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A general framework for principal component analysis (PCA) in the
presence of heteroskedastic noise is introduced. We propose an algorithm
called HeteroPCA, which involves iteratively imputing the diagonal entries of
the sample covariance matrix to remove estimation bias due to heteroskedas-
ticity. This procedure is computationally efficient and provably optimal under
the generalized spiked covariance model. A key technical step is a determin-
istic robust perturbation analysis on singular subspaces, which can be of inde-
pendent interest. The effectiveness of the proposed algorithm is demonstrated
in a suite of problems in high-dimensional statistics, including singular value
decomposition (SVD) under heteroskedastic noise, Poisson PCA, and SVD
for heteroskedastic and incomplete data.

1. Introduction. Principal component analysis (PCA) is a ubiquitous tool in statistics,
econometrics, machine learning, and applied mathematics. The central aim of PCA is to
extract hidden low-rank structures from noisy observations. The spiked covariance model
has been well studied and used as a baseline for both methodological and theoretical de-
velopments for PCA [3, 4, 20, 30, 43, 45]. Under this model, one observes Yi,...,Y, i
N(u, X0 + azlp), where 9 = UAU " is a symmetric low-rank matrix and [, is a p-
dimensional identity matrix. The spiked covariance model can be equivalently written as

iid iid
()  Yi=Xe4e&,  Xi~N@w o), & ~N(0,0%,), k=1,...,n.
The goal is either to recover Xg, A, or U, and it is often done through the sample covariance
matrix of Yq, ..., Y,, thatis,

—~ _ _ 1 n - _
2 S = Y-VINY-V1 ) =—YWm-Dy -1,
2 n—l( n)( n) n_ll;(k ) (Y )
where Y=1[Y1,...,Y,] and ¥ = %Zzﬂ Yi. The asymptotic properties of eigenvalues and

eigenvectors of 3 have been well established in literature and their estimation based on the
eigendecomposition of X has been introduced and studied. A key assumption in these anal-
yses is homoskedasticity, in the sense that each ¢, is assumed to be spherically symmetric
Gaussian.

1.1. Heteroskedastic PCA. In many applications, the noise term & can be highly het-
eroskedastic in the sense that the magnitude of noise entries varies significantly in the data
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matrix. Heteroskedastic noise is especially common in datasets with different types of vari-
ables. For example, in various biological sequencing and photon imaging data, the obser-
vations are discrete counts that are commonly modeled by Poisson, multinomial, or negative
binomial distributions [14, 48] and are naturally heteroskedastic. In network analysis and rec-
ommender systems, the observations are usually binary or ordinal, which are heteroskedastic
as well.

Motivated by these applications, it is natural to relax the homoskedasticity assumption in
(1) and consider the following generalized spiked covariance model [2, 58]:

Y=X+¢, EX =pu, Cov(X) = X,
3) Ee=0,  Cov(gj) =07,
e=(e1,..., sp)T; X, é€1,..., &y are independent.

Here, 3¢ is rank-r and admits eigendecomposition Lo = UAU T with U € R?*" and
A e R, 012, ..., 0% are unknown and not necessarily identical. This model is also widely
used as the standard model in the literature of factor analysis (see, e.g., [24, 50] and the ref-
erences therein). Given i.i.d. copies Yy, ..., Y, drawn from (3) and the rank r, the goal is to
estimate U.

Performing the classical PCA on data with heteroskedastic noise can often lead to incon-
sistent estimates. The estimation of U using the classical PCA is equivalent to the estimation

of eigenvectors of the sample covariance matrix $. Since ES = % + diag(alz, ey a[%), the

2

p

of heteroskedastic noise, the differences in the bias terms 012, R 1%

difference between the principal components of ES and those of . Similar phenomena
appear in other problems with heteroskedastic noise (see Section 3 for details).

To cope with the bias on the diagonal elements of covariance matrix, [21] introduced
the diagonal-deletion SVD in the context of bipartite stochastic block model. The idea is to
set the diagonal of the sample covariance matrix to zero before performing singular value
decomposition. However, it is a priori unclear whether zeroing out the diagonals is always
the best choice, because it may change the singular subspace entirely.

In this paper, we introduce HeteroPCA, a novel method for heteroskedastic principal com-
ponent analysis. Instead of zeroing out the diagonal entries of the sample covariance/Gram
matrix, we propose to iteratively update the diagonal entries based on the off-diagonals, so
that the bias incurred on the diagonal is significantly reduced and more accurate estimation
can be achieved. The performance of the proposed procedure is studied both theoretically and
numerically. By establishing matching minimax upper and lower bounds, we show that Het-
eroPCA achieves the optimal rate of convergence for a range of settings under the generalized
spiked covariance model.

Classic perturbation bounds, such as Davis—Kahan and Wedin’s theorems [17, 57], play
key roles in the theoretical analysis of various PCA methods. These tools may not be suit-
able for the analysis of heteroskedastic PCA due to the aforementioned bias on the diagonal
entries of the sample covariance matrix. To tackle this difficulty, we develop a new deter-
ministic subspace perturbation bound (Theorem 3), which provides the key technical tool for
analyzing HeteroPCA and may be of independent interest.

In addition to heteroskedastic PCA for the generalized spiked covariance model, the pro-
posed HeteroPCA algorithm is applicable to a collection of high-dimensional problems with
heteroskedastic data. Several applications are discussed in detail in Section 3, including SVD
under heteroskedastic noise, Poisson PCA, and SVD for heteroskedastic and incomplete data.
Our results can also be useful in heteroskedastic canonical correlation analysis, heteroskedas-
tic tensor SVD, exponential family PCA, and community detection in bipartite stochastic
network.

top eigenvectors of ES and Y0 will coincide when 012, ..., 0% are the same. But in the case

can lead to significant
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1.2. Related literature. [2, 58] extended the theory for regular spiked covariance model
(1) to the generalized spiked covariance model and studied the limiting distribution of eigen-
values of the sample covariance matrix. [25-27] introduced an alternative model for het-
eroskedastic data, where the noise is nonuniform across different samples but uniform within
each sample. Under this model, [25, 26] studied the asymptotic performance of PCA and [27]
developed the optimal weights for weighted PCA with theoretical guarantees. [S1-54] pro-
vide a comprehensive study on the methodology and theory of PCA where data-dependent,
nonisotropic, or correlated noise and missing values may appear. The detailed comparison of
our results and [53, 54] are given in later Remarks 2 and 9.

Our work is also closely related to a substantial body of literature on factor model analysis
[1, 24, 34, 44, 49, 50, 56]. There have been various approaches developed to estimate the
principal components in factor models, such as the regression method [49], weighted least
squares [5], EM [50], and Bayesian MCMC [24]. The asymptotic theory for factor model
analysis was also extensively studied (e.g., [1, 56] and the references therein). Different from
the previous results, this paper mainly concerns a nonasymptotic framework, providing al-
gorithms with provable guarantees and allowing heteroskedastic noise within each sample in
the high-dimensional regime that n, p, r can all grow.

Matrix denoising [19, 20, 23, 42], where the central goal is to estimate low-rank matrices
from noisy observations, is closely related to this work. In order to get an accurate estima-
tion of overall low-rank matrices from observations perturbed by random noise, the singular
value thresholding [15, 19] and the singular value shrinkage [20, 23, 42] were proposed and
widely studied recently. Departing from these previous results, this paper focuses on estimat-
ing the singular subspace instead of the overall matrix, which achieves better performance in
singular subspace estimation than denoising the whole matrix by previous methods and then
performing a rank-r SVD.

In Section 3.3, we discuss the application of HeteroPCA to SVD for heteroskedastic and
incomplete data. This problem is related to a body of literature on matrix completion that we
will give a review in Section 3.3.

1.3. Organization of the paper. After a brief introduction of notation and definitions
(Section 2.1), we focus on the generalized spiked covariance model, present the HeteroPCA
algorithm (Section 2.2), and develop matching minimax upper and lower bounds of the es-
timation error (Section 2.3). Then, we introduce a deterministic robust perturbation analysis
that serves as a key technical step in our analysis (Section 2.4). We also illustrate main proof
ideas in Section 2.5. In Section 3, we discuss the applications of established results. Numer-
ical results are given in Section 4. The proofs of main results are given in Section 6. The
additional proofs and technical lemmas are provided in the Supplementary Material [60].

2. Optimal heteroskedastic principal component analysis.

2.1. Notation and preliminaries. We use lowercase letters, for example, x, y, to de-
note scalars or vectors and use uppercase letters, for example, U, M to denote matrices.
For sequences of positive numbers {ax} and {bi}, we write ax < by or by 2 ay if there
exists a uniform constant C > 0 such that a; < Cb; for all k. We also write a; =< by
if ap < by and a; 2 by both hold. For any matrix M € RP1*P2_ let Ay (M) be the k-th
largest singular value Then, the SVD of M can be written as M = Zp VP2 3 (M) va. Let
SVD, (M) =[u; -- - u,] be the collection of leading r left singular Vectors and QR(M) be the
Q part of QR orthogonalization of M. The matrix spectral norm and Frobenius norm are de-
fined as || M| = supy,,—; [|Mull2 = A1(M) and |M||F = (X; ; M7 = (X, A (M),
Let I, Oy xn, and 1,,x, be the r-by-r identity, m x n zero, and m >< n all-one matrices, re-
spectively. Also let 0,, and 1,, denote the m-dimensional zero and all-one column vectors.
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Denote O, , ={U e RP*" : U TU = I,} as the set of all p-by-r matrices with orthonor-
mal columns. For U € O, we note U; € O, ,_, as the orthogonal complement so that
[UU.] € RP*P is a complete orthogonal matrix.

Motivated by incoherence condition, a widely used assumption in the matrix completion
literature [11], we define incoherence constant of U € O, , as

4) 1U)= (p/r>;rel[a]g§||e,-TU||§-

For any Uj,U; € O, ,, we define the sin® distance | sin®(Uy, U)]| £ ||U1TLU2|| =
||U21U1||. For any square matrix A, let A(A) be A with all diagonal entries set to zero
and D(A) be A with all off-diagonal entries set to zero. Then A = A(A) + D(A). We
define the Orlicz-¢, norm of any random variable ¥ as [|Y [y, = sup,; g V2E|Y |V,

A random variable Y is called o2-sub-Gaussian if ||Y /o |ly, < C for some constant C >
0; a random vector X is called X-sub-Gaussian if max;>1 yerr ||1)TA_1/2UTY||¢2 <C
(here, ® = UAU is the eigendecomposition of X) for some constant C > 0. We use
C,Cy,...,c,cq,... to respectively represent generic large and small constants, whose val-
ues may differ in different lines.

2.2. Methods for heteroskedastic PCA. Suppose one observes i.i.d. copies Y1, ..., Y, of
Y from the generalized spiked covariance model (3). Let ¥ be the sample covariance matrix
defined as (2). The regular SVD estimator U= SVD,(E), that is, the leading r left singular
vectors of ¥, is the natural estimator of U, the leading singular vectors of ¥(. An important
variant of Davis—Kahan’s theorem [17] given by Yu, Wang, and Samworth [59] yields

IZ — (Zo+ BI)

(5) sin® (U, U)| < Al,

| | s =
which holds for any scalar g > 0 and cannot be improved in general. As briefly discussed
earlier, since KX = ¥ + diag(alz, e a;), when 012, e al% have different values, the diag-

onal entries of the perturbation matrix Y — (Zo+ BI p) may be significantly larger than the
rest. As aresult, U can be a suboptimal estimator for U.

To achieve a more accurate estimate of U, we propose the following Algorithm 1 named
HeteroPCA. The central idea is to iteratively impute the diagonal entries of the sample co-
variance matrix % by the diagonals of its low-rank approximation. In Algorithm 1, since s,
N® are symmetric, we have ul@ = vl-(t) or —vi(t). In contrast to most previous work on matrix
completion and robust PCA, where the entries to be imputed are missing at random, here our
goal is to impute the diagonal entries. Moreover, HeteroPCA can be interpreted as the pro-
jection gradient descent (PGD) for the following rank-constrained (nonconvex) optimization
problem:

(7) min  [A(S - V)7
rank(N)<r

To see this connection, we first note that N is the best rank-r approximation of N | which
correspond to the projection step in PGD; next, Vy[|A(Z — N)||%r =2A(N — X) and the
operator norm of V}%HA(EAJ -N )||2F is 2, where Vj; and V}zv are the gradient and Hessian
with respect to N, respectively. Based on the theory of PGD (see, e.g., Section 3.3 in [6]), the
smoothness parameter of the loss function § =2 and the update,
~ A ~ 2 ~ ~ A
NED = NO — (1/B) Vi |AE = ND)|7 =ND - A(ND - )

=D(ND) + A(S) = D(ND) + A(ND),
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Algorithm 1 HeteroPCA
1: Input: matrix f, rank », maximum number of iterations 7.
2: Initialize by setting the diagonal of ¥ to zero: N = A(Z), 1 =0
3: repeat 5
4: Perform SVD on N and let N) be its best rank-r approximation:

N® — U(t)z(t) V(t) ka (t) (t) A(t) > )\,(,2) >0,

-
~ T
FO = AP0 0)T.
i=1
5: Update N @+ = p(N®) + A(N®), that is, replace the diagonal entries of N© by
those in N@:
O _ 5o .
©) N 2 W =N E=
Y %ij, I # ]
6: t=t+1.
7: until convergence or maximum number of iterations reached.
8: Output: U = U = [uET) e uﬁT)].

corresponds to the gradient descent step in PGD. Due to the nonconvexity of (7), existing
convergence results for PGD do not apply to Algorithm 1, for which we provide a direct
analysis next.

2.3. Theoretical analysis. Denote

2 A 2 2 A 2
Omax — miax O, Osum — Z o -

Recall that g = UAU T is rank-r, so A,(A) is the smallest nonzero eigenvalue of Xo. We
have the following theoretical guarantee for Algorithm 1.

THEOREM 1 (Heteroskedastic PCA: upper bound). Consider the generalized spiked co-
variance model (3), where X; and ¢; are X-sub-Gaussian and o;-Gaussian, respectively.
Let Y1,...,Y, be i.id. samples from (3). Assume n > (Cor) A Cy log(ar(A)/Ugum) and
Al /Ar(A) < Co for constant Cy > 0. There exists constant ¢y > 0 such that if the in-
coherence constant 1 (U) (defined in (4)) satisfies 1(U) < cyp/r, then the output U of
Algorithm 1 applied to the sample covariance matrix S with the number of iterations
T = Q(log(ni,(A) /o2, )V 1) satisfies

sum

(8) E|sin®(U, U)| <

1/2
Osum + 7 / Omax UsumUmax> 1

ﬁ( Py )

Here, the constant C relies on cy, Cy, but not X, o;, p, r, n.

REMARK 1. Let p=02,,/02,,. Then (8) can be rewritten as

V¥  Omax P Omax
©) MMWUWV\/ Y f;m)
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Consider the homoskedastic PCA setting where 62 = - - - = 01% =02, This special case of
Theorem 1 yields
2
. 25 P ( Omax Omax
(10) Ellsin®(U, U) 5,/—( + )/\1
}| 1=y, AN A ()

Comparing (9) with (10), we see that a weighted average between p Vv r and p can be viewed
as the “effective dimension” for heteroskedastic PCA.

REMARK 2. Recently, [52, 54] studied the PCA for matrix data with nonisotropic and
data-dependent noise. In our notation and with some Lnild regularity conditions, [54], Part 2,
Corollary 2.7, shows that the regular SVD estimator U = SVD,.(Y) satisfies

2 T
[ U z.U
(D Hsin®(U,U)|},§(\/z Tmax +\/§"max L ULz ||>Al
a2y V(D) Anin(A)
with high probability. Here, X, is the covariance matrix of the noise vector ¢;. Since ogym <
/POmax and |[U| Z,U|| > 0, our Theorem 1 yields a better estimation error rate.

Next, we establish the optimality of Theorem 1. Consider the following class of general-
ized spiked covariance matrices:

fp,n,r(&sum7 Omax, V, K)
= {): =UAU" +D:
(12)
D is nonnegative diagonal, ) ; D;; < &szum, max; D;; < ér%ax, }
U€eOp,, IU) <cip/r, |AII/Ar(A) Sk, Ar(A) Z v '

THEOREM 2 (Heteroskedastic PCA: lower bound). Suppose ./pGmax = Gsum = Omax >
0, k > 1. There exists constant C > 0, such that if p > Cr, we have
inf sup E|sin@U, U)|
U

Eefp,n,r(ésumv&max,v,l()

(13)

> 1 (Gsum + 71/26max OsumOmax
— Al

~n pl/2 v

REMARK 3. By combining Theorems 1 and 2, the proposed Algorithm 1 achieves the
following optimal estimation error rate in ), ,, (Gsum, Omax, V, k) When the condition number
K 1s a constant:

' . 1 (Gam + 7 26m Saam
inf sup E|sin®U, U)| < —( S+ ma") Al
U ):e}-p.n.r((}sumy&ma)uvsc) \/ﬁ v v

Next, we consider the performance of HeteroPCA if the covariance matrix X is approxi-
mately low-rank.

PROPOSITION 1 (HeteroPCA for approximately low-rank covariance). Consider the
generalized spiked covariance model (1). Suppose ¥ = UAUT is the eigenvalue decom-
position, where U =[UU,) and U is the collection of leading r singular vectors. Assume
X and g; are X-sub-Gaussian and oiz-sub-Gaussian, respectively. Also assume that n > Cr,
nAp> C(aszum/ar (A)), and ||All/Ar(A) < C for some constant C > 0. Then there exists
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some constant ¢y > 0 such that zf the incoherence constant I1(U) (deﬁned in (4)) satisfies
I(U) <cyp/r, then the output U of Algorithm 1 with the input matrix S and number of
iterations T = Q (log(n\, (A)/a ) Vv 1) satisfies

sum

EHsin®(U, U)|
1/2 1/2 A
< <Gsum + \/;Umax T OsumOmax n ((np) + p))‘,ﬂ_H( ) )Mr—i-l(A)) Al
23 2a)  n'Pa () na2(A) Ar(A)

Proposition 1 shows that HeteroPCA can estimate the loading matrix U accurately if there
exists a significant gap between A, (Xg) and A, 1(Zp).

2.4. A deterministic robust perturbation analysis. In this section, we temporarily ignore
the randomness of Xjs and exs and focus on a more general prototypical model of the het-
eroskedastic PCA problem in Section 1.1. Let N, M, Z be deterministic symmetric matrices
(not necessarily positive definite) that satisfy

(14) N=M+ZecRP*P,

Here N is the observation, M is the rank-r matrix of interest, and Z € RP*” is the perturba-
tion that possibly has significantly large amplitude in its diagonal entries. In the heteroskedas-
tic PCA model, N, M, Z may represent the sample covariance matrix s, population covari-
ance matrix X, and their difference, respectively. Let U € O, , be the first r singular vectors
of M. As discussed earlier, applying the proposed HeteroPCA (Algorithm 1) to matrix N
provides an adaptive estimate of U. In the following theorem, we demonstrate the theoretical
property for the proposed Algorithm 1 under the general robust perturbation model (14).

THEOREM 3 (Robust sin ® theorem). Suppose M € RP*P is a rank-r symmetric matrix
and U € O, , consists of the eigenvectors of M. Let Uo = [u([) uﬁt)] be the intermediate
result of Algorithm 1 with input matrix N after t iterations. There exists a universal constant
cr > 0 such that if

15) L) IMI|/Ar (M) < crp/T,

where I (U) is the incoherence constant defined in (4), then

[sine@0, )| < TAEN | -3,

Ar(M)
In particular if T = Q (log % Vv 1), the final outcome U satisfies
~ A(Z
(16) [sin®U, U)|| < 1A
Ar(M)

A matching lower bound and several discussions to the robust sin ® theorem is given in
Section 1 in the Supplementary Material.

REMARK 4. Distinct from the matrix completion, where most entries are missing from
the target matrix, the substantial corrupted entries only lie in the diagonal of the target Gram
matrix/sample covariance matrix in our problem. Thus, a much looser condition on inco-
herence, I (U) < cp/r, is sufficient compared to the one required by matrix completion,
I (U) < p with u being a constant.
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2.5. Proof sketches of main technical results. We briefly discuss the proofs of Theorems
1, 2, and 3 in this section.

The proof of Theorem 1 consists of three main steps. First, we define Sx as the sample co-
variance matrix of signal vectors X1,..., X, and E = [8 1---&y] as the noise matrix. We aim
to develop a concentration inequality for A((n — 1)(2 ) X)) that is, the off-diagonal part of
the perturbation. To this end, we decompose (n — 1)(2 ZX) into (XET +EXT), (EET)
n(XET + EXT + EET), then bound them separately by heteroskedastic Wishart concentra-
tion inequality [8] and Lemma 1 in the Supplementary Material. Second, we develop a lower
bound for Ar(f x), that is, the least nontrivial singular value of the signal covariance matrix.
Finally, we apply the robust sin ® theorem (Theorem 3), to complete the proof.

To show the lower bound in Theorem 2, it suffices to show the two terms in (13) separately;
c.f., (6) and (7) in the detailed proof. To show each individual lower bound, we construct
a series of “candidate matrices” {U(k), E(k)},ivzl in Fp nr(Osum, Omax, V) so that {U(")},i\':1
are well separated while distinguishing them apart based on random sample Yi,...,Y, ~
N(0, =®) is impossible. This implies the desired lower bound by applying Fano’s method.

The proof of Theorem 3 is the main technical contribution of this paper. Specifically, we
analyze how the estimation error K, = |[N® — M| decays at each iteration. We first obtain
an initialization error bound. Then for each ¢, we decompose K; into four terms, bound them
separately, and obtain an inequality that relates K; to K;_1 (see (43)). By induction, this
recursive inequality leads to the exponential decay of K; and implies the desired upper bound.
Note that Algorithm 1 can be viewed as successive compositions involving the projection
operator Py (-) and the diagonal-deletion operator D(-). We thus introduce Lemma 1 to give
sharp operator norm upper bounds for compositions of Py () and D(-). At the heart of the
proof of Theorem 3, this lemma is useful for bounding the error at both the initialization and
the subsequent iterations.

3. Further applications in high-dimensional statistics.

3.1. SVD under heteroskedastic noise. Suppose one observes

where X is the low-rank matrix of interest and the entries of noise E are independent, zero-
mean, but not necessarily homoskedastic. The goal is to recover the left singular subspace
of X based on noisy observation Y. The problem arises naturally in a range of applications,
such as magnetic resonance imaging (MRI) and relaxometry [12]. This model can also be
viewed as a prototype of various problems in high-dimensional statistics and machine learn-
ing, including Poisson PCA [48], bipartite stochastic block model [21], and exponential fam-
ily PCA [35]. Let the sample and population Gram matrices be N =YY" and M = XX T,
respectively. Then,

M;;, i #J;

P2
BNy = Mij+ Y Var(Ejp), i=j.

k=1
Thus, only the off-diagonal entries of N are unbiased estimators of the corresponding entries
of M. When Var(E;;) are unequal, there can be significant differences between the spectrum
of EN, EA(N), and M. Since left singular vectors of ¥ and X are respectively, identical to
those of N and M, the regular SVD or diagonal-deletion SVD on Y can result in inconsistent
estimates of the left singular subspace of X.

Compared to the regular or diagonal-deletion SVD, the next theorem shows the proposed

HeteroPCA can be a better approach.
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THEOREM 4. Consider the model (17). Suppose X € RP1*P2 is a fixed rank-r matrix,
the noise matrix E has independent entries, EE;; = 0, Var(E;;) = al%-, and Ej; is al%--sub-
Gaussian. Suppose the left singular subspace of X is U € Qp, ,. Assume that the condition
number of X is at most some absolute constant C, that is, || X || < CA.(X). Denote

P2 P1
(18) 01% = max Z olj ) og = max Z al%-, Uliax = max ol%
j=1 i=1 J
as the rowwise, columnwise, and entrywise noise variances. Then there exists a constant
c1 > 0 such that if U satisfies 1 (U) = maxi<;j<p, 4+ IIeTU||2 <cyp1/r, Algorithm 1 applted

to YY T with rank r and number of iterations T = Q(log(A,(X)/oc) V 1) outputs U that
satisfies

E|sin® (U, U)|

as (Uc + /T Omax . ORIC + OROmax /108 (p1 A p2) + o2 log(p1 A pz)) .
~ Ar(X) A2(X) '

If omax < oc/max{\/r, /1og(p1 A p2)} additionally holds, that is, the variance array {05.}
is not too “spiky,” we further have

OROC
20) E|sin®(@, )| < (A - W) Al

REMARK 5. When 0;; = omax forall i, j, (19) reduces to

E|sin®U, U)| < (\/_Umax n «/mamm(),
Ar(X) A2(X)

which matches the optimal rate for SVD under homoskedastic noise in the literature [9],
Theorems 3 and 4.

REMARK 6. In contrast to the scaling of A,-(A) in Theorems 1 and 2, the scale of A, (X)
in Theorem 4 implicitly grows with both p; and p; as X is a p;-by-p, matrix.

3.2. Poisson PCA. Poisson PCA [35] is an important problem in statistics and engineer-
ing with a range of applications, including photon-limited imaging [48] and blologlcal se-

quencing data analysis [14]. Suppose we observe Y € RP1*P2 where Y;; nd Poisson(X;;)
and X € RP1*P2 js rank-r. Let X = UAV T be the singular value decomposition, where
UecQOp,r, Ve, The goal is to estimate the leading singular vectors of X, thatis, U or
V, based on Y. HeteroPCA is an appropriate method for Poisson PCA since it can well handle
the heteroskedasticity of Poisson distribution. Although the aforementioned heteroskedastic
low-rank matrix denoising can be seen as a prototype problem of Poisson PCA, Theorem 4
is not directly applicable and more careful analysis is needed since the Poisson distribution
has heavier tail than sub-Gaussian.

THEOREM 5 (Poisson PCA). Suppose X is a nonnegative p1-by- py matrix, rank(X) =r,
MX)/Ar(X) < C, X;j > c for constant ¢ > 0, U € Qp, , is the left singular subspace of X.
Denote

14
21 aﬁ_max E Xij, oé:max E Xij, oz_maxX,j
J o i,
j=l1 i=1



62 A.R.ZHANG, T.T. CATAND Y. WU

Suppose one observes Y € RP1*P2y;; nd Poisson(X;;). Then there exists constant cj >
0 such that if U satisfies 1(U) = max; &L ||e—'—U||2 < cyp1/r, the proposed HeteroPCA
procedure (Algorithm 1) on matrix YY i with rank r and number of iterations T =
Qog(Ar(X)/oc) V 1) yields

E|sin® (U, U)|

(22) < (UC + 7 Omax n {or + 0 + Omax/10g(p2) log(pl)}2 - U]%) Al
~UTR 2200 '

In addition, if omax < oc/max{r, /log(p1)log(p2)}, then

< ﬂ)
EHsm@(U 0| < <)\ (X)+A%(X) Al

3.3. SVD for heteroskedastic and incomplete data. Missing data problems arise fre-
quently in high-dimensional statistics. Let X € RP'*P2 be a rank-r unknown matrix. Suppose
only a small fraction of entries of X, denoted by €2 C [p] x [p2], are observable with random
noise,

YijZX,'j-i-Z,'j, (i,j)EQ.

Here, each entry Y;; is observed or missing with probability 6 or 1 — 6 for some 0 < 6 <1
and Z;;’s are independent, zero-mean, and possibly heteroskedastic. Let R € RP!*P2 be the
indicator of observable entries:

1 dhew
Yo, G ¢,

and R and Y are independent. Assume X = UAV " is the singular value decomposition,
where U € Op,,r and V € O, ,. Denote Y as the entry-wise product of ¥ and R, that is,
Yij =YijRij, V(i j) € [p1] x [p2]. We aim to estimate U based on {Y;;, (i, j) € €2} or equiv-
alently Y;;s. This problem is heteroskedastic since EY, 7J =0X;; and Var(Y; j) may vary for
different (i, j) pairs. We can apply HeteroPCA to YY | to estimate U. The following theo-
retical guarantee holds.

THEOREM 6. Let X be a pi-by-p> rank-r matrix, whose left singular subspace is de-
noted by U € O, . Assume that EY = X. Suppose Y satisfies max;; |Y;jlly, < C and all
entries Y;j are independent. Suppose 0 < 0 < 1 — c for constant ¢ > 0. There exists constant
¢; > 0 such that if U € O, «, satisfies I(U)||X||/1r(X) < cip1/r, HeteroPCA applied to
YYT withT = Q(log(ekz(X )/ p1) V 1) outputs an estimator U satisfying

axlyf p2(6 +63p}) log(p1). Opr log” (P}

. m
(23) [sin®U, U)| < X

with probability at least 1 — pl_c

REMARK 7 (Comparison with matrix completion). Our result is related to a substantial
body of literature on low-rank matrix completion. For example, [11, 13, 46] analyzed the
performance of nuclear norm minimization; [39] introduced the spectral regularization algo-
rithm for incomplete matrix learning and developed the software package SoftImpute;' [29,

1 https://cran.r-project.org/web/packages/softimpute/index.html
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31-33] analyzed the alternating gradient descent and spectral algorithm for matrix comple-
tion with/without noise; [42] developed OptShrink, an algorithm for matrix estimation based
on the optimal shrinkage of singular values and truncated SVD guided by random matrix
theory; [47] studied the low-rank model for count data with missing values; also see [7] for
a recent survey of matrix completion. Different from the literature on matrix completion,
our goal here is to estimate the singular subspace U € O, , rather than the whole matrix
X € RP1*P2. We apply HeteroPCA to impute the diagonal entries of X X ", not the missing
entries in X itself as in most of the aforementioned matrix completion literature.

In addition, when the average amplitude of all entries in X is a constant (i.e., || X % =<
p1p2) and X is well conditioned (i.e., A1(X) < A-(X)), Theorem 6 implies that the Het-
eroPCA estimator is consistent as long as the expected sample size satisfies

24 EIQI> max{p)” p3r*P1og" P (p1), pir2log(pr). pirlog(pi)log(pipa)}.

In the classic literature on matrix completion [32, 46], the sample size requirement is |2 =
(p1 + p2)r - polylog(p). When p; = p», these sample size requirements nearly match and
coincide with existing lower bounds in the literature [13], Theorem 1.7. When p; < p2, (24)
requires much fewer samples than what is needed for matrix completion; in other words,
HeteroPCA can consistently estimate the pi-by-r subspace U1, even if most columns of X
are completely missing and estimating the whole p;-by-p> matrix accurately is impossible.
To our best knowledge, we are among the first to show such a result.

REMARK 8 (Time complexity). If the target matrix X is pi-by-p> and rank-r, the time
complexity of HeteroPCA, regular SVD, diagonal-deletion SVD, OptShrink [42], and Soft-
Impute [39] are O(|Q21%/p2 + Tp?r), O(T(1QIr + 1)), O(Q*/p2 + Tp?r), O(T(IQr +
r3)), and O(T (|2 + p1par)), respectively. Here, T denotes the number of iterations in each
method.

REMARK 9. Recently, [53, 54] studied PCA with sparse data-dependent noise and in-
complete data. They proved that if the signal-to-noise ratio is strong enough, the uncorrelated
noise is small enough, and the proportion of missing values is small enough, one can esti-
mate the subspace accurately. Under the model setting of Theorem 6 and some regularity
conditions, [53], Corollary 3.7, can imply 171 = SVD, (Y) satisfies

) ~ sbr D2 rZslog pi rlog pi
@5) 0@ U] S ([ + )
” | pip2 - A2(X) P2 A2(X)

Here, s, b are the maximum number of missing values in each row and in each column,
respectively. To ensure (25) gives an nontrivial upper bound, one must have (s/p1)(b/p2) <
1/r. In contrast, Theorem 6 implies that HeteroPCA can consistently recover U; even if
s ~ p1 and b = py, that is, only a smaller fracture of entries are observable, if the observable
entries are uniform randomly selected from the target matrix.

REMARK 10. PCA for heteroskedastic and incomplete data is another closely related
problem. Suppose one observes incomplete i.i.d. samples Y1, ..., Y, € R? from the general-
ized spiked covariance model (3) with missingness:

Vi<i<pl<k<n, Ry= 1, Yik %s ob.se.rvable;
0, Y is missing,

where {R;i}1<i<p,1<k<n are independent of Yi,...,Y,. The goal is to estimate U. Many

=t=p, 1= =

existing literature on PCA with incomplete data focused on regular SVD methods under
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the homoskedastic noisy setting (see, e.g., [9, 36]), which are not directly suitable here. To
estimate U using HeteroPCA, we can evaluate the generalized sample covariance matrix,

Sho 1 Yik = Y (Yik — Y Rik R

S*=(G"), - ; with 67 = an
ijl1<i,j<p’ i
J/=t,j=p J ZZ:I RikRjk
}7* _ ZZ:l YikRik
i — T~n p.
> k=1 Rik

Then U can be estimated by applying Algorithm 1 on $*. A similar consistent upper bound
result to Theorem 6 can be developed for this procedure.

In a more general scenario that noise g; has nondiagonal covariance or depends linearly
on the signal Xy, the readers are referred to [53, 54] for a theory of the SVD estimator.

4. Numerical results. In this section, we investigate the numerical performance of the
proposed procedure. All simulation results are based on 1000 repeated independent experi-
ments. The average and the standard deviation of estimation errors are respectively indicated
by markers and error bars in each plot.

4.1. PCA under the generalized spiked covariance model. We first consider PCA un-
der the generalized spiked covariance model (3). Let p = 30, n € [60,600], and r €
{3,5}. We generate a p-by-r random matrix Up with i.i.d. standard Gaussian entries,

Wi, ..., Wp i Unif[0, 1], and o1, ..., 0, S Unif[0, 1]. The purpose of generating uniform
random vectors w, o is to introduce heteroskedasticity into observations. Then, we let
U = QR(diag(w) - Up) € Op, and ¥p = U diag(1,..., PUT € RPXP. We aim to recover
U based on i.i.d. observations {Y; = Xy + sk}zzl, where X1,..., X, S N(0, o), &1, ...,
&n S N, diag(alz, ey 0,12)). We implement the proposed HeteroPCA, diagonal-deletion,
and regular SVD approaches and plot the average estimation errors and standard deviation in
sin ® distance. We also implement the classic factor analysis method [34, 49], factanal
function in R stats package, and the Bayesian factor analysis method, MCMCfactanal
function from R MCMCpack package [38]. The simulation results are summarized in Fig-
ure 1. It can be seen that the proposed HeteroPCA estimator significantly outperforms other
methods; the regular SVD yields larger estimation error; and the diagonal-deletion estimator
performs unstably across different settings. This matches the theoretical findings in Section 2.
Next, we study how the degree of heteroskedasticity affects the performance. Let

0.1-p-vf

iid .
vi,... vp ~ Unifl0, 1], of=——K, k=1,...,p.
i=1Y
In such case, aszum = 012 + -+ a[% always equals 0.1p and o characterizes the degree of
heteroskedasticity: the larger o results in a more imbalanced distribution of (o1, ...,0));
ifa =0, 0y =--- =0, and the setting becomes homoskedastic. Now, we generate U, X

and {Yy, Xx, ex};_, in the same way as the previous setting. We only compare HeteroPCA
with regular SVD and diagonal-deletion estimator since it takes a too long time to run factor
analysis methods in this setting. The average estimation errors for U are plotted in Figure 2.
The results again suggest that the performance of diagonal-deletion estimator is unstable
across different settings. When o = 0, that is, the noise is homoskedastic, the performance
of HeteroPCA and regular SVD are comparable; but as « increases, the estimation error of
HeteroPCA grows significantly slower than that of the regular SVD, which is consistent with
the theoretical results in Theorem 1.
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FIG. 1. Average sin ® loss versus sample size n under the generalized spiked covariance model (Section 4.1).
Upper panel: r = 3; lower panel: r =5.
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4.2. SVD under heteroskedastic noise. Next, we consider the problem of SVD under het-
eroskedastic noise discussed in Section 3.1. Let Uy € RP1*" and Vi € RP2*" be i.i.d. Gaus-
sian ensembles for (p1, p2) = (50, 200), (200, 1000) and » = 3. To introduce heteroskedas-
ticity, we also randomly draw w, v € RP!, and v, € RP? with i.i.d. Unif[0, 1] entries.
Then we evaluate U = QR(Uj - diag(w)4) V = QR(Vy), and construct the signal matrix

X = (p1p2)'/* - Udiag(l,...,r)VT. The noise matrix is drawn as E,J N(O o - ol%),
where o0;; = (vl);‘-(vz)‘}, op varies from0to 2,1 <i < pj,and 1 < j < p,. Based on the p;-

by-p> observation Y = X + E, we implement HeteroPCA with input of YY T, regular-SVD,
diagonal-deletion, and OptShrink® ([42], an algorithm for matrix estimation based on the op-
timal shrinkage of singular values and truncated SVD guided by random matrix theory) to
evaluate U, V. For each of the estimators U and V, we also estimate X by X=U U’ UTyvvT.
The average sin ® norm errors of U, V and the average Frobenius norm error of X are pre-
sented in Figure 3. We can see the proposed HeteroPCA outperforms other methods in all
estimations for U, V, and X, and the advantage of HeteroPCA is more significant when the
noise level increases.

4.3. Poisson PCA. We generate Uy € RP1*" and V € RP2*" with i.i.d. standard nor-
mal entries for (p1, p2,r) = (50,500, 3) or (200, 1000, 3). Similarly to previous settings,
we introduce heteroskedasticity by generating a vector w € R”! with i.i.d. Unif[0, 1] entries.
Let U = |Uy - diag(w)*| € RPV7 |V = |Vo| e RP2X" | X = )\U diag(1,...,r)V ' e RP1*P2,
and Y;; ~ Poisson(X;;) independently. Here, A > 0 measures the signal strength. The per-
formance of HeteroPCA, regular SVD, diagonal-deletion, and OptShrink on estimation of
left singular subspaces are provided in Figure 4. These plots again illustrate the merit of the
proposed HeteroPCA method.

4.4. SVD based on heteroskedastic and incomplete data. Finally, in the following exper-
iment, we study SVD based on heteroskedastic and incomplete data in the setting of Sec-
tion 3.3. Generate Y, X, Z € RP1*P2 in the same way as the previous heteroskedastic SVD
setting with p; =50, 100, r =3, 5, o9 = 0.2, and p; ranging from 800 to 3200. Each entry
of Y is observed independently with probability & = 0.1. We aim to estimate U based on
{Yij : (i, j) € 2}. In addition to HeteroPCA, regular SVD, diagonal-deletion SVD, and Opt-
Shrink, we also apply the nuclear norm minimization via Soft-Impute package ([39], also see
Remark 10)

Xy= argmin Y (V; = Xi)* +vIXle,  U=SVD,(X).
XeRPI*P2 (j j)eQ

To avoid the cumbersome issue of parameter v selection, we evaluate the above nuclear norm
minimization estimator for a grid of values of v, then record the outcome with the minimum
sin ® distance error || sin@(ﬁ , U)]|. From the results plotted in Figure 5, we can see that
HeteroPCA significantly outperforms all other methods when p; < p», which matches the
discussion in Remark 7.

5. Discussion. We consider PCA in the presence of heteroskedastic noise in this pa-
per. To alleviate the significant bias incurred on diagonal entries of the Gram matrix due to
heteroskedastic noise, we introduced a new procedure named HeteroPCA that adaptively im-
putes diagonal entries to remove the bias. The proposed procedure achieves optimal rate of
convergence in a range of settings. In addition, we discuss the applications of the proposed

2Software package available at https://web.eecs.umich.edu/~rajnrao/optshrink/


https://web.eecs.umich.edu/~rajnrao/optshrink/

HETEROSKEDASTIC PCA 67

0.8-
8 8075-
c C
Soe6- o
] %)
% % 0.50 -
B 04" I
£ £
i H 0.25-
£02- £
n %)
0.0- 0.00- : : : '
0.5 1.0 1.5 2.0
alpha
S 15- B
L method
g ~o— HeteroPCA
S 10-
z -4 Regular SVD
(2]
g -=- Diagonal-deletion
_°8’ 51 — OptShrink
i
o_
(a) p1 =50, pg =200
1.00- ot 1.00-
'l
8 i
A
8 0.75- TSt 8075-
a A o
8 0.50- g 8 050-
B P2
N N
PO TR ——— 7 L £ 0.25-
7] 3 7]
0.00- . f ; I 0.00- : : : '
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
alpha
S
F—
i
£ method
P
o
=z ~o— HeteroPCA
S -4 Regular SVD
c
8 -= - Diagonal-deletion
[e) .
& ~+= OptShrink
O- ' ' ' '
0.5 1.0 1.5 2.0
alpha

(b) p1 = 200, py = 1000

FIG. 3. Estimation errors of U (top left), v (top right), and X (bottom left) in SVD under heteroskedastic noise
(Section 4.2).



68 A.R.ZHANG, T. T. CAI AND Y. WU

-y

o

o
1

T T T T *_ T T T
AR Tl S e st Sl S

method
—o— HeteroPCA
-4 - Regular SVD

o

N

o1
1

~=- Diagonal-deletion

Sin-Theta Distance
g

0.25- ~+= OptShrink
0.00- 1 1 1
2 4 6
lambda
(a) p1 =50,p2 =500

1.00 - i e e e S
o ]
e method
© d
@ 075 —o— HeteroPCA
[a)
© -4 Regular SVD
© 0.50- ) )
|'E -=- Diagonal-deletion
| .
£ 0.95- ~+= OptShrink
(9]

1 1 1 1
1 2 3 4
lambda

(b) p1 = 200, pg = 1000

FIG. 4. Estimation errors for a ranging value of signal strength A under the Poisson PCA model (Section 4.3).

method

~o— HeteroPCA

-4 - Regular SVD

~®- Diagonal—deletion
—t= Softimpute

- & - OptShrink

Sin-Theta Distance
o o
@ °.’

S 07 ; method
‘6 0.51 —o— HeteroPCA
2]
a -
% 0.4~ Regular SVD
E 0.3 -= - Diagonal-deletion
|_' | —t= Softimpute
.UE) o2 - & - OptShrink

1000 2000 3000

p2

FI1G. 5. Average sin © distance error for SVD based on heteroskedastic and incomplete data (Section 4.4). Here,
p1=50,r=5,0=0.2 (Upper Panel) and p; =100, r =3, 6 = 0.2 (Lower Panel); py varies from 800 to 3200.



HETEROSKEDASTIC PCA 69

algorithm to heteroskedastic low-rank matrix denoising, Poisson PCA, and SVD based on
heteroskedastic and incomplete data.

The proposed HeteroPCA procedure can also be applied to many other problems where
the noise is heteroskedastic. First, exponential family PCA is a commonly used technique for
dimension reduction on nonreal-valued datasets [16, 41]. As discussed in the Introduction, the
exponential family distributions, for example, exponential, binomial, and negative binomial,
may be highly heteroskedastic. As in the case of Poisson PCA considered in Section 3.2, the
proposed HeteroPCA algorithm can be applied to exponential family PCA.

In addition, community detection in social networks has attracted significant attention in
the recent literature [22]. Although most of existing results focused on unipartite graphs, bi-
partite graphs, that is, all edges are between two groups of nodes, often appear in practice
[21, 40, 62]. The proposed HeteroPCA can also be applied to community detection for bi-
partite stochastic block model. Similarly to the analysis for heteroskedastic low-rank matrix
denoising in Section 3.1, HeteroPCA can be shown to have advantages over other baseline
methods.

The proposed framework is also applicable to solve the heteroskedastic tensor SVD prob-
lem, which aims to recover the low-rank structure from the tensorial observation corrupted by
heteroskedastic noise. Suppose one observes Y = X + Z € RP1*P2*P3 where X is a Tucker
low-rank signal tensor and Z is the noise tensor with independent and zero-mean entries. If
Z is homoskedastic, the higher-order orthogonal iteration (HOOI) [18] was shown to achieve
the optimal performance for recovering X [61]. If Z is heteroskedastic, we can apply Het-
eroPCA instead of the regular SVD to obtain a better initialization for HOOI. Similarly to the
argument in this article, we are able to show that this modified HOOI yields more stable and
accurate estimates than the regular HOOL.

Canonical correlation analysis (CCA) is one of the most important tools in multivariate
analysis for exploring the relationship between two sets of vector samples [28]. In the stan-
dard procedure of CCA, the core step is a regular SVD on the adjusted cross-covariance ma-
trix between samples. When the observations contain heteroskedastic noise, one can replace
the regular SVD procedure by HeteroPCA to achieve better performance.

6. Proofs. In this section, we prove the main results, namely, Theorems 1 and 3. For
reasons of space, the other proofs are given in the Supplementary Material [60].

6.1. Proofs for heteroskedastic PCA. PROOF OF THEOREM 1. First, we introduce
E=]ley,...,e,] € RPX", ve=APUT (X — ) eR, C=[y,....,yal e R
Then the observations can be written as
YVi=Xi+er=pn+UAy 4, or Y=pull +UA’T +E,

where u € R? is a fixed vector, Eyy = 0, Cov(yx) = I, E has independent entries, and I'
has independent columns. We also denote X eRP, EeRP, T eR" as the averages of all
columns of X, E, and I', respectively. Since 3 is invariant after any translation on Y, we can
assume p = 0 without loss of generality. The rest of the proof is divided into three steps for
the sake of presentation.

Step 1. We define Syx=(XXT — nXX")/(n — 1) as the signal sample covariance. The
aim of this step is to develop a concentration inequality for ¥ — X x. To this end, we consider
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the following decomposition of nE - x):
(n—1)(E - x)
=(n—-DT —(XX" —nXX")
(26) =YY" —n¥¥Y" — (XX —nXX)
=(X+E)X+E)" —(XX" —nXX")—n(XX"+ XE" + EX" + EE")
=XE'+EX"+EE" —n(XE"+EXT +EE").

We analyze each term of (26) separately as follows. Since E has independent entries and
Var(E;;) = aiz, the rowwise structured heteroskedastic concentration inequality [8], Theorem
6, implies

27) E|EET —EEE" | SvVn0sumomax + 02m.

Since X is deterministic, E is random, and EE =0, we have EEX | = 0. By Lemma 1 in the
Supplementary Material,

Ex(|EXT-EEXT|IX) =  Ex(|EXT|IX)
(28) < IXIl(oc + r'/*omaxoc + v/Fomax)
Cauchy—Schwarz
S; I X || (Osum + \ﬁo'max)-
Since E|E|5 =YF_|E(E)} =Y., 0/ /n =02, /n, we have

Er(n|XET + EXT + EET|)
09) <Epn|XET|+Epn|EXT| +Een|EE|
<Eg2n| X |20 Ell2 + En| E|3

1/2 = S
2 L En||EN} < 20" Pogm| X|l2 + o2

sum*

<2n[|Xll2- (EIE3)
Combining (27), (28), and (29), we have
Ee|(n—1)(E —Zx) —EEET|
S \/ﬁasumamax + Uszum + 1 X || (osum + \/’To'max) + n1/2||X||ZUsum-

Noting that EEE T = ndiag(o*lz, cees O'[%) is diagonal and A(-) is the operator that sets all
diagonal entries to zero, we further have

E|A((n—1)(E - Zy)|
=Ep[A((n—1)(E - Sx) —EEE")]

Lemma 3

2Eg|(n—1)(E — Ex) —EEET|

2 172 v
S \/ﬁo'sumo'max + Ogum T+ | X || (05um + \/;Umax) +n / | X l205um-

Step 2. Next, we study the expectation of the target function with respect to X. We specif-
ically need to study A, (n  x), X, and || X||2. Since I € R"*" has independent columns and
each column is isotropic sub-Gaussian distributed, based on the random matrix theory ([55],
Corollary 5.35),

P(Vr+Cr+1 =T = A (T) = V/n — C/r — 1) <exp(—C1%/2).
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In addition, /nT" € R” is a sub-Gaussian vector with the identity covariance matrix. By the
Bernstein-type concentration inequality ([55], Proposition 5.16),

P([+/nT (13 > r + C/rx + Cx) < Cexp(—cx).

If n > Cr for some large constant C > 0, by setting r = c/n and x = cn in the previous two
inequalities, we have

(30) 2Vn= |0 =4 (0) = v/n/2, and ||v/nTl2 < /n/3
with probability at least 1 — C exp(—cn). When (30) holds,
A (Ex) =r(n(XXT —nXXT)) = a1 (nUAYA(CTT —nTTTA2UT)
> 2 (A) - A (TTT —nlTT) = A (A)(AF(I) — VAl [3)

(31 29)
> A (A)(n/4—n/9) Z ni,(N);

(30)
IX1 < JUAYPT| < [AY2[ TS 2v/m ] AV S Vg2,
where the last inequality is due to the assumption that | A||/A,(A) < C for some constant C.
IXl2 = [UA2E], < [AY2]- 1T 12 S 22().
Combining the previous three inequalities, we know if (30) holds,

EcllA((n—1D(E — x))|

Ar((n—1)Zy) M
f NOumOmax + Ocm + (1A (A2 (0sum + /TOmax) + Ay (AN (A)ogum
nir(A)
(32) Al
< (Usum + \/;Umax «/V_lffsumo'max + Uszum> Al
(nh,(A))1/2 nir(A)

< (Usum + \/;Umax OsumOmax ) A
~ N (na (A2 n'/2).(A) '

Here, the last “<7 is due to o, /(A (A) A 1 < ogum/ (e (A) /2 AL
Step 3. Finally, since rank(Xx) < r, the eigenvectors of Xy are U, and U satisfies

the incoherence condition: 1(U) < ¢;p/r, the robust sin ® theorem (Theorem 3) for T =
Q(log(’”‘d"T(A)) v 1) yields

Eg|sin® U, U)|

§EE<||A((n —DE = Ex) +2_T) Al

A (0 = DEx)
(«/_O'sumamax + Usum + 1 X[ (o5um + «/—O'max) + n1/2||X||205um
~ Ar((n—1)Zx)
+ —aszum ) Al
nir(A) ’

33) E[sin®U, U)|

=E|sin @(U, U)| 1{G30) holds} + E[sin® (T, U) || 130 does not hold)
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(3<0) (Usum + «/F Omax OsumOmax
~ N (AN nt2a(A)
< (Usum + \/’7 Omax OsumOmax
A (ANY2 T 20 (A)
< (Usum + «/’7 Omax n OsumOmax > 1
A (A2 20 (A)

The last inequality is due to the assumption that A,(A) > cexp(—cn). Therefore, we have
finished the proof of this theorem. [

) A 14+ P((30) does not hold)

) A1+ Cexp(—cn)

6.2. Proof of Theorem 3. In this subsection, we prove a more general version of Theo-
rem 3, where the corrupted entries lie in a known set G C [p] x [p] which need not be the
diagonal. Recall the model (14), where we observe a symmetric p x p matrix N =M + Z,
where M is a rank-r matrix of interest and Z is the perturbation. Our goal is to esti-
mate U € O, ,, consisting of the eigenvectors of M. Extending the ideas of Algorithm 1
for HeteroPCA, Algorithm 2 provides a robust estimate of U which iteratively impute the
values in the corrupted entries in G. In the special case where G is the diagonal, that is,
G={(,i):1<i< p}, Algorithm 2 reduces to Algorithm 1.

Next, we give a performance guarantee for Algorithm 2. For any H € R”*? let G(H) be
the matrix H with all entries but those in G set to zero and I'(H) = H — G(H). Define
(34) n= max |G| /1IH]I,

HeR™* ™ rank(H)<2r
which essentially measures the maximum perturbations due to the entries in G on the singular
subspace. We also assume that the set of corrupted entries G is b-sparse in the sense that

miax|{j : (i, j) € G| ijax|{i :(i, j) € G} <b,

that is, the number of corrupted entries in each row and each column is at most b. To overcome
the “spiky” issue discussed in Remark 1, we again assume the incoherence condition (35).
We have the following theoretical results for Algorithm 2.

THEOREM 7 (General robust sin ® theorem). Assume G € [p] x [ p] is b-sparse. Suppose
one observes the symmetric matrix N = M + Z, where rank(M) = r, Z is any symmetric
perturbation, and the eigenvectors of M are U € Q) ;. Let UD be the intermediate matrix
in Algorithm 1 with t iterations. There exists a constant ¢ > O such that if the incoherence
condition

LM _ cp
AM(M) ~ nbr(bAr)

(35)

Algorithm 2 Generalized HeteroPCA
: Input: matrix f, rank r, number of iterations 7', corruption subset G C [p] x [p].
: Set NO =1(N).
cfort=1,...,T do
Calculate SVD: N = > klgt)ulgt)(vi(t))T, where )\EZ) > A;t) <> 0.
Let N0 = y7_ 2040 01T,
Update corrupted entries: NtD = G(N®) +T'(2).
end for R
: Output: U = v = [ugT) . ~-u£T)].
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is satisfied and n||I"(Z2)|| < cAr(M), then
(36) [sin®(@V, V)| <4|T(@)| /A, (M) +27 .

Here, n is defined in (34). In particular, if T = Q(log % Vv 1), the final outcome U of
Algorithm 1 with corrupted index set G satisfies
IT(2)l

in® (U <
(37) [sin®U, U)|| < oD

Al

REMARK 11. Though calculating the exact value of n can be difficult in general,
Lemma 3 in the Supplementary Material shows n < /b A (2r) for all b-sparse G.

PROOFS OF THEOREM 7. To characterize how the proposed procedure refines the es-
timation by initialization and iterations, we define Ty = |['(N — M)|| = ||[I'(Z)| and K; =
IN® — M| fort=0,1,....Since H=T(H)+G(H), wehave |H|| < |G(H)||+ | (H)||
for any matrix H € RP*?.

Step 1. We first analyze the initial error Ko = | N O _ M. By definition, N O =1 (N).
To better align I'(N) with M, we decompose M = I"(M) 4+ G(M). Since the singular sub-
space of M aligns with U, we have M = Py M Py . Thus,

Ko=|NQ - M| =|T(N - M) - GM)|
< [TV = 3)| +[GOD | = [P + |GPysPy)|

I (U)rb I (U)rb

(a)
<[r@|+ M|l = To +

IM]].

Here, (a) is due to the contraction property of the map G(Py-) in Lemma 1. Provided that
l(lj,# IM]| < Ar-(M)/(16n) in the assumption, we have

(38) Ko < To+ A (M)/(161).

Step 2. Next, we analyze the evolution of iterations by establishing an upper bound for
|N® — M| based on ||[NU~1 — M||. By definition,
NO —M =GN -~ M)+T(N® - m).

Since the entries indexed by G in N @ do not change through iterations, ||I'(N O — M| =
T (N — M)||, which can be bounded by T. The analysis for G(N — M) is more compli-
cated. By definition, the entries indexed by G in N ) is the same as the ones in NO~D =
PU(r—nN(’*l). To align M with PU(H)N(I*]), we decompose M = Pye-nM + PUJ(_t—l)M.

Thus,
G(N(l) — M) = G(PU(t—l)N(til) - Pye-yM — PUJ(_[—I)M)

= G(PU(tfl) (N(z_l) — M)) — G(PU(ltfl)M)-

It is still difficult to analyze G(Py«-n (N =1 _ p)) due to the complicated connection
between Pp¢-1) and N =1 _ M. Thus, we decouple them by introducing Pp¢-1y = Py +
(Pya-n — Py). Then, we have decomposed G (N O _ M ) into the following three terms:

G(N®D — M) =G(Py(N™D — Mm)) - G(Pyo-

+ G((PU(r—l) — Py)- (N(t_l) — M))

M)
(39)
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Next, we bound these three terms separately. In particular, the upper bound of
|G (Py (N1 — M))|| and ”G(PU(r—l)M)” can be achieved by the application of the
1

contraction property for the map G(Py-) in Lemma 1; to prove an upper bound for

IG((Pya-1 — Py) - (N®=D — M))||, we apply the property of sin® distance to relate
|(Pya-1y — Py)ll to W The detailed proofs are provided as follows.
e By Lemma 1,

(40)

6Py (N~ = )| = [HEEERD VD |
1(U)rb(b
- [loenn,,

|| G(PUJ(_t—l)M) H = || G(PUJ(_I—I)MPU) ||

e By Lemmas 1 and 5,

I1({U)rb(b A T)
< [=2 2Py
p 1

(41) [
<2 I({U)rb(b A T) N —MH
=2

HM]||

HOPCAD)
[T(U)rb
)r (b/\r)Kt_l.
p

e Note that UCD@W )T and UUT are both positive semi-definite and
UC=D@E=DYT v vuT| <1, wehave [UD@D)T —UUT| < 1. By Lemma 1
in [10],

D @eD)T —uUT| <2fsin0E D, U)| A1
ZINT
=2 ") U1
= IUI)TUUT M| AU M) AT

<) M| -2 ) Al

(4||N<’—1> — M||) 4K,
S\—F7— N 1=

= N,
Ar(M) Ar (M)

where the penultimate step follows from Lemma 5. Note that

rank((Pya-1 — Py)(NY™D — M)) < rank(Py-1) — Py)
<rank(Pyu-n) +rank(Py) < 2r,
we have

|G((Pyu-1 — Py) - (N“™D — M))]

(42)

(t—1) 4Kt_l
<0 IPyav = Pyll- [NT70 = M| <nKior - =0 A1 ).
r
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Combining (39)—(42), we have for all ¢ > 1,
Ki<|T(NO = M)+ |G(N® - M)]

(43) I(U)rb(b A T) 4n
<To+3 ) —""""K, 1 +—K?* .
=0T, SR an

Step 3. Finally, we use induction to show that, for all 7 > 0,
(44) K; <2Ty+ 2795, (M) /.

The base case of r = 0 is proved by (38). Next, suppose the statement (44) holds for ¢ — 1.

Then
(@) I({U)rb(b AT) 4n 5
K <To+3|——K,_ K
t = 1o+ 3, > t 1+)»,(M) —1

(b) K4 <8r]To 1)
< T K;_ -
<1+ 1 + K1 )»,(M)+4

() K;—1 @ 270 4+ A (M) - (1/2)=D+4
<+~ <1+ °+’()2(/) /m

= 2To+ A (M) - (1/2)! 4/,

where (a) is (43); (b) is due to the assumption 1441 (U)rb(b A r) < p and the induction
hypothesis; (c) is from the assumption Ty < A, (M)/(64n); (d) is by the induction hypothesis.
Therefore, for all # > Q (log % v1)=Q(og nﬁ’r%;n Vv 1), we have K; < 3Ty. Finally, the
desired (36) (37) follow from sin ® perturbation bound [37], Theorem 5, ¢ = 0o. For com-
pleteness, we still provide a proof here. Let M = USV T be the singular value decomposition
of M, where S is diagonal and U, V € O, . Then

@ [TV TUSVT @) 1T M|

- A (SVT) A (USVT)

_NODTM AN -+ [TDTND — M)

- hr (M)

© 2t N+ IND = M| @ mineanir) < INC =T + K,
- hr (M) - hr (M)

_INO - M+ K, 2K, _ 4T
SV he(M) (M)

(T AUNT
sine @, )| = (0) U]

+(1/2 /.
Here, (a) holds because for any matrices A € RP*", B € R"*P, by defining x, =

T
arg max |, =1 lx" Al =||Al, then

IAB| = sup [x"AB|,>|(x]A)B|,> |x. A7 (B) = | AllA(B);

llxll2=

(b) holds because U has orthonormal columns; (c) is because (0) 1 correspond to the
(r + 1)st, ..., pth singular vector of N ®: (d) is due to Eckart—Young—Mirsky theorem.>
Therefore, we have finished the proof of this theorem. [J

3Seea proof in https://en.wikipedia.org/wiki/Low-rank_approximation
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REMARK 12. In fact, Theorem 7 implies Theorem 3. To see this, note that if the corrup-
tion set G is the diagonal, G = {(i, i) : 1 <i < p}, we have

b=max{j: (@i, j)eG}vmax{i:(, j)egG}=
i J

n = max| D(M)||/| M| = max max IMiil _
M Mo ||M]

The next Lemma 1 provides an important technical tool for the proof of robust sin ® theo-
rem. It essentially shows that the operator norm of the composition of linear maps G(Py-) is

much smaller than the product of individual operator norms ||G(-)| and || Py ||, provided that
the basis U is incoherent; the same conclusion also applies to G (- Py).

LEMMA 1. Assume G C [m1] x [m2] is b-sparse, that is, max ;{i : (i, j) € G} Vv max;{j :
(i, j) € G} <b.Suppose U € Oy, , and V € Qy,, ,. Recall that G (A) is the matrix A with all
entries in G° set to zero, 1 (U) = =1 max; ||eiTU||%, 1(V) = %2 max; ||el.TV||%, Py=UUT,
and Py = V'V . Then for any matrix A € RP\*P2 we have

I(U)rb(b
lG(py )] < [HOPOAD 4,
mi
||G<APV>||5,/%S’A”HAH, and

I1(UHI(V)-rb
1G(PyAPy)| < YOIV 1b,

Jmima
In particular, recall that D(A) is the matrix A with all off-diagonal entries set to zero. Sup-
pose U € Qy, . Then for any matrix A € R™*"™,

(U) (U)

| D(Py(D(A))] = [DPy A =/ ——IIAll

PROOF OF LEMMA 1.
|GPya)] = max [T GUUT )],
P

— max <m2 UUTA)],j)Z) "

=1\ /=
ma n 172
s (2 2 wwora))
=1 %i:(i,j)eg
my 1/2
o (X( T #)( X worag))
j=1 Yi:(i,j)eg i:(i,j)eg

where the inequality is due to Cauchy—Schwarz. Now, for any 1 < j <mp,

Y WUTAR = Y (U WTA) = Y R[0T A

i:(i,j)eg i:(i, j)€g i:(i, j)€g
I1(U)r I(U)rb

< Y ——lAP = ——IAl*

i, peg ™1

IA

A
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m 12
I(U)rb
I6Pum] < |2 a4 m (Z( ) v?))
mq lv ||2 1 1\, )eG

12
I(U)rb o
_ (1@ IA]l - max( v})
1j:(,j)eg

Thus,

m lvll2=1

1=

1/2
I(U)rb m I(U)rb?
< Al max (Y v7p) < [———IAl.
mi lwl=1\/ i

Additionally, since rank(A) < r and G is b-sparse,

|GPuA)|? < |G(PyA) 7 =Y (GUUT A));,
i,J

_Z > (U.(UTA),)?

j=1i:(i,j)eG
e < I (U)rb
2 2
<> > 3 |uTA ;=) JuTagl;
Jj=1i:G,j)eg j=1
I1(U)rb I1(U)rb I(U)rb
= Ul = U AP = 2l

Combining previous two inequalities, we have

|G(PyA)| < JTW)rb(r A b)/mi|Al.

The proof for [|G(APy)|| < /IT(V)rb(b Ar)/ma||A| similarly follows. Next, for any u €
R™ vy € R™2 such that ||u||p = ||v]]2 = 1, we have

u'G(PyAPy)v=u' GUUTAVV o=} uin[UUTAVVT]U
(i.))€G

< > lwivillUill2- [UTAV] -1V ]2
(i,j)eg

rI(U) rI(V)
< 3wyl JIA] -
(i.))€G i 2

2 2
<«/I(U)I(V)FIIAII Z up +v3
- VImm, (i,))€G

\/71(U)1<V>r||A||(Z 5 _,2 iy Z
B VI, P ipes 2 T iipes

- br/1(U)I(V)
- Jmims

which means ||G(Py APy)|| < br/TU)I(V)/(mim2)| All.

0| S,
~—

i

1ALl
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For the diagonal operator D(-), since D(A) is a diagonal matrix, we have D(A)e; =
D(A),-,-e,- and

| D(Py(D(A)))] = max|{ Py (D(A))} ;| = maxle;' Py D(A)e;]

I1(U)r
:ml_ax|el-TPUe,~ -Aii| :miaX”UTei “% A < %“D(A) ,
| D(Py(A))| = max|(Py A)ii| = max|e; UU " Aci]
1(U)r
<lefUJ,- 1Al < Al -
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(DOLI: 10.1214/21-A0S2074SUPP; .pdf). The supplementary material contains additional
discussions on the robust sin ® theorem and additional technical contents of this paper.
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