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ABSTRACT
Exploiting spatial patterns in large-scale multiple testing promises to improve both power and inter-
pretability of false discovery rate (FDR) analyses. This article develops a new class of locally adaptive
weighting and screening (LAWS) rules that directly incorporates useful local patterns into inference.
The idea involves constructing robust and structure-adaptive weights according to the estimated local
sparsity levels. LAWS provides a unified framework for a broad range of spatial problems and is fully
data-driven. It is shown that LAWS controls the FDR asymptotically under mild conditions on depen-
dence. The finite sample performance is investigated using simulated data, which demonstrates that
LAWS controls the FDR and outperforms existing methods in power. The efficiency gain is substan-
tial in many settings. We further illustrate the merits of LAWS through applications to the analysis of
two-dimensional and three-dimensional images. Supplementary materials for this article are available
online.
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1. Introduction

1.1. Structural Information in Spatial Multiple Testing

Spatial multiple testing arises frequently from a wide variety of
applications including functional neuroimaging, environmen-
tal studies, disease mapping, and astronomical surveys. Intu-
itively, exploiting spatial structures can help identify signals
more accurately and improve the interpretability of scientific
findings. There are various ways of incorporating spatial infor-
mation into the inferential process: the spatial structures and
covariates may be used to form new hypotheses, define novel
error rates, prioritize key tasks, and construct new test statis-
tics. For example, in Pacifico et al. (2004) and Heller et al.
(2006), predetermined spatial clusters are used to form new
hypotheses with clusters as basic inference units. Benjamini and
Heller (2007) suggested that aggregating the data from nearby
locations can increase the signal-to-noise ratio and reduce the
multiplicity. To reflect the relative importance of decision errors,
Benjamini and Heller (2007), Sun et al. (2015), and Basu et al.
(2018) proposed to take into account spatial covariates such as
the size of a cluster when defining the error rates. Moreover,
the prior knowledge on the relationship between individual
locations and spatial clusters is highly informative and can be
utilized to develop new hierarchical testing and selective infer-
ence procedures, which promise to improve both the power
and interpretability (Yekutieli 2008; Benjamini and Bogomolov
2014).

CONTACT Yin Xia xiayin@fudan.edu.cn Department of Statistics, School of Management, Fudan University, Shanghai 200433, China.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

1.2. Challenges of Dependence in Multiple Testing

The localization of sparse signals from massive spatial data often
involves conducting thousands and even millions of hypotheses
tests. The false discovery rate (FDR; Benjamini and Hochberg
1995) provides a powerful and practical criterion for multiplicity
adjustment in large-scale testing problems. An important line of
research is concerned with the impact of dependence on FDR
procedures. The Benjamini–Hochberg (BH) method is shown
to be valid for FDR control under a range of dependence settings
(Benjamini and Yekutieli 2001; Sarkar 2002). In particular, Wu
(2008) developed conditions under which the BH method con-
trols the FDR for spatially correlated tests in a hidden Markov
random field. Meanwhile, Efron (2007) argued that correlation
may degrade statistical accuracy and should be accounted for
when conducting simultaneous inference. Optimality under
dependence has been investigated in Sun and Cai (2009), which
showed, in a hidden Markov model, that incorporating depen-
dence structure into a multiple-testing procedure can greatly
improve the efficiency of conventional approaches that ignore
dependence. This idea has been further explored in a range of
spatial settings, including the Gaussian random field models
(Sun et al. 2015), Ising models (Shu, Nan, and Koeppe 2015),
spatial change-point models (Cao and Wu 2015), and graphical
models (Liu, Zhang, and Page 2016).

Most spatial multiple testing methods have assumed that
clusters are known a priori, or the dependence structure can be
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well estimated from data. However, there are several practical
issues. First, the spatial clusters, which are typically formed by
aggregating nearby locations according to prior knowledge (e.g.,
Heller et al. 2006), can be misspecified. In other works (e.g.,
Pacifico et al. 2004; Sun et al. 2015), the clusters are obtained
by inspecting the testing results from a preliminary point-wise
analysis, which can be subjective and highly sensitive to the
choice of threshold in the tests at individual locations. Second,
contiguous spatial clusters may not serve as an appropriate
proxy of reality when signals appearing more frequently in
a local area but do not form adjoining regions. Hence, it is
desirable to develop robust and fully data-driven procedures
to capture local patterns in spatial data more accurately. Third,
although existing spatial FDR methods have good performances
when spatial models are estimated well, the commonly used
computational algorithms may not produce desired estimates
if assumptions on the underlying spatial process are violated,
or the model/prior is misspecified. The poor estimates may
lead to less powerful and even invalid FDR procedures. Finally,
estimating/modeling spatial dependence structures is very chal-
lenging in high-dimensional settings, wherein strong regularity
conditions and heavy computations greatly limit the scope and
applicability of related works.

1.3. The Main Idea in Our Approach

The goal of the present article is to develop simple and robust
FDR methods for spatial analysis that are capable of adaptively
learning the sparse structure of the underlying spatial process
without prior knowledge on clusters, parametric assumptions
of the underlying model or intensive computation of posterior
distributions. The main idea is to recast spatial multiple test-
ing in the framework of simultaneous inference with auxiliary
information. Under this framework, the p-values play primary
roles for assessing the significance, while the spatial locations are
viewed as auxiliary variables for providing important structural
information to assist inference. We propose a locally adaptive
weighting and screening (LAWS) approach that consists of three
steps. LAWS first estimates the local sparsity structure using a
screening approach, then constructs spatially adaptive weights
to reorder the p-values, and finally chooses a threshold to adjust
for multiplicity. The proposed method bypasses complicated
spatial modeling and directly incorporates useful structures
into inference. LAWS is nonparametric and assumption-lean—
it only requires that the underlying spatial process is smooth at
most locations. By capturing unknown spatial patterns adap-
tively, LAWS tends to up-weight/down-weight the p-values
in neighborhoods where signals are abundant/sporadic. Our
numerical results show that LAWS offers dramatic improve-
ments in power over conventional methods in many settings.

1.4. Connection to Existing Works and Our Contributions

Large-scale inference with auxiliary/side information is an
important topic that has received much recent attention. There
are two lines of research, where the additional information is,
respectively, (i) extracted from the same dataset using care-
fully constructed auxiliary sequences (Liu 2014; Cai, Sun, and

Wang 2019), or (ii) gleaned from secondary data sources such
as prior studies and external covariates (Fortney et al. 2015;
Scott et al. 2015; Ignatiadis et al. 2016; Basu et al. 2018). Our
work departs from these two lines of research in that the side
information corresponds to the intrinsic ordering of spatial
data. The spatial ordering, which encodes useful patterns such
as local clusters and smoothness of the underlying process, is
different from conventional auxiliary variables that are either
quantitative or qualitative. For example, in the context of infer-
ence with side information, the qualitative and quantitative
auxiliary variables are often used to create groups to reflect
the inhomogeneity among the hypotheses (Efron 2008; Ferk-
ingstad et al. 2008; Cai and Sun 2009). The works on multiple
testing with groups show that weighted p-values methods can
be developed to improve the power of BH (Hu, Zhao, and
Zhou 2010; Liu, Sarkar, and Zhao 2016; Barber and Ramdas
2017; Xia, Cai, and Sun 2020). However, the grouping strategy
is not suitable for spatial analysis because dividing a region
into informative groups requires either good prior knowledge
or intensive computation, which becomes infeasible in many
scenarios, in particular when hypotheses are located on a two
or three dimensional lattice. Moreover, as pointed out by Cai,
Sun, and Wang (2019), grouping corresponds to discretizing a
continuous variable, which often leads to substantial informa-
tion loss. By contrast, LAWS directly incorporates the spatial
structure into the weights and eliminates the need to define
groups.

FDR control via LAWS offers a unified, principled and
objective way for exploiting important spatial structures. It
has several advantages over recent works on multiple testing
with side information such as AdaPT (Lei and Fithian 2018),
SABHA (Li and Barber 2019), and STAR (Lei, Ramdas, and
Fithian 2017). First, LAWS provides a general framework that
is capable of handling a broad range of spatial settings. Con-
cretely, SABHA only develops weights for grouped structure and
ordered structure along a one-dimensional direction, whereas
STAR only works when signals form contiguous clusters with
convexity or other shape constraints. By contrast, LAWS is
applicable to two or three-dimensional settings, and makes
no assumption on the contiguity or convexity of the signal
process as required by STAR. Second, LAWS is motivated by
the optimality theory in Cai, Sun, and Wang (2019) and built
upon solid theoretical foundations. We prove that the oracle
LAWS method uniformly dominates BH in ranking and propose
data-driven methods that asymptotically emulate the oracle.
We present both intuitions and numerical results to demon-
strate that the weights in LAWS are in general superior to the
weights in SABHA. Finally, in contrast with AdaPT, SABHA
and STAR whose performances heavily depend on the qual-
ity of prior information or human interactions, LAWS is fully
data-driven and provides an objective and principled approach
to incorporate side information. This feature is attractive in
many scenarios where investigators do not have much flexi-
bility to control the study design or decision-making process.
Finally, we develop new theories to prove that LAWS con-
trols the FDR asymptotically under dependence. The theory
only requires mild conditions that seem to be substantially
weaker than existing results on spatial FDR analysis in the
literature.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

1.5. Organization

The article is organized as follows. Section 2 introduces the
model and problem formulation. Section 3 develops structure-
adaptive weights and illustrates its superiority in ranking. In
Section 4, we propose the LAWS procedure for spatial multiple
testing and study its theoretical properties. Simulation is con-
ducted in Section 5 to investigate the finite sample performance
of LAWS and compare it with existing methods. The merits of
LAWS are further illustrated in Section 6 through applications to
analyzing two-dimensional and three-dimensional images. The
proofs are provided in the Appendix.

2. Model and Problem Formulation

Let S ⊂ Rd denote a d-dimensional spatial domain and s a
location. We focus on a setting where hypotheses are located on
a finite, regular lattice S ⊂ S and data are observed at every
location s ∈ S. We consider the infill-asymptotics framework
(Stein 2012) and assume S → S in our theoretical analysis. The
setup is suitable for analyzing, say, high-frequency linear net-
work data and fine resolution images from satellite monitoring
and neuroimaging1.

Let θ(s) be a binary variable, with θ(s) = 1 and θ(s) = 0,
respectively, indicating the presence and absence of a signal of
interest at location s. The identification of spatial signals can be
formulated as a multiple testing problem:

H0(s) : θ(s) = 0 versus H1(s) : θ(s) = 1, s ∈ S. (1)

Let {T(s) : s ∈ S} be the summary statistic at location s. The
common practice in multiple testing is to first convert T(s) to
a p-value p(s) and then choose a threshold that corrects for
multiplicity. The conditional cumulative distribution functions
(CDF) of the p-values are given by

P
{

p(s) ≤ t|θ(s)
} = {1 − θ(s)}t + θ(s)G1(t|s), (2)

where t ∈ [0, 1] and G1(t|s) is the nonnull p-value CDF at s. The
corresponding nonnull density is denoted by g1(t|s). Define the
sparsity level at location s

π(s) = P {θ(s) = 1} . (3)

Due to the existence of spatial correlations and external covari-
ates, signals may appear more frequently in certain regions,
and the magnitude of nonnull effects may also fluctuate across
locations. Consequently, we allow π(s) and G1(t|s) to vary
across the spatial domain to capture important local patterns.
A mild condition in our methodological development, charac-
terized precisely in Section 4, is that π(s) varies smoothly as a
continuous function of s. The smoothness in the sparsity levels
provides the key structural information, which can be exploited
to integrate information from nearby locations and construct
more efficient spatial multiple testing procedures.

We focus on point-wise analysis where testing units are
individual locations. The decision at location s is represented

1In other applications such as climate change analysis, one observes incom-
plete data points at irregular locations (e.g., weather monitoring stations)
but needs to make inference at every point in the whole spatial domain.
This setting goes beyond the scope of our work; see Sun et al. (2015) for
related discussions.

by a binary variable δ(s), where δ(s) = 1 if H0(s) is rejected
and δ(s) = 0 otherwise. The widely used FDR (Benjamini and
Hochberg 1995) is defined as

FDR = E

{∑
s∈S{1 − θ(s)}δ(s)

max{∑s∈S δ(s), 1}
}

. (4)

The power of an FDR procedure δδδ = {δ(s) : s ∈ S} can be
evaluated using the expected number of true positives:

ETP(δδδ) ≡ �(δδδ) = E

{∑
s∈S

θ(s)δ(s)

}
. (5)

It is important to note that although we only consider point-
wise tests, the proposed LAWS procedure provides a particularly
effective tool for revealing underlying spatial clusters. Hence, it
may be employed in the preliminary stage of a cluster-wise infer-
ence where spatial clusters need to be specified by investigators
based on point-wise testing. Moreover, in contrast with existing
methods which assume known spatial clusters, LAWS provides
a fully data-driven approach to incorporate local structures and
does not suffer from possible misspecifications of the underlying
model.

3. Structure-Adaptive Weighting and Its Properties

This section describes a weighted p-value approach to spatial
FDR analysis. The key idea is to construct weights by exploiting
the local sparsity structure in a spatial domain. A multiple
testing procedure involves two steps: ranking and thresholding.
It can be represented by a thresholding rule of the form δ(s, t) =
I{T(s) ≤ t}, where T(s) is the test statistic to order/rank the
hypotheses and t is a threshold for adjusting multiplicity. In
Section 3.1, we study how to improve the ranking by exploiting
the spatial pattern and constructing structure-adaptive weights
to adjust the p-values. Further intuition and connections to
existing work are discussed in Section 3.2. In Section 3.3, we
address the threshold issue and illustrate the superiority of
the proposed weighting strategy. Throughout this section, we
assume that the local sparsity level π(s) is known. The setting
with unknown sparsity structure is considered in Section 4.

3.1. Incorporating Sparsity Structure by Adjusting the
p-Values

To motivate our weighting strategy, consider the follow-
ing covariate-adjusted mixture model under the independence
assumption

X(s) ind∼ f (x|s) = {(1 − π(s)}f0(x|s) + π(s)f1(x|s), (6)

where the covariate s encodes useful side information, f0(x|s)
and f1(x|s) are the null and nonnull densities, π(s) is the sparsity
level and f (x|s) is the mixture density. Ignoring the inhomo-
geneity captured by the covariate s, Model (6) reduces to the
widely used random mixture model (Efron et al. 2001; Newton
et al. 2004; Sun and Cai 2007)

X(s) iid∼ f (x) = (1 − π)f0(x) + π f1(x). (7)
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Define the conditional (or covariate-adjusted) local FDR

CLfdr(x|s) = P {θ(s) = 0|x, s} = {(1 − π(s)}f0(x|s)
f (x|s) . (8)

It follows from the optimality theory in Cai, Sun, and Wang
(2019, sec. 4.1) that under Model (6), the CLfdr thresholding
rule is optimal in the sense that it maximizes the ETP subject to
the constraint on FDR.

However, CLfdr cannot handle dependent tests. Under the
spatial setting, we aim to develop weighted p-values to approxi-
mate the optimal ranking by CLfdr. Let

�(x|s) = 1 − π(s)
π(s)

· f0(x|s)
f1(x|s) . (9)

Then CLfdr = �/(� + 1) is monotone in �. The inspection
of (9) reveals that whether θ(s) = 1 should be decided based
on two factors: (a) the information of the sparsity structure that
reflects how frequently signals appear in the neighborhood, that
is, 1−π(s)

π(s) ; (b) the information exhibited by the data itself that
indicates the strength of evidence against the null, that is, f0(x|s)

f1(x|s) .

The term f0(x|s)
f1(x|s) is extremely difficult to model and calculate,

we propose to replace it by the p-value, which also captures
the evidence against the null in the data. Combining the above
concerns, we define the weighted p-values:

pw(s) = min
{

1 − π(s)
π(s)

p(s), 1
}

= min
{

p(s)
w(s)

, 1
}

, s ∈ S,

(10)
where w(s) = π(s)

1−π(s) . Similar to (9), the weighted p-values (10)
combines the structural information in the neighborhood and
evidence of the signal at a specific location s.

3.2. Intuitions and Connections to Existing Weighting
Methods

Weighting is a widely used strategy for incorporating side infor-
mation into FDR analyses (Benjamini and Hochberg 1997; Gen-
ovese, Roeder, and Wasserman 2006; Roquain and Van De Wiel
2009; Basu et al. 2018). Unlike other methods where the side
information is acquired externally through domain knowledge
or prior data, our inference aims to use the spatial informa-
tion, which encodes the intrinsic structure of the collected data.
The spatial structure is effectively incorporated into inference
via w(s) = π(s)

1−π(s) . The key structural assumption, which
is suitable for a wide range of applications, is that the local
sparsity level π(s) varies smoothly in s. Our proposed LAWS
procedure employs a kernel screening method to estimate π(s)
by pooling information from points close to s. It effectively takes
into account important local patterns such as spatial clusters in
a data-adaptive fashion. For example, suppose there are many
signals in the neighborhood of s, then LAWS tends to produce a
large estimate of π(s), thereby up-weighting the p-values in the
neighborhood.

The SABHA algorithm by Li and Barber (2019) adopts a
different set of weights w′(s) = 1

1−π(s) . Under Model (7),
SABHA reduces to the methods in Benjamini and Hochberg
(2000), Genovese and Wasserman (2002), and Storey (2002),

who suggested applying BH procedure to adjusted p-values
(1 − π)p(s). These works showed that exploiting the global
sparsity structure π can improve the power of BH by raising the
FDR from (1−π)α to the nominal level α. The ideas in SABHA
and LAWS further illustrate that exploiting the local patterns
can improve the efficiency even more dramatically; the idea is
formalized in our theoretical analysis in Section 3.3. Compared
to the SABHA weight w′(s) = 1

1−π(s) , our weight w(s) = π(s)
1−π(s)

can separate clustered nonnull p-values more effectively; this is
intuitively justified by the connection to the optimality theory
(8) and confirmed by our simulation studies. Moreover, the
motivation, interpretation and estimation of our weighted p-
values are all fundamentally different from the weights in Hu,
Zhao, and Zhou (2010) and Xia, Cai, and Sun (2020), which are
developed under the group setting.

Finally, we stress that w(s) only captures the sparsity struc-
ture, and the amplitude and variance structures of the underly-
ing spatial process, which is subsumed in the ratio f0(x|s)

f1(x|s) , has
been intentionally discarded when constructing our weights.
This leads to a much simpler and theoretically sound methodol-
ogy. It remains an open question regarding the information loss
when suppressing other structural information in the proposed
weights. The heterogeneity issue and the derivation of optimal
weighting functions are highly nontrivial (Peña, Habiger, and
Wu 2011; Ignatiadis et al. 2016; Habiger 2017; Habiger, Watts,
and Anderson 2017). Note that existing methods are already
very complicated for the independent tests and it would require
substantial efforts to extend these methods to the spatial setting.

3.3. A Theoretical Analysis of Ranking

This section demonstrates the benefit of weighting. Let δδδv(t) =
{δv(s, t) : s ∈ S} denote a class of testing rules where δv(s, t) =
I{pv(s) ≤ t}, and pv(s) = min

{
p(s)
v(s) , 1

}
with v(s) being the

prespecified weight. Consider the covariate-adjusted p-value
mixture model (2). It is shown in Proposition 2 of Appendix C
that, under mild conditions, the FDR of δδδv(t) can be written as

FDR{δδδv(t)} = Qv(t) + o(1) (11)

=
∑

s∈S{1 − π(s)}v(s)t∑
s∈S{1 − π(s)}v(s)t + ∑

s∈S π(s)G1{v(s)t|s}
+ o(1).

The power of δδδv(t) is evaluated using the ETP

�{δδδv(t)} =
∑
s∈S

π(s)G1{v(s)t|s}.

To focus on the main idea, we derive the oracle FDR proce-
dure under an asymptotic setting, which uses the leading term
Qv(t) in (11) to approximate the actual FDR. Define the oracle
threshold tv

OR = sup{t : Qv(t) ≤ α}. Then the oracle procedure
is

δδδv
OR ≡ δδδv(tv

OR) = [I{pv(s) ≤ tv
OR} : s ∈ S].

Next we demonstrate that the weighted p-values pw(s)
defined in (10) produces better ranking than the unweighted p-
values. Our basic strategy is to show that at the same FDR level,
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thresholding (oracle) weighted p-value always yields larger ETP
than unweighted p-values. Consider two sets of weights {v(s) =
1 : s ∈ S} and {v(s) = w(s) : s ∈ S}. The asymptotic FDR
and ETP of δδδ1(t) and δδδw(t) are denoted by Q1(t), Qw(t), �1(t)
and �w(t). The corresponding oracle procedures are defined as
δδδ1

OR ≡ δδδ1(t1
OR) and δδδw

OR ≡ δδδw(tw
OR). The next theorem shows

that δδδw
OR uniformly dominates δδδ1

OR.

Theorem 1. Assume that
∑

s∈S π(s)∑
s∈S{1−π(s)} ≤ 1. For each s ∈ S, if

the function t → G1(t|s) is concave and the function x →
G1(t/x|s) is convex for mins∈S w−1(s) ≤ x ≤ maxs∈S w−1(s),
then we have

(a) Qw(t1
OR) ≤ Q1(t1

OR) ≤ α;
(b) �w(tw

OR) ≥ �w(t1
OR) ≥ �1(t1

OR).

Condition
∑

s∈S π(s)∑
s∈S{1−π(s)} ≤ 1 in Theorem 1 is mild. It only

requires that the expected number of alternative hypotheses is
smaller than or equal to the expected number of null hypothe-
ses. The condition corresponds to the notion of sparsity that
holds trivially in most practical situations. By Theorem 1, we
conclude that the superiority of δδδw

OR over δδδ1
OR is due to the

improved ranking via weighted p-values since with the same
threshold t1

OR, we simultaneously have Qw(t1
OR) ≤ Q1(t1

OR) and
�w(t1

OR) ≥ �1(t1
OR).

4. Spatial Multiple Testing by LAWS

This section discusses a LAWS approach to spatial multiple test-
ing. To emulate the oracle procedure δδδw

OR, we need to estimate
two unknown quantities: the sparsity level π(s) and threshold
tw
OR. We first develop a nonparametric screening approach for

estimating π(s) in Section 4.1, then propose a data-driven pro-
cedure to approximate tw

OR in Section 4.2, and finally establish
the theoretical properties of LAWS in Section 4.3.

4.1. Sparsity Estimation via Screening

The direct estimation of π(s) is very difficult. We instead intro-
duce an intermediate quantity to approximate π(s):

πτ (s) = 1 − P
{

p(s) > τ
}

1 − τ
, 0 < τ < 1. (12)

We first present some intuitions to explain why πτ (s) provides a
good approximation to π(s), then describe a screening approach
to estimate πτ (s) and finally establish the theoretical properties
of the proposed estimator.

The relative bias of the approximation can be calculated as
πτ (s) − π(s)

π(s)
= −1 − G1(τ |s)

1 − τ
.

This result has two implications. First, the bias is always nega-
tive, which desirably leads to conservative FDR control as we
show in Theorem 2. Second, as τ becomes larger, we expect
that the null p-values will become increasingly dominant in the
right tail area [τ , 1) compared to the nonnull p-values, making
the ratio 1−G1(τ |s)

1−τ
very small. Hence, πτ (s) provides a good

approximation to π(s) with a suitably chosen τ .

We now describe two key steps in estimating πτ (s): smooth-
ing and screening. In the smoothing step, we exploit the struc-
tural assumption that π(s) [thus πτ (s)] varies as a smooth func-
tion of spatial location s. In reality, we only have one observation
at location s. To pool information from nearby locations, we use
a kernel function to assign weights to observations according to
their distances to s. Specifically, for any given grid S on S ⊂ R

d,
let K : R

d → R be a positive, bounded and symmetric kernel
function satisfying∫

Rd
K(t)dt = 1,

∫
Rd

tK(t)dt = 0,
∫
Rd

tTtK(t)dt < ∞.

Denote by Kh(t) = h−1K(t/h), where h is the bandwidth. At
location s, define

vh(s, s′) = Kh(s − s′)
Kh(0)

, (13)

for all s′ ∈ S. Under the spatial setting, Kh(s − s′) is computed
as a function of the Euclidean distance ‖s − s′‖ and h > 0
is a scalar. Now consider the quantity ms = ∑

s′∈S vh(s, s′).
We can conceptualize ms as the “total mass” (or “total number
of observations”) at location s. This is a key quantity in our
methodological development. Thus, the smoothing step utilizes
the spatial structure to calculate ms by borrowing strength from
points close to s while placing little weight on points far apart
from s.

Next we explain the screening step. Motivated by (12), we
first apply a screening procedure with threshold τ to obtain a
subset T (τ ) = {s ∈ S : p(s) > τ }. Suppose we are interested
in counting how many p-values from the null are greater than
τ among the ms “observations” at s. The empirical count, which
assumes that the majority cases in T (τ ) come from the null, is
given by ∑

s′∈Tτ
vh(s, s′). (14)

By contrast, the expected count can be calculated theoretically as

{∑s′∈S vh(s, s′)}{1 − πτ (s)}(1 − τ). (15)

Setting Equations (14) and (15) equal, we obtain the following
estimate

π̂ τ (s) = 1 −
∑

s′∈Tτ
vh(s, s′)

(1 − τ)
∑

s′∈S vh(s, s′)
. (16)

Next we justify the estimator (16) by showing that π̂ τ (s)
converges to πτ (s) for every s ∈ S as S → S by appealing to
the infill-asymptotics framework (Stein 2012), where the grid
S becomes denser and denser in a fixed and finite domain
S ∈ R

d. For each s ∈ S, let λmin(s) and λmax(s), respectively,
be the smallest and largest eigenvalues of the Hessian matrix
P

(2)(p(s) > τ) ∈ R
d×d. We introduce the following technical

assumptions.

(A1) Assume that πτ (·) has continuous first and second partial
derivatives and there exists a constant C > 0 that −C ≤
λmin(s) ≤ λmax(s) ≤ C uniformly for all s ∈ S.

(A2) Assume that var(
∑

s∈S I{p(s) > τ }) ≤
C′ ∑

s∈S var(I{p(s) > τ }) for some constant C′ > 1.
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Proposition 1. Under (A1) and (A2), if h � |S|−1, we have,
uniformly for all s ∈ S,

E{π̂ τ (s) − πτ (s)}2 → 0, as S → S .

Remark 1. Assumption (A1) is a mild regularity condition on
the alternative CDF G1(τ |s). (A2) assumes that most of the p-
values are weakly correlated and it can be further relaxed with a
larger choice of the bandwidth. For example, with the common
choice of h ∼ |S|−1/5, by the proof of Proposition 1, we can relax
(A2) to “var(

∑
s∈S I{p(s) > τ }) ≤ C′|S|c ∑

s∈S var(I{p(s) >

τ }) for some constant c < 4/5,” which allows the p-values to be
highly correlated.

4.2. Data-Driven Procedure

This section describes the proposed LAWS procedure for FDR
control. Define the locally adaptive weights

ŵ(s) = π̂(s)
1 − π̂(s)

, s ∈ S, (17)

where π̂(s) is estimated by the screening approach (16) (the
tuning parameter τ has been suppressed in the expression). To
increase the stability of the algorithm, we take π̂(s) = (1 − ν) if
π̂(s) > 1−ν and take π̂(s) = ν if π̂(s) < ν with ν = 10−5. Next
we order the weighted p-values from the smallest to largest. If
π(s) is known and the threshold is given by tw, then the expected
number of false positives (EFP) can be calculated as

EFP=
∑
s∈S

P
{

pw(s) ≤ tw|θ(s) = 0
}
P {θ(s) = 0}=

∑
s∈S

π(s)tw.

(18)
It follows that if j hypotheses are rejected along the ranking,
then we expect that

∑
s∈S π̂(s)pŵ

(j) rejections are likely to be
false positives. It follows that j−1 ∑

s∈S π̂(s)pŵ
(j) provides a good

estimate of the false discovery proportion (FDP). The following
step-wise algorithm selects a threshold to maximize the number
of rejections subject to the FDP constraint.

Algorithm 1 The LAWS procedure
1: Order the weighted p-values from the smallest to largest

pŵ
(1), . . . , pŵ

(m) and denote corresponding null hypotheses
H(1), . . . , H(m).

2: Let kŵ = max
{

j : j−1 ∑
s∈S π̂(s)pŵ

(j) ≤ α
}

.
3: Reject H(1), . . . , H(kŵ).

Consider the special case where π̂(s) = π̂ for all s ∈ S. Then
LAWS coincides with the SABHA (Li and Barber 2019), and
both recover the methods in Benjamini and Hochberg (2000),
Storey (2002), and Genovese and Wasserman (2002), which
are essentially equivalent to applying the BH algorithm to the
adjusted p-values (1 − π̂)p(s). However, the ranking by LAWS
is substantially different from SABHA when π(s) are heteroge-
neous. Our simulations show that LAWS is more powerful than
SABHA and the power gain can be substantial in many settings.
Moreover, SABHA does not provide a systematic way to estimate
π(s). It also requires preordering or grouping of the hypotheses,
which is not suitable for handling higher-dimensional spatial
settings.

4.3. Theoretical Properties

This section studies the theoretical properties of the LAWS
procedure. Define the z-values by z(s) = �−1(1 − p(s)/2), for
s ∈ S, and let m = |S|. Arrange {s ∈ S} in any prespecified
order {s1, . . . , sm}2 and denote the corresponding z-values Z =
(z1, . . . , zm)T. We collect below several regularity conditions for
the asymptotic error rates control. In spatial data analysis with
a latent process {θ(s) : s ∈ S}, the dependence among p-values
may come from two possible sources: the correlations among p-
values when θ(s) are given and the correlations among θ(s). Our
conditions on these two types of correlations are, respectively,
specified in (A3) and (A4).

(A3) Define (ri,j)m×m = R = corr(Z). Assume
max1≤i<j≤m |ri,j| ≤ r < 1 for some constant
r > 0. Moreover, there exists γ > 0 such that
max{i:θ(si)=0} |
i(γ )| = o(mκ) for some constant 0 < κ <
1−r
1+r , where 
i(γ ) = {j : 1 ≤ j ≤ m, |ri,j| ≥ (log m)−2−γ }.

(A4) Under Model (3), there exists a sufficiently small con-
stant ξ > 0, such that πτ (s) ∈ [ξ , 1 − ξ ], and that
Var

[∑
s∈S I{θ(s) = 0}] = O(m1+ζ ) for some constant

0 ≤ ζ < 1.
(A5) Define Sρ = {

i : 1 ≤ i ≤ m, |μi| ≥ (log m)(1+ρ)/2} ,
where μi = E(zi). For some ρ > 0 and some δ > 0,
|Sρ | ≥ [1/(π1/2α) + δ](log m)1/2, where π ≈ 3.14 is a
math constant.

Remark 2. Condition (A3) assumes that most of the null p-
values [i.e., given that θ(s) = 0] are weakly correlated. The
condition can be fulfilled by a wide class of correlation structures
because (i) it still allows each p-value to be highly correlated
with polynomially growing number of other p-values under the
null and (ii) we do not impose any conditions on the correlation
structures of the p-values under the alternative. Condition (A4)
only assumes that the latent variables {θ(s) : s ∈ S} are
not perfectly correlated. It allows highly correlated θ(s) so is
a rather weak condition. In the case where θ(s) are mutually
independent, (A4) is satisfied trivially with ζ = 0. Condition
(A5) is mild, as it only requires that there exist a few spatial
locations with mean effects of z-values exceeding (log m)(1+ρ)/2

for some ρ > 0.

Our theoretical analysis is divided into two steps. We first
consider the setup where π(s) is known (Theorem 2) and then
turn to the case where π(s) must be estimated (Theorem 3).
Define the FDP of a decision rule δv(t) by

FDP{δv(t)} =
∑

s∈S{1 − θ(s)}δv(s, t)
max{∑s∈S δv(s, t), 1} .

We first take v(s) as w(s) = πτ (s)
1−πτ (s) with known πτ (s).

Then similar to Algorithm 1, we order the weighted p-values
from the smallest to largest pw

(1), . . . , pw
(m), and calculate kw =

max
{

j : j−1 ∑
s∈S πτ (s)pw

(j) ≤ α
}

. The corresponding decision

2The actual order would not affect the methodology or theory as the weights
are fully determined by the spatial structure. We only need an ordering for
characterizing the dependence structure between all pairs of p-values.
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rule, denoted δw ≡ δw
{

pw
(kw)

}
, is to reject H0(s) with pw(s) ≤

pw
(kw)

.
Let H0 be the set of null hypotheses and H1 be the set of

alternatives. Without loss of generality, we assume that m0 =
|H0| ≥ cm for some c > 0. (Otherwise we could simply reject
all the hypotheses, and the FDR would tend to zero.) The next
theorem shows that δw controls both the FDP and FDR at the
nominal level asymptotically under dependency.

Theorem 2. Under Conditions (A3)–(A5), we have for any
ε > 0

lim sup
m→∞

FDR(δw) ≤ α, and lim
m→∞P

{
FDP(δw) ≤ α + ε

} = 1.

Remark 3. The decision rule δw is defined based on the weight
w(s) = πτ (s)

1−πτ (s) , where πτ (s) is a conservative approximation of
π(s) as explained in Section 4.1. Theorem 2 shows that the use
of πτ (s) instead of π(s) leads to conservative error rates control.

The next theorem establishes the theoretical properties of
the data-driven LAWS procedure (Algorithm 1, with decision
rule denoted by δŵ ≡ δŵ

{
pŵ
(kŵ)

}
), which utilizes the estimated

weights via (16).

Theorem 3. Under the conditions in Proposition 1 and Theo-
rem 2, we have for any ε > 0

lim sup
S→S

FDR(δŵ) ≤ α, and lim
S→S

P(FDP(δŵ) ≤ α + ε) = 1.

5. Simulation

This section conducts simulation studies to compare the pro-
posed LAWS procedure with several competing methods. The
implementation details are first described in Section 5.1. Sec-
tions 5.2 and 5.3, respectively, consider linear block and triangle
block patterns. The applications to higher dimensional settings

(two-dimensional and three-dimensional) for identifying more
complicated spatial patterns are illustrated in Section 6.

5.1. Estimating the Conditional Proportions

The proposed estimator (16) captures the sparsity structure
and plays a key role in constructing the weights. This section
first discusses its implementation and illustrates its effectiveness.
To create the screening subset T , we choose τ as the p-value
threshold of the BH procedure at α = 0.9. This ensures that the
null cases are dominant inT . See Appendix B for a more detailed
discussion on the bias-variance tradeoff when calibrating τ . The
bandwidth h is set using the “h.cvv” option in the R package
kedd.

Next we investigate the performance of π̂ using simulated
data. We generate m = 5000 hypotheses from the following
normal mixture model:

Xi|θi
ind∼ (1 − θi)N(0, 1) + θiN(μ, 1), θi ∼ Bernoulli(πi).

(19)
We consider two setups under which the signals appear
with elevated frequencies in the following blocks [1001, 1200],
[2001, 2200], [3001, 3200], [4001, 4200]. The patterns of π(s),
which are piecewise constants and triangle blocks, are shown
in the top and bottom rows in Figure 1 (solid red lines), respec-
tively. We can see that the varying sparsity structure of the spatial
data can be reasonably captured by the estimated π̂(s) (dashed
blue lines). As predicted by theory, our estimated π̂(s) tend
to be smaller than true π(s) within the blocks where signals
are observed with elevated frequencies. The underestimation of
π(s) leads to conservative FDR levels. This is confirmed by the
simulation in the next section.

5.2. The Block-Wise One-Dimensional Setting With
Piece-Wise Constants

This section compares LAWS with competitive methods. Sim-
ilar to the previous section, we generate data from (19) under

Figure 1. True πs (solid lines) versus estimated π̂s (dashed lines). Top row: Piecewise constants; bottom row: triangle blocks.
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Figure 2. FDR and power comparisons: the linear block pattern.

the setup where π(s) is a piecewise constant function (top row
of Figure 1). The following methods are applied to the simulated
data:

• Benjamini–Hochberg procedure (BH);
• SABHA with known π(s) (SABHA.OR);
• data-driven SABHA with estimated π̂(s) (SABHA.DD);
• LAWS with known π(s) (LAWS.OR); and
• data-driven LAWS with estimated π̂(s) (LAWS.DD).

We stress that our proposed estimator (16) has been used
to implement SABHA. The SABHA article does not provide
an estimator of π(s) with proven theoretical properties. The
inclusion of SABHA is to illustrate the superiority of the
LAWS weight w(s) = π(s)/{1 − π(s)} over the SABHA
weight 1/{1 − π(s)}. The FDR and average power [defined
as E{∑s∈S θ(s)δ(s)/

∑
s∈S θ(s)}] of different methods are com-

puted by averaging over 200 replications, and the nominal level
is chosen at α = 0.05. The simulation results are summarized
in Figure 2.

In the top row, the signals appear with elevated frequencies
in the following blocks:

π(s) = 0.9 for s ∈ [1001, 1200] ∪ [2001, 2200];
π(s) = 0.6 for s ∈ [3001, 3200] ∪ [4001, 4200].

For rest of the locations, we have π(s) = 0.01. We vary μ

from 2 to 4 to investigate the impact of the signal strength. In
the bottom row, we fix μ = 2.5. We let π(s) = π0 in the
above specified blocks and π(s) = 0.01 elsewhere. Then π0
is varied from 0.3 to 0.9 to investigate the impact of sparsity
structure.

We can see from Figure 2 that all methods control the FDR at
the nominal level, with LAWS.DD being conservative due to the
underestimation of π(s) in the linear blocks (see also Figure 1).
LAWS.OR substantially outperforms SABHA.OR, showing the
superiority of the LAWS weight. Similarly, LAWS.DD outper-
forms SABHA.DD. Both LAWS and SABHA, which exploit
the varying sparsity structure, outperform BH. This illustrates
the benefits of incorporating side information into inference.
Finally, we can see that the efficiency gain of LAWS over com-
peting methods is more pronounced when the signals are rel-
atively weak (top row of Figure 2). This shows the advantage
of LAWS, which integrates information from nearby locations
via the weighted kernel. Moreover, the power improvement by
LAWS is greater when the signals are more concentrated in the
designated blocks (bottom row of Figure 2). This is consistent
with our intuition since larger π0 indicates greater disparity
among spatial locations (and hence more informative spatial
structure).

5.3. The Block-Wise One-Dimensional Setting With
Triangular Patterns

We generate data from (19) under the setup where π(s) follows
a triangular block pattern; see the bottom row of Figure 1 for an
illustration. We apply BH, SABHA.OR, SABHA.DD, LAWS.OR,
and LAWS.DD to the simulated data and summarize the results
in Figure 3. Similar as before, in the top and bottom rows we,
respectively, vary the signal strength and sparsity levels. We can
see that the power of BH is improved by SABHA, which is fur-
ther improved by LAWS. The proposed method is in particular
useful when the signals are weak and the structural information
is strong in the spatial data.
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Figure 3. FDR and power comparisons: the triangular block pattern.

Figure 4. Two-dimensional triangle and rectangle pattern.

5.4. Simulation in Two-Dimensional Setting

This section presents simulation results in the two-dimensional
setting. We did not compare with SABHA and STAR because
(i) the original SABHA algorithm cannot be implemented since
it is unclear how to order the hypotheses as a fixed sequence
or divide them into groups; (ii) the STAR algorithm does not
work in one of our settings where the underlying shape is not
a convex region. Instead, we compare with the FDR smooth-
ing method proposed in Tansey et al. (2018) (“Tansey” in
short) for exploiting spatial structure in large multiple-testing
problems.

We generate the data by Model (19) on a 200 × 200 lattice,
where the signals are more likely to be located on a double-
triangle or a rectangle shape as shown in Figure 4. We let π(s) =
0.9 for the left triangle and left half of the rectangle, respectively,
π(s) = 0.6 for the right triangle and right half of the rectangle

and let π(s) = 0.01 for the rest of the locations. Similarly as
in the one-dimensional setting, we first vary μ from 2.5 to 4 to
investigate the impact of the signal strength. We then fix μ = 3,
let π(s) = π0 in the triangle and rectangle patterns, π(s) = 0.01
for the rest, and vary π0 from 0.6 to 0.9 to illustrate the impact of
sparsity structure. The empirical FDR and power are computed
over 200 replications with nominal level α = 0.05.

We can see from Figures 5 and 6 that, all methods except
Tansey controls the empirical FDR well and LAWS.DD is slightly
more conservative than LAWS.OR due to the negative bias of
πτ as explained in Section 4.1. By successfully incorporating
the spatial information, the empirical power of BH has been
significantly improved by LAWS.OR and LAWS.DD for varying
signal strengths and sparsity levels. The improvement is more
significant when the signals are weaker or the sparse structure
is more informative. Note that, due to the seriously inflated
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Figure 5. FDR and power comparisons: the two-dimensional triangle pattern.

Figure 6. FDR and power comparisons: the two-dimensional rectangle pattern.

empirical FDRs, Tansey has higher empirical power than the
competing methods.

5.5. Simulation in Three-Dimensional Setting

We compare in this section the numerical performance of
LAWS.DD and LAWS.OR with Tansey and the BH method in

three-dimensional spatial settings. The data are generated by
Model (19) on a three-dimensional 20×25×30 lattice, where the
signals are located on a cubic with dimension 10 × 10 × 15. We
let π(s) = 0.8 within the cubic and let π(s) = 0.01 for the rest of
the locations. To show the impact of the signal strength and the
impact of sparsity structure, we vary μ and π(s) (fix μ = 3.5 for
the latter) in the same way as the two-dimensional settings. The
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Figure 7. FDR and power comparisons: the three-dimensional cubic pattern.

empirical FDR and power are computed over 200 replications
with nominal level α = 0.05.

We see from Figure 7 that, similarly as one-dimensional and
two-dimensional settings, all methods except Tansey control
the FDR and LAWS.DD is slightly more conservative than
LAWS.OR; the empirical power of BH is significantly improved
by LAWS.OR and LAWS.DD for different signal strengths and
sparsity levels.

6. Applications

This section applies LAWS to identify two-dimensional spatial
clusters (Section 6.1) and signal patterns in three-dimensional
image data (Section 6.2). LAWS has several advantages over
existing structure-adaptive testing methods. For example,
SABHA requires that the hypotheses can be divided into groups
or should be ordered as a fixed sequence, which are not
always feasible in two-dimensional and three-dimensional spa-
tial applications. By contrast, LAWS constructs weights based on
the distance between spatial locations (13) and can easily handle
higher dimensional spatial settings. Unlike the STAR procedure
(Lei, Ramdas, and Fithian 2017) which requires that the spatial
region must be contiguous and convex, LAWS is applicable to
a wider types of settings where the local sparsity patterns are
heterogeneous. We present two examples to show that LAWS
is more accurate and effective in identifying and recovering
specific patterns of interest in analysis of two-dimensional and
three-dimensional image data.

6.1. The Two-Dimensional Setting With Spatial Clusters

We simulate data on a 200 × 200 lattice. The signals of interest
form two spatial clusters, respectively, with donut and square

shapes. The observations follow the random mixture model
(19), where θ(s) = 1 if s is within the donut or square and
θ(s) = 0 otherwise. We first obtain π̂(s) using (16), where
‖s − s′‖ is calculated as the usual Euclidean distance. We then
obtain two-sided p-values and finally apply both BH and LAWS
to the simulated dataset. From the first to last row, we vary the
signal strength from 2.0 to 3.0. The true states, and the rejected
locations by BH and LAWS are, respectively, displayed from
Column 1 to Column 3.

We can see from Figure 8 that LAWS is more powerful than
BH in uncovering the underlying truth. Both spatial patterns,
namely the donut and square, can be more easily identified
based on the results of LAWS. The key idea is that π̂(s) tend
to be very large in the neighborhood of clustered signals (yel-
low areas) due to the strong spatial correlations. Therefore,
the p-values in these neighborhood are upweighted via data-
driven weights. We conclude that by exploiting the local sparsity
structures, LAWS is more effective in rejecting the hypotheses
in regions where signals appear in clusters. This property is in
particular attractive in spatial data analysis.

6.2. The Three-Dimensional Setting: Application to fMRI
Data

We further illustrate the LAWS procedure through a magnetic
resonance imaging (MRI) data for a study of attention deficit
hyperactivity disorder (ADHD). The dataset is available at
http://neurobureau.projects.nitrc.org/ADHD200/Data.html. The
images were produced by the ADHD-200 Sample Initiative, then
preprocessed by the Neuro Bureau.

We first reduce the resolution of MRI images from 256 ×
198 × 256 to 30 × 36 × 30 (Li and Zhang 2017) by aggregating

http://neurobureau.projects.nitrc.org/ADHD200/Data.html
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Figure 8. Spatial FDR analysis in two-dimensional setting. LAWS is more effective in revealing the donut and square shapes by up-weighting the p-values in the regions
where signal appear in clusters.

the corresponding pixels into blocks. This helps the analy-
sis in several ways. First, the aggregation of pixels not only
increases the signal-to-noise ratio but also effectively avoids
misalignments of brain regions. Second, the p-values, which
are calculated based on normal approximations, should satisfy
the required accuracy needed in the large p small n paradigm
(Fan, Hall, and Yao 2007; Liu and Shao 2010; Chernozhukov,
Chetverikov, and Kato 2017). The downsizing helps to increase
the precision of the approximations. Finally, the aggregation
can effectively eliminate noises and make it easier to visualize
interesting spatial patterns.

The dataset consists of 931 subjects, among whom 356 are
combined ADHD subjects and 575 are normal controls. We
conduct two-sample t-tests to compare the two groups and
use normal approximation to obtain the p-values. Finally, we

apply LAWS and BH procedures to identify brain regions that
exhibit significant differences between subjects with and with-
out ADHD.

Figure 9 displays the testing results from two different angles
of the three-dimensional image, with FDR level equal to 0.05.
The significant brain regions identified by BH are a subset of
those identified by LAWS. To be more specific, the LAWS pro-
cedure identifies 538 regions, while BH recovers 349. The graph
further shows that LAWS has superior power performance over
BH in identifying spatial signals.

7. Discussions

This article develops a new locally adaptive weighting approach
that incorporates the spatial structure into statistical inference.
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Figure 9. Significant brain regions (yellow) after applying LAWS (left) and BH (right), view with azimuth and elevation angles (−35, −65) on top row and (35, −80) on
bottom row. FDR level α = 0.05.

It provides a unified framework for a broad range of spatial
multiple testing problems and is fully data-driven. We show that
LAWS controls the FDR asymptotically under dependence and
outperforms existing methods in power.

LAWS is powerful yet simple. It is capable of adaptively learn-
ing the sparse structure of the underlying spatial process without
prior knowledge. The spatial locations are viewed as auxil-
iary variables for providing important structural information
to assist inference. However, as explained in Section 3.1 of the
article, there are two pieces of information that could potentially
be useful in spatial setting: the varying sparsity structure that
we have considered, and the varying distributional information
that we have replaced by individual p-values. Such replacement
may lead to certain information loss which requires further
investigation. The estimation of the distributional information
is challenging and computationally intensive. Substantial work
is needed to extend existing methods to the spatial setting; such
analysis is beyond the scope of the current article. The devel-
opment of more powerful weighting strategies to incorporate
other types of side information is an interesting and important
direction for future research.

Supplementary Materials

This supplement contains the proofs of the main results (Section A) and
some additional numerical and theoretical explanations (Sections B and C).
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