f∈Bα,Rp,q

Ef
∣∣∣f̂(x0)− f(x0)

∣∣∣2 � (MND
−2ν ∧ 1

)
,

whenever
∑

j njδj → 0, for a sequence MN ≥ 1 of the order at most log(N).

We present several specific cases of Theorem 3.1 through corollaries that encapsulate its

various implications. Below, we present the corollaries for the homogeneous setting, where

all servers have equal privacy budgets. In Section C in the Supplementary Material, we

present the corollaries for various heterogeneous settings, where the servers have different

privacy budgets.

Corollary 1. Suppose that nj = n, εj = ε, δj = δ for j = 1, . . . ,m and assume that

δ . (ε2/
√
m)1+κ for some κ > 0. Then, the global minimax risk over M(ε, δ) satisfies (4).
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Whenever nε2 � (mn)
1

2α+1 , we have that

inf
f̂∈M(ε,δ)

sup
f∈Bα,Rp,q

Ef‖f̂ − f‖2
2 �Mm,n (mn)−

2α
2α+1

(
m

1
2α+1n−

2α
2α+1 ε−2

) 2α
2α+2

,

which indicates that the minimax estimation error becomes larger than the unconstrained

minimax rate ((mn)−
2α

2α+1 ) by a factor of (m
1

(2α+1)n−
2α

2α+1 ε−2)
2α

2α+2 (ignoring the logarithmic

factor). This factor can be seen to capture the cost of privacy in terms of the global risk.

A smaller ε results in an increase in minimax estimation error, where larger smoothness

exacerbates the increase.

A second observation based on the privacy cost factor is the cost of distributing ob-

servations in a privacy setting. Specifically, distributing N = mn observations across m

machines becomes more challenging as the N observations are spread over more machines,

rather than having more observations on fewer machines. This confirms the common under-

standing that privacy is easier to retain in larger groups. The relative cost of distributing

observations is also related to the smoothness, where greater smoothness further increases

the cost. More machines require more noise to compensate for fewer observations, affirming

that local differentially private methods perform poorly in multi-observation settings and

that applying privacy at the observation level is relatively costly.

Classically, the pointwise risk is known to be subject to different phenomena than the

global risk over the Besov spaces [19]. Writing ν = α − 1/p and assuming α > 1/p, it is

known that the unconstrained pointwise minimax risk satisfies

inf
f̂

sup
f∈Bα,Rp,q

Ef |f̂(x0)− f(x0)|2 � (mn)−
2ν

2ν+1 . (12)

Compared to the unconstrained global risk, this indicates that the estimation error at a

point is subject to a fundamentally slower convergence rate than the global estimation

minimax rate, where the `p-norm used to measure the smoothness of the Besov ellipsoid

influences the minimax estimation performance. Roughly speaking, the “pointwise” in-
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tegrability of the derivatives of the function underlying the data impacts the problem of

estimation at a point, whilst the global risk remains unaffected. This effect disappears

for Hölder alternatives, where p = ∞ and the minimax rate for the global risk and the

pointwise risk coincide. The main theorem on the minimax risk for pointwise estimation

leads to the following result for the homogeneous setting.

Corollary 2. Suppose that nj = n, εj = ε, δj = δ for j = 1, . . . ,m and δ � (mn)−1.

Then, for x0 ∈ [0, 1], the pointwise minimax risk at x0 over the class M(ε, δ) satisfies (5).

The minimax rate for the pointwise risk seemingly takes on a similar form as that of the

global risk and it coincides with the global risk whenever p =∞. However, for finite values

of p, the cost of privacy can be seen to differ. In particular, to attain the unconstrained

optimal pointwise minimax rate (12), it can be seen that a relatively larger ε is needed,

where a smaller value of p in fact exacerbates the demand. More precisely, whenever

(mn)
1

2α+1 . nε2 � (mn)
1

2ν+1 , the pointwise risk suffers from the DP constraints, whereas

the global risk performance is the same as in the problem without the DP constraints.

Whenever nε2 � (mn)
1

2ν+1 , comparing (5) to (12) shows that the minimax rate of

the classical (unconstrained) pointwise risk increases by a factor of (m
1

2ν+1n−
2ν

2ν+1 ε−2)
2ν

2ν+2

(ignoring the logarithmic factor). This shows that the pointwise risk is subject to a similar

cost-relationship as the global risk. What is similar is that more stringent privacy demands

in terms of a smaller ε translate to an increased cost in terms of the pointwise risk. However,

the relative increase in privacy cost resulting from a decrease in ε for the case of pointwise

risk, is smaller than the relative increase in privacy cost of the global risk, where this

discrepancy is further exacarbated for smaller values of p. This shows that stringent privacy

demands are comparatively less costly for the pointwise risk.

On the other hand, the cost of distributing observations (i.e. increasing m when dis-

tributing N = nm observations) is relatively larger for smaller values of p. That is to say,

differentially private estimation in pointwise risk suffers less from stringent per machine

privacy demands, while it suffers more from the fact that data is distributed before privacy
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preservation is applied. This surprising phenomenon shows that in a distributed setting

with privacy constraints, the distribution of the data across servers impacts the rate dif-

ferently depending on the inferential task at hand. Further results for the heterogeneous

setting can be found in Section C in the Supplementary Material.

3.2 Minimax lower bounds for global risk

The following theorem states a lower bound on the minimax risk for global estimation.

Theorem 3.2. Let D > 0 be the solution to (11) and assume that δj < (n
1/2
j ε2

j(D ∨ 1)−1)

for some κ > 0 and all j ∈ [m]. Then, we have the following lower bound on the minimax

risk:

inf
f̂∈M(ε,δ)

sup
f∈Bα,Rp,q

Ef‖f̂ − f‖2
2 & D−2α ∧ 1. (13)

Note that this lower bound (up to a log factor) matches the upper bound from Theorem

2.2, for L = (l0 + 1) ∨ dlog2(D)e in the estimator from Section 2.2, confirming that the

proposed estimator attains the best rate among privacy-constrained estimators.

Next, we outline key steps in the proof, with technical details left to the appendix.

To lower bound the global risk, we restrict to a finite-dimensional sub-model of Bα,Rp,q , us-

ing the wavelet basis from the previous section. Given L ∈ N, consider the subspace{
f ∈ Bα,Rp,q : f =

∑2L−1
k=0 fLkψLk, fLk ∈ [−2−L(α+1/2)R, 2−L(α+1/2)R]

}
, denoted by Bα,R,Lp,q . Let

ψ(X) be the 2L dimensional vector {ψLk(X)}2L

k=1 and define

Sf

(
Z

(j)
i

)
:=

Y (j)
i −

2L−1∑
k=0

fLkψLk

(
X

(j)
i

)ψ (X(j)
i

)
. (14)

The random vector Sf (Z
(j)
i ) can be seen as an “score function” of the i-th observation

on the j−th server, within the finite dimensional sub-model. Similarly, consider the “score

function” for local data Z(j) on the jth server; S̄f (Z
(j)) :=

∑nj
i=1 Sf (Z

(j)
i ). Furthermore, let

CT (j)

f denote the 2L-dimensional random matrix E
[
S̄f
(
Z(j)

)
| T (j)

]
E
[
S̄f
(
Z(j)

)
| T (j)

]T
.
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We shall write CZ(j)

f for the matrix
∑nj

i=1C
(j)
f,i , where C

(j)
f,i =

[
Sf (Z

(j)
i )Sf (Z

(j)
i )T

]
.

Using the Van-Trees inequality (with a prior as specified later on in the section), we

obtain an expression in terms of the sum-of-traces of the matrices ECT (j)

f , i.e. the covariance

of the score function ES̄f (Z(j)), conditionally on the released transcripts.

As the conditional expectation contracts the L2-norm, we have the “data processing”

bound ECT (j)

f ≤ ECZ(j)

f , which in turn implies that ETr(CT (j)

f ) ≤ ETr(CZ(j)

f ).

The right-hand side is bounded by 2Lnj by direct calculation, which is detailed in the

appendix H.2. These bounds ignore privacy constraints and reflect unconstrained minimax

rate. To capture the information loss from the DP constraint in Definition 1.1, a more

sophisticated data processing argument is needed. This leads to one of the paper’s key

innovations: a data-processing inequality (Lemma 3.3) for the conditional covariance given

a (εj, δj)-differentially private transcript of linear functionals like the score Sf (Z
(j)
i ). The

lemma offers a geometric version of the “score attack” lower bound from [22]. Combining

this step with trace linearity accommodates heterogeneity between servers.

Lemma 3.3. Let δj log(1/δj) < n
1/2
j ε2

j(D ∨ 1)−1 for j = 1, . . . ,m. There exists a universal

constant C > 0 such that

ETr(CT (j)

f ) ≤ Cnjεj

√
ETr(CT (j)

f )

√
λmax(EC(j)

f,1) + Cδj

(
2Ln

1/2
j log(1/δj) + nj

)
.

In Section H.2 of the appendix, we show that the largest eigenvalue of Cf,i; λmax(ECf,i),

is bounded, from which it follows from the E
[
Tr(CT (j)

f )
]
. n2

jε
2
j uniformly for f ∈ Bα,R,Lp,q

whenever δj is of smaller than n
1/2
j ε2

jD
−1.

With the two bounds on the trace of ECT (j)

f in hand, we now lower bound global estima-

tion risk using the Van-Trees inequality. The Van-Trees inequality provides an expression

in terms of the trace of a certain covariance matrix, which is the conditional covariance of a

linear functional of the data. Combined with the data processing inequalities, the linearity

of the trace accommodates for the heterogeneity between the servers.
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In order to apply the Van-Trees inequality, we first define a prior such that the worst-

case global risk is lower bounded by the corresponding Bayes risk. To that extent, we

define a prior Π that is supported on Bα,R,Lp,q . Given the resolution level L ∈ N, we draw

fLk independently from the probability distribution ΠLk, defined through an appropriately

rescaled version of the density t 7→ cos2(πt/2)1|t|≤1) such that has its support equal to

[−2−L(α+1/2)R, 2−L(α+1/2)R] for k = 0 . . . , 2L − 1 and set flk = 0 otherwise. For this choice

of prior, the Van-Trees inequality of [36] yields the following lemma, for which we defer the

details of the proof to Section H.2 in the appendix.

Lemma 3.4. It holds that supf∈Bα,Rp,q Ef‖f̂−f‖2
2 is lower bounded by the Bayes risk

∫
Ef‖f̂−

f‖2
2dΠ(f), which is further lower bounded as follows

∫
Ef‖f̂ − f‖2

2dΠ(f) ≥ 22L

supf∈Bα,R,Lp,q

∑m
j=1 ETr(CT (j)

f ) + π22L(2α+2)
.

Combining the data processing upper bound on the trace of ECT (j)

f and Lemma 3.3, we

have, by Lemma 3.4, that

sup
f∈Bα,Rp,q

Ef‖f̂ − f‖2
2 &

22L∑m
j=1 n

2
jε

2
j ∧ nj2L + π22L(2α+2)

.

For obtaining the desired lower bound we choose L that maximizes the lower bound. Setting

L = (l0 + 1) ∨ dlog2(D)e does so by the relationship (11), which proves Theorem 3.2.

3.3 Lower bound for the pointwise risk

In this section, we derive the minimax lower bound for the pointwise risk. We first present

the lower bound as the main result of the section in the form of Theorem 3.5, after which

we discuss its proof. The theorem tells us that the pointwise risk estimator proposed in

Section 2.3 performs optimally in terms of achieving the minimax privacy constrained rate

up to a logarithmic factor.
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Theorem 3.5. Assume furthermore that
∑

j njδj → 0 and let D > 0 be the number solving

the equation

D2ν+2 =
m∑
j=1

(
n2
jε

2
j

)
∧ (njD) . (15)

Then, for any x0 ∈ (0, 1), the minimax pointwise risk is lower bounded as follows:

inf
f̂∈M(ε,δ)

sup
f∈Bα,Rp,q

Ef |f̂(x0)− f(x0)|2 & D−2ν ∧ 1.

Whenever
(∑m

j=1 n
2
jε

2
j

) 1
2ν+2 ≥ maxj njε

2
j , the right hand side is further bounded from below

by
(∑m

j=1 n
2
jε

2
j

)− 2ν
2ν+2 ∧ 1.

The proof of the theorem is based around the Le Cam two point method, which is a

common approach to lower bounding the pointwise risk. However, to capture the effect

of the transcripts satisfying the DP constraint of Definition 1.1, we introduce a coupling

argument in conjunction.

We briefly sketch the two point method and coupling argument here, leaving the tech-

nical details to the appendix. Take any function f ∈ Bαp,q such that ‖f‖Bαp,q = R′ < R and

a compactly supported function g ∈ Bαp,q such that ‖g‖Bαp,q ≤ R − R′ and g(0) > 0. Define

a third function f̃(t) := γ−1
D g(βD(t− x0)) + f(t), where γD := c−1

0 Dν and βD = γ
1/ν
D , where

we recall that ν = α− 1
p
. By e.g. Lemma 1 from [19], ‖f‖Bαp,q ≤ R.

Let (Y
(j)
i , X

(j)
i ) ∼ Pf and (Ỹ

(j)
i , X̃

(j)
i ) ∼ Pf̃ for individual observations generated ac-

cording to (1) with either f or f̃ the true underlying regression function respectively. We

construct a coupling between Pf and Pf̃ such that (Y
(j)
i , X

(j)
i ) and (Ỹ

(j)
i , X̃

(j)
i ) are equal

with probability proportional to σ−1‖f̃ − f‖1, which forms the content of the following

lemma.

Lemma 3.6. There exists a joint distribution Pf,f̃ of
(

(Y
(j)
i , X

(j)
i ), (Ỹ

(j)
i , X̃

(j)
i )
)

such that

ρ := Pf,f̃

((
Y

(j)
i , X

(j)
i

)
6=
(
Ỹ

(j)
i , X̃

(j)
i

))
≤ c

σ
‖f̃ − f‖1, (16)
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for a universal constant c > 0.

We prove the above lemma in Section I.2. Loosely speaking, the quantity ρ captures

the difficulty of distinguishing individual observations from Pf of those generated from Pf̃ .

Consider now transcripts T = (T (1), . . . , T (m)) each satisfying the DP constraint of

Definition 1.1 with a privacy budget (ε, δ), and let Pf denote the joint law of transcripts

and the N =
∑m

j=1 nj observations generated from Pf . Let PTf denote the push-forward

measure of the transcript, i.e. its marginal distribution given that the data is generated by

Pf . Similarly, let Pf̃ denote the joint law of T with the data generated from Pf̃ and let PT
f̃

denote the corresponding marginal distribution of T . With the coupling of Lemma 3.6 in

hand, we derive the following lemma.

Lemma 3.7. For any subset S ⊆ [m], with ε̄j = 6njεjρ, ρ as defined in (16), it holds that

∥∥∥PTf − PT
f̃

∥∥∥
TV
≤
√

2

√∑
j∈S

ε̄j (eε̄j − 1) +
∑
j∈Sc

njDKL(Pf ;Pf̃ ) + 4
∑
j∈S

eε̄jnjδjρ, (17)

We defer a proof of the lemma to Section I.2 of the appendix. The lemma allows

analysis of the contributions of the separate the servers, accounting for the heterogeneity

in the privacy budgets (εj, δj) and the differing number of observations. Roughly speaking,

for servers with relatively large privacy budgets, their contribution to the estimator is to

be captured by njDKL(Pf ;Pf̃ ), which does not involve the privacy budget all together.

Servers for which the privacy budget is more stringent, contribute with the (potentially)

smaller quantity ε̄j, where ρ corresponds to the probability in (16), established in the

coupling relationship of Lemma 3.6. The proof then follows by Le Cam’s two point lemma

after combining the divergence bound of Lemma 3.6 and a standard KL-divergence bound

and minimizing the right-hand side through the choice of S, i.e. the optimal division into

the stringent and non-stringent privacy budgets, we defer the details to Section I.2 of the

Supplementary Material.
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4 Simulation Results and Real Data Applications

4.1 Simulation Studies

In this section, we present numerical results related to the estimator constructed in Section

2. The purpose of our simulations is two-fold. First of all, we investigate how much the noise

added by the differential privacy mechanism affects the the estimator, by comparing various

privacy budgets. Secondly, we illustrate numerically how the estimation risk is affected by

the number of servers, the total number of observations, and the privacy budget.

As an initial investigation into the effect of the privacy mechanism on the estimator, we

consider a simple example with a single server and a total of N = 500 observations in Figure

2. Here, we generate data from the model (1), where f is randomly drawn from a Besov

ball; we defer the exact details of the simulation setup to Section E.1 in the Supplementary

Material. The plot in Figure 2a shows a single draw the private estimator of Section 2 is

compared for different privacy budgets (ε = 0.5, 1, 2, 5), the non-private wavelet estimator

and the true underlying signal. The plot in Figure 2b shows the mean estimated signals

over 1000 simulation runs, with bands capturing 95% of the draws over the randomness

in the privacy mechanism. We observe that (as expected) greater deviances from the true

signal / non-private estimator occuring for smaller privacy budgets.

Figure 3 contains plots studying how the the MSE changes for various characteristics

of the problem. In the plot Figure 3a, we show the effect of increasing the privacy budget

on the IMSE for different server setups, for a fixed number of observations (N = 2000).

We see that for small values of ε the performance is better when the data is distributed

over fewer machines. As ε increases, the performance becomes independent of the number

of machines. This captures the phase transition also observed in our theoretical results.

The two slight increases in IMSE observed in the plot are a consequence of the changing

resolution levels of the wavelet expansion that occur as ε increases, where we have not

optimized the constants when selecting the change points. The second plot, Figure 3b,
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(a) Scatter points and estimated curves for
different privacy budgets.
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(b) Mean and 95% bands over 1000 runs
over the privacy mechanism.

Figure 2: Wavelet-based differentially private estimators for varying privacy budgets (ε =
0.5, 1, 2, 5) with a total of N = 500 observations on one single server. The left plot shows
the scatter points and a single estimated curve for each value of ε, while the right plot
compares the mean estimated signals over 1000 simulation runs over the randomness in
privacy mechanism with bands capturing 95% of the draws over the privacy mechanism.

shows the decrease in the IMSE as N increases, for a fixed privacy budget (ε = 1) on a log-

log scale. We see that the performance improves as the number of observations increases,

as expected. However, we see that the slope of the curve is steeper for the case of a single

machine compared to the case of multiple machines, which is consistent with the theoretical

results. The third plot, Figure 3c, further corroborates the findings concerning the cost of

distributing data over multiple servers by showing the effect of decreasing the number of

servers (n/N → 1) for a fixed total number of observations (N = 2000), for both IMSE

and MSE at a point over.

In Section E.1 of the Supplementary Material, we provide additional simulation re-

sults, including tables and figures, that further illustrate the performance of the proposed

estimator under various settings.

4.2 Real Data Applications

This section demonstrates the private wavelet based estimator for preserving differential

privacy while analyzing relationships between two variables on real data. We consider two
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Figure 3: The log-IMSE as a function of the privacy budgets ε and total number of obser-
vations N , for various machine setups and α = 2. The lines represent averages over 1000
simulation runs.

applications: the first example involves the bivariate association between Forced Expiratory

Volume in 1 second (FEV1), a measure assessing lung function and respiratory health and

age, which is known to follow a non-linear relationship [39]. The second example examines

the association between serum folate and serum vitamin B12 levels with plasma total

homocysteine (tHcy) levels. Elevated tHcy is a well-established risk factor for vascular

diseases, including stroke and myocardial infarction [56] and its relationship with folate

and vitamin B12 is characterized by non-linearity [52].

Both applications are based on data of the National Health and Nutrition Examination

Survey (NHANES), is available at CDC’s NHANES website2. We explore the private

wavelet-based estimator on features of this otherwise publicly available data for the purpose

of illustration. The data consists of a random sample of the U.S. population living in

households, selected from 81 counties across the United States.

Returning to the first application, we look at NHANES 2009-2010 data, investigating

the relationship between FEV1 and age between ages 6 and 80 years for men and women.

In addition, we consider the sub-samples of the survey participants who indicated smoking

status. Both gender and smoking status are known to affect FEV1 levels (see e.g. [13]

and [49]). Figure 4a displays the estimated curves for smoothness level α = 2 – both the

private wavelet-based estimator for ε = 1 and its non-private counterpart – for women and

2https://wwwn.cdc.gov/Nchs/Nhanes
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Figure 4: The relationship between FEV1 and age for female and male cohorts (n = 3531
and n = 3548, respectively) and participants indicating to smoke every day (n = 899)
versus those who smoke sometimes (n = 205).

men; n = 3531 and n = 3548, respectively. The curves corroborate the general finding that

FEV1 increases with age up until around the 20th year, and declines subsequently, with a

noticable difference between the male and female cohorts past the teenage years. In these

relatively large samples, the private estimator almost matches the non-private estimator.

In Figure 4b, we look at a smaller cohort: individuals ages between 20 and 80 who have

indicated to either smoke every day (n = 899) or sometimes (n = 205). The non-private

curves show that the FEV1 levels are lower for individuals who smoke every day compared

to those who smoke sometimes. However, the private wavelet-based estimator is less precise

in capturing this difference, and could in this particular case lead to an erronous conclusion.

This is a consequence of the small sample size of the second cohort, requiring more noise

to ensure privacy.

In our second example, we utilize data from the NHANES during 1999-2000, previously

studied by Bang et al. [9], who employed quartile plots, piecewise constant models, and

splines to illustrate these dose-response curves and reported non-linear inverse relationships

between plasma total homocysteine and serum folate and vitamin B12 levels, corroborating

general findings on the relationship.

Figure 5 compares the private and non-private dose-response curves between plasma
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Figure 5: Private and nonprivate estimation of Homocysteine vs. Folate and B12 for
N = 750 and ε ∈ {1, 2}.

total homocysteine and serum folate and vitamin B12 levels for N = 750 and privacy

budgets ε ∈ {1, 2}. For ε = 1, the privacy mechanism introduces a noticeable deviation

from the non-private estimator. The plots demonstrate an inverse non-linear relationship

between homocysteine, folate, and vitamin B12 levels, consistent with [9]. Figures S.3 and

S.4 in Section E provide comparisons for the same privacy budgets with sub-samples of

sizes N = 1500 and N = 300. As sample sizes decrease, the deviation from the non-private

estimator increases, in line with our theoretical findings. Full implementation details and

further results are provided in the Supplementary Material.
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[11] L. P. Barnes, W.-N. Chen, and A. Özgür. Fisher information under local differential

privacy. IEEE Journal on Selected Areas in Information Theory, 1(3):645–659, 2020.

[12] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Effi-

cient algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on

foundations of computer science, pages 464–473. IEEE, 2014.

[13] F. Beaufays, K. Rao, R. Mathews, and S. Ramaswamy. Federated learning for emoji

31



prediction in a mobile keyboard. arXiv:1906.04329, 2019.

[14] M. R. Becklake and F. Kauffmann. Gender differences in airway behaviour over the

human life span. Thorax, 54(12):1119–1138, 1999.

[15] T. B. Berrett, L. Györfi, and H. Walk. Strongly universally consistent nonparametric

regression and classification with privatised data. Electronic Journal of Statistics,

2021.

[16] M. Bun, J. Ullman, and S. Vadhan. Fingerprinting codes and the price of approxi-

mate differential privacy. In Proceedings of the forty-sixth annual ACM symposium on

Theory of computing, pages 1–10, 2014.

[17] C. Butucea, A. Dubois, M. Kroll, and A. Saumard. Local differential privacy: Elbow

effect in optimal density estimation and adaptation over Besov ellipsoids. Bernoulli,

26(3):1727 – 1764, 2020.

[18] T. T. Cai. Adaptive wavelet estimation: A block thresholding and oracle inequality

approach. The Annals of Statistics, 27(3):898–924, 1999.

[19] T. T. Cai. On block thresholding in wavelet regression: Adaptivity, block size, and

threshold level. Statistica Sinica, 12:1241–1274, 2002.

[20] T. T. Cai. Rates of convergence and adaptation over Besov spaces under pointwise

risk. Statistica Sinica, pages 881–902, 2003.

[21] T. T. Cai, Y. Wang, and L. Zhang. The cost of privacy: Optimal rates of conver-

gence for parameter estimation with differential privacy. The Annals of Statistics,

49(5):2825–2850, 2021.

[22] T. T. Cai, Y. Wang, and L. Zhang. Score attack: A lower bound technique for optimal

differentially private learning. arXiv preprint arXiv:2303.07152, 2023.

[23] C. L. Canonne and Y. Sun. Private distribution testing with heterogeneous constraints:

Your epsilon might not be mine. In 15th Innovations in Theoretical Computer Science

Conference (ITCS 2024), 2024.

[24] S. Chaudhuri and T. A. Courtade. Mean estimation under heterogeneous privacy:

32



Some privacy can be free. In 2023 IEEE International Symposium on Information

Theory (ISIT), pages 1639–1644. IEEE, 2023.

[25] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data privately. Advances

in Neural Information Processing Systems, 30, 2017.

[26] D. L. Donoho and I. M. Johnstone. Minimax estimation via wavelet shrinkage. The

annals of Statistics, 26(3):879–921, 1998.

[27] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax

rates. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,

pages 429–438. IEEE, 2013.

[28] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Minimax optimal procedures

for locally private estimation. Journal of the American Statistical Association,

113(521):182–201, 2018.

[29] C. Dwork. Differential privacy. In International colloquium on automata, languages,

and programming, pages 1–12. Springer, 2006.

[30] C. Dwork, A. Smith, T. Steinke, and J. Ullman. Exposed! a survey of attacks on

private data. Annual Review of Statistics and Its Application, 4:61–84, 2017.

[31] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust traceability from

trace amounts. In 2015 IEEE 56th Annual Symposium on Foundations of Computer

Science, pages 650–669. IEEE, 2015.

[32] C. Dwork, K. Talwar, A. Thakurta, and L. Zhang. Analyze gauss: optimal bounds

for privacy-preserving principal component analysis. In Proceedings of the forty-sixth

annual ACM symposium on Theory of computing, pages 11–20, 2014.

[33] U. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-

preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’14, page 1054–1067, 2014.

[34] A. Fallah, A. Makhdoumi, A. Malekian, and A. Ozdaglar. Optimal and differentially

private data acquisition: Central and local mechanisms. Operations Research, 2023.

33



[35] F. Farokhi. Deconvoluting kernel density estimation and regression for locally differ-

entially private data. Scientific Reports, 10(1):21361, 2020.

[36] R. D. Gill and B. Y. Levit. Applications of the van trees inequality: a bayesian

cramér-rao bound. Bernoulli, pages 59–79, 1995.

[37] E. Gine and R. Nickl. Mathematical Foundations of Infinite-Dimensional Statistical

Models. Cambridge University Press, Cambridge, 2016.

[38] P. Hall, G. Kerkyacharian, and D. Picard. On the minimax optimality of block thresh-

olded wavelet estimators. Statistica Sinica, pages 33–49, 1999.

[39] J. L. Hankinson, J. R. Odencrantz, and K. B. Fedan. Spirometric reference values from

a sample of the general us population. American journal of respiratory and critical

care medicine, 159(1):179–187, 1999.

[40] I. Ibragimov and R. Khasminskii. Some Estimation Problems in Infinite Dimensional

Gaussian White Noise, pages 259–274. Springer New York, 1997.

[41] G. Kamath, J. Li, V. Singhal, and J. Ullman. Privately learning high-dimensional

distributions. In Conference on Learning Theory, pages 1853–1902. PMLR, 2019.

[42] G. Kamath, V. Singhal, and J. Ullman. Private mean estimation of heavy-tailed

distributions. In Conference on Learning Theory, pages 2204–2235. PMLR, 2020.

[43] V. Karwa and S. Vadhan. Finite sample differentially private confidence intervals. In

9th Innovations in Theoretical Computer Science Conference (ITCS 2018), 2018.

[44] M. Kroll. On density estimation at a fixed point under local differential privacy.

Electronic Journal of Statistics, 15(1):1783 – 1813, 2021.

[45] C. Lalanne, A. Garivier, and R. Gribonval. About the cost of central privacy in density

estimation. Transactions on Machine Learning Research Journal, 2023.

[46] C. Lalanne, A. Garivier, and R. Gribonval. On the statistical complexity of estimation

and testing under privacy constraints. Transactions on Machine Learning Research

Journal, 2023.

[47] D. Levy, Z. Sun, K. Amin, S. Kale, A. Kulesza, M. Mohri, and A. T. Suresh. Learning

34



with user-level privacy. Advances in Neural Information Processing Systems, 34:12466–

12479, 2021.

[48] Y. Liu, A. T. Suresh, F. X. X. Yu, S. Kumar, and M. Riley. Learning discrete distribu-

tions: user vs item-level privacy. Advances in Neural Information Processing Systems,

33:20965–20976, 2020.

[49] D. M. Mannino and K. J. Davis. Lung function decline and outcomes in an elderly

population. Thorax, 61(6):472–477, 2006.

[50] S. Narayanan. Private high-dimensional hypothesis testing. In Conference on Learning

Theory, pages 3979–4027. PMLR, 2022.

[51] S. Narayanan, V. Mirrokni, and H. Esfandiari. Tight and robust private mean es-

timation with few users. In International Conference on Machine Learning, pages

16383–16412. PMLR, 2022.

[52] J. Robertson, F. Iemolo, S. P. Stabler, R. H. Allen, and J. D. Spence. Vitamin b12,

homocysteine and carotid plaque in the era of folic acid fortification of enriched cereal

grain products. Cmaj, 172(12):1569–1573, 2005.

[53] M. Sart. Density estimation under local differential privacy and Hellinger loss.

Bernoulli, 29(3):2318 – 2341, 2023.

[54] A. Smith. Privacy-preserving statistical estimation with optimal convergence rates. In

Proceedings of the forty-third annual ACM symposium on Theory of computing, pages

813–822, 2011.

[55] A. Team et al. Learning with privacy at scale. Apple Mach. Learn. J, 1(8):1–25, 2017.

[56] O. To, D. Case, and S. Nineteen. Plasma homocysteine as a risk factor for vascular

disease. Jama, 277:1775–1781, 1997.

[57] M. Ye and A. Barg. Optimal schemes for discrete distribution estimation under locally

differential privacy. IEEE Transactions on Information Theory, 64(8):5662–5676, 2018.

35


	Introduction
	Problem formulation
	Main contribution
	Related Work
	Organization of the paper
	Notation, definitions and assumptions

	Optimal Distributed Private Estimators
	Wavelets and Besov spaces
	Constructing an optimal global estimator
	Constructing an optimal estimator of f at a point

	Minimax Lower Bounds and Optimality of the Estimators
	Implications of the minimax optimal rates of convergence
	Minimax lower bounds for global risk
	Lower bound for the pointwise risk

	Simulation Results and Real Data Applications
	Simulation Studies
	Real Data Applications


