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Summary: Instrumental variables have been widely used to estimate the causal effect of a treatment on an outcome.

Existing confidence intervals for causal effects based on instrumental variables assume that all of the putative

instrumental variables are valid; a valid instrumental variable is a variable that affects the outcome only by affecting

the treatment and is not related to unmeasured confounders. However, in practice, some of the putative instrumental

variables are likely to be invalid. This paper presents two tools to conduct valid inference and tests in the presence

of invalid instruments. First, we propose a simple and general approach to construct confidence intervals based on

taking unions of well-known confidence intervals. Second, we propose a novel test for the null causal effect based

on a collider bias. Our two proposals outperform traditional instrumental variable confidence intervals when invalid

instruments are present and can also be used as a sensitivity analysis when there is concern that instrumental variables

assumptions are violated. The new approach is applied to a Mendelian randomization study on the causal effect of

low-density lipoprotein on globulin levels.
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1. Introduction

Instrumental variables have been a popular method to estimate the causal effect of a treat-

ment, exposure, or policy on an outcome when unmeasured confounding is present (Hernán

and Robins, 2006; Baiocchi et al., 2014). Informally speaking, the method relies on having

instruments that are (A1) related to the exposure, (A2) only affect the outcome by affecting

the exposure (no direct effect), and (A3) are not related to unmeasured confounders that

affect the exposure and the outcome; see Section 2.2 for details. Unfortunately, in many

applications, practitioners are unsure if all of the candidate instruments satisfy these as-

sumptions. For example, in Mendelian randomization (Davey Smith and Ebrahim, 2003,

2004; Lawlor et al., 2008), a subfield of genetic epidemiology, the candidate instruments

are genetic variants which are associated with the exposure. But, these instruments may

have direct effects on the outcome, an effect known as pleiotropy, and violate (A2) (Solovieff

et al., 2013). Or, the genetic instruments may be in linkage disequilibrium and violate (A3).

A similar problem arises in economics where some instruments may not be exogenous, where

exogeneity combines assumptions (A2) and (A3) (Murray, 2006; Conley et al., 2012).

Violation of (A1), known as the weak instrument problem, has been studied in detail;

see Stock et al. (2002) for a survey. In contrast, the literature on violations of (A2) and

(A3), known as the invalid instrument problem (Murray, 2006), is limited. Andrews (1999)

and Andrews and Lu (2001) considered selecting valid instruments within context of the

generalized method of moments (Hansen, 1982), but not inferring treatment effects after

selection of valid instruments. Liao (2013) and Cheng and Liao (2015) considered estimating

treatment effects when there is, a priori, a known, specified set of valid instruments and

another set of instruments which may not be valid. Conley et al. (2012) proposed different

approaches to assess violations of (A2) and (A3). Small (2007) considered a sensitivity

analysis to assess violations of (A2) and (A3). Our work is most closely related to the
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recent works by Kolesár et al. (2015), Kang et al. (2016), Bowden et al. (2015), Guo et al.

(2018), Windmeijer et al. (2018), Windmeijer et al. (2019), and Zhao et al. (2020). Kolesár

et al. (2015) and Bowden et al. (2015) considered the case when the instruments violate (A2)

and proposed an orthogonality condition where the instruments’ effects on the exposure are

orthogonal to their effects on the outcome. Kang et al. (2016) considered violations of (A2)

and (A3) based on imposing an upper bound on the number of invalid instruments among

candidate instruments, without knowing which instruments are invalid a priori or without

assuming the aforementioned orthogonality condition. Windmeijer et al. (2019), under a

similar setting as Kang et al. (2016), discussed consistent selection of the invalid instruments

and proposed a median-Lasso estimator that is consistent when less than 50% of candidate

instruments are invalid. In addition, Guo et al. (2018) proposed sequential hard thresholding

to select strong and valid instruments and provided a confidence interval for the treatment

effect. Windmeijer et al. (2018) used multiple confidence intervals to select a set of valid

instruments and to construct a confidence interval for the treatment effect.

Instead of first selecting a set of valid or invalid instruments and subsequently testing

the treatment effect, our paper directly focuses on testing the treatment effect with invalid

instruments by proposing two methods. First, we propose a simple and general confidence

interval procedure based on taking unions of well-known confidence intervals and show that

it achieves correct coverage rates in the presence of invalid instruments. Second, we propose

new tests for the null hypothesis of no treatment effect in the presence of multiple invalid

instruments by leveraging different properties of the model or the implied directed acyclic

graph; the nulls of these tests only depend on the number of valid instruments. We remark

that our two methods can also be interpreted as a sensitivity analysis. In particular, the

usual instrumental variable analysis makes the assumption that all instrumental variables

are valid. Our methods allow one to relax this assumption and see how sensitive the results are
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by varying the parameter s̄ that indicates the number of invalid instruments and observing

how the proposed inferential quantities change from s̄ = 1 (i.e. no invalid instruments) to

s̄ = L (i.e. at most L − 1 instruments are invalid). We conclude by demonstrating our

methods in both synthetic and real datasets.

2. Setup

2.1 Notation

We use the potential outcomes notation (Neyman, 1923; Rubin, 1974) for instruments laid

out in Holland (1988). Specifically, let there be L candidate instruments and n individuals in

the sample. Let Y
(d,z)
i be the potential outcome if individual i had exposure d, a scalar value,

and instruments z, an L dimensional vector. Let D
(z)
i be the potential exposure if individual

i had instruments z. For each individual, we observe the outcome Yi, the exposure, Di, and

instruments Zi·. We denote Y n = (Y1, . . . , Yn) and Dn = (D1, . . . , Dn) to be vectors of n

observations. Finally, we denote Zn to be an n by L matrix where row i consists of ZT
i· and

Zn is assumed to have full rank.

For a subset A ⊆ {1, . . . , L}, denote its cardinality c(A) and its complement AC . Let ZA be

an n by c(A) matrix of instruments where the columns of ZA are from the set A. Similarly,

for any L dimensional vector π, let πA be a subvector of π with elements determined by A.

2.2 Model and Definition of Valid Instruments

For two possible values of the exposure d′, d and instruments z′, z, we assume the following

potential outcomes model

Y
(d′,z′)
i − Y (d,z)

i = (z′ − z)Tφ∗ + (d′ − d)β∗, E{Y (0,0)
i | Zi·} = ZT

i·ψ
∗ (1)

where φ∗,ψ∗, and β∗ are unknown parameters. The parameter β∗ represents the causal

parameter of interest, the causal effect (divided by d′ − d) of changing the exposure from

d′ to d on the outcome. The parameter φ∗ represents violation of (A2), the direct effect of
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the instruments on the outcome. If (A2) holds, then φ∗ = 0. The parameter ψ∗ represents

violation of (A3), the presence of unmeasured confounding between the instruments and the

outcome. If (A3) holds, then ψ∗ = 0.

Let π∗ = φ∗ +ψ∗ and εi = Y
(0,0)
i − E{Y (0,0)

i | Zi·}. When we combine equation (1) along

with the definition of εi, we arrive at the observed data model

Yi = ZT
i·π
∗ +Diβ

∗ + εi, E(εi | Zi·) = 0 (2)

The observed model is also known as an under-identified single-equation linear model in

econometrics (page 83 of Wooldridge (2010)). The observed model can have exogenous

covariates, sayX i·, including an intercept term, and the Frisch-Waugh-Lovell Theorem allows

us to reduce the model with covariates to model (2) (Davidson and MacKinnon, 1993). The

parameter π∗ in the observed data model (2) combines both violation of (A2), represented

by φ∗, and violation of (A3), represented by ψ∗. If both (A2) and (A3) are satisfied, then

φ∗ = ψ∗ = 0 and π∗ = 0. Hence, the value of π∗ captures whether instruments are valid or

invalid. Definition 1 formalizes this idea.

Definition 1: Suppose there are L instruments along with models (1)–(2). We say that

instrument j = 1, . . . , L is valid (i.e. satisfy (A2) and (A3)) if π∗j = 0 and invalid if π∗j 6= 0.

When there is only one instrument, L = 1, Definition 1 of a valid instrument is identical

to the definition of a valid instrument in Holland (1988). Specifically, assumption (A2) (i.e.

the exclusion restriction) which implies Y
(d,z)
i = Y

(d,z′)
i for all d, z, z′, is equivalent to φ∗ = 0

and assumption (A3) (i.e. no unmeasured confounding) which means Y
(d,z)
i and D

(z)
i are

independent of Zi· for all d and z, is equivalent to ψ∗ = 0, implying π∗ = φ∗ + ψ∗ = 0.

Definition 1 is also a special case of the definition of a valid instrument in Angrist et al.

(1996) where our setup assumes a model with additive, linear, and constant treatment effect

β∗. Hence, when multiple instruments are present, our models (1)–(2) and Definition 1 can
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be viewed as a generalization of the definition of valid instruments in Holland (1988). Web

Appendix B contains additional discussions of (1)–(2) and Definition 1.

Given the models above, the present paper focuses on testing β∗ in the presence of invalid

instruments, or formally

H0 : β∗ = β0 (3)

for some value of β0 when π∗ may not equal to 0. Specifically, let s∗ = 0, . . . , L − 1 be

the number of invalid instruments and let s̄ be an upper bound on s∗ plus one, s∗ < s̄.

Let v∗ = L − s∗ be the number of valid instruments. We assume that there is at least

one valid instrument, even if we don’t know which among the L instruments are valid; see

Kang et al. (2016) for a similar setup. Also, in Mendelian randomization where instruments

are genetic, the setup represents a way for genetic epidemiologists to impose prior beliefs

about instruments’ validity. For example, based on the investigator’s expertise and prior

genome wide association studies, the investigator may provide an upper bound s̄, with

a small s̄ representing an investigator’s strong confidence that most of the L candidate

instruments are valid and a large s̄ representing an investigator’s weak confidence in the

candidate instruments’ validity.

In the absence of prior belief about s̄, the setup using the additional parameter s̄ can

also be viewed as a sensitivity analysis common in causal inference. In particular, similar

to the sensitivity analysis presented in Rosenbaum (2002), we can treat s̄ as the sensitivity

parameter and vary from s̄ = 1 to s̄ = L where s̄ = 1 represents the traditional case where

all instruments satisfy (A2) and (A3) and s̄ = L represents the worst case where at most

L − 1 instruments may violate (A2) and (A3). For each s̄, we can construct confidence

intervals from our two proposed methods below and observe how increasing violations of

instrumental variables assumptions through increasing s̄ impact the resulting conclusions

about β∗. Also, similar to a typical sensitivity analysis, we can find the smallest s̄ that
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retains the null hypothesis of no causal effect. If at s̄ = L, our methods still reject the null,

then the conclusion about the causal effect β∗ is insensitive to violations of (A2) and (A3).

3. Method 1: Union Confidence Interval With Invalid Instruments

Let B∗ ⊂ {1, . . . , L} be the true set of invalid instruments. In the instrumental variables

literature, there are many test statistics T (β0, B
∗) of the null hypothesis in (3) if B∗ is known.

Some examples include the test statistic based on two-stage least squares, the Anderson-

Rubin test (Anderson and Rubin, 1949), and the conditional likelihood ratio test (Moreira,

2003); see Web Appendix C for details of these test statistics and other test statistics. By the

duality of hypothesis testing and confidence intervals, inverting any of the aforementioned

test statistic T (β0, B
∗) under size α provides a 1 − α confidence interval for β∗, which we

denote as C1−α(Y n,Dn,Zn, B
∗)

C1−α(Y n,Dn,Zn, B
∗) = {β0 | T (β0, B

∗) 6 q1−α} (4)

Here, q1−α is the 1− α quantile of the null distribution of T (β0, B
∗).

Unfortunately, in our setup, we do not know the true set B∗ of invalid instruments, so we

cannot directly use (4) to obtain confidence intervals for β∗. However, from Section 2.2, we

have a constraint on the number of invalid instruments, c(B∗) = s∗ < s̄. We can use this

constraint to take unions of C1−α(Y n,Dn,Zn, B) over all possible subsets of instruments

B ⊂ {1, . . . , L} where c(B) < s̄ and the confidence interval with the true set of invalid

instruments C(Y n,Dn,Zn, B
∗) will be in this union. Our proposal, which we call the union

method, is exactly this except we restrict the subsets B in the union to be only of size

c(B) = s̄ − 1; the restriction reduces computational overhead, while maintaining coverage

(see Theorem 1).

C1−α(Y n,Dn,Zn) = ∪B,c(B)=s̄−1{C1−α(Y n,Dn,Zn, B)} (5)

While the procedure is simple and general, allowing any test statistic T (β0, B) with proper
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size control, it may be conservative. Specifically, some of the subsets B may contain every

invalid instrument, leading to unbiased confidence intervals (i.e. contain β∗ with probability

greater than or equal to 1− α) while other subsets may not have every invalid instrument,

leading to biased confidence intervals. Then, taking the union of both types of confidence

intervals may elongate C1−α(Y n,Dn,Zn) since we only need one unbiased confidence interval

to have the desired coverage level.

One way to shorten C1−α(Y n,Dn,Zn) is by pretesting whether each subset B contain

invalid instruments. This is similar to a procedure by Andrews (1999) to select valid IVs

through sequential testing of subsets of instruments until the pre-test retained its null; note

that in our setup, the goal is to test β∗ and we fix s̄, which fixes the number of pretests to

evaluate. Formally, for a 1−α confidence interval of β∗, consider the null hypothesis that BC ,

for c(BC) > 2, contains only valid instruments, H0 : π∗BC
= 0. Suppose S(B) is a test statistic

for this null with level αs < α and q1−αs is the 1−αs quantile of the null distribution of S(B).

One well-known example of S(B) is the Sargan test (Sargan, 1958); see Web Appendix C

for details. Let αt = α−αs be the confidence level for C1−αt(Y n,Dn,Zn, B). Then, a 1−α

confidence interval for β∗ that incorporates the pretest S(B) is

C ′1−α(Y n,Db,Zn) = ∪B{C1−αt(Y n,Db,Zn, B) | c(B) = s̄− 1, S(B) 6 q1−αs} (6)

For example, if the desired confidence level for β∗ is 95% so that α = 0.05, we can run the

pretest S(B) at αs = 0.01 level and compute C1−αt(Y n,Dn,Zn, B) at the αt = 0.04 level.

Theorem 1 shows that both C1−α(Y n,Dn,Zn) and C ′1−α(Y n,Dn,Zn) achieve the desired

1− α coverage of β∗ in the presence of invalid instruments.

Theorem 1: Suppose model (2) holds and s∗ < s̄. Given α ∈ (0, 1), consider any test

statistic T (β0, B) with the property that for any B∗ ⊆ B, T (β0, B) has size at most α under

the null hypothesis in (3). Then, C1−α(Y n,Dn,Zn) in (5) has at least 1−α coverage of β∗.
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Additionally, for any pretest S(B) where c(BC) > 2 and S(B) has the correct size under the

null hypothesis H0 : π∗BC = 0, C ′1−α(Y n,Dn,Zn) has at least 1− α coverage.

The proof is in Web Appendix A. A caveat to our approach is computational feasibility,

especially if L and s̄ are moderately large. But, in economic applications, the number of strong

and plausibly valid instruments rarely exceeds L = 20, and in some, but not all, Mendelian

randomization studies, after linkage disequilibrium clumping and p-value thresholding, L

remains small; in both cases, our procedure is computational tractable. Finally, while many

tests satisfy the requirements for Theorem 1, some tests will be better than others where

“better” can be defined in terms of statistical power or length of the confidence interval. In

Web Appendix D, we characterize the power of common tests in the IV literature when invalid

instruments are present and we show that under additional assumptions, the Anderson-Rubin

test tends to have better power than the test based on two-stage least squares when invalid

instruments are present.

4. Method 2: Tests for No Effect With Invalid Instruments

4.1 The Collider Bias Test

We introduce a new test statistic to test the null hypothesis of no treatment effect when

invalid instruments are possibly present, i.e. test H0 : β∗ = 0 in equation (3). Broadly

speaking, the new test is based on recognizing a collider bias in a directed acyclic graph when

the null hypothesis of no effect does not hold and there is at least one valid instrument among

L instruments. To illustrate, consider Figure 1 with two mutually independent instruments.

[Figure 1 about here.]

In Figure 1 (a) where both instruments are valid or in Figures 1 (b) and (c) where one of the

two instruments is invalid, D is a collider, but Y is not, thanks to the lack of an edge between

D and Y under the null hypothesis of no effect. Then, by the property of (non)-colliders
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(see Cole et al. (2009) for one illustration), Z1 and Z2 must be conditionally independent

on Y under H0 : β∗ = 0, i.e. Z1 ⊥⊥ Z2|Y . Critically, the conditional independence does not

require us knowing which instrument is invalid or valid a priori; it doesn’t require knowing

which of the three graphs generated the data, so long as at least one instrument is valid.

The intuition above generalizes to more than two instruments. Formally, let Σ = (σjk) ∈

R(L+1)×(L+1) be the covariance matrix of the instrument-outcome pair (ZT , Y ) where ZT =

(Z1, . . . , ZL) ∈ RL. Similar to the case with two instruments, if the L instruments are

mutually independent of each other, conditioning on Y does not induce a collider bias

between a valid instrument Zj and any other L − 1 candidate instruments under the null

causal effect H0 : β∗ = 0, regardless of whether these L− 1 candidate instruments are valid

or not. The theorem below formalizes this observation and translates the null hypothesis of

no effect into a collection of (conditional) independence tests.

Theorem 2: Suppose there is at least one valid instrument among L candidate instru-

ments. Then, the null of no treatment effect H0 : β∗ = 0 and having at least one valid

instrument that is not correlated with any of other candidates is equivalent to the null of

H0 :
∏

j=1,2,...,L

σj,L+1 = 0. (7)

The proof is in Web Appendix A; see Drton (2006) for another example. While the results

above formally rely on independence between instruments, it is possible to have dependent

instruments at the expense of having a more complex null hypothesis in (7). Also, from a

Mendelian randomization standpoint, we can enforce instruments to be independent of each

other by choosing SNPs that are far apart from each other in genetic distance. Finally, our

result differs from a recent work by Marden et al. (2018) who also proposed to use collider

bias, but to test the presence of selection bias using a single instrument.

To test the null in (7), we adapt the test statistic proposed by Drton (2006) and Drton

(2009) which is based on a likelihood ratio test for Gaussian graphical models that allow for
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some singularity constraints. Specifically, consider the following model

Zi· ∼ N(0,ΣZ), ΣZ = diag(υ2
1, υ

2
2, · · · , υ2

L)

Di = ZT
i·γ
∗ + ξi (8)

Yi = ZT
i·π
∗ +Diβ

∗ + εi, E(εi, ξi|Zi·) = 0εi
ξi

 ∼ N


0

0

 ,

 σ2
2 ρσ1σ2

ρσ1σ2 σ2
1




The setup in (8) is a special case of model (2) with the additional assumptions that (i) Di

is linearly associated to Zi·, (ii) the error terms are bivariate i.i.d. Normal with an unknown

covariance matrix, and (iii) ΣZ is diagonal. These additional assumptions are used to derive

the asymptotic null distribution of the proposed test in (9) below; they are not needed to

establish the relationships between the null hypotheses in Theorem 2.

Let S(L) = (sjk) ∈ R(L+1)×(L+1) be the sample covariance of (Zn,Y n). We propose to

test (7) by computing the smallest determinant of sub-matrices of the estimated covariance

matrix S(L), i.e.

λn = min
j=1,2,...,L

(
n log

(
sjjdet(S

(L)
−j,−j)

det(S(L))

))
(9)

We call λn the collider bias test and Theorem 3 shows the limiting null distribution of λn.

Theorem 3: Let W = (Wjk) be a L × L symmetric matrix where each entry is an

independent χ2
1 random variable. Let V ∗ ⊂ {1, 2, . . . , L} be a set of valid instruments among

L instruments and v∗ = c(V ∗). Under model (8) and the null hypothesis of no effect, H0 :

β∗ = 0, the collider bias test statistic λn in (9) converges to the minimum of χ2
L-distributed

random variables, which we denote as χ2
L,v∗

λn
n→∞−→ min

j∈V ∗

(
L∑
k=1

Wjk

)
:= χ2

L,v∗
. (10)

For any size α ∈ (0, 1), we can use the asymptotic null distribution of λn in Theorem 3 to

obtain a critical value χ2
L,v∗,1−α, which is the 1 − α quantile of the χ2

L,v∗
distribution. We
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would reject the null of no effect if the observed λn exceeds the critical value. Theorem 3

also shows that the asymptotic null distribution of the collider bias test λn does not depend

on the exact set of valid instruments V ∗; it only depends on the number of valid instruments

v∗. Finally, for a fixed α, as the number of valid instruments v∗ increases, the critical value

becomes smaller. In other words, by allowing a greater number of invalid instruments into

our test statistic, we push the critical value farther away from zero and make it harder to

reject the null hypothesis of no effect.

4.2 Minimum of Wald Tests

We also present another test proposed by the referee to test the null of no effect when the

instruments are mutually independent of each other. The test is motivated by writing Yi

in (8) in its reduced-form (i.e. only as a function of Zi), which is Yi = ZT
i·Γ
∗+ ξiβ

∗+ εi where

Γ∗ = (Γ∗1, . . . ,Γ
∗
L)T = (π∗ + γ∗β∗). Let Γ̂∗j be the maximum likelihood estimator (MLE) of

Γ∗j . Then under the null of no treatment treatment, when instrument j is valid, the Wald

test statistic wj = (Γ̂∗)2
j/V ar(Γ̂

∗
j) follows an asymptotic χ2

1 distribution. Also, if there is

one valid instrument and the instruments are independent of each other, the minimum of

L Wald statistics w1, . . . , wL will still be asymptotically χ2
1. Theorem 4 generalizes this idea

and shows that the minimum of L Wald statistics is distributed as the minimum of v∗

independent χ2
1 where v∗ is the number of valid instruments.

Theorem 4: Suppose there is at least one valid instrument among L instruments and

all instruments are independent of each other. Then, under the null H0 : β∗ = 0,

Wn,L = min
j=1,2,...,L

(
Γ̂2
j

V̂ ar(Γ̂j)

)
d→ χ2

1,v∗
, (11)

where V̂ ar(Γ̂j) is a consistent estimator of V ar(Γ̂j).

We call Wn,L the minimum of Wald tests. Overall, in comparison to the method in Section

3, a disadvantage of both the collider bias test and the minimum of Wald tests is that they
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do not directly produce confidence intervals for β∗; they only produces evidence against the

null hypothesis of no effect. But, the collider bias test and the minimum of Wald tests have

much lower computational overhead because both do not require unions. Regardless, all the

methods we presented can handle a very small proportion of valid instruments and maintain

the correct size; our methods only require one valid instrument while other methods in the

literature require more valid instruments.

5. Simulation Study With Invalid Instruments

We conduct a simulation study to evaluate the performance of our methods when invalid

instruments are present. The simulation setup follows equation (8) with n = 1000 individuals,

L = 10 candidate instruments, and each instrument is independent from each other. For each

simulation setting, we generate 1000 independent replicates. We test the null causal effect

H0 : β∗ = 0 and vary β∗. We change π∗’s support from 0 to 0.1 and vary the number of

invalid instruments (i.e. the number of 0.1’s in π∗) by changing the number of non-zero π∗’s.

We set σ1 = σ2 = 2, ρ = 0.8, and υ2
j = 2 for j = 1, . . . , L. We set γ∗j = {θσ2

1/(nσ
2
z)}1/2

and consider θ = 25. The parameter θ is closely related to the concentration parameter and

is a measure of instrument strength (Stock et al., 2002) when only valid instruments are

present. Here, θ = 25 represents weak instruments; in Web Appendix E, we consider θ = 150

representing strong instruments and a mixture of both strong and weak instruments.

We compare the statistical power between the union method, the collider bias test, and the

minimum of Wald tests. We vary the true number of invalid instruments s∗. For the union

method, we set the upper bound on s∗ to be s̄ = s∗ + 1, and use the Anderson-Rubin test

and the conditional likelihood ratio test since they are robust to weak instruments.

[Figure 2 about here.]

Figure 2 presents the power of different methods under weak instruments. When s∗ = 1,
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the union methods have similar power as the oracle method; here, the oracle methods refer

to methods that know exactly which instruments are valid and invalid a priori. But, when

s∗ = 5, i.e. when 50% of instruments are invalid, the union methods have near-oracle power if

the treatment effect β∗ is positive, but they have smaller power than the oracle methods when

β∗ is negative. This asymmetric power may arise from the inflection points of the likelihood

function (Kleibergen, 2007) as well as non-identifiability issues when π∗j + β∗γ∗j = 0. The

minimum of Wald tests has less power than the union methods except when s∗ = 5 and

β∗ < 0 and s∗ = 9. Finally, the collider bias test generally has the smallest power compared

to the other methods.

Tables 1 presents the coverage proportion and the median lengths of 95% confidence

intervals when the instruments are weak and s̄ = 5; again, the true β∗ = 0. As expected,

compared to the naive methods, our method provides at least 95% coverage with invalid

instruments. But, our methods are conservative and only as s∗ gets close to s̄ do we see

that our methods’ coverage rates reach close to 95%. We also noticed that as s̄∗ increased,

the Anderson-Rubin test produces slightly shorter intervals than the CLR test when invalid

instruments are present.

[Table 1 about here.]

Web Appendix E presents additional simulation studies with different test statistics, s∗,

and strength. In brief, when the instruments are strong with θ = 150 and s∗ is close to s̄, the

Anderson-Rubin test and the pretesting methods with two-stage least squares or conditional

likelihood ratio test perform well with respect to power and length, with the Anderson-Rubin

test being the simpler alternative since it doesn’t use a pretest. Between the Anderson-

Rubin test and the conditional likelihood ratio test, the Anderson-Rubin test dominates the

conditional likelihood ratio test for s∗ > 0. This finding differs from the advice in the weak

instruments literature where the conditional likelihood ratio test generally dominates the
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Anderson-Rubin test (Andrews et al., 2006; Mikusheva, 2010). Finally, when we have a mix

of strong and weak invalid instruments, the results are somewhere in between the strong

instrument case and the weak instrument case presented here.

Overall, the simulation studies suggest that there is no uniformly dominant test for the

treatment effect across all scenarios concerning invalid instruments. The performance de-

pends both on the number of invalid instruments and instrument strength. Nevertheless, for

practice, we recommend the union method using the Anderson-Rubin test as it has decent

power across various scenarios.

6. Data Analysis: Mendelian Randomization in the Framingham Heart Study

We use our proposed methods to study the effect of low-density lipoprotein (LDL-C) on

globulin levels among individuals in the Framingham Heart Study (FHS) Offspring Cohort.

Over several decades, the FHS has been one of the most popular epidemiologic cohort studies

to identify risk factors for CVD, and recently, Mendelian randomization has been used to

uncover causal relationships in the presence of unmeasured confounding (Smith et al., 2014;

Mendelson et al., 2017). Traditional Mendelian randomization requires every instrument to

be valid in order to test for a treatment effect, a tall order for many studies. Our proposed

methods relax this requirement and allow some of the instruments to be invalid.

For the main analysis, we selected nine SNPs that are known to be significantly associated

with LDL-C measured in mg/dL (Kathiresan et al., 2007; Ma et al., 2010; Smith et al., 2014)

and are located in different chromosomes or in linkage equilibrium; the latter ensures that

candidate instruments are, to the best extent possible, statistically independent each other.

Our outcome Y is continuous globulin levels (g/L) measured at Offspring Cohort Exam

2. Globulins are known to have an important role in liver function, clotting, and immune

system. We also use subjects’ age and sex as covariates X. Web Appendix F has additional

details about the data.
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To mitigate concerns for cryptic relatedness (Voight and Pritchard, 2005; Astle and

Balding, 2009), which means genetic variants and phenotypes may share the same correlation

structure due to familial relationships among the subjects, we selected one subject at random

from each family in the Offspring Cohort linked by sibling or marriage relationships; note

that there is no parent-child relationship within the Offspring Cohort. By doing so, we retain

only 60% of the subjects (n = 1445 for the main analysis and n = 1, 480 for the secondary

analysis) from n = 2, 499 with no missing data. This may reduce power of our analysis (Pierce

et al., 2010), but possibly lead to a more valid analysis of the true effect (Lee and Ogburn,

2019).

Table 2 summarizes results from testing the null of no effect using our procedures; we vary

s̄ from 1 to 8. The test statistic from the minimum of Wald tests is WL,n = 0.0134 and the

collider bias test statistic is λn = 9.6571. As s̄ varies, the critical values of the minimum of

Wald tests and the collider bias test become larger and the null becomes harder to reject.

We see that the collider bias test is able to reject the null of no effect even if there are at

most 6 invalid instruments (s̄ = 7); in contrast, the minimum of Wald tests is not able to

reject the null of no effect even with no invalid instruments. Among the union methods, the

Anderson-Rubin test is able to reject the null of no effect when there is at most one invalid

instrument and the two-stage least squares method is able to reject the null when there is

no invalid instruments; the conditional likelihood ratio test failed to reject the null even if

there are no invalid instruments.

[Table 2 about here.]

The empirical results concerning the collider bias test are contrary to what we found

in the simulation study where the collider bias test had less power than the minimum of

Wald tests. This may be due to a number of reasons, but we found evidence of correlations

between some pairs of nine instruments, possibly due to cryptic relationships or kinships
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that may be present even after considering at most one subject from each family in our data

analysis. In particular, when we ran a regression between four strongest SNPs (rs11591147,

rs646776, rs2228671, rs2075650) where one of the four SNPs is regressed on others, we

find that one of the three regression coefficients had p-values less than or equal to 0.05.

Given this, we suspect that the collider bias test may be more sensitive to the presence

of correlations than the minimum of Wald tests so it rejects the null (7) even when small

correlations between instruments are present. To partially verify this, Web Appendix F

conducts additional analysis where we change the candidate instruments from nine to four

instruments. These four instruments were selected based on strength plus weak correlation

amongst each other. With four instruments, we found that we can reject the null with more

invalid instruments present. Also, matching the simulation study, the collider bias test cannot

reject the null when there is more than one invalid instrument.

Table 3 shows the 95% confidence intervals based on the union method as we vary s̄ varies

from 1 to 3. First, we see that when s̄ = 1 and we don’t allow any invalid instruments, the AR

and the Sargan-based methods return empty intervals, suggesting that invalid instruments

among the candidate set of instruments are present. As s̄ moves away from 1 we see that

most confidence intervals indicate a positive effect of LDL-C on globulin levels. Also, similar

to Table 2, the confidence intervals from the Anderson-Rubin test and the two-stage least

squares test with a pre-test do not cover 0 even if there is at most one invalid instrument.

Overall, the data analysis shows evidence of a positive causal effect between LDL-C and

globulin levels and this conclusion is robust so long as there are a few invalid instruments.

[Table 3 about here.]
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7. Discussion

This paper proposes two methods to conduct inference for the treatment effect when instru-

ments are possibly invalid. The first method is a simple modification of pre-existing methods

in instrumental variables to construct robust confidence intervals for the causal effect. The

second method is based on testing the null hypothesis of no causal effect and produces valid

inference so long as there is at least one valid instrument. We show through numerical exper-

iments and data analysis how our proposed methods can be used to strengthen conclusions

about the presence and direction of a causal effect using instrumental variables when invalid

instruments may be present.
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Figure 1: Causal directed acyclic graph with two candidate instruments Z1 and Z2 when
H0 : β∗ = 0 holds. Solid lines are non-zero causal paths and dotted lines are possibly non-zero
causal paths. A variable U indicates an unmeasured confounder between D and Y . We use
γ∗ and π∗ to label each edge. Our setup supposes that at least one instrument is valid, i.e.
π∗1π

∗
2 = 0, without knowing which π∗ is zero.
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Figure 2: Power of different methods with varying numbers of invalid instruments. The
instruments are weak and the Type I error is fixed at α = 0.05. AR denotes the Anderson-
Rubin test, CBT denotes the collider bias test, CLR denotes the conditional likelihood ratio
test, and MWT denotes the minimum of Wald tests. The oracle tests are tests that know
exactly which instruments are valid.
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Table 1: Coverage rates (CR) and median length of 95% confidence intervals under weak
instrumental strength and s̄ = 5. TSLS denotes two-stage least squares, AR denotes the
Anderson-Rubin test, and CLR denotes the conditional likelihood ratio test.

Method Test s∗ = 0 s∗ = 1 s∗ = 2 s∗ = 3 s∗ = 4
CR Length CR Length CR Length CR Length CR Length

Naive AR 93.1 0.400 44.9 0.066 11.0 0.000 1.9 0.000 0.2 0.000
CLR 94.3 0.253 91.9 0.253 78.3 0.251 61.6 0.246 33.7 0.240

Our method AR 100.0 0.881 100.0 0.827 100.0 0.767 99.5 0.691 97.3 0.604
CLR 100.0 0.604 100.0 0.637 100.0 0.677 99.9 0.725 98.7 0.770

Oracle AR 93.1 0.400 93.9 0.421 93.4 0.433 93.7 0.455 95.1 0.488
CLR 94.3 0.253 95.0 0.268 95.2 0.285 94.5 0.306 94.5 0.332
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Table 2: P-Values of testing the null Hypothesis of no effect of low-density lipoprotein on
globulin levels using different methods. AR denotes the Anderson-Rubin test, CLR denotes
the conditional likelihood ratio test, TSLS denotes two-stage least squares, Sargan denotes
the Sargan pre-test, MWT denotes the minimum of Wald tests, and CBT denotes the collider
bias test. R denotes rejecting the null of no effect and NR denotes not rejecting the null of
no effect.

Test statistics s̄ = 1 s̄ = 2 s̄ = 3 s̄ = 4 s̄ = 5 s̄ = 6 s̄ = 7 s̄ = 8

AR R R NR NR NR NR NR NR
CLR NR NR NR NR NR NR NR NR

TSLS R NR NR NR NR NR NR NR
SarganTSLS R R NR NR NR NR NR NR

MWT (p-value) 0.4226 0.4649 0.5128 0.5629 0.6189 0.6804 0.7486 0.8235
CBT (p-value) 0.0025 0.0029 0.0041 0.0082 0.0156 0.0339 0.0746 0.3796
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Table 3: 95% Confidence intervals for the effect of low-density lipoprotein on globulin levels
using the union method. AR denotes the Anderson-Rubin test, CLR denotes the conditional
likelihood ratio test, TSLS denotes two-stage least squares, and Sargan denotes the Sargan
pre-test. We vary s̄, the total number of allowable invalid instruments from 1 to 3, with s̄ = 1
indicating no invalid instruments and s̄ = 3 indicating at most two invalid instruments. Cells
with NA represent empty confidence intervals.

s̄ = 1 s̄ = 2 s̄ = 3

AR NA (0.0073, 0.0646) (-0.0208, 0.0811)
CLR (-0.0001, 0.0508) (-0.0172, 0.0620) (-0.0365, 0.0742)

TSLS (0.0012, 0.0446) (-0.0119, 0.0553) (-0.0265, 0.0661)
SarganTSLS NA (0.0067, 0.0586) (-0.0304, 0.0698)
SarganCLR NA (0.0067, 0.0654) (-0.0422, 0.0793)


