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ABSTRACT
This article develops a uni!ed statistical inference framework for high-dimensional binary generalized linear
models (GLMs) with general link functions. Both unknown and known design distribution settings are
considered. A two-step weighted bias-correction method is proposed for constructing con!dence intervals
(CIs) and simultaneous hypothesis tests for individual components of the regression vector. Minimax lower
bound for the expected length is established and the proposed CIs are shown to be rate-optimal up to a
logarithmic factor. The numerical performance of the proposed procedure is demonstrated through simula-
tion studies and an analysis of a single cell RNA-seq dataset, which yields interesting biological insights that
integrate well into the current literature on the cellular immune response mechanisms as characterized by
single-cell transcriptomics. The theoretical analysis provides important insights on the adaptivity of optimal
CIs with respect to the sparsity of the regression vector. New lower bound techniques are introduced and
they can be of independent interest to solve other inference problems in high-dimensional binary GLMs.
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1. Introduction

Generalized linear models (GLMs) with binary outcomes are
ubiquitous in modern data-driven scienti!c research, as binary
outcome variables arise frequently in many applications such
as genetics, metabolomics, !nance, and econometrics, and play
important roles in many observational studies. With rapid tech-
nological advancements in data collection and processing, it
is o"en needed to analyze massive and high-dimensional data
where the number of variables is much larger than the sample
size. In such high-dimensional settings, most of the classical
inferential procedures such as the maximum likelihood are no
longer valid, and there is a pressing need to develop new princi-
ples, theories and methods for parameter estimation, hypothesis
testing, and con!dence intervals (CIs).

1.1. Problem Formulation

This article aims to develop a uni!ed statistical inference frame-
work for high-dimensional GLMs with binary outcomes. We
assume the observations (Xi, yi) ∈ Rp × {0, 1}, i = 1, ..., n, are
independently generated from

yi|Xi ∼ Bernoulli(f (X$
i β)), Xi ∼ PX , (1)

where f : R → (0, 1) is a known link function, β ∈ Rp is a high-
dimensional sparse regression vector with sparsity k and PX is
some probability distribution on Rp. The goal of the present
paper is threefold:

1. Construct optimal CIs for the individual components of β ;
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2. Conduct simultaneous hypothesis testing for the individual
components of β ;

3. Establish the minimum sample size requirement for con-
structing CIs which are adaptive to the sparsity level k of β .

Throughout, we consider a general class of link functions f ,
which can be characterized by a set of mild regularity conditions
speci!ed later in Section 3.1. The following are a few important
examples of this general class. Among them, logistic regression
is perhaps the most commonly used methods for analyzing
datasets with binary-outcomes. However, in many applications,
alternative link functions have been adopted due to their speci!c
interpretations with respect to the applications (Razzaghi 2013).

Example 1. Logistic link function. Problems related to high-
dimensional logistic regression with the link function f (x) =
exp(x)/(1 + exp(x)) have been extensively studied in literature.
See Section 1.3 for the existing works.

Example 2. Probit link function. In probit regression model, the
link function is the standard Gaussian cumulative distribution
function (cdf). This model is also widely used in practice and
well-understood in the classical low-dimensional settings. How-
ever, comparing to the logistic regression, much less is known
for the high-dimensional probit regression model.

Example 3. Latent variable model. Generalizing the above link
functions, one may consider the class of link functions induced
by a latent variable model. Consider an auxiliary random vari-
able y∗

i = X$
i β + εi with εi ∼ Pε for 1 ≤ i ≤ n. Then
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the observed binary outcome variable yi = 1(y∗
i ≥ 0) can be

reformulated as a binary GLM with yi|Xi ∼ Bernoulli(f (X$
i β)),

where f (·) is the cdf of −εi. Besides the logistic and the probit
link functions, examples include the cdfs of the generalized
logistic distribution, where f (x) = 1

2 tanhγ (ϕx) + 1
2 for any

ϕ > 0 and γ ≥ 1, and the Student’s tν-distributions with any
degrees of freedom ν ∈ N.

1.2. Main Results and Contributions

We propose a uni!ed two-step procedure for constructing CIs
and performing statistical tests for the regression coe#cients in
the high-dimensional binary GLM (1). A penalized maximum-
likelihood estimator (MLE) is implemented to estimate the
high-dimensional regression vector and then a link-speci!c
weighting (LSW) method is proposed to correct the bias of the
penalized estimator. CIs and statistical tests are constructed by
quantifying the uncertainty of the proposed LSW estimator.
The asymptotic normality of the proposed LSW estimator is
established and the validity of the constructed CIs and statistical
tests are justi!ed.

Comparing to the existing methods for logistic models
(van de Geer et al. 2014; Belloni, Chernozhukov, and Wei
2016; Ning and Liu 2017; Ma, Cai, and Li 2020; Guo et al.
2020; Shi et al. 2020), a key methodological advancement is the
construction of the link-speci!c weights. With this novel weight
construction, the proposed LSW method is shown to be e$ective
for a general class of link functions, including both the canonical
and noncanonical binary GLMs. Furthermore, the proposed
LSW method is e$ective for the general unknown sub-Gaussian
design with a regular population design covariance matrix. To
the best of our knowledge, the proposed method is the !rst
inference procedure that works for such a general class of link
functions and designs; see the discussion a"er Theorem 1 for a
detailed comparison. In contrast to the equal-weight methods
for bias-correction in the linear models (Zhang and Zhang 2014;
van de Geer et al. 2014; Javanmard and Montanari 2014a), our
results show that a careful weight construction is essential to
debiasing for the binary GLMs. This idea can be of independent
interest to study other inference problems in high-dimensional
GLMs.

The minimax optimality of CIs for a single regression coef-
!cient of the binary GLMs with general link functions is estab-
lished, and our proposed CIs are shown to achieve the optimal
expected length up to a logarithmic factor over the sparse regime

with k = ||β||0 = o( n
log n log p ). The analysis provides important

insights on the adaptivity of the optimal CIs with respect to a
collection of nested parameter spaces indexed by the sparsity
k of β . It is shown that the possible region of constructing
adaptive CIs for the individual components of β is the ultra-
sparse regime with k = o(

√
n√

log n log p
). The minimaxity and

adaptivity results are illustrated in Figure 1. New lower bound
techniques are developed, which can be of independent interest
for other high-dimensional binary GLM inference problems.
Moreover, for both theoretical and practical interests, we study
the optimal CIs and statistical tests in the case of known design
distributions.

Simulation studies indicate several practical advantages of
the LSW method over the existing ones. Speci!cally, our pro-
posed method is %exible with respect to the underlying link
function and e#cient in terms of computational costs. The
proposed CIs have more precise empirical coverage probabilities
and shorter lengths. As for hypothesis testing, under the sparse
setting, the proposed test is more powerful than the likelihood
ratio test of Sur, Chen, and Candès (2019), which is well de!ned
only for the moderate-dimensional settings with p < n/2.
In addition, an analysis of a real single-cell RNA-seq dataset
yields interesting biological insights that integrate well into the
current literature on the cellular immune response mechanisms
as characterized by single-cell transcriptomics.

Our proposed method has been included in the R package
SIHR, which is available from CRAN. More details about using
the R package SIHR can be found in Rakshit, Cai, and Guo
(2021).

1.3. Related Work

The estimation problem in the high-dimensional GLMs has
been extensively studied in the literature (van de Geer 2008;
Meier, van de Geer, and Bühlmann 2008; Negahban et al. 2010;
Bach 2010; Huang and Zhang 2012; Plan and Vershynin 2013).
However, for the high-dimensional binary GLMs, most of afore-
mentioned papers focus on the logistic link function. In the
present paper, we establish precise estimation bounds for the
high-dimensional binary GLMs with general link functions,
including both canonical and noncanonical links.

There is a paucity of methods and fundamental theoretical
results on statistical inference including hypotheses testing and
CIs in the high-dimensional GLMs. van de Geer et al. (2014)
constructed CIs and statistical tests for βj with 1 ≤ j ≤ p

Figure 1. An illustration of the optimality and adaptivity of the CIs with respect to the sparsity k of β for the unknown design setting. On the top of the !gure, we report
the minimax expected lengths of the CIs, which can be attained by our proposed LSW method (up to a log n factor for the rate k log p

n ). On the bottom of the !gure, the
possibility of being adaptive to the sparsity k is presented.
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in high-dimensional GLMs. Belloni, Chernozhukov, and Wei
(2016) constructed con!dence regions for βj with 1 ≤ j ≤ p
in the GLMs based on the construction of an instrument that
immunizes against model selection mistake. Ning and Liu
(2017) proposed a general framework for hypothesis testing
and con!dence regions for low-dimensional components in
high-dimensional models based on the generic penalized
M-estimators. More recently, Zhu, Shen, and Pan (2020)
proposed a constrained MLE method for hypothesis testing
involving unspeci!c nuisance parameters. Focusing on the
high-dimensional binary regression with sparse design matrix,
Mukherjee, Pillai, and Lin (2015) studied detection boundary
for the minimax hypothesis testing. For the high-dimensional
logistic regression model, Sur, Chen, and Candès (2019) and
Sur and Candès (2019) studied the likelihood ratio test under
the setting where p/n → κ for some κ < 1/2; Ma, Cai,
and Li (2020) proposed testing procedures for both the global
null hypothesis and the large-scale simultaneous hypotheses
for the regression coe#cients under the p + n setting; Guo
et al. (2020) studied inference for the case probability, which
is a transformation of a linear combination of the regression
coe#cients. Shi et al. (2020) proposed an inference procedure
based on a recursive online-score estimation approach. The
articles van de Geer et al. (2014), Ma, Cai, and Li (2020),
Guo et al. (2020), and Shi et al. (2020) focused on the logistic
link and impose certain stringent assumptions, such as the
bounded individual probability condition, or sparse inverse
population Hessian/precision matrix. In contrast, we propose a
novel weighting method for general link functions that produces
optimal CIs without requiring these stringent assumptions. The
numerical advantages of our proposed method over the existing
methods are demonstrated in Section 5.

Statistical inference for high-dimensional linear regression
has been well studied in the literature. Speci!cally, Zhang and
Zhang (2014), van de Geer et al. (2014), and Javanmard and
Montanari (2014a, 2014b) considered CIs and testing for indi-
vidual regression coe#cients of the high-dimensional linear
model, and the minimaxity and adaptivity of the con!dence set
construction has been studied in Nickl and van de Geer (2013),
Cai and Guo (2017), and Cai and Guo (2018).

1.4. Organization and Notation

The rest of the article is organized as follows. We !nish this
section with notation. In Section 2, we construct CIs and statis-
tical tests for single regression coe#cients in high-dimensional
binary GLMs with unknown design distribution. We then study
in Section 3 the theoretical properties of the proposed CIs
and statistical tests, and establish their minimax optimality and
adaptivity. Optimal CIs and statistical tests in the setting of
known design distributions are considered in Section 4. The
numerical performance of the proposed methods is evaluated
in Section 5. In Section 6, the methods are illustrated through
an analysis of a real single cell RNA-seq dataset. Further dis-
cussions are presented in Section 7. The proofs of the theorems
together with some additional discussions are collected in the
supplementary material.

Throughout, for a vector a = (a1, ..., an)$ ∈ Rn, we de!ne
the 'p norm ||a||p =

( ∑n
i=1 |ai|p

)1/p, the '0 norm ||a||0 =

∑n
i=1 1{ai ,= 0}, and the '∞ norm ||a||∞ = max1≤j≤n |ai|,

and let a−j ∈ Rn−1 stand for the subvector of a without the
j-th component. For a matrix A ∈ Rp×q, λi(A) stands for
the i-th largest singular value of A and λmax(A) = λ1(A),
λmin(A) = λmin{p,q}(A). For a smooth function f (x) de!ned on
R, we denote f ′(x) = df (x)/dx and f ′′(x) = d2f (x)/dx2. For
any positive integer n, we denote the set {1, 2, ..., n} as [1 : n].
For any a, b ∈ R, we denote Ix(a, b) = B(x; a, b)/B(a, b) as
the regularized incomplete beta function, where B(x; a, b) =∫ x

0 ta−1(1 − t)b−1dt is the incomplete beta function. We de!ne
φ(x) and *(x) as the density function and cdf of the standard
Gaussian random variable, respectively. We denote →d as con-
vergence in distribution. For positive sequences {an} and {bn},
we write an = o(bn), an / bn or bn + an if limn an/bn = 0,
and write an = O(bn), an ! bn or bn " an if there exists a
constant C such that an ≤ Cbn for all n. We write an 0 bn if
an ! bn and an " bn.

2. Statistical Inference and the Weighting Method

We use 'f (β) to denote the negative log-likelihood function
associated to the GLM in Equation (1),

'f (β) = − 1
n

n∑

i=1
yi log

[ f (X$
i β)

1 − f (X$
i β)

]
− 1

n

n∑

i=1
log(1−f (X$

i β)).

(2)
We de!ne the penalized negative log-likelihood estimator for
GLM,

β̂ = arg min
β

{'f (β) + λ||β||1}, (3)

with λ 0
√

log p/n. Although β̂ achieves the optimal rate of
convergence (Negahban et al. 2010; Huang and Zhang 2012), it
cannot be directly used for CI construction due to its bias. As in
the high-dimensional linear regression (Javanmard and Monta-
nari 2014a, 2014b; van de Geer et al. 2014; Zhang and Zhang
2014), bias correction is needed to make statistical inference for
βj with 1 ≤ j ≤ p. An important extra step for high-dimensional
GLM is to introduce link-speci!c weights to carry out the bias
correction.

For technical reasons, we split the samples such that
the initial estimation step and the bias-correction step are
conducted on independent datasets. Without loss of generality,
we assume there are 2n samples D = {(Xi, yi)}2n

i=1, divided
into two disjoint subsets D1 = {(Xi, yi)}n

i=1 and D2 =
{(Xi, yi)}2n

i=n+1. The initial estimator β̂ is obtained by applying
(3) to D2 while the bias-correction step (detailed in Section 2.1)
is based on β̂ and the samples in D1. Importantly, the sample
splitting procedure is used only to facilitate the theoretical
analysis, which does not make it a restriction for practical
applications. Numerically, we show in Section 5 that, without
sample splitting the proposed methods could also perform
well, and is statistically more e#cient than the alternative
methods. See also Section 4.2 in the supplementary material
for additional numerical comparisons, and Section 7 for more
discussions.
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2.1. A Weighting Method for Bias Correction

For a given j ∈ [1 : p], we consider the following generic form
of the bias-correction estimator:

β̃j = β̂j + u$ 1
n

n∑

i=1
Wi · Xi(yi − f (X$

i β̂)), (4)

where β̂ is de!ned in (3), Wi ∈ R for 1 ≤ i ≤ n and u ∈ Rp

denote respectively the data-dependent weights and projection
direction to be constructed. For the link function f : R → (0, 1)

in (1), we will construct the link-speci!c weights {Wi}n
i=1 and

a projection vector u ∈ Rp such that u$ 1
n

∑n
i=1 Wi · Xi(yi −

f (X$
i β̂)) is an accurate estimator of the bias β̂j − βj.

We now derive the error decomposition of the generic esti-
mator in (4), which provides intuitions on the construction of
{Wi}n

i=1 and u ∈ Rp. Rewrite the model (1) as yi = f (X$
i β)+ εi

with εi satisfying E[εi|Xi] = 0 and var(εi|Xi) = f (X$
i β)(1 −

f (X$
i β)). We apply Taylor expansion of f near X$

i β̂ and obtain

1
n

n∑

i=1
WiXi(yi − f (X$

i β̂))

= 1
n

n∑

i=1
WiXiεi + 1

n

n∑

i=1
Wif ′(X$

i β̂)XiX$
i (β − β̂)

+ 1
n

n∑

i=1
WiXi+i, (5)

with +i = f ′′(X$
i β̂ + tX$

i (β − β̂)) · [X$
i (β̂ − β)]2 for some t ∈

(0, 1). Combining Equations (4) and (5), the estimation error
β̃j − βj is expressed as follows:

u$ 1
n

n∑

i=1
WiXiεi

︸ ︷︷ ︸
Stochastic error

+
(

u$ 1
n

n∑

i=1
Wif ′(X$

i β̂)XiX$
i· − e$

j

)

(β − β̂)

︸ ︷︷ ︸
Remaining bias

+ u$ 1
n

n∑

i=1
WiXi+i

︸ ︷︷ ︸
Approximation error

(6)

where {ej}p
j=1 is the canonical basis of the Euclidean space Rp. In

the expression (6), the !rst term is the stochastic error due to the
model error εi, the second term is the remaining bias due to the
penalized estimator β̂ , and the last term is the approximation
error due to the nonlinearity of f .

Our goal is to construct {Wi}n
i=1 and u ∈ Rp such that a) the

stochastic error in Equation (6) is asymptotically normal and its
standard error is minimized; b) the remaining bias and approx-
imation errors in Equation (6) are negligible in comparison to
the stochastic error. If these two properties hold, then we can
establish the asymptotic normality of the bias-corrected estima-
tor β̃j in Equation (4) and justify certain e#ciency properties of
our proposed estimator.

In the following, we !rst discuss the weight construction and
then turn to the construction of the projection direction. The
conditional variance of the stochastic error in Equation (6) is

var
(

u$ 1
n

n∑

i=1
Wi · Xiεi

∣∣∣∣{Xi}n
i=1

)

= u$ 1
n2

n∑

i=1
W2

i · f (X$
i β)(1 − f (X$

i β))XiX$
i u, (7)

and the Hölder’s inequality implies an upper bound for the
remaining bias in Equation (6),

∣∣∣∣∣

(
u$ 1

n

n∑

i=1
Wif ′(X$

i β̂)XiX$
i· − e$

j

)
(β − β̂)

∣∣∣∣∣

≤
∥∥∥∥

1
n

n∑

i=1
Wif ′(X$

i β̂)XiX$
i u − ej

∥∥∥∥
∞

||β − β̂||1. (8)

We construct the weights {Wi}n
i=1 such that

W2
i · f (X$

i β)(1 − f (X$
i β)) ≈ Wi · f ′(X$

i β̂). (9)

In other words, we let the entries of the matrix W2
i · f (X$

i β)(1−
f (X$

i β))XiX$
i in Equation (7) be approximately equal to the

corresponding entries of the matrix Wi · f ′(X$
i β̂)XiX$

i in Equa-
tion (8). The relation (9) motivates the weight construction

Wi = w(X$
i β̂) with w(z) = f ′(z)

f (z)(1 − f (z)) . (10)

Such weight construction is rooted in the bias-variance trade-
o$: together with our proposed construction of û detailed in
Equations (11) and (12), the weight in Equation (10) ensures
that the stochastic error in Equation (6) is the dominating term;
see Remark 1 for more details. Examples of link functions and
their corresponding weight functions are given in Table 1.

With the weight function w(·) de!ned in Equation (10), we
construct the projection vector û ∈ Rp as

û = arg minu∈Rp u$
[

n−1
n∑

i=1
w(X$

i β̂)·f ′(X$
i β̂)XiX$

i

]
u, (11)

subject to

∥∥∥∥n−1
n∑

i=1
w(X$

i β̂) · f ′(X$
i β̂)XiX$

i u − ej

∥∥∥∥
∞

≤ λn

and max
1≤i≤n

|X$
i u| ≤ τn, (12)

with β̂ de!ned in (3), λn = C1
√

log p/n and τn = C2
√

log n for
some constants C1, C2 > 0. The construction of the projection
vector û adopts the idea (Zhang and Zhang 2014; Javanmard and
Montanari 2014a) of minimizing the variance of the stochastic
error in (6) while constraining the remaining bias and the
approximation error in (6).

We propose the link-speci!c bias-corrected estimator

β̃j = β̂j + û$ 1
n

n∑

i=1
w(X$

i β̂) · (yi − f (X$
i β̂))Xi. (13)

where û is de!ned in Equation (11) and the weight function w(·)
is de!ned in Equation (10).
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Table 1. Examples of link functions and their corresponding weight functions

Link function f (x) Weight function w(x)

Logistic exp(x)
1+exp(x) 1

Probit *(x) φ(x)
*(x)(1−*(x))

cdf of Student’s tν 1 − 1
2 I ν

x2+ν
( ν

2 , 1
2 ), ν ∈ N 2-( ν+1

2 )(1+ x2
ν )

− ν+1
2

√
νπ-( ν

2 )I ν
x2+ν

( ν
2 , 1

2 )(1− 1
2 Ix(t)(

ν
2 , 1

2 ))
, ν ∈ N

Generalized logistic 1
2 tanhγ (ϕx) + 1

2 , ϕ > 0, γ ≥ 1 2ϕγ tanhγ−1(ϕx)sech2(ϕx)
1−tanh2γ (ϕx)

, ϕ > 0, γ ≥ 1

Remark 1. In contrast to the equal weights used in the lin-
ear model (Zhang and Zhang 2014; Javanmard and Montanari
2014a), we have to carefully construct the weights for the binary
outcome models. Particularly, the approximate equivalence in
(9), together with the projection direction constructed in Equa-
tions (11) and (12), guarantee that the remaining bias in (6)
is negligible in comparison to the stochastic error in Equation
(6). If other weights were applied, then it is possible that the
stochastic error is no longer dominant, and the asymptotic
variance of the corresponding estimator could be larger than
that based on our proposed weight.

Even for the logistic model, the bias-corrected estimators
constructed in van de Geer et al. (2014) and Ma, Cai, and Li
(2020) do not coincide with our proposed estimator. Speci!cally,
di$erent projection vectors have been proposed in van de
Geer et al. (2014) and Ma, Cai, and Li (2020) based on the
nodewise regression approach. Moreover, the simulation results
in Section 5 indicate that our proposed method leads to
more precise and %exible CIs and more powerful statistical
tests.

Our proposed weight in Equation (10) has some inter-
esting connection to the most e#cient in%uence function.
We shall emphasize that, in our construction, the weight
in Equation (10) is proposed for the purpose of balancing
the bias and variance, which is a di$erent perspective from
variance minimization in the construction of the most in%uence
function. Theorem 3.5 of Tsiatis (2007) implies that, under
(1), we may construct an estimator β̄j such that

√
n(β̄j −

βj) = 1
n

∑n
i=1 ψe$ (Xi, yi) + op(1), where ψe$ (Xi, yi) =

eᵀj
[
Ew(Xᵀ

i β)f ′(Xᵀ
i β)XiXᵀ

i
]−1 w(Xᵀ

i β)Xi
[
yi − f (Xᵀ

i β)
]

is
the most e#cient in%uence function; see Section 7 of the
supplementary material for the detailed derivation. It is
interesting to compare the above decomposition with the error
decomposition in Equation (6). Although the same weighting
function is used, the inference problem in high-dimensional
sparse GLMs is much more challenging as we have to con-
struct the weight and projection direction û simultaneously
such that the stochastic error in Equation (6) dominates
the corresponding remaining bias term. Furthermore, we
consider a practical setting where

[
Ef ′(Xᵀ

i β)w(Xᵀ
i β)XiXᵀ

i
]−1 ej

might be dense. In such a case, it is hard to construct an
accurate estimator of

[
Ef ′(Xᵀ

i β)w(Xᵀ
i β)XiXᵀ

i
]−1 ej in high

dimensions. The proposed û is not necessarily an accurate
estimate of

[
Ef ′(Xᵀ

i β)w(Xᵀ
i β)XiXᵀ

i
]−1 ej but guarantees that

the remaining bias in Equation (6) is negligible in comparison
to the stochastic error.

2.2. CIs and Statistical Tests

Under mild regularity conditions, we will show in Theorem 1
that, conditioning on D2 and the design covariates {Xi}n

i=1 in
D1, the asymptotic variance of β̃j in Equation (13) has the
expression

vj = û$
[

1
n

∑n
i=1 w2(X$

i β̂)f (X$
i β)(1 − f (X$

i β))XiX$
i

]
û,
(14)

which can be estimated by

v̂j = û$
[ 1

n

n∑

i=1

[f ′(X$
i β̂)]2

f (X$
i β̂)(1 − f (X$

i β̂))
XiX$

i

]
û. (15)

Hence, we construct the (1 − α)-level CI for the regression
coe#cient βj as

CI∗α(βj, D) =
[
β̃j − ρ̃j, β̃j + ρ̃j

]
with

ρ̃j = max
{zα/2v̂1/2

j√
n

, C τnk log p
n

}
, (16)

where τn is de!ned a"er Equation (12), zα/2 = *−1(1 −
α/2), and C > 0 is a constant. In Equation (16), the pro-
posed CI∗α(βj, D) relies on the underlying sparsity k over certain
regions. For the ultra-sparse regime k /

√
n

log p
√

log n
, the above

de!nition in (16) reduces to ρ̃j = zα/2v̂1/2
j√

n , which does not
depend on k or C (see Corollary 1). In practice, we will use

ρ̃j = zα/2v̂1/2
j√

n , since it is shown in Section 3.3 that the ultra-
sparsity is in fact necessary for constructing any adaptive CIs.

As a direct consequence of the proposed CI, we construct a
test for the null hypothesis H0 : βj = β0

j , for any given j ∈
[1 : p]. In light of the debiased estimator (13) and CI∗α(βj, D) in
(16), we can construct the test statistic Rj = √

n(β̃j − β0
j )/v̂1/2

j ,
and de!ne an α-level test as Tα(Rj) = 1{|Rj| ≥ zα/2}. The null
hypothesis H0 is rejected whenever Tα(Rj) = 1.

2.3. Simultaneous Inference

Our proposed method can be extended to make simultaneous
inference for a subset of regression coe#cients such as testing
multiple hypotheses with family-wise error rate (FWER) or
false discovery rate (FDR) control. Suppose we are interested in
simultaneously testing the null hypotheses H0j : βj = 0, j ∈ J
where J ⊆ [1 : p]. Let {β̃j}j∈J and {v̂j}j∈J be the proposed bias-
corrected estimators in Equation (13) and their corresponding
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variance estimators in (14), respectively. When the goal is to
control the FWER at a signi!cance level 0 < α < 1, the classical
Bonferroni correction can be applied so that H0j is rejected
whenever |R0j| ≥ zα/(2|J|) with R0j = √

nβ̃j/v̂1/2
j for j ∈ J. In

this case, if we denote H0 = ∩j∈JH0j, then asymptotically the
FWER can be controlled by

FWER = PH0

( ⋃

j∈J

{
|R0j| ≥ zα/(2|J|)

})

≤ |J| · PH0(|R0j| ≥ zα/(2|J|)) ≤ α.

If |J| is large, one may compute the threshold value in a
more re!ned way by adopting bootstrap approaches in Cher-
nozhukov, Chetverikov, and Kato (2017), Dezeure, Bühlmann,
and Zhang (2017), and Zhang and Cheng (2017).

As is well known, when |J| is large, controlling FWER with
Bonferroni correction is o"en too conservative and controlling
for the FDR is more desirable. To this end, one can apply the
modi!ed BH procedure (Liu 2013; Javanmard and Javadi 2019;
Ma, Cai, and Li 2020), where one rejects the null hypothesis H0j
if |R0j| ≥ t for a certain carefully chosen threshold t. A good
choice for the threshold t can be seen as follows. Note that, if
J0 ⊆ J is the set of true nulls contained in J, the FDR is expressed
as

FDR(t) = E
[ ∑

j∈J0 1{|R0j| ≥ t}
max{∑j∈J 1{|R0j| ≥ t}, 1}

]
,

where
∑

j∈J 1{|R0j| ≥ t} is the total number of rejected hypothe-
ses. By assuming that the true alternatives are sparse, we approx-
imate |J0| by |J|, and use the standard normal tail 2 − 2*(t) to
approximate the proportion of nulls falsely rejected among all
the true nulls at the threshold level t, namely, 1

|J0|
∑

j∈J0 1{|R0j| ≥
t}. As a consequence, for a prespeci!ed signi!cance level 0 <

α < 1, the proposed threshold level t̂ is de!ned by

t̂ = inf
{

0 ≤ t ≤
√

2 log |J| − 2 log log |J| :

|J|{2 − 2*(t)}
max{∑j∈J 1(|R0j| ≥ t), 1} ≤ α

}
, (17)

and we set t̂ =
√

2 log |J| if t̂ in Equation (17) does not exist.
In particular, the condition 0 ≤ t ≤

√
2 log |J| − 2 log log |J|

in (17) is determined by a careful analysis, which re%ects the
range of applicability of the above approximations (Liu 2013). It
can be shown by using similar techniques as those in Javanmard
and Javadi (2019) and Ma, Cai, and Li (2020) that the above
procedure controls the FDR at level α in probability under mild
conditions as n → ∞ and |J| → ∞.

The knocko$ methods such as Candès et al. (2018) could
potentially be applied to control the FDR in more restrictive
settings. The knocko$ approach does not require a prespeci-
!ed link function, but it requires the design distribution to be
known. In comparison, our approach does not require knowl-
edge of the design distribution and can be applied to a large
class of GLMs with binary outcomes. As observed in Section 4.3
of the supplementary material, our testing procedure based on
the debiased estimators can be more powerful than the knocko$
method; this is likely because our method takes advantage of the
underlying sparse structure.

3. Theoretical Properties

3.1. Asymptotic Normality and Inference Properties

We begin with the regularity conditions for the general link
function f : R → (0, 1).

(L1). The link function f is twice di$erentiable, monotonic
increasing, Lipschitz on R, and concave on R+; and for any x ∈
R, it holds that f (x) + f (−x) = 1.

(L2). There exist some constants C1, C2 > 0 such that, for all
x ≥ 0, f (x) ≤ *(C1x) where *(x) is the standard Gaussian cdf,
and max{ f ′(x)

x(1−f (x)) , x2f ′(x)} < C2.
(L3). There exist some constants c1, c2 > 0 such that

supx∈R |xf ′′(x + ω)| ≤ c1 and |ω| < c2.
(L4). For 'f (β) de!ned in (2), there exists some constant

C > 1 such that the Hessian matrix '′′
f (β) can be expressed

as '′′
f (β) = 1

n
∑n

i=1 h(β ; yi, Xi)XiX$
i for some h(β ; yi, Xi) > 0

satisfying

max
1≤i≤n

∣∣∣∣ log h(β + b; yi, Xi) − log h(β ; yi, Xi)

∣∣∣∣

≤ C(|X$
i β|2 + |X$

i b|2 + |X$
i b|). (18)

The above regularity conditions are mild as they are satis!ed
by a large class of link functions, including but not limited to the
examples we listed at the beginning of Section 1. Speci!cally, for
the logistic link function in Example 1, conditions (L1) to (L3)
are easy to verify and condition (L4) follows from Example 8
of Huang and Zhang (2012). For the probit link in Example 2,
conditions (L1) to (L3) follow directly from the properties of the
Gaussian distribution, though condition (L4) is less straightfor-
ward. Similarly, these conditions can also be veri!ed for the class
of generalized logistic functions for any ϕ > 0 and γ ≥ 1, as
well as the cdfs of Student’s tν-distributions with any ν ∈ N in
Example 3. See the detailed proofs of these statements in Section
3 of the Supplement.

For the random design covariates and their distribution PX ,
we assume

(A). {Xi}1≤i≤2n are independent and identically distributed
sub-Gaussian random vectors, that is, there exists a constant
c ∈ R satisfying E exp{v$X} ≤ e||v||22c2/2 for all v ∈ Rp.
Such a general characterization of the design covariates includes
the special case where Xi1 = 1 for all 1 ≤ i ≤ 2n so that β1
represents the intercept. De!ne ! = E[XiX$

i ] ∈ Rp×p. We
focus on the following parameter space indexed by the sparsity
level k,

3(k) =
{
θ = (β , !) : ||β||0 ≤ k, ||β||2 ≤ C, M−1

≤ λmin(!) ≤ λmax(!) ≤ M
}

(19)

for constants M > 1 and C > 0 independent of n and p.
The following theorem establishes the asymptotic property

of the bias-corrected estimator β̃j.

Theorem 1. Suppose that Conditions (L1)–(L4), and (A) hold,
and (β , !) ∈ 3(k). For any j ∈ [1 : p], if k / n

log n log p ,
then we have β̃j − βj = An + Bn, where conditioning on
D2 = {(Xi, yi)}2n

i=n+1 and {Xi}n
i=1,

√
nAn/v1/2

j →d N(0, 1) with
vj de!ned in (14) and |Bn| ! k log p

√
log n/n with probability
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at least 1 − p−c − n−c for some constant c > 0. Additionally, if
k /

√
n

log p
√

log n
, then

√
n(β̃j − βj)/v1/2

j →d N(0, 1).

A few remarks are in order for the above theorem. First,
we have removed several stringent but commonly used
assumptions for the high-dimensional GLM inference. For a
general class of link functions satisfying (L1) to (L4), Theorem 1
only requires the general sub-Gaussian design with parameters
(β , !) ∈ 3(k), which includes many important cases such as
Gaussian, bounded, and binary designs, or any combinations
of them. This makes our proposed LSW estimator applicable to
many practical settings. As a comparison, the existing inference
methods (van de Geer 2008; van de Geer et al. 2014; Ning
and Liu 2017; Ma, Cai, and Li 2020; Guo et al. 2020; Shi et al.
2020) require in general the bounded individual probability
condition that P(yi = 1|Xi) ∈ (c, 1 − c) for all 1 ≤ i ≤ n
and some c ∈ (0, 1/2), or the bounded design assumption. In
contrast, under our assumptions (A) and (β , !) ∈ 3(k), we
have E|Xᵀ

i β| ≤
√

E|Xᵀ
i β|2 ≤

√
MC. Together with (L1), this

implies c ≤ P(yi = 1) ≤ 1 − c for c = f (−
√

MC). That is, in
Theorem 1, we have relaxed the stringent bounded individual
probability condition P(yi = 1|Xi) ∈ (c, 1 − c) for all 1 ≤ i ≤ n
to the balanced outcome assumption P(yi = 1) ∈ (c, 1 − c),
which can be directly veri!ed for any given dataset.

Second, the removal of the bounded individual probability
condition is not just a technical innovation but has profound
practical implications. We consider in Section 5 a setting where
part of the observations do not satisfy the bounded probability
condition P(yi = 1|Xi) ∈ (c, 1 − c) but the outcome vari-
able is balanced, and demonstrate that the proposed procedure
outperforms the state-of-the-art methods in the literature; see
Section 5.1 for details.

Third, commonly used theoretical assumptions such as the
sparse inverse population Hessian condition (van de Geer et al.
2014; Belloni, Chernozhukov, and Wei 2016; Ning and Liu 2017;
Janková and van de Geer 2018) and the sparse precision matrix
condition (van de Geer et al. 2014; Ma, Cai, and Li 2020), are
completely removed from our analysis, as they are also di#cult
to verify in practice, and can potentially limit the applicability
of the methods in practical settings (Xia, Nan, and Li 2020).

The proof of Theorem 1, concerning a large class of high-
dimensional GLMs, is involved and consists of a careful analysis
of the debiased Lasso estimator (13) as well as the projection
vector û de!ned by Equations (11) and (12). A key step is to
establish the asymptotic normality of the stochastic error in
Equation (6), which is obtained under mild conditions with the
sample splitting procedure. See Section 7 for more discussions.
In addition, the validity of these arguments relies on certain
theoretical properties of β̂ given by Equation (3), which is
summarized by the following theorem.

Theorem 2. Under Conditions (L1), (L2), (L4), and (A), suppose
(β , !) ∈ 3(k) and k ! n/ log p. Then the event B = ∩3

i=1Bi
holds with probability at least 1 − p−c, where B1 =

{
||β̂ −

β||1 ! k
√

log p
n

}
, B2 =

{
||β̂ − β||2 !

√
k log p

n
}

and B3 =
{ 1

n
∑n

i=1[X$
i (β̂ − β)]2 ! k log p

n
}

.

Theorem 2 establishes the rate of convergence for the GLM
Lasso estimator β̂ under the sub-Gaussian random design spec-
i!ed by the condition (A) for a general class of link functions
satisfying the conditions (L1), (L2), and (L4). This theorem is
novel and can be of independent interest. Importantly, building
upon the convex analysis and the empirical process theory, a
new analytical framework was developed so that a large class
of binary outcome GLMs can be simultaneously analyzed. The
result extends those of Negahban et al. (2010) and Huang and
Zhang (2012), which focused on the GLMs with canonical links.
In addition, Theorem 2 also generalizes the results of van de
Geer (2008), which focuses on the bounded design. Comparing
to the weaker condition that k ! n/ log p in Theorem 2, the
slightly more stringent condition k / n

log n log p in Theorem 1 is
to ensure that vj 0 1.

Remark 2. It can be seen from the proof of Theorem 1 that,
any initial estimator satisfying the properties given by Theo-
rem 2 can be used to replace β̂ in (3) for constructing the bias-
corrected estimator β̃j, without altering the asymptotic proper-
ties described in Theorem 1.

Building upon Theorem 1, we obtain the following theorem
concerning the asymptotic coverage probability of the proposed
CI∗α(βj, D) as well as an upper bound for its expected length.

Theorem 3. Suppose that Conditions (L1)–(L4), and (A) hold,
and θ = (β , !) ∈ 3(k). If k / n

log n log p , then for any constant
0 < α < 1 and any j ∈ [1 : p], the CI∗α(βj, D) de!ned in (16)
satis!es

limn,p→∞ inf
θ∈3(k)

Pθ (βj ∈ CI∗α(βj, D)) ≥ 1 − α. (20)

sup
θ∈3(k)

Eθ L(CI∗α(βj, D)) ! 1√
n

+ k log p
√

log n
n , (21)

where L(CI∗α(βj, D)) denotes the length of CI∗α(βj, D).

Compared with the CIs proposed by van de Geer et al.
(2014) and Belloni, Chernozhukov, and Wei (2016), which only
have guaranteed coverage when k /

√
n

log p , the proposed CIs
have guaranteed coverage for all k / n

log n log p , including the
moderately sparse region

√
n

log p ! k / n
log n log p .

The next result concerns the behavior of the proposed CIs
over the ultra-sparse region.

Corollary 1. Suppose that Conditions (L1)–(L4), and (A)
hold, and (β , !) ∈ 3(k). If k /

√
n√

log n log p
, then for

any constant 0 < α < 1 and any j ∈ [1 : p], the
CI∗α(βj, D) de!ned in Equation (16) admits the expres-
sion

[
β̃j − zα/2v̂1/2

j /
√

n, β̃j + zα/2v̂1/2
j /

√
n
]
, and satis!es

limn,p→∞ infθ∈3(k)Pθ (βj ∈ CI∗α(βj, D)) ≥ 1 − α, and
supθ∈3(k) Eθ L(CI∗α(βj, D)) ! 1/

√
n.

The following corollary, as a result of Corollary 1, concerns
the Type I error of the proposed test Tα(Rj) and its statistical
power under some local alternatives.
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Corollary 2. Suppose that Conditions (L1)–(L4), and (A) hold,
and (β , !) ∈ 3(k). If k /

√
n√

log n log p
, then for any constant 0 <

α < 1 and j ∈ [1 : p], we have limn,p→∞ supθ∈H0 Pθ (Tα(Rj) =
1) ≤ α where H0 = {θ ∈ 3(k) : βj = β0

j }. Moreover, for any
0 < q < 1, there exists some c > 0 such that, for any φ ≥
cn−1/2, we have limn,p→∞ infθ∈H1(φ) Pθ (Tα(Rj) = 1) ≥ 1 − q
where H1(φ) = {θ ∈ 3(k) : |βj − β0

j | ≥ φ}.

3.2. Optimal Expected Lengths and E!ciency

We now study the minimax optimality of CIs in the high-
dimensional GLM with binary outcomes. For any 0 < α < 1,
j ∈ [1 : p] and a given parameter space 3 of θ = (β , !), we
denote by Iα(3, βj) the set of all (1 −α) level CIs for βj over 3,

Iα(3, βj) =
{

CIα(βj, D) : inf
θ∈3

Pθ (βj ∈ CIα(βj, D)) ≥ 1 − α
}

.
(22)

The following theorem establishes the minimax lower bound for
the CI’s expected length for a large class of link functions over
the parameter space 3(k) under the Gaussian design.

Theorem 4. Suppose that the link function f satis!es Conditions
(L1) and (L2), {Xi}2n

i=1
iid∼ N(0, !), 0 < α < 1/2 and k !

min
{

pc, n
log p

}
for some 0 ≤ c < 1/2. Then for any j ∈ [1 : p],

inf
CIα(βj,D)∈Iα(3(k),βj)

sup
θ∈3(k)

Eθ L(CIα(βj, D)) " 1√
n

+ k log p
n ,

(23)
where L(CIα(βj, D)) ∈ R is the length of CIα(βj, D).

The proof of Theorem 4 requires a careful construction of
two hypotheses belonging to the parameter space 3(k), and a
nontrivial calculation of the chi-squared divergence between the
associated two probability measures. The following two lemmas
play a key role in the proof and can be of independent interest
for establishing lower bounds for other GLM problems. The
!rst lemma reduces the calculation of chi-squared divergence
to some link-speci!c nonlinear moment quantity.

Lemma 1. Under model (1) with any link function f : R →
(0, 1) and Xi ∼ N(0, !), let pf (Xi, yi; β , !) be the joint density
function of (Xi, yi). Then for any (β , !) and (β ′, !′) ∈ 3(k),

∫ pf (Xi, yi; β , !)pf (Xi, yi; β ′, !′)
pf (Xi, yi; 0, I)

= 4 det(") det("′)
det(" + "′ − I) · Ef (Z$β)f (Z$β ′), (24)

where " = !−1, "′ = (!′)−1 and Z ∼ N(0, (" + "′ − I)−1).

The second lemma provides a sharp upper bound for
Ef (Z$β)f (Z$β ′), which is a special case of the extreme
nonlinear correlations studied by Lancaster (1957), Yu (2008),
and Guo and Zhang (2019). This inequality is proved in the
Supplement using the Wiener-Itô chaotic decomposition theory
(Nualart 2006) and properties of the Hermite polynomials.

Lemma 2. For a bivariate vector (X, Y) ∼ N(0, !) with ! =
σ 2

[
1 ρ

ρ 1

]
for some σ 2 ≤ 1 and ρ ∈ [0, 1), for any f : R →

(0, 1) satisfying (L1) and (L2), we have Ef (X)f (Y) ≤ 1
4 +Cσ 2ρ,

for some universal constant C > 0.

Combining Theorems 3 and 4, we can establish the following
minimax optimal rates for the length of CIs for βj. Speci!cally,
under the Gaussian design,

inf
CIα(βj,D)∈Iα(3(k),βj)

sup
θ∈3(k)

Eθ L(CIα(βj, D)) 0 1√
n

+ k log p
n ,

(25)

where the second term klog p/n holds up to a
√

log n factor. The
optimal rate is attained by the proposed CI (16) with the second
term klog p/n holding up to a

√
log n factor. The optimal rate in

(25) agrees with the minimax rates for the length of CIs in the
high-dimensional linear regression (Cai and Guo 2017), up to a√

log n factor in the second term k log p/n.
Finally, we discuss the e#ciency of the proposed estimators.

E#ciency in high-dimensional linear regression has been dis-
cussed in van de Geer et al. (2014) and Jankova and van de Geer
(2018). The next result concerns the lower bound for estimating
a single regression coe#cient.

Proposition 1. Let f : R → (0, 1) be any link function satisfying
(L1) and (L2), Z = {(Xi, yi)}n

i=1 be n independent samples with
Xi ∼ N(0, !), and pf (Z; β , !) be their joint probability density
function. Then, for any given (β , !) ∈ 3(k), j ∈ [1 : p]
and any unbiased estimator β̂j of βj based on Z, such that
∂

∂βj
[
∫

β̂jpf (Z; β , !)dZ] =
∫

β̂j[ ∂
∂βj

pf (Z; β , !)]dZ whenever the
right-hand side exists, we have Var(β̂j) ≥ [I(β)]−1

jj /n, where

I(β) = E
[ [f ′(X$

i β)]2

f (X$
i β)(1−f (X$

i β))
XiX$

i
]
.

The proof of Theorem 1 (especially Lemma 3) in the Sup-
plement implies that, for k /

√
n√

log n log p
, Var(β̃j) ≤ (1 +

o(1))[I(β)]−1
jj /(ξn) for all j ∈ [1 : p], where n is the total sample

size and the constant ξ ∈ (0, 1) is the proportion of samples used
for the bias correction step. In other words, for 0 < δ < 1, the
e#ciency of the proposed estimator is at least 1 − δ by choosing
ξ > 1 − δ. As a consequence, when data splitting is applied,
as long as the samples used for the initial Lasso estimator is
not too scarce, the more samples used for bias correction, the
more e#cient the proposed method is; see also Section 4.2 of
the supplementary material for numerical evidences.

3.3. Adaptivity of Optimal CIs

Now we study the adaptivity of the optimal CIs over a sequence
of parameter spaces indexed by k. We follow the framework of
Cai and Guo (2017) and de!ne the following benchmark. For a
given j ∈ [1 : p], k1 ≤ k and 3(k1) ⊂ 3(k), de!ne

L∗
α(3(k1), 3(k), βj)

= inf
CIα(βj,D)∈Iα(3(k),βj)

sup
θ∈3(k1)

Eθ L(CIα(βj, D)), (26)
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where Iα(3(k), βj) is de!ned in Equation (22). For k1 ≤ k,
L∗

α(3(k1), 3(k), βj) characterizes the in!mum of the maximum
expected length over 3(k1) among all CIs having coverage over
3(k). We say that a CIα(βj, D) is rate-optimal adaptive over
3(k1) and 3(k) if CIα(βj, D) ∈ Iα(3(k), βj) and

sup
θ∈3(k1)

Eθ L(CIα(βj, D)) 0 L∗
α(3(k1), 3(k1), βj),

sup
θ∈3(k)

Eθ L(CIα(βj, D)) 0 L∗
α(3(k), 3(k), βj).

That is, CIα(βj, D) has the correct coverage over the larger
parameter space 3(k) and achieves the optimal expected length
simultaneously over 3(k1) and 3(k).

A comparison of L∗
α(3(k1), 3(k), βj) and L∗

α(3(k1),
3(k1), βj) can be used to decide whether it is possible to
construct rate-optimal adaptive CIs over the nested spaces
3(k1) ⊂ 3(k). For CIα(βj, D) ∈ Iα(3(k), βj), we apply the
de!nition of L∗

α(3(k1), 3(k), βj) in Equation (26) and obtain

sup
θ∈3(k1)

Eθ L(CIα(βj, D)) ≥ L∗
α(3(k1), 3(k), βj).

As a consequence, whenever L∗
α(3(k1), 3(k), βj) + L∗

α(3(k1),
3(k1), βj), then the rate-optimal adaptation between 3(k1) and
3(k) is impossible since

sup
θ∈3(k1)

Eθ L(CIα(βj, D)) ≥ L∗
α(3(k1), 3(k), βj)

+ L∗
α(3(k1), 3(k1), βj).

The following theorem establishes the lower bound for
L∗

α(3(k1), 3(k), βj).

Theorem 5. Suppose that Conditions (L1) and (L2) hold,
{Xi}2n

i=1
iid∼ N(0, !), 0 < α < 1/2 and k1 ≤ k ! min

{
pc, n

log p
}

for some constant 0 ≤ c < 1/2. Then for any given j ∈ [1 : p],

L∗
α(3(k1), 3(k), βj) "

1√
n

+ k log p
n . (27)

Combining the above theorem with the second statement of
Theorem 3, we have

L∗
α(3(k1), 3(k), βj) 0 1√

n
+ k log p

n , (28)

where the second term k log p/n is up to a
√

log n factor. In
particular, for k1 / min{ k√

log n
, n

log plog n } and
√

n
log p / k ≤

min{pc, n
log p } for some constant 0 ≤ c < 1/2, we have

L∗
α(3(k1), 3(k), βj) "

k log p
n + 1√

n
+ k1

log p
√

log n
n

" L∗
α(3(k1), 3(k1), βj).

This rules out the possibility of constructing rate-optimal adap-
tive CIs beyond regime k !

√
n

log p . When k1 ≤ k /
√

n√
log n log p

,

we have L∗
α(3(k1), 3(k), βj) 0 L∗

α(3(k1), 3(k1), βj) 0 1/
√

n
and our proposed CI in (16) achieves the optimal rates simulta-
neously over 3(k1) and 3(k). See Figure 1 for an illustration.

4. Statistical Inference When the Design Distribution
Is Known

Similar to the inference theory for the high-dimensional linear
regression, the analysis of the high-dimensional GLMs demon-
strates the important role of the design distribution PX in deter-
mining the fundamental di#culty of the inference problem.
Let us consider the problem of constructing CIs with the prior
knowledge of the design distribution. Although such knowledge
is usually not readily available in practice, as pointed out in
Cai and Guo (2020), insights from such an analysis can be
instrumental in semi-supervised learning.

Suppose the design distribution PX is known and has density
function p(X). To make inference about βj for some given
j ∈ [1 : p], one could start with the joint density function
p(yi, Xi; β) = p(yi|Xi)p(Xi) and, calculate the joint density for
(yi, Xij, Vi) ≡ (yi, Xij, β$

−jXi,−j) as

pηj(yi, Xij, Vi) = p(yi|Xij, Vi)pζj(Xij, Vi), (29)

where ηj = (βj, ζj) and ζj only depends on β−j and PX . Since the
variable Vi is not observable, we consider instead the density
pηj(yi, Xij) =

∫
pηj(yi, Xij, Vi)dVi by marginalizing out Vi and

de!ne the marginal maximum likelihood estimator (MMLE) of
ηj based on the observations D′ = {(yi, Xij)}n

i=1 as

η̂ML
j = (β̂ML

j , ζ̂ ML
j ) = arg max

ηj

n∑

i=1
log pηj(yi, Xij). (30)

Based on the classical large sample theory for the MLEs, for a
large class of regular likelihood functions, a (1 − α)-level CI for
the regression coe#cient βj can be constructed as

CI∗∗
α (βj, D′) =

[
β̂ML

j −
zα/2ṽ1/2

j√
n

, β̂ML
j +

zα/2ṽ1/2
j√

n

]
, (31)

with ṽj = (Î11−Î2
12/Î22)−1, where Î11 = 1

n
∑n

i=1
[ ∂ log pηj (yi,Xij)

∂βj

]2,

Î22 = 1
n

∑n
i=1

[ ∂ log pηj (yi,Xij)

∂ζj

]2, and Î12 = 1
n

∑n
i=1

[ ∂ log pηj (yi,Xij)

∂βj
∂ log pηj (yi,Xij)

∂ζj

]
.

The following theorem presents the theoretical guarantee
for the asymptotic coverage probability of the proposed
CI∗∗

α (βj, D′) and an upper bound for its expected length, under
the classical regularity conditions for the MLEs. For reason
of space, we delay the explicit statements of these conditions,
denoted as (C1) to (C4), to Section 1.6 in the Supplement.

Theorem 6. For any j ∈ [1 : p], suppose (β , PX) ∈ 3P =
{(β , PX) : the density pηj(yi, Xij) satis!es the classical regularity
conditions (C1) - (C4)}. Then there exists a sequence {η̂ML

j } of
estimators satisfying Equation (30) such that the CI∗∗

α (βj, D′) in
Equation (31) satis!es

limn,p→∞ inf
(β ,PX)∈3P

Pηj(βj ∈ CI∗∗
α (βj, D′)) ≥ 1 − α, (32)

sup
(β ,PX)∈3P

Eηj L(CI∗∗
α (βj, D′)) ! 1√

n
, (33)

where L(CI∗∗
α (βj, D′)) = 2zα/2ṽ1/2

j /
√

n is the length of
CI∗∗

α (βj, D′).



10 T. T. CAI, Z. GUO, AND R. MA

As an important consequence, the next result establishes the
minimax optimality of the proposed CIs under the Gaussian
design where PX = N(0, !0) for some known !0. In this
case, we have pηj(y, Xj) =

∫
f (Xjβj + V)y(1 − f (Xjβj +

V))1−ypζj(Xj, V)dV where ηj = (βj, ζj) and pζj(Xj, V) is the
probability distribution function of a centered bivariate normal
random vector whose covariance matrix, parameterized by ζj,
only depends on β−j and !0. To this end, we need the following
condition for the link function.

(L5) There exists some constant a > 0 such that f (x) ≤
1
2 tanh(ax) + 1

2 for all x ≥ 0.

Theorem 7. Suppose Conditions (L1) and (L5) hold and
{Xi}n

i=1
iid∼ N(0, !0). For any j ∈ [1 : p], de!ne 30(k) =

3(k)∩{(β , !0) : the density pηj(yi, Xij) satis!es the classical
regularity conditions (C1)–(C4)}. Then for any k ≤ p, we have

inf
CIα(βj,D′)∈Iα(30(k),βj)

sup
θ∈30(k)

Eθ L(CIα(βj, D′)) 0 1√
n

, (34)

where the above optimal rate can be attained by CI∗∗
α (βj, D′)

de!ned by Equation (31).

Remark 3. The above theorem requires the link function f (x),
in addition to satisfying the Condition (L1), to be dominated
by some a#ne hyperbolic tangent function on R+. Again, such
requirements are met by a wide range of link functions such
as the logistic link function, the generalized logistic functions
with any ϕ > 0 and γ > 1, as well as the cdfs of Student’s tν-
distribution for any ν ≥ 1 in Example 3. See Section 3 in the
Supplement for the proofs.

Lastly, for any given j ∈ [1 : p], about the null hypothesis
H0 : βj = β0

j , the CI∗∗
α (βj, D′) implies the test statistic

Sj =
√

n(β̂ML
j −β0

j )

ṽ1/2
j

and the corresponding α-level test Tα(Sj) =
1{|Sj| > zα/2}. Again, similar theoretical guarantees for the Type
I error and the statistical power can be obtained by applying
Theorem 6.

5. Simulations

In this section, we evaluate the empirical performance of our
proposed method and compare it with some existing inference
methods for high-dimensional binary outcome GLMs. Regard-
ing the CI construction, we focus on the coverage probabilities
and the lengths of CIs for some regression coe#cients; regarding
the hypothesis testing, we evaluate the Type I error and the
statistical power.

5.1. CIs for High-Dimensional Logistic Regression

We start with the high-dimensional logistic regression model.
Speci!cally, we set n = 400 and let p vary from 400 to 1300.
The sparsity level k varies from 20 to 35. For the true regression
coe#cients, given the support S such that |S| = k, we set
|βj| = ψ1{j ∈ S} for j = 1, ..., p with equal proportions of ψ

and −ψ . For the design covariates, we consider two scenarios:
Xi’s are generated from a multivariate Gaussian distribution with

covariance matrix as either (1) ! = !M , where !M is a p × p
blockwise diagonal matrix of 10 identical unit diagonal Toeplitz
matrices whose o$-diagonal entries descend from 0.6 to 0 (see
Section 4 in the supplementary material for the explicit form),
or (2) ! = r · Ip where we set r = 0.02 to ensure the bounded
individual probability condition (see the right panel of Figure 2).
We consider CIs for a nonzero regression coe#cient β2 = −ψ

and a zero coe#cient β100 = 0, and set the desired con!dence
level as 95%. We compare our proposed LSW method without
sample splitting with some existing methods including (i) the
CIs based on the weighted low-dimensional projection method
(“wlp”) proposed by Ma, Cai, and Li (2020), (ii) the CIs based
on the GLM Lasso projection method (“lproj”) proposed by
van de Geer et al. (2014) and implemented by the function
lasso.proj in the R package hdi, (iii) the CIs based on the
GLM Ridge projection method (“rproj”) of Bühlmann (2013)
and implemented by the function ridge.proj in the R pack-
age hdi, and (iv) the CIs based on the recursive online-score
estimation method (“rose”) proposed by Shi et al. (2020). The
numerical results for the nonzero coe#cient are summarized
in Tables 2 and 3, where each entry represents an average over
500 rounds of simulations. For reason of space, the results for
the zero coe#cient are collected in Tables S4.1 and S4.2 in the
Supplement.

In Table 2 and Table S4.1 in the supplementary material,
we !nd that, when ! = 0.02Ip and ψ = 1, the CIs for the
nonzero coe#cient β2 and the zero coe#cient β100 based on
“LSW,” “wlp,” and “lproj” achieve the desired coverage proba-
bilities, with our proposed “LSW” having slightly shorter length
in many settings. The CIs based on “rproj” have low coverage
probabilities for the nonzero coe#cient when p is small, and
the CIs based on “rose” have low coverage probabilities for
both coe#cients. From Table 3 and Table S4.2, we observe that,
when ! = !M and ψ = 0.5, both “LSW” and “wlp” achieve
the desired coverage probabilities, with “LSW” having shorter
length in all settings. In contrast, the CIs based on “lproj” and
“rproj” fail to achieve the desirable coverage probabilities for
the nonzero coe#cient (Table 3), while the CIs based on “rose”
fail to achieve the desirable coverage probabilities for the zero
coe#cient (Table S4.2).

To better understand the discrepancy in performance
between Tables 2 and 3, in Figure 2 we compare the individual
case probabilities of the samples associated with such two
settings, respectively. Figure 2 le" panel shows that in the setting
of Table 3 there are a signi!cant portion of samples whose case
probabilities are close to either 0 or 1, whereas in the right panel,
under the setting of Table 2, most of the case probabilities are
bounded away from 0 and 1. This may explain why “lproj”
and “rproj” failed in Table 3 but not so in Table 2, as both
methods rely on the bounded individual probability condition.
The removal of such theoretical conditions required by most
existing methods is not only a technical innovation but also a
methodological improvement.

Moreover, we also perform simulations to compare the e#-
ciency of our proposed LSW estimator with and without data
splitting. Speci!cally, in Section 4.2 of our supplementary mate-
rial, we show that, while both procedures with and without
data splitting produced CIs with desired coverage probability,
the method without sample splitting is more e#cient (i.e., with
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Figure 2. Histograms of P(yi = 1|Xi)(1 − P(yi = 1|Xi)) associated to the two settings corresponding to Table 2 (left) and Table 3 (right), with p = 1000, n = 400 and
k = 35.

Table 2. Empirical performances of CIs for β2 under ! = 0.02·Ip , ψ = 1, α = 0.05
and n = 400

p Coverage (%) Length

LSW wlp lproj rproj rose LSW wlp lproj rproj rose

k = 20
400 95.2 94.6 96.8 75.1 80.7 2.79 2.77 2.81 1.60 1.99
700 95.2 97.1 97.7 91.1 82.0 2.61 2.77 2.79 2.24 1.99
1000 92.6 93.0 98.4 95.5 84.8 2.80 2.79 2.81 2.53 2.01
1300 95.3 95.3 97.1 94.6 79.1 2.70 2.78 2.80 2.65 2.00

k = 25
400 93.8 95.3 94.7 73.6 82.0 2.81 2.77 2.81 1.60 1.99
700 95.9 95.9 96.9 94.1 85.7 2.63 2.78 2.81 2.25 2.00
1000 95.9 95.6 97.8 92.8 83.2 2.79 2.77 2.80 2.52 2.00
1300 94.3 94.6 97.8 95.0 83.2 2.70 2.77 2.80 2.65 2.00

k = 35
400 95.5 94.2 94.7 73.6 82.9 2.81 2.77 2.81 1.60 1.99
700 94.4 95.5 96.8 87.5 80.6 2.63 2.78 2.80 2.24 1.99
1000 92.6 91.3 95.9 93.9 86.1 2.78 2.77 2.80 2.52 1.99
1300 95.9 96.3 96.8 94.7 79.1 2.70 2.77 2.80 2.65 2.00

Table 3. Empirical performances of CIs for β2 under ! = !M , ψ = 0.5, α = 0.05
and n = 400

p Coverage (%) Length

LSW wlp lproj rproj rose LSW wlp lproj rproj rose

k = 20
400 92.9 98.4 57.1 92.6 97.9 1.13 1.56 0.53 0.98 1.04
700 94.6 97.2 45.4 90.3 94.6 1.12 1.32 0.53 0.86 1.08
1000 92 8 97.9 32.9 87.8 96.4 1.13 1.38 0.52 0.77 1.10
1300 94.6 97.2 27.9 81.7 95.8 0.96 1.27 0.53 0.73 1.12

k = 25
400 93.8 99.2 58.0 93.1 95.4 1.14 1.62 0.54 0.99 1.03
700 95.2 97.6 40.3 90.1 96.0 1.13 1.37 0.53 0.87 1.07
1000 92.8 97.0 31.3 84.0 96.2 1.16 1.43 0.53 0.77 1.09
1300 95.3 93.3 22.2 81.1 96.2 0.97 1.35 0.53 0.73 1.10

k = 35
400 94.1 97.6 51.8 91.5 94.7 1.15 1.52 0.54 1.00 1.01
700 96.5 99.3 37.3 89.4 92.5 1.14 1.57 0.53 0.87 1.05
1000 96.5 97.3 26.4 79.6 92.8 1.13 1.41 0.53 0.77 1.07
1300 94.7 93.8 22.7 76.7 92.8 0.98 1.30 0.53 0.73 1.09

shorter CIs), whose e#ciency relative to its data-split coun-
terparts is roughly 1/

√
ξ , with ξ ∈ {0.25, 0.5, 0.75, 0.9} being

the proportion of samples used for the bias correction step.
Therefore, for practical purpose, we recommend our proposed
method without data splitting for better e#ciency.

5.2. CIs for Other High-Dimensional Binary GLMs

To show the generality of our proposed LSW, we also evaluate its
performance under some other link functions such as the probit
link corresponding to the probit regression model, and the
inverse cdf of the Student’s t1, or Cauchy distribution (denoted
as “Inverse t1”). In light of the previous results, we only compare
the proposed method (“LSW”) without sample splitting with
the weighted low-dimensional projection method (“wlp”) of Ma,
Cai, and Li (2020) in various settings. In particular, due to the
unavailability of the computational so"ware for the initial Lasso
estimators under these non-canonical link functions, we still
use the logistic Lasso to obtain the initial estimators for these
methods. Similar to the previous settings, we set n = 400 and
let p vary from 800, 900, to 1000. We choose the sparsity level k ∈
{15, 20, 25} and set the true regression coe#cients in the same
way as previous simulations with ψ = 0.4. The design covariates
Xi’s are generated in the same way as previous simulations with
! = !M and again, we set the desired con!dence level as
1 −α = 95%. The numerical results are summarized in Table 4,
with each entry representing an average over 500 rounds of
simulations. Table 4 shows that, under both regression models,
across all the settings, the proposed method has better coverage
probabilities than “wlp,” which suggests both preciseness and
%exibility of the proposed method with respect to di$erent link
functions.

Table 4. Comparison of CIs with ψ = 0.4, α = 0.05 and n = 400

p Coverage (%) Length

Probit Inverse t1 Probit Inverse t1

LSW wlp LSW wlp LSW wlp LSW wlp

k = 15
800 93.9 93.1 92.0 78.3 0.85 0.72 1.13 0.56
900 94.2 91.6 93.0 76.5 1.26 0.72 1.19 0.56
1000 93.7 90.1 96.0 83.0 1.21 0.68 0.99 0.57

k = 20
800 93.8 83.1 92.3 66.3 0.60 0.51 1.14 0.53
900 96.1 81.3 93.0 76.5 0.60 0.51 0.25 0.56
1000 92.0 82.8 96.0 62.3 1.06 0.63 0.99 0.54

k = 25
800 92.7 90.4 94.3 81.0 0.80 0.71 1.15 0.55
900 97.5 87.7 96.7 79.3 1.31 0.68 1.20 0.56
1000 94.1 90.3 95.8 78.2 1.19 0.66 1.02 0.56
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Table 5. Comparison of statistical tests with ψ = 0.4, α = 0.05 and n = 800

p Type I Errors (%) Powers (%)

k = 15 k = 20 k = 25 k = 15 k = 20 k = 25

LSW lrt LSW lrt LSW lrt LSW lrt LSW lrt LSW lrt

120 5.75 5.50 5.25 4.28 5.06 6.07 95.7 94.7 93.5 93.5 89.5 89.3
160 5.75 6.75 5.75 5.79 4.66 4.05 93.5 89.7 96.0 92.2 92.3 90.1
200 7.25 7.00 6.50 5.03 7.29 8.50 92.5 87.7 95.2 88.0 90.0 85.4
240 5.75 6.50 7.50 5.54 3.44 6.07 95.0 88.0 92.0 84.3 90.5 83.2

5.3. Hypothesis Testing for High-Dimensional Logistic
Regression

It is well known that the construction of CIs and hypothesis
testing are dual problems, so any CI considered in Section 5.1
can be converted to a statistical test, and a valid CI with shorter
length translates to a valid statistical test with greater power. In
this section, we focus on the numerical comparison between
our proposed method and a rescaled likelihood ratio test (“lrt”)
recently proposed and carefully analyzed in Sur, Chen, and
Candès (2019) and Sur and Candès (2019) under the modern
maximum-likelihood framework with p ≤ n/2. We compare
the empirical performances of the two methods for testing a
single regression coe#cient, that is, whether a given coe#cient
is 0. Speci!cally, we set n = 800 and let p vary from 120,
160, 200 to 240. We choose the sparsity level k ∈ {15, 20, 25},
set α = 0.05, and keep the true regression coe#cients and
the design covariates the same as those in Section 5.2. The
numerical results are summarized in Table 5, with each entry
representing an average over 500 rounds of simulations. From
Table 5, we !nd that although both tests have their empirical
Type I errors around the nominal level, the proposed method
has higher power than “lrt” across all settings, especially when
the ratio p/n is large. This again may be explained by the fact
that the proposed method takes into account the underlying
sparsity structure of the regression coe#cients, whereas “lrt”
does not.

6. Real Data Analysis

Finally, we analyze a single cell RNA-seq dataset from a recent
study (Shalek et al. 2014), containing the expression estimates
(transcripts per million) for all the 27,723 UCSC-annotated
mouse genes, calculated using RSEM (Li and Dewey 2011), of
a total number of 1861 primary mouse bone marrow derived
dendritic cells spanning over several experimental conditions,
including several isolated stimulations of individual cells in
sealed micro%uidic chambers. The complete dataset was down-
loaded from the Gene Expression Omnibus with the accession
code GSE48968.

The analysis aims to understand the variability of gene
expressions responding to certain stimuli. Speci!cally, we focus
on the subsets of dendritic cells stimulated by one of the three
pathogenic components, namely, LPS (a component of gram-
negative bacteria), PIC (viralike double stranded RNA) and
PAM (synthetic mimic of bacterial lipopeptides), and a set of
unstimulated control cells. For the cells subject to one of the
above stimulations, the gene expression pro!les are obtained
along time course (0, 1, 2, 4, and 6 hr) a"er stimulation. To better

meet our purpose, we only consider the expression pro!les
6 hours a"er the stimulation, due to their more signi!cant
deviation from the unstimulated cells (see Shalek et al. 2014, !g.
2). Combining the expression pro!les of all 96 control cells and
one of the three groups of the stimulated cells, namely, 64 PAM
stimulated cells, 96 PIC stimulated cells, and 96 LPS stimulated
cells, we study the association between the gene expressions
and the stimulation status, coded as 0 and 1, corresponding
to “unstimulated” and “stimulated,” respectively. To reduce the
number of genes in the subsequent analysis, for each combined
expression matrix, we !lter out the genes not expressed in
more than 80% of the cells, and only keep the genes whose
variance is within the top 10 percentile. The expression levels
are log-transformed and normalized to have mean zero and unit
variance across the cells. Consequently, for each combination of
unstimulated and stimulated cells, we !t a high-dimensional
logistic regression and apply the proposed method to obtain
95% CIs for each of the regression coe#cients. The constructed
CIs under each of the !tted models are illustrated in Figure 3,
with an averaged length 1.5.

As a consequence, for each of the stimulations, there is
one or more genes whose regression coe#cients have CIs that
do not cover zero (marked in red in Figure 3), suggesting
signi!cant evidence of associations with the stimulation event
and therefore potential functional consequences responding to
that stimulus. Speci!cally, for the PAM stimulated cells, our
analysis identi!ed the protein coding gene IL6, which encodes
a cytokine, interleukin 6, promptly and transiently produced
in response to infections and tissue injuries, that contributes to
host defense through the stimulation of acute phase responses,
hematopoiesis, and immune reactions (Tanaka, Narazaki, and
Kishimoto 2014). For the PIC stimulated cells, we identi!ed
RSAD2, whose regression coe#cient has a CI of (1.26, 2.80).
This result has a very interesting connection to the previous
experimental !ndings that RSAD2 is involved in antiviral
innate immune response and is a powerful stimulator of
adaptive immune response mediated via mature dendritic cells
(Jang et al. 2018). Moreover, for the LPS stimulated cells, our
analysis highlights the protein coding genes CXCL10 and IL12B.
Among them, CXCL10 is known to have antitumor, antiviral,
and antifungal activities and is essential for the generation
of protective CD8+ T cell responses (Enderlin et al. 2009;
Majumder et al. 2012), whereas IL12B encodes a cytokine
that acting as a growth factor for activated T and NK cells,
which plays a major role in cell-mediated immunity against a
variety of pathogens and therefore being host-protective in the
context of intracellular bacterial infections (Ymer et al. 2002;
Zwiers et al. 2011). These results are interesting and suggest
the usefulness of our proposed method in real applications. As
a comparison, by applying some other methods considered in
Section 5, we observe that, (i) “wlp” tends to produce shorter
CIs with averaged length 1.2, among which about 37 CIs in
each stimulation scenario do not cover zero, including those
of the genes listed above, (ii) “lproj” highlights similar sets of
genes whose CI does not cover zero, as the proposed method,
yet their CIs are much longer, with averaged length 3.5, and (iii)
“rproj” also produces long CIs with averaged length 3.5, and all
of them cover zero. However, more experimental and numerical
evidences are needed as to determine which method produced
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Figure 3. An illustration of the CIs for the high-dimensional logistic regressions corresponding to the stimulations by LPS (top), PIC (middle) and LPS (bottom), respectively.
The CIs that do not cover zero are marked in red, with their gene names labeled.

the most precise CIs. See Section 5 in the supplement for more
details.

7. Discussion

We presented a uni!ed framework for constructing CIs and sta-
tistical tests for the regression coe#cients in high-dimensional
binary GLMs with a range of link functions. Both minimax
optimality and adaptivity are studied. For technical reasons,
sample splitting was used to establish the theoretical properties.
As demonstrated in our proof of Theorem 1 in the Supple-
ment, we essentially need to prove the asymptotic normality of
the stochastic error in (6), that is, conditional on the covari-
ates {Xi}n

i=1, it holds that v−1/2
j

1√
n

∑n
i=1 w(X$

i β̂)û$Xiεi →d
N(0, 1). It is possible to establish this asymptotic normality
without sample splitting, by imposing similar conditions as
those in van de Geer et al. (2014) and by obtaining an estimate
û through the nosewise regression. However, as discussed in
Section 3.1, these stringent conditions limit the applicability of
the proposed method, and can be avoided by splitting the sam-
ples to create independence between (û, β̂) and {εi}n

i=1. Hence,
a"er weighing the pros and cons, we decide to present our
main theoretical results by keeping the sample splitting while
removing other strong assumptions. Nevertheless, given the fact
that the proposed methods perform well numerically without
sample splitting, it is of interest to develop novel technical
tools to yield theoretical guarantees for the inference procedures

without splitting the samples or imposing additional stringent
conditions.

Recently, Ning and Cheng (2020) proposed to construct
sparse con!dence sets for sparse normal mean vectors. Unlike
our proposal which focuses on the individual regression coe#-
cient, they aim to construct sparse con!dence sets for a vector
with certain false positive rate control. It is interesting to con-
struct sparse con!dence sets for β under the high-dimensional
GLMs.
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