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Matrix Reordering for Noisy Disordered Matrices: Optimality and

Computationally Efficient Algorithms

T. Tony Cai and Rong Ma

Abstract

Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrix reorder-

ing based on a noisy disordered monotone Toeplitz matrix model. We establish the fundamental statistical limit for

this problem in a decision-theoretic framework and demonstrate that a constrained least squares estimator achieves

the optimal rate. However, due to its computational complexity, we analyze a popular polynomial-time algorithm,

spectral seriation, and show that it is suboptimal. To address this, we propose a novel polynomial-time adaptive

sorting algorithm with guaranteed performance improvement. Simulations and analyses of two real single-cell RNA

sequencing datasets demonstrate the superiority of our algorithm over existing methods.

I. INTRODUCTION

Consider the following noisy disordered matrix model

Y = ΠΘΠ> + Z, (I.1)

where Y,Θ,Z ∈ Rn×n are symmetric matrices, Y is observed, Z is the noise matrix with independent (up to

symmetry) sub-Gaussian entries with mean zero and variance σ2, Θ is a deterministic signal matrix with certain

structural patterns of interest, and Π ∈ Rn×n is an unknown permutation matrix that simultaneously permutes the

columns and rows of the signal matrix Θ. This paper investigates the noisy matrix reordering problem, where the

aim is to recover the underlying permutation Π (Figure 1) based on the observed noisy disordered matrix Y.

This matrix reordering problem, also known as the matrix seriation problem, has a long history in data analysis

and data mining [1, 2]. It is often encountered when there is structural information contained in the true signal

matrix Θ, while only the corresponding noisy and disordered matrix Y = ΠΘΠ>+Z is available. The importance

of such a statistical problem lies in many applications (Section I-A), where important features about the object

under investigation are embedded in the structural pattern of Θ, but are largely concealed from its noisy disordered
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Fig. 1. A graphical illustration of the matrix reordering problem. Left: a symmetric monotone Toeplitz matrix of dimension 100× 100 under
Setting 6 of Section VI. Right: the observed noisy disordered matrix with an arbitrary permutation and the Gaussian noise.

observations. For instance, when Θ is a symmetric monotone Toeplitz matrix (Figure 1 left), after an arbitrary

simultaneous permutation of its rows and columns, such a structural pattern is not easily discernible or recovered

from a noisy observation Y of the disordered matrix (Figure 1 right).

A. Reordering Monotone Toeplitz Matrices and Applications

The matrix reordering problem arises naturally in many applications [1, 2, 3]. The goal is to recover latent

regularity and structural patterns contained in the noisy disordered data. When viewed through the lens of model

(I.1), many of the applications involve reordering a noisy disordered matrix with some underlying monotone and

Toeplitz structure, that is,

Θ =



θ0 θ1 θ2 ... θn−1

θ1 θ0 θ1 ... θn−2

θ2 θ1 θ0 ... θn−3

...
. . .

θn−1 θn−2 θn−3 ... θ0


, (I.2)

where θ0 ≥ θ1 ≥ θ2 ≥ ... ≥ θn−1. The following are two specific examples.

Example 1 (Pseudotemporal ordering of single cells): Single-cell analysis promises to revolutionize the treatment

of common and rare diseases and provides insights into some of the most fundamental processes in biology. As an

important problem in single-cell biology, pseudotemporal cell ordering aims to determine the pattern of a dynamic

process experienced by cells and then arrange cells according to their progression through the process, based on

single-cell RNA sequencing data collected at multiple time points. This problem can be formulated as a noisy

matrix reordering problem (I.1), where the entries of Θ represent true cell-to-cell similarities of n cells in their

transcriptomic profiles. For studies involving cells undergoing a dynamic process such as differentiation, monotonic

patterns are often observed in the gene expression of the cells along the progression path [4, 5, 6]. In such cases,

the true similarity matrix Θ for the well-ordered cells can be modelled by a symmetric monotone Toeplitz matrix
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as in (I.2), and the goal is to recover the total order of the cells based on the noisy and disordered measurements Y

of cell-to-cell similarities. For example, [7] considered a power decaying Toeplitz matrix with parameters θi = αi

for some α ∈ (0, 1), i = 1, 2, ..., n− 1, to infer the underlying pseudotemporal ordering. See also Section VII for

more detailed discussion and the analyses of two real datasets.

Example 2 (Genome assembly): In metagenomics and bioinformatics, genome assembly refers to the process

of taking a large number of short DNA sequences and putting them back together in correct order to reconstruct

the original sequence. In particular, the task of assembling a draft genome from shotgun metagenomic sequencing

data can be treated as a noisy matrix reordering problem (I.1), where each entry of Θ characterizes the true

genome distance between a pair of contigs, or fragments of DNA sequence in the target genome. Specifically, for

a set of n ordered contigs on one arm of the circular chromosome, their true pairwise genome distance matrix

may be well approximated by a symmetric monotone Toeplitz matrix as in (I.2), and our goal is to recover the

original genome order of these contigs based on the noisy and disordered measurements Y of their pairwise genome

distances. Among existing works, [8] considered a graph-based model, which assumed a Hamiltonian path structure,

or tridiagonal Toeplitz distance matrix (defined below) for the n contigs on one arm; [9, 10] considered a linear

monotone model for the contigs on one arm, which implies a linear decaying Toeplitz matrix (defined below) for

the pairwise distance among these contigs.

The matrix reordering problem also has important applications in combinatorial exploratory data analysis and

data visualization [3, 2]. Specifically, for a given data matrix of interest, a proper reordering of its columns and

rows may bring forth a more informative representation with structural patterns directly accessible or even visible

to the analysts, thus providing critical guidance for downstream analysis [11, 12]. The importance of such a task

in data analysis may be partially reflected by the current availability of a large variety of matrix visualization tools

with an automatic matrix reordering option in standard statistical softwares, such as R. Among them, heatmap [13]

and corrplot [14] are probably the most commonly used tools.

Motivated by these interesting applications, this paper takes model (I.1) as a prototype underlying various

matrix reordering problems and focuses on reordering noisy symmetric matrices with latent monotone and Toeplitz

structures. In particular, we consider the simple noise structure with independent sub-Gaussian entries up to

symmetry. Throughout, for any matrix Θ admitting the expression (I.2), we call the entries corresponding to

the value θ0 the main diagonals of Θ, and the entries corresponding to the value θi for i ∈ {1, ..., n− 1} the i-th

principal diagonals of Θ.

In this paper, we consider the class of ridged monotone Toeplitz matrices defined by

Tn =

{
Θ ∈ Rn×n :

Θ admits the expression (I.2)

θ1 ≥ θ2 ≥ ... ≥ θn−1 ≥ 0, θ1 − θdn/2e ≥ θdn/2e − θn−1

}
. (I.3)
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Note that the above definition puts no restriction on the main diagonal entries θ0 – this is because for any Θ ∈ Tn, the

main diagonal entries of ΠΘΠ> are invariant to the permutation Π, and therefore does not contain any information

that helps for matrix reordering. The nonnegativity condition θi ≥ 0 and the direction of monotonicity are not

essential here (Section VIII). The "ridge" condition θ1 − θdn/2e ≥ θdn/2e − θn−1 ensures that the total amount of

variations in the first dn/2e principal diagonals is no less than the variations in the rest of the diagonals. Such a

characterization is required for technical reasons (Remark ??) but is in conformity with a wide range of applications.

In particular, the class Tn includes as special cases many interesting matrices that arise commonly in practice and

have been discussed in different contexts. As a few examples, we note that Tn includes,

• the tridiagonal Toeplitz matrices [15, 16, 17] where θ1 > 0 and θj = 0 for all j ≥ 2;

• the band monotone Toeplitz matrices [18] where θ1 ≥ θ2 ≥ ... ≥ θk = ... = θn−1 = 0 where k < bn/2c;

• the linear decaying Toeplitz matrices [19] where θj = α+ β(n− j) for all 1 ≤ j ≤ n− 1 for some constants

α, β > 0; and

• the polynomial decaying Toeplitz matrices [20, 21] where θj = Mj−β for all 1 ≤ j ≤ n−1 for some constants

β,M ∈ (0,∞).

B. Exact Matrix Reordering

Throughout, we identify a permutation matrix Π ∈ Rn×n with its corresponding permutation π, as an element

in the symmetric group Sn. Suppose Π ∈ Sn is the underlying true permutation in ΠΘΠ> and let Π′ ∈ Sn be any

given permutation. We quantify the distance between Π′ and Π by the following 0-1 loss function

τΘ(Π,Π′) = 1{ΠΘΠ> 6= Π′ΘΠ′>}. (I.4)

Note that Π′ = Π is only a special case of τΘ(Π,Π′) = 0. The loss τΘ(Π,Π′) = 0 if and only if the two

permutations produce the same disordered matrix, allowing for Π 6= Π′. The loss function τΘ(Π,Π′) takes into

account the possible equivalence classes among the permutations, caused by the specific structures of the signal

matrix Θ. That is, we consider the exact permutation recovery modulo any inherent ambiguity caused by structure

of the signal matrix. For example, when Θ is Toeplitz with distinct diagonal elements, then the loss function will

identify any two permutations up to a complete reversal.

Let Π̂ be any estimator of Π based on the observed matrix Y. We define the estimation risk associated with the

true parameters Θ and Π as

EΘ,Π[τΘ(Π̂,Π)] = PΘ,Π(ΠΘΠ> 6= Π̂ΘΠ̂>), (I.5)

where the expectation on the left-hand side and the probability measure on the right-hand side are both with respect

to the random observation Y for given (Θ,Π).
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To evaluate the performance of an estimator, we consider the probability of exact matrix reordering over a

parameter space T ′n×S ′n = {(Θ,Π) : Θ ∈ T ′n,Π ∈ S ′n} for some subsets T ′n ⊆ Tn and S ′n ⊆ Sn. In particular, we

will identify sufficient and/or necessary conditions for parameter spaces of the form T ′n×S ′n such that, as n→∞,

a given estimator could achieve exact matrix reordering uniformly over T ′n×S ′n with high probability. In this way,

rigorous comparisons between various estimators can be made by comparing their respective conditions for exact

matrix reordering. Specifically, for any T ′n × S ′n, we define a hyper-parameter ρ∗(T ′n,S ′n) by

ρ∗(T ′n,S ′n) = inf
Θ∈T ′n

inf
Π1,Π2∈S′n

Π1ΘΠ>1 6=Π2ΘΠ>2

‖Π1ΘΠ>1 −Π2ΘΠ>2 ‖F . (I.6)

Intuitively, the parameter ρ∗(T ′n,S ′n) quantifies how distinguishable two permuted versions of a matrix are within

T ′n ×S ′n – a larger value of ρ∗(T ′n,S ′n) indicates a potentially bigger contrast between any two permuted matrices

and vice versa. As will be shown shortly, this hyper-parameter reflects the overall signal strength, and therefore the

fundamental difficulty of reordering matrices over a given parameter space.

C. Main Results and Contributions

The main results of this paper can be summarized as follows.

1) (Rate-optimal estimator) For any subsets T ′n ⊆ Tn and S ′n ⊆ Sn such that ρ∗(T ′n,S ′n) & σ
√
n log n, there exists

a constrained least square estimator (LSE) that achieves exact matrix reordering for any (Θ,Π) ∈ T ′n × S ′n

with high probability.

2) (Fundamental information threshold) There exist some subsets T ′n ⊂ Tn and S ′n ⊂ Sn satisfying ρ∗(T ′n,S ′n) �

σ
√
n log n, such that no permutation estimator could achieve exact matrix reordering for all (Θ,Π) ∈ T ′n×S ′n

with high probability.

3) (Suboptimality of the spectral seriation algorithm) There exist some subsets T ′n ⊂ Tn and S ′n ⊂ Sn satisfying

ρ∗(T ′n,S ′n) � σn3, such that the commonly used spectral seriation algorithm cannot achieve exact matrix

reordering for any (Θ,Π) ∈ T ′n × S ′n with high probability.

4) (An improved polynomial-time algorithm) For any subsets T ′n ⊆ Tn and S ′n ⊆ Sn such that ρ∗(T ′n,S ′n) & σn2,

there exists a polynomial-time algorithm, proposed in Section IV, that achieves exact matrix reordering for

any (Θ,Π) ∈ T ′n × S ′n with high probability.

The results are illustrated in Figure 2. Parts 1) and 2) of the main results together show that a phase transition

occurs at order σ
√
n log n: no method can achieve the exact order recovery with high probability if the signal

strength (as measured by ρ∗) is at or below this level and the constrained LSE recovers the order exactly with high

probability whenever the signal strength is above this level.
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Fig. 2. A graphical illustration of the main theoretical results. The rates under the horizontal line are thresholds for ρ∗(T ′n,S ′n)
for three different matrix reordering algorithms, constrained LSE, spectral seriation, and adaptive sorting, which are defined in
Sections II-A, III, and IV, respectively.

Although the constrained LSE is rate-optimal, it requires solving an optimization over a potentially large permu-

tation set S ′n and is in general computationally infeasible for large n. Alternatively, polynomial-time algorithms have

been used in practice. Among them, spectral seriation [22, 23, 24] is arguably the current state-of-art polynomial-

time matrix reordering algorithm1. We analyze the performance of the spectral seriation algorithm and show that it

is suboptimal for reordering Toeplitz matrices as in Tn.

We then develop a novel adaptive sorting algorithm, which runs in polynomial time, and show that it has strictly

weaker signal strength requirement compared to the spectral seriation algorithm. This result indicates the advantage

of the proposed adaptive sorting algorithm over the current state-of-art matrix reordering method, and explains its

overall superior empirical performance over various existing methods across a wide range of simulation settings

and real data examples. On the other hand, despite its numerical advantages, the adaptive sorting algorithm is still

statistically suboptimal. We conjecture in Section V that there is a fundamental gap between statistical optimality

and computational efficiency.

D. Related Works

Many statistical seriation problems that in one way or another aim to find an element in the discrete permutation

set optimizing certain objective function have been studied from various aspects under different settings. These

include the well-known consecutive one’s problem [26, 27, 28] that dates back to the 1960s; the feature matching

problem [29, 30, 31] and the noisy ranking problem [32, 33, 34, 35, 36, 37, 38, 39]; the matrix seriation problem for

various shape-constrained matrices including the monotone or bi-monotone matrices [40, 41, 9, 42], the Robinson

matrices [23, 24, 43, 44], and the Monge matrices [45]; and more recently, the seriation problem under the latent

space models [46, 47].

Many of the existing works have focused on recovering the underlying permutations, estimation of the (disordered)

signal structures, or both. However, about the matrix seriation problems, statistical limit and optimal procedures for

the permutation recovery problem are relatively less-understood, compared to the estimation of the signal matrices

1See Section VI for empirical evidences of the superiority of the spectral seriation over other existing methods.
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[40, 41, 45, 9]. In particular, Bagaria et al. [8] considered the hidden Hamiltonian cycle recovery model, which is

related to our model (I.1) under a tridiagonal signal matrix, and Ding et al. [48] considered a hidden 2k-nearest

neighbor graph recovery model, corresponding to our model (I.1) under a band signal matrix. Both papers established

the information-theoretical threshold for exact recovery and/or almost exact recovery, but under some related but in

general different signal-to-noise ratio parameter. Moreover, these papers considered exact recovery over a special

set of signal matrices (say, tridiagonal Toeplitz matrices) and the full permutation set Sn alone, whereas our work

considers exact recovery over all possible combinations of subsets of signal matrices and permutations, which

may reveal fundamentally more difficult scenarios. Besides, for the general monotone Toeplitz matrix reordering

problem as formulated in the current paper, most of the existing results only concern permutation recovery in the

noiseless setting [23, 24, 43], thus leaving the fundamental behavior of the problem under the more realistic noisy

observations largely unexplored.

E. Organization

The rest of the paper is organized as follows. We finish this section with notation that will be used throughout

the paper. Section II establishes the fundamental statistical limit for exact matrix reordering, including the minimal

signal strength required by the constrained LSE, and the matching fundamental information threshold. Section

III analyzes the spectral seriation algorithm and shows its fundamental suboptimality. In Section IV, the adaptive

sorting algorithm is proposed and its theoretical properties are investigated. Section V discusses the potential tradeoff

between computational efficiency and statistical optimality. Section VI contains simulation studies that compare the

empirical performances of several matrix reordering algorithms in various settings. Section VII presents the analyses

of two real datasets, showing the advantage of the adaptive sorting in real-world applications. Possible extensions

of the current work are discussed in Section VIII. The proofs of main results are given in Section IX and the proofs

of other technical results are given in X.

F. Notation

For a vector a = (a1, ..., an)> ∈ Rn, diag(a1, ..., an) ∈ Rn×n denotes the diagonal matrix whose i-th diagonal

entry is ai, and define the `p norm ‖a‖p =
(∑n

i=1 |ai|p
)1/p

. For a matrix A = (aij) ∈ Rn×n, its Frobenius norm

is ‖A‖F =
√∑n

i=1

∑n
j=1 a

2
ij ; its i-th column is denoted by A.i ∈ Rn and its i-th row by Ai. ∈ Rn. Moreover,

we denote Ai,−j as a subvector of Ai. with its j-th component removed. For any integer n > 0, we denote the set

[n] = {1, 2, ..., n}. For any a > 0, bac denotes the largest integer no greater than a, and dae denotes the smallest

integer no less than a. For a finite set S, its cardinality is denoted by |S|. A random variable X is sub-Gaussian

if there are positive constants C, v such that for every t > 0, we have P (|X| > t) ≤ Ce−vt2 . For sequences {an}

and {bn}, we write an = o(bn) or an � bn if limn an/bn = 0, and write an = O(bn), an . bn or bn & an if



8

there exists a constant C such that an ≤ Cbn for all n. We write an � bn if an . bn and an & bn. Throughout,

C,C1, C2, ... are universal constants independent of n, and can vary from place to place.

II. FUNDAMENTAL STATISTICAL LIMIT FOR MATRIX REORDERING

Our main result on the statistical limit for matrix reordering consists of two parts: a fundamental information

threshold that benchmarks all the matrix reordering algorithms, and a constrained least square permutation estimator,

whose performance is rate-optimal among all the estimators. We start with the rate-optimal estimator.

A. The Constrained Least Square Estimator

For any given parameter space T ′n × S ′n where T ′n ⊆ Tn and S ′n ⊆ Sn, suppose one observes Y from (I.1)

for some (Θ∗,Π∗) ∈ T ′n × S ′n. A natural estimator for the unknown permutation is the constrained least square

estimator (or the maximum likelihood estimator in the i.i.d. Gaussian case) over T ′n × S ′n defined through

(Θ̂lse, Π̂lse) = arg min
(Θ,Π)∈T ′n×S′n

‖Y −ΠΘΠ>‖2F . (II.1)

The following result provides the theoretical guarantee of Π̂lse over T ′n × S ′n.

Theorem 1 (Theoretical guarantee for constrained LSE): Under model (I.1), there exists some absolute constants

C, c > 0 such that, for sufficiently large n, for any T ′n ⊆ Tn and any S ′n ⊆ Sn such that ρ∗(T ′n,S ′n) ≥ Cσ
√
n log n,

the permutation estimator Π̂lse given by (II.1) satisfies

sup
(Θ,Π)∈T ′n×S′n

PΘ,Π(Π̂lseΘ(Π̂lse)> 6= ΠΘΠ>) ≤ n−c. (II.2)

Theorem 1 characterizes the explicit correspondence between the signal strength condition on ρ∗ and the final

exact recovery error probability; it applies to any subsets of ridged monotone Toeplitz matrices, any subsets of

permutations, and the general sub-Gaussian noises. The theorem identifies a sufficient minimal signal strength

condition

ρ∗(T ′n,S ′n) & σ
√
n log n, (II.3)

under which the constrained LSE Π̂lse achieves exact matrix reordering uniformly over (Θ,Π) ∈ T ′n × S ′n with

high probability. Importantly, combined with the information lower bound obtained in Section II-B, Theorem 1

essentially implies that Π̂lse is rate-optimal.

The proof of Theorem 1, detailed in Section IX-B, relies on analyzing the probability of exact matrix reordering

for the constrained LSE at any given parameters (Θ,Π) ∈ T ′n × S ′n. To do so, we develop a general reduction

scheme that connects the risk of matrix reordering to the risk of matrix denoising, i.e., estimating the permuted

matrix ΠΘΠ> from Y, under model (I.1). We summarize our reduction scheme as the following proposition,

proved in Section IX-A.
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Proposition 1 (Reduction scheme): For any Θ, Θ̂ ∈ Tn and any permutations Π, Π̂ ∈ S ′n ⊆ Sn, it holds that

P (Π̂ΘΠ̂> 6= ΠΘΠ>) ≤ exp

{
2E‖Π̂Θ̂Π̂> −ΠΘΠ>‖F − ρ(Θ,S ′n)

}
, (II.4)

where

ρ(Θ,S ′n) = min
Π1,Π2∈S′n

Π1ΘΠ>1 6=Π2ΘΠ>2

‖Π1ΘΠ>1 −Π2ΘΠ>2 ‖F .

Proposition 1 provides a tool for bounding the probability PΘ,Π(Π̂lseΘ(Π̂lse)> 6= ΠΘΠ>) by analyzing the

matrix denoising risk

E‖Π̂lseΘ̂lse(Π̂lse)> −ΠΘΠ>‖F , (II.5)

which is easier to handle. This reduction step paves the way for an asymptotically sharp risk analysis of (Θ̂lse, Π̂lse)

using powerful tools developed for general shape-constrained least square estimators. The key ingredients of our

proof, which generalizes the idea for proving Theorem 3.1 of [40], include Chatterjee’s variational formula (Lemma

3), an improved Dudley’s integral inequality (Lemma 4), and a nontrivial calculation of the metric entropy of a set

of permuted Toeplitz matrices (Lemma 5).

B. Fundamental Information Threshold and the Planted Path Reconstruction Problem

We investigate the necessity of the minimal signal strength condition (II.3), and uncover the fundamental

information threshold underlying the matrix reordering problem. The following theorem provides a lower bound

for the minimum signal strength.

Theorem 2 (Fundamental information threshold): Suppose n ≥ 48. Then there exist subsets T ′n ⊂ Tn and S ′n ⊂ Sn

satisfying ρ∗(T ′n,S ′n) = 0.02σ
√
n log n such that

inf
Π̂

sup
(Θ,Π)∈T ′n×S′n

PΘ,Π(Π̂ΘΠ̂> 6= ΠΘΠ>) ≥ 0.6. (II.6)

Theorem 2 shows that, under the Gaussian noise there exists a certain parameter space T ′n × S ′n with minimal

signal strength ρ∗(T ′n,S ′n) � σ
√
n log n such that no method could achieve exact matrix reordering uniformly with

high probability. Theorems 1 and 2 together show that the condition (II.3) is asymptotically sharp and the rate

ρ∗(T ′n,S ′n) � σ
√
n log n, (II.7)

is the fundamental information threshold for the matrix reordering problem and the permutation estimator Π̂lse

given by (II.1) is minimax rate-optimal.

To prove the information lower bound in Theorem 2, we connect the matrix reordering problem with the following

planted path reconstruction problem in graph-information theory, and obtain the information lower bound of the
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former problem by analyzing that of the latter problem.

Definition 1 (Planted Hamiltonian path reconstruction): Consider a weighted undirected graph G(V,E) with an

adjacecy matrix Z, where Z has i.i.d. standard normal entries up to symmetry. Suppose an arbitrary Hamiltonian

path P (θ) of constant edge weight θ and length |V | − 1 connecting all the vertices in V , is added to G(V,E),

resulting to a new graph G′(V,E′). Then we refer problem of reconstructing P , or equivalently the recovery of the

support of its adjacency matrix, from G′(V,E′), as the planted Hamiltonian path reconstruction problem.

To study the statistical limit of the above path reconstruction problem, we construct a least favorable class H of

Hamiltonian paths, each with a constant edge weight θ > 0, such that (i) the class is sufficiently large in the sense

that log |H| & n log n; and (ii) any two paths in H are sufficiently distinct from each other under the Hamming

distance (defined in Lemma 1). In particular, we show that whenever θ .
√

log n, there is no way to tell with

confidence from the new graph G′(V,E′) which path in H is planted in G′(V,E′). To construct the set H, we

introduce to the current context a useful result due to [49] concerning the Hamming packing in the permutation

space [50, 51, 52].

Lemma 1 (Deza’s bound on permutation packing): For any π1, π2 ∈ Sn, we define their Hamming distance

dH(π1, π2) = |{i : π1(i) 6= π2(i)}|. A d-packing in the finite metric space (Sn, dH) is a subset M ⊂ Sn such

that its elements are at a distance of at least d from each other. Then the largest cardinality of a d-packing βn(d)

satisfies

βn(d) ≥ n!

Vd
, (II.8)

where

Vd =

d∑
k=0

(
n

k

)
k!

k∑
x=0

(−1)x

x!
. (II.9)

Consequently, for 2 ≤ d ≤ n− 1, we have

βn(d) ≥ n!

(n− d)!
· (n− d+ 1)

2(n− d)
. (II.10)

The detailed proof of Theorem 2 is provided in Section IX-C. The proof techniques developed there may be

applied to obtain information lower bounds for other permutation related problems.

In this study, we define the fundamental information threshold to be the minimum separation ρ∗(T ′n,S ′n) required

for any possible subset T ′n of ridged monotone matrices, and any subset S ′n of permutations, in order for the exact

recovery to be achievable. This is different from the existing work such as [8] and [48] where the separation is

considered for a specific subset of signal matrices such as tridiagonal Toeplitz matrices, and the full set Sn of the

permutations. In particular, from our proof of Theorem 2, one can show that when restricted to the settings of [8], a

smaller separation condition ρ∗ & σ
√

log n may be obtained. The stronger requirement on the minimum separation
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obtained by Theorem 2, is essentially due to the greater variety of scenarios allowed by our framework, some of

which can be more difficult than those considered in the existing work. In this sense, our specific construction mainly

reveals the fundamental difficulty caused by the unknown underlying permutation set. Finally, we remark that due

to the nature of our minimax lower bound argument, it remains unclear if there exist many other hard scenarios,

concerning possibly different signal matrices, under which a σ
√
n log n-order separation is needed. Nevertheless,

we believe this is an important problem that deserves further investigation.

Remark 1: Our proof of Theorems 1 and 2 does not involve the “ridge" condition θ1 − θn/2 ≥ θn/2 − θn−1.

However, such a condition plays an important role in our analysis of the proposed adaptive sorting algorithm (Section

IV), and is satisfied by our suboptimality argument of the spectral seriation algorithm (Section III). Therefore, we

include it in our definition of the parameter space for the integrity of our theoretical statements.

III. SUBOPTIMALITY OF SPECTRAL SERIATION

The constrained LSE introduced in Section II-A is rate-optimal. However, obtaining such an estimator requires

solving an optimization over the discrete permutation set S ′n ⊆ Sn, which could be computationally infeasible,

either because the subset S ′n is unknown, or S ′n contains a large number of permutations that grows exponentially

fast as the matrix size n increases.

Alternatively, spectral approaches have been widely used for matrix reordering tasks. Among them, a spectral

seriation method based on the Fiedler vector is particularly popular and has been extensively studied in the literature

[22, 23, 24, 53, 43, 46]. In this section, we show that, despite the success of such a spectral seriation algorithm in

many applications, it is nonetheless suboptimal for reordering Toeplitz matrices compared to the constrained LSE.

To formally introduce the spectral seriation estimator Π̌, we define the following ranking function.

Definition 2 (Ranking function): The ranking operator r : Rn → Sn is defined such that for any vector x ∈ Rn,

r(x) contains the ranks of the components of x in increasing order. Whenever there are ties, increasing orders are

assigned from left to right.

As an example, for a vector x = (2, 5, 1, 6, 2)>, we have r(x) = (2, 4, 1, 5, 3). Following [23, 24, 43], the spectral

seriation estimator Π̌ is then defined in Algorithm 1 below.

Algorithm 1 Spectral seriation
Input: Observed matrix Y = (Yij)1≤i,j≤n ∈ Rn×n.

1. Compute the Laplacian matrix L = D−Y where D = diag(d1, ..., dn) and di =
∑n
j=1 Yij .

2. Obtain the Fiedler eigenvector v̂ ∈ Rn corresponding to the smallest nonzero eigenvalue of L.
Output: Π̌ = [r(v̂)]−1, where the inverse [·]−1 means the reversion of a permutation.

For matrix reordering, Algorithm 1 has been shown in [23] to achieve exact recovery in the noiseless case Z = 0
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for all Robinson matrices R = (rij)1≤i,j≤n satisfying

R = R>, rij ≤ min{rik, rkj} for all 1 ≤ i < k < j ≤ n, (III.1)

which contain Toeplitz matrices in Tn as a special case. This result is summarized in the following proposition.

Proposition 2: For any R ∈ Rn×n satisfying (III.1) and Π ∈ Sn, suppose the Fiedler eigenvector v ∈ Rn

associated to the smallest nonzero eigenvalue of ΠRΠ> contains n distinct components, then we have Π = [r(v)]−1.

Proposition 2 essentially implies that, in the noiseless setting, the spectral seriation algorithm is able to achieve

exact reorder recovery of any matrix Θ ∈ Tn based on ΠΘΠ>.

However, the story is different in the noisy settings. Our analysis shows that the spectral seriation can be

sensitive to the eigen-structure of the signal matrices and the noises. As a consequence, it may suffer from

inconsistent estimation, and therefore significant suboptimality, due to insufficient separation between the Laplacian

eigenvalues. Similar results concerning the suboptimality of spectral methods have been obtained in [8] under a

hidden Hamiltonian cycle recovery model, but with a slightly different formulation and signal strength measure.

Theorem 3: Suppose the noise matrix has i.i.d. entries up to symmetry generated from N(0, σ2). Then there

exists some T ′n ⊆ Tn and S ′n ⊆ Sn with log |S ′n| & n log n satisfying ρ∗(T ′n,S ′n) = Cσn3 for some absolute

constant C > 0, such that

lim
n→∞

inf
(Θ,Π)∈T ′n×S′n

PΘ,Π(Π̌ΘΠ̌ 6= ΠΘΠ>) ≥ 1/2.

Theorem 3 shows that even when the minimal signal strength ρ∗ is of order σn3, there still exists nontrivial

cases over which the exact matrix reordering using the spectral seriation is impossible. The proof of Theorem 3,

given in Section IX-D relies on a delicate eigenvector analysis of a deformed random Laplacian matrix. To this

end, we develop a novel triangulation argument inspired by [54] and [55] that allows us to show inconsistency of

the sample Fiedler vector v̂ in relation to the underlying true Fiedler vector, in the so-called subcritical regime

[56, 57, 58]. Our analytic framework can be useful for other lower bound problems in statistics and random matrix

theory, especially when they involve characterizing the asymptotic behavior of Laplacian eigenvectors associated to

the bulk eigenvalues.

IV. EFFICIENT MATRIX REORDERING VIA ADAPTIVE SORTING

The suboptimality of the spectral seriation motivates us to develop an alternative algorithm with improved

performance. We propose in this section a novel polynomial-time matrix reordering algorithm. The method, referred

as the adaptive sorting, is summarized below in Algorithm 2.

Step 1 of Algorithm 2 identifies the location of the first (or equivalently, the last) row of the signal matrix after

permutation. It uses the fact that the sum of the first or the last row of the original signal matrix Θ is the smallest
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Algorithm 2 Adaptive sorting
Input: Observed matrix Y = (Yij) ∈ Rn×n.
1. Locating the initial element. For given matrix Y,

(i) calculate Si =
∑
j∈[n]\{i} Yij for i ∈ [n];

(ii) set π̃(1) = arg mini∈[n] Si.
2. Iterative sorting. For i = 1, 2, ..., n− 1, set

π̃(i+ 1) = arg min
j∈[n]\{π̃(1),...,π̃(i)}

‖Yπ̃(i),−π̃(i) −Yj,−j‖1,

where Yi,−i ∈ Rn−1 is the i-th row of Y with i-th component removed.
Output: π̃ = (π̃(1), ..., π̃(n)), and Π̃ as the corresponding permutation matrix.

among all the row sums. Once a beginning point of n elements in their original order has been identified, Step 2

starts from there and builds up the complete permutation map π̃ iteratively based on the following rationale: after

removing the main diagonals, each row of a monotone Toeplitz matrix is more similar to its nearby rows than the

more distant rows. In particular, it can be shown that any reduced row (main diagonal removed) of the correctly

ordered signal matrix, say Θi,−i, has its nearest `1-neighbors the rows Θj,−j for j ∈ {i−1, i+1}. Thus, for given

π̃(i), to identify π̃(i+1), we look among the remaining rows {Yj,−j}j∈[n]\{π̃(1),...,π̃(i)} for the one that minimizes

‖Yπ̃(i),−π̃(i) −Yj,−j‖1. This is applied iteratively until all the rows (or columns) are properly ordered.

Related to the above reasoning, the application of the `1-norm for comparing the reduced rows {Yi,−i}1≤i≤n

in Step 2 of Algorithm 2 is rooted in the bias-variance tradeoff. For example, although the nearest neighbor of a

given reduced row Θi,−i can be invariably determined based on either the `1- or the `2-norm, the variance of the

observed `2-distance ‖Yπ̃(i),−π̃(i)−Yj,−j‖2 can be much larger than the variance of ‖Yπ̃(i),−π̃(i)−Yj,−j‖1. From

our analysis in Section IX-E, it can be seen that an inflated variability may significantly deteriorate the performance

of the sorting algorithm.

The following theorem provides the theoretical guarantee for the adaptive sorting algorithm, whose proof can be

found in Section IX-E.

Theorem 4 (Theoretical guarantee for adaptive sorting): Under model (I.1), there exists some absolute constants

C, c > 0 such that, for sufficiently large n, for any T ′n ⊆ Tn and any S ′n ⊆ Sn such that ρ∗(T ′n,S ′n) ≥ Cσn2, we

have

sup
(Θ,Π)∈T ′n×S′n

PΘ,Π(Π̃ΘΠ̃> 6= ΠΘΠ>) ≤ n−c.

Compared with the results from the previous sections, although the adaptive sorting algorithm requires a condition

ρ∗(T ′n,S ′n) & σn2, (IV.1)

that is till stronger than the optimal condition (II.3), it is nevertheless much weaker than that required by the spectral

seriation, by a factor at least of order n. In general, the adaptive sorting algorithm takes advantage of the Toeplitz
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structure to achieve better performance in reordering matrices in Tn, whereas the spectral seriation may have wider

applicability when signal-to-noise ratio is sufficiently large. As for the fundamental limit of the adaptive sorting, in

Section X-F below, we show that there exist T ′ ⊂ Tn and S ′n ⊂ Sn satisfying ρ∗(T ′n,S ′n) � σn3/2 over which the

adaptive sorting algorithm does not always work, that is,

sup
(Θ,Π)∈T ′n×S′n

PΘ,Π(Π̃ΘΠ̃> 6= ΠΘΠ>) ≥ 0.2. (IV.2)

This information lower bound suggests that a signal condition stronger than (II.3) is also necessary for the adaptive

sorting to perform well.

Remark 2: From our theoretical analysis, it can be seen that the adaptive sorting algorithm may actually perform

well in cases beyond the ridged monotone Toeplitz class Tn considered in this paper. For example, it is shown in

Section IX-E (Proposition 4) that exact matrix reordering can be achieved for all the monotone Toeplitz matrices

of the form (I.2) satisfying θ1 − θdn/2e ≥ Cσn for some positive constant C, regardless what is the underlying

permutation Π. See also Section VIII for possible extensions.

V. INTERPLAY BETWEEN COMPUTATIONAL EFFICIENCY AND STATISTICAL ACCURACY

Theorems 1 to 4 altogether suggest a fundamental information gap between the statistically optimal procedure

and the computationally efficient algorithms. On the one hand, the constrained LSE has asymptotically the weakest

signal strength requirement, but can be computationally infeasible. On the other hand, the adaptive sorting or the

spectral seriation algorithm has polynomial running time but requires a strictly stronger signal strength. Thus, it

remains unclear whether the existing gap between the statistical optimal procedure and the computationally efficient

procedure is essential and unsurpassable, or it can be reduced, or even closed by devising a better polynomial-time

algorithm.

The tradeoff between computational efficiency and statistical accuracy has been observed in other permutation-

related statistical problems such as sparse/submatrix detection [59, 60], structured PCA [61, 62], permuted isotonic

regression [41, 42], tensor spectral clustering [63], among many others. In particular, assuming the computational

hardness of the well-known planted clique problem, many of these problems [59, 62, 60, 42, 63] have been shown

to preserve a regime with fundamental computational barrier; that is, any randomized polynomial-time algorithm

must be statistically suboptimal.

In light of these existing work, it is of interest to prove or disprove the existence of any polynomial-time algorithm

that succeeds over the region

σ
√
n log n . ρ∗(T ′n,S ′n) . σn2. (V.1)
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Fig. 3. Visualizations of six true signal matrices. Settings 1 to 6 arranged by row.

Solving this problem requires a quite different set of tools and we leave this fundamental and challenging problem

for future investigation.

VI. NUMERICAL STUDIES

In this section, we evaluate the empirical performance of the proposed adaptive sorting algorithm and compare

it with several existing matrix reordering methods.

We first set the dimensionality n = 100 for each matrix, and generate the noise matrix with i.i.d. entries from

either a Gaussian distribution N(0, σ2), or a heavier-tailed Laplace distribution Lap(0, σ). To better assess the range

of applicability of different methods, we consider the following six settings for the underlying true signal matrix

(Figure 3), containing band, linear decaying and nonlinear decaying monotone Toeplitz matrices:

(1) Narrow-band matrix: Θ ∈ Rn×n is Toeplitz of the form (I.2), where θ1 = θ2 = ... = θ10 = 2, and θi = 0 for all

i ≥ 11; (2) Wide-band matrix: Θ ∈ Rn×n is Toeplitz of the form (I.2), where θ1 = θ2 = ... = θ40 = 2, and θi = 0

for all i ≥ 41; (3) Linear decaying matrix: Θ ∈ Rn×n is Toeplitz of the form (I.2), where θi = 5+0.02·(n−i) for all

i ∈ [n−1]; (4) Polynomial decaying matrix: Θ ∈ Rn×n is Toeplitz of the form (I.2), where θi = [(n−i)·0.02]3 for all

i ∈ [n− 1]; (5) Inverse linear decaying matrix: Θ ∈ Rn×n is Toeplitz of the form (I.2), where θi = [1 + 0.02 · i]−1

for all i ∈ [n − 1]; (6) Inverse polynomial decaying matrix: Θ ∈ Rn×n is Toeplitz of the form (I.2), where

θi = [1 + 0.02 · i]−2 for all i ∈ [n− 1].

For each setting, we evaluate the performance of various methods by comparing their ability to achieve exact order

recovery across a range of noise levels. The underlying permutations are generated uniformly from the permutation

group Sn. The performance of each algorithm is measured by the empirical proportion of failures in exact order
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recovery (as determined by the loss function τΘ(Π,Π′), where we do not distinguish between the true permutation

and its complete reversal) over 500 rounds of simulations at each noise level σ.

In addition to the adaptive sorting algorithm ("AS") proposed in Section IV and the spectral seriation algorithm

("SS") defined in Section III, we also evaluate the following five existing matrix reordering methods:

• Best permutation analysis ("BP") proposed by [64].

• The multidimensional scaling based method ("MDS") implemented by the function seriate in the R package

seriation, with the argument option method="MDS" [25].

• The rank-two ellipse seriation algorithm ("R2E") proposed by [65], and implemented by the function seriate

in the R package seriation, with the option method="R2E".

• The "VAT" (visual assessment of tendency) algorithm proposed by [66], and implemented by the function

seriate in the R package seriation, with the option method="VAT".

• The normalized spectral seriation algorithm ("SS.n"), which differs from the spectral seriation algorithm only

in its definition of the Laplacian matrix L = In −D−1Y.

The numerical results for both noise settings are presented in Figures 4 and 5. Overall, the proposed AS algorithm

demonstrates the best performance across all settings, followed by SS in most cases. In particular, AS outperforms

other methods most significantly for the band Toeplitz matrices (Settings 1 and 2). Under the other four settings

with linear or nonlinear decaying diagonals, AS, SS, and often BP exhibit relatively better performance compared

to the other methods. Among these three methods, AS consistently performs better than SS and BP in the nonlinear

decaying cases (Settings 4 to 6), while in the strict linear decaying case (Setting 3), SS demonstrates the best

performance, followed by AS.

To further assess the relative performance for large matrices, we repeated the experiments under Gaussian noise

with n = 1000. Notably, BP was excluded from this comparison due to its lack of scalability for large n, as

the algorithm requires n2 iterations, and in each iteration, the determinant of a matrix up to size n × n must be

evaluated. Our results in Figure 6 suggest similar trends to those observed for n = 100, highlighting the superior

performance of AS in most settings and the best performance achieved by SS in Setting 3. Comparing Figures 4

and 6, particularly the values of σ at which the phase transition occurs, we observe that, in line with our theory,

the performance of AS and SS deteriorates as n increases from 100 to 1000.

The simulation studies demonstrate the overall superiority and adaptivity of the proposed AS algorithm over the

other six alternative methods. In particular, the numerical results indicate SS to be the overall best existing method,

whose empirical performance is in turn dominated by the proposed AS algorithm in most cases. This phenomenon

is consistent with our theoretical analysis of the two methods, showing the strength and practical relevance of the

theoretical results developed in the preceding sections.
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Fig. 4. Comparison of seven matrix reordering methods under the Gaussian noise with n = 100 and variance σ2. The errors quantify the
empirical probability of failures in exact order recovery over 500 rounds of simulations. AS: adaptive sorting, BP: best permutation analysis,
MDS: multidimensional scaling based seriation, R2E: rank-two ellipse seriation, SS: spectral seriation, SS.n: normalized spectral seriation, VAT:
visual assessment of tendency.

VII. APPLICATION TO TWO REAL DATASETS

We analyze two real single-cell RNA sequencing datasets, and compare the performance of the adaptive sorting

and the spectral seriation algorithms for inferring the latent pseudotemporal orders of single cells.

The first dataset contains single-cell mRNA sequencing reads for 372 primary human skeletal muscle myoblasts

undergoing differentiation [4]. Specifically, primary human myoblasts were cultured in high-serum medium; after

switching to low-serum medium that induces differentiation, the cells were dissociated and individually captured

at 24-h intervals (0, 24, 48 and 72 h), and each cell was sequenced to obtain the final mRNA reads. As a result,

each of the four time points contains about 90 cells. Due to possible variations in the speed of differetiation across
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Fig. 5. Comparison of seven matrix reordering methods under the Laplacian noise with n = 100 and scale parameter σ (i.e., with variance
2σ2).

the cells, we expect the cells to be approximately uniform-distributed along the progression path, whose order may

be recovered by the matrix reordering algorithm. The raw count data were preprocessed and normalized using the

functions CreateSeuratObject and NormalizeData in the R package Seurat2 under default settings. We

applied the functions FindVariableFeatures and ScaleData in Seurat to identify and standardize the

levels of p = 1500 most variable genes for subsequent analysis. Then a pairwise similarity matrix across the 372

cells was calculated as Y = cJn − D, where Jn is an all-one matrix, c is a sufficiently large constant making

Y nonnegative (e.g., c = ‖D‖∞), and D is the pairwise Euclidean distance matrix of the r-dimensional spectral

embeddings of the cells, based on the singular value decomposition of the standardized data. Specifically, after

2https://cran.r-project.org/web/packages/Seurat/index.html



19

Fig. 6. Comparison of six matrix reordering methods (“BP" removed due to lack of scalability) under the Gaussian noise with n = 1000 and
variance σ2.

obtaining the standarized dataset, which contains expression levels of p genes for n cells, we apply SVD to the

data matrix, say X ∈ Rn×p, and define the r-dimensional embedding as the leading r left singular vectors of X

weighted by their associated singular values. Finally, we applied the adaptive sorting (AS) and the spectral seriation

(SS) to reorder the similarity matrix Y, which gives the inferred temporal order of cells, up to a possible reversion.

To evaluate the performance of two methods, we compared the inferred temporal orders with the true order using

Spearman’s rho statistic. On the left of Figure 7, we show a boxplot of Spearman’s rho statistics evaluated over

various values for r ∈ {2, 3, ..., 20}. Our AS algorithm shows clear advantages over SS in terms of the preciseness

of the inferred temporal orders, even though the thus constructed similarity matrices have possibly dependent entries.

In particular, the evaluation results were consistent for different choices of p ∈ {500, 1500, 2500}.
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The second dataset consists of single-cell RNA sequencing reads for 149 human primordial germ cells ranging

from 4 weeks to 19 weeks old [67]. Specifically, there were 6 cells of 4 weeks old, 37 cells of 7 weeks old, 20 cells

of 10 weeks old, 27 cells of 11 weeks old, and 57 cells of 19 weeks old. The RNA-seq data were preprocessed

and normalized using the same procedure, leading to a similarity matrix across the 149 cells calculated from the

r-dimensional spectral embeddings of the cells. On the right of Figure 7, we have a boxplot for the Spearman’s rho

statistics evaluated for different r values (r ∈ {2, 3, ..., 20}), again indicating AS to be overall much better than SS

for inferring temporal orders of single cells. Like the previous example, we also found the results to be consistent

over different choices of p ∈ {500, 1500, 2500}.
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Fig. 7. Comparison of adaptive sorting (AS) and spectral seriation (SS) for inferring temporal orders of single cells using Spearman’s rho when
p = 500 (top), p = 1500 (middle), and p = 2500 (bottom). Left: study of primary human myoblasts [4]. Right: study of human primordial
germ cells [67].

VIII. DISCUSSION

This paper studied the matrix reordering problem for a large class of monotone Toeplitz matrices characterized

by Tn, where the diagonals decay as they deviate from the main diagonal. The analysis can be easily extended to
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the class of monotone Toeplitz matrices where the diagonals increase as they deviate from the main diagonal (i.e.,

θ1 ≤ θ2 ≤ ... ≤ θn−1). Specifically, on the one hand, since the direction of monotonicity is not essential in both

the lower and the upper bound arguments, the analysis of the fundamental limit of matrix reordering as presented

in Section II may be adopted with minor changes to obtain similar results. On the other hand, a computationally

efficient algorithm can be constructed by slightly modifying the adaptive sorting algorithm in Section IV with π̃(1)

in the initialization step given by π̃(1) = arg maxi∈[n] Si.

In Section II-A, we essentially reduced the problem of matrix reordering to an estimation problem, about which

we obtained sharp upper bound for the estimation risk. In particular, our proofs of Theorem 1 and Proposition 1

together yielded the risk upper bound

sup
T ′n×S′n⊆Tn×Sn

sup
(Θ∗,Π∗)∈T ′n×S′n

E‖Π̂lseΘ∗(Π̂lse)> −Π∗Θ∗(Π∗)>‖F ≤ Cσ
√
n log n. (VIII.1)

The above rate of convergence is in fact minimax optimal as one can show using a similar argument as in the proof

of Theorem 2 that

inf
Π̂

sup
T ′n×S′n⊆Tn×Sn

sup
(Θ∗,Π∗)∈T ′n×S′n

E‖Π̂Θ∗Π̂> −Π∗Θ∗(Π∗)>‖F ≥ C ′σ
√
n log n. (VIII.2)

In particular, to prove (VIII.1) there is no requirement on the minimum separation, unlike Theorem 1 which

requires ρ∗ & σ
√
n log n. Nevertheless, Equations (VIII.1) and (VIII.2) imply a minimax rate of convergence of

order σ
√
n log n, indicating a close connection between the exact recovery problem under the loss τΘ and the

estimation problem under the loss |Π̂ΘΠ̂> −ΠΘΠ>|F . However, our analyses of the spectral seriation algorithm

and the adaptive sorting algorithm cannot be directly adapted to obtain an estimation result.

In addition to monotone Toeplitz matrices, it is important to extend the current theoretical framework to other

matrix classes that are relevant in practice, such as bimonotone matrices [41], circulant matrices [47], Robinson

matrices [23], and Monge matrices [45]. Furthermore, compared to the exact recovery problem considered in

this study, evaluating performance under partial recovery criteria [10] can be less restrictive and potentially more

interesting, albeit more challenging. We plan to investigate this problem systematically in a future study.

This paper considered the prototypical setting where the noise matrix has independent, homoscedastic, and sub-

Gaussian entries. However, noise structures in real-world applications can be more complex. It is intriguing to

consider matrix reordering in settings with dependent, heteroscedastic, and/or heavy-tailed observations. Further-

more, in terms of computationally efficient algorithms, in the absence of a computational lower bound, there may

exist other algorithms with weaker separation requirements than the proposed AS algorithm. Although we are

currently unaware of such algorithms, we recognize this as an interesting follow-up question and plan to explore it

in future work. Some of the technical tools and theoretical results developed in this paper may be useful for solving



22

the problem in more intricate settings.

IX. PROOF OF MAIN RESULTS

In this section, we present the proofs of Proposition 1 and Theorems 1, 2, 3 and 4. The proofs of other theorems,

propositions and technical lemmas are given in Section X.

A. Proof of Proposition 1

Note that for any Θ ∈ Tn, the simple inequality

1{Π̂ΘΠ̂> 6= ΠΘΠ>} ≤ exp

{
‖Π̂ΘΠ̂> −ΠΘΠ>‖F − ρ(Θ,S ′n)

}
, (IX.1)

holds trivially for

ρ(Θ,S ′n) = min
Π1,Π2∈S′n

Π1ΘΠ>1 6=Π2ΘΠ>2

‖Π1ΘΠ>1 −Π2ΘΠ>2 ‖F .

On the other hand, we note that for any Θ1,Θ2 ∈ Tn, and any permutation matrices Π1,Π2 ∈ S ′n, it holds that

‖Θ1 −Θ2‖F ≤ ‖Π1Θ1Π>1 −Π2Θ2Π>2 ‖F . (IX.2)

To see this, note that by the Toeplitz structure of Θ1 and Θ2, one can identify Θ1 and Θ2 with two monotonic

nondecreasing vectors of dimension n2, denoted as vec(Θ1) and vec(Θ2), respectively, by arranging the matrix

entries in the following order: the main diagonals, the first principal diagonals, the second principal diagonals, etc.

As a consequence, for any Π1,Π2 ∈ S ′n,

‖Θ1 −Θ2‖2F = ‖vec(Θ1)− vec(Θ2)‖22

= ‖vec(Θ1)‖22 + ‖vec(Θ2)‖22 − 2vec(Θ1)>vec(Θ2)

≤ ‖vec(Π1Θ1Π>1 )‖22 + ‖vec(Π2Θ2Π>2 )‖22 − 2vec(Π1Θ1Π>1 )>vec(Π2Θ2Π>2 )

= ‖vec(Π1Θ1Π>1 )− vec(Π2Θ2Π>2 )‖2F

= ‖Π1Θ1Π>1 −Π2Θ2Π>2 ‖2F ,

where the third line follows from the permutation invariance of the `2 norm and the following elementary rearrage-

ment inequality.

Lemma 2 (Rearrangement Inequality): If a1 ≥ a2 ≥ ... ≥ an and b1 ≥ b2 ≥ ... ≥ bn, then anb1 + ...+ a1bn ≤

aσ(1)b1 + ...+ aσ(n)bn ≤ a1b1 + ...+ anbn, where σ is any permutation in Sn.
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Thus for any Θ ∈ Tn and Π, Π̂ ∈ S ′n, we have

‖Π̂ΘΠ̂> −ΠΘΠ>‖F ≤ ‖Π̂Θ̂Π̂> −ΠΘΠ>‖F + ‖Π̂Θ̂Π̂> − Π̂ΘΠ̂>‖F

= ‖Π̂Θ̂Π̂> −ΠΘΠ>‖F + ‖Θ̂−Θ‖F

≤ 2‖Π̂Θ̂Π̂> −ΠΘΠ>‖F ,

where the last inequality follows from the property (IX.2). Combining the above inequalities and taking expectations

for both sides, we obtain the final inequality

P (Π̂ΘΠ̂> 6= ΠΘΠ>) ≤ exp

{
2E‖Π̂Θ̂Π̂> −ΠΘΠ>‖F − ρ(Θ,S ′n)

}
. (IX.3)

B. Proof of Theorem 1

In the following, to simplify notation, we write (Θ̂lse, Π̂lse) as (Θ̂, Π̂), and denote the permutation maps

associated to the permutation matrices Π̂ and Π∗ as π̂ : [n] → [n] and π∗ : [n] → [n], respectively. We also

identify a permutation matrix with the associated permutation map when there is no confusion. We will prove the

following pointwise result, from which the uniform statement in Theorem 1 follows directly.

Theorem 5 (Pointwise guarantee): Under model (I.1), there exist some absolute constants C, c > 0 such that, for

sufficiently large n, for any Θ∗ ∈ T ′n ⊆ Tn and any S ′n ⊆ Sn satisfying ρ(Θ∗;S ′n) ≥ Cσ
√
n log n, the constrained

LSE (Π̂, Θ̂) defined over (T ′n,S ′n) satisfies

PΘ∗,Π∗(Π̂Θ∗Π̂> 6= Π∗Θ∗(Π∗)>) ≤ exp{−cσ
√
n log n}, (IX.4)

for each Π∗ ∈ S ′n.

To prove Theorem 5, by the general reduction scheme (Proposition 1), it suffices to obtain the upper bound

for the matrix denoising risk E‖Π̂Θ̂Π̂> − Π∗Θ∗(Π∗)>‖F ≤ Cσ
√
n log n under fixed parameters (Θ∗,Π∗). The

key ingredient is Chatterjee’s variational formula, originally developed in [68]. The following version is proved as

Lemma A.1 in [40].

Lemma 3 (Chatterjee’s variational formula): Let C be a closed subset of Rd. Suppose y = a∗+ z where a∗ ∈ C

and z ∈ Rd. Let â ∈ arg mina∈C ‖y − a‖22 be a projection of y onto C. Define the function fa∗ : R+ → R by

fa∗(t) = sup
a∈C∩Bd(a∗,t)

〈a− a∗, z〉 − t2

2
.

Then we have

‖â− a∗‖2 ∈ arg min
t≥0

fa∗(t).

Moreover, if there exists t∗ > 0 such that fa∗(t) < 0 for all t ≥ t∗, then ‖â− a∗‖2 ≤ t∗.
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We set a∗ = Π∗Θ∗(Π∗)>, z = Z, y = Y, C = P(T ′n,S ′n) ≡ {Q ∈ Rn×n : Q = ΠΘΠ>,Θ ∈ T ′n,Π ∈ S ′n},

B(Θ0, t) = {Θ ∈ Rn×n : ‖Θ −Θ0‖F ≤ t}, and let 〈·, ·〉 be the Hilbert-Schmidt inner product over symmetric

matrices in Rn×n. Hence, by Lemma 3, we have

‖Π̂Θ̂Π̂> −Π∗Θ∗(Π∗)>‖F ∈ arg min
t≥0

{
sup

Q∈P(T ′n,S′n)∩B(Π∗Θ∗(Π∗)>,t)

〈Q−Π∗Θ∗(Π∗)>,Z〉 − t2

2

}
.

Now since (Π∗)>Π∗ = Idn, we have

sup
Q∈P(T ′n,S′n)∩B(Π∗Θ∗(Π∗)>,t)

〈Q−Π∗Θ∗(Π∗)>,Z〉

= t · sup
Q∈P(T ′n,S′n)∩B(t−1Π∗Θ∗(Π∗)>,1)

〈Q− t−1Π∗Θ∗(Π∗)>,Z〉

= t · sup
Q∈P(T ′n,S′n)∩B(t−1Π∗Θ∗(Π∗)>,1)

〈(Π∗)>QΠ∗ − t−1Θ∗, (Π∗)>ZΠ∗〉

= t · sup
Q∈P(T ′n,(π∗)−1◦S′n)∩B(t−1Θ∗,1)

〈Q− t−1Θ∗, (Π∗)>ZΠ∗〉

≤ t · sup
H∈Mn

〈H,Z′〉,

where Mn ≡ M(T ′n,S ′n) = {Q − t−1Θ∗ : Q ∈ P(T ′n, (π∗)−1 ◦ S ′n) ∩ B(t−1Θ∗, 1)}, (π∗)−1 ◦ S ′n = {(Π∗)>Π :

Π ∈ S ′n} and Z′ = (Π∗)>ZΠ∗. In particular, we have Mn ⊆ B(0, 1) and 0 ∈Mn.

By the second statement of Lemma 3, we can choose t∗ = 2 supH∈Mn
|〈H,Z′〉| + s for any constant s > 0.

Then, it can be easily checked that, for any t ≥ t∗, we have

sup
Q∈P(T ′n,S′n)∩B(Π∗Θ∗(Π∗)>,t)

〈Q−Π∗Θ∗(Π∗)>,Z〉 − t2

2
≤ t sup

H∈Mn

〈H,Z′〉 − t2

2
< 0. (IX.5)

Thus, we have

E‖Π̂Θ̂Π̂> −Π∗Θ∗(Π∗)>‖F ≤ 2E sup
H∈Mn

|〈H,Z′〉|+ s. (IX.6)

To control the right-hand side of the above inequality, we use the following version of Dudley’s integral inequality,

whose proof is given in Section X below.

Lemma 4 (Dudley’s integral inequality): Let {Xt}t∈T be a mean zero random process on a metric space (T, d)

with sub-Gaussian increments, in the sense that there exists some constant K > 0 such that inf{t > 0 : E exp((Xt−

Xs)
2/t2) ≤ 2} ≤ Kd(t, s) for all t, s ∈ T . Then, we have

E sup
t∈T
|Xt| ≤ CK

∫ diam(T )

0

√
logN (T, d, ε)dε+ inf

t∈T
E|Xt|, (IX.7)

where N (T, d, ε) is the ε-covering number of T , that is, the smallest number of closed balls with centers in T and

radii ε whose union covers T .

Since
{
〈H,Z′〉

}
H∈Mn

is a mean-zero randon process with sub-Gaussian increment, and one can check that for
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any H1,H2 ∈Mn, there exists some constant C ′ > 0 such that

inf{t > 0 : E exp(〈H1 −H2,Z
′〉2/t2) ≤ 2} ≤ σC ′‖H1 −H2‖F .

From Lemma 4, it follows that

E sup
H∈Mn

|〈H,Z′〉| ≤ Cσ
∫ diam(Mn)

0

√
logN (Mn, d2, ε)dε+ E|〈H0,Z

′〉|, (IX.8)

for any H0 ∈ Mn, where the metric d2 is defined as d2(G1,G2) = ‖G1 − G2‖F . In particular, we can take

H0 = 0 to get

E|〈H0,Z
′〉| = 0. (IX.9)

In this way, we further reduced the calculation of the denoising risk E‖Π̂Θ̂Π̂> − ΠΘΠ>‖F to that of the metric

entropy of the set Mn under the Frobenius norm. The following lemma, proved in Section X below, provides an

estimate of such a entropy measure.

Lemma 5: Under the conditions of Theorem 1, using the above notations, we have∫ diam(Mn)

0

√
logN (Mn, d2, ε)dε ≤ C

√
n log n. (IX.10)

The above upper bound estimate of the entropy integral along with inequalities (IX.6) (IX.8) and (IX.9) leads to

the upper bound in Theorem 5, as along as we choose s sufficiently small, for example, s = σ. This completes the

proof of the theorem.

C. Proof of Theorem 2

From Lemma 1, we can further simplify the lower bound for βn(d) using the inequality(
n

e

)n
e ≤ n! ≤

(
n+ 1

e

)n+1

e,

which implies

n!

(n− d)!
≥ (n/e)n

[(n− d+ 1)/e]n−d+1
≥
(

n

n− d+ 1

)n−d+1

(n/e)d−1 ≥ (n/e)d−1.

Consequently, for 2 ≤ d ≤ n− 2, we have

log βn(d) ≥ (d− 1) log(n/e)− log(n− d). (IX.11)

Set d = (1− e−1)n. We have

log βn(d) ≥ (d− 2) log(n/e).
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Thus, for n ≥ 16, we have

log βn(d) ≥ n

2
log(n/e). (IX.12)

This is the key packing number inequality that we will use for the proof of the fundamental limit.

The proof of the fundamental limit starts with a careful construction of a set of least favourable scenarios, over

which exact matrix reorderinig is most difficult to achieve. To this end, we consider the following tridiagonal signal

matrix, which is also the adjacency matrix of a Hamiltonian path,

Θ0 =



0 δ 0 ... 0

δ 0 δ ... 0

0 δ 0 ... 0

...
. . .

0 0 0 ... 0


. (IX.13)

We also consider the subset of Sn that only permutes the columns and rows in Θ0 satisfying i = 3k− 1 for some

k ∈ {1, ..., bn/3c}. The reason we consider such a class of permutations is that, by treating Θ0 as a concatenation

of small blocks of size 3 × 3, it will be seen that, for any two permutations π1, π2 in the above subset, the

distance ‖Π1Θ0Π>1 − Π2Θ0Π>2 ‖2F is completely determined by the Hamming distance dH(π1, π2) between the

two permutations (equation (IX.14) below).

Let n′ = bn/3c. Suppose n ≥ 48, or n′ ≥ 16, and set d = (1−e−1)n′. By inequality (IX.12), there exists a subset

S∗n′ of Sn′ that attains the maximal d-packing number βn′(d), where log βn′(d) ≥ n′

2 log(n′/e) ≥ 5n
32 log(5n/16e),

as n′ ≥ 5n/16 for n ≥ 48.

Now we identify the permutations in S∗n′ with the permutations in Sn that only involve the i-th element for

i = 3k − 1, k ∈ {1, ..., bn/3c}. Thus, we have constructed a subset S∗n of Sn where log |S∗n| ≥ 5n
32 log(5n/16e)

elements with mutual distance at least d ≥ (1− e−1)5n/16.

Now note that for any two permutations Π1,Π2 ∈ S∗n such that dH(π1, π2) = d, we have

2dδ2 ≤ ‖Π1Θ0Π>1 −Π2Θ0Π>2 ‖2F ≤ 4nδ2 (IX.14)

To see this, we notice that

‖Π1Θ0Π>1 −Π2Θ0Π>2 ‖2F = ‖ΠΘ0Π> −Θ0‖2F ,

where Π = Π>2 Π1 ∈ S∗n. We denote Θ0 = (θij)1≤i,j≤n and calculate that, for any i such that π(i) > i, we have

n∑
j=1

(θπ(i),π(j) − θij)2 ≥ (θπ(i),π(i)+1 − θi,π(i)+1)2 + (θπ(i),i−1 − θi,i−1)2 ≥ 2δ2,
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since the (π(i) + 1)-th and the (i − 1)-th components are fixed in the permutation Π. A similar result can be

obtained for i such that π(i) < i. Therefore, we obtain the lower bound

‖Π1Θ0Π>1 −Π2Θ0Π>2 ‖2F ≥
∑

i:i 6=π(i)

n∑
j=1

(θπ(i)π(j) − θij)2 ≥ 2dδ2. (IX.15)

The upper bound follows from the simple inequality

‖Π1Θ0Π>1 −Π2Θ0Π>2 ‖2F ≤ 2‖Θ0‖2F ≤ 4(n− 1)δ2 (IX.16)

In the following, we consider the fundamental limit for ρ∗(·, ·) over the subspace {Θ0} × S∗n. The proof relies on

the following lemma from [69].

Lemma 6: Assume that for some integer M ≥ 2 there exist distinct parameters θ0, ..., θM from the parameter space

Θ and mutually absolutely continuous probability measures P0, ..., PM with Pj = Pθj for j = 0, 1, ...,M , defined

on a common probability space (Ω,F) such that the averaged KL divergence 1
M

∑M
j=1D(Pj , P0) ≤ 1

8 logM. Then,

for every measurable mapping θ̂ : Ω→ Θ,

max
j=0,...,M

Pj(θ̂ 6= θj) ≥
√
M√

M + 1

(
3

4
− 1

2
√

logM

)
.

Applying the above lemma to the parameter subspace {Θ0} × S∗n, we could check that for any Π1,Π2 ∈ S∗n,

the KL divergence between the probability measures of Y1 = Π1Θ0Π>1 + Z and that of Y2 = Π2Θ0Π>2 + Z can

be bounded by

D(PY1
, PY2

) =
‖Π1Θ0Π>1 −Π2Θ0Π>2 ‖2F

2σ2
≤ 2nδ2

σ2
,

where the last inequality follows from (IX.14). Set δ = 0.06σ
√

log(5n/16e). By the lower bound on |S∗n|, we have

D(PY1
, PY2

) ≤ 0.019n log(5n/16e) ≤ 1

8
log |S∗n|.

Thus, by Lemma 6, it follows that, for any n ≥ 48,

inf
Π̂

max
(Θ,Π)∈{Θ0}×S∗n

P (Π̂ΘΠ̂> 6= ΠΘΠ>) = inf
π̂

max
(Θ,π)∈{Θ0}×S∗n

P (π̂ 6= π) ≥ 0.6. (IX.17)

Lastly, by the lower bound (IX.14) on the mutual distance between the elements in the set S∗n, we have

ρ∗({Θ0},S∗n) = min
Π1,Π2∈S∗n

Π1 6=Π2

‖Π1Θ0Π1 −Π2Θ0Π2‖F

≥
√

2dδ2 > 0.037σ
√
n log(5n/16e) > 0.02σ

√
n log n,

where the last inequality follows from log(5n/16e) ≥ 0.44 log n.
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In other words, we have found a subset {Θ0} × S∗n of Tn × Sn with ρ∗({Θ0},S∗n) ≥ 0.02σ
√
n log n such that

uniform exact matrix ordering over {Θ0} × S∗n with high probability is not possible. In particular, from the above

argument, we can see that for any ρ ≤ 0.02σ
√
n log n, we can always construct similar subsets by choosing δ

smaller such that ρ∗({Θ0},S∗n) = ρ, and show that uniform exact matrix ordering over {Θ0} × S∗n with high

probability is not possible. This completes the proof of the theorem.

D. Proof of Theorem 3

We first define the degree and the Laplacian operators as follows.

Definition 3 (Degree & Laplacian Operators): For a symmetric matrix A = (aij)1≤i,j≤n ∈ Rn×n, define

the degree operator D : Rn×n → Rn×n by D(A) = diag(
∑n
i=1 ai1, ...,

∑n
i=1 ain), and the Laplacian operator

L : Rn×n → Rn×n by L(A) = D(A)−A.

Without loss of generality, we set Π = Idn. We define T ′n = {Θ0} where Θ0 is the tridiagonal matrix defined

in (IX.13), with δ = C0σn
2
√
n, and let S ′n in the theorem be the permutation set S∗n constructed in the proof of

Theorem 2. By inequalities (IX.15) and (IX.16), we have ρ∗(T ′n,S ′n) = Cσn3 for some absolute constant C > 0.

Note that L ≡ L(Y) = L(Θ) + L(Z). We denote B = L(Θ) and E = L(Z). Let B =
∑n
i=1 λiuiu

>
i be

the eigendecomposition of B, with 0 = λ1 ≤ λ2 ≤ ... ≤ λn. In particular, by Lemma 7 below, B has simple

eigenvalues, which implies u2 = v, the Fiedler vector, up to a change of sign. The following lemma is well-known,

and can be found, for example, on page 3234 of [70].

Lemma 7: The Laplacian matrix of any tridiagonal matrix in the form (IX.13) has eigenvalues λk = 4δ sin2
(π(k−1)

2n

)
,

for k = 1, ..., n, and eigenvectors uk = (uk1, uk2, ..., ukn)>, k = 1, ..., n where ukj = 1√
n/2

cos
(π(k−1)(j−1/2)

n

)
,

for j = 1, ..., n. In particular, the Fiedler vector u2 is u2 = 1√
n/2

(
cos
(
π
2n

)
, cos

(
3π
2n

)
, ..., cos

( (2n−1)π
2n

))>
.

In order to show ΠΘ0Π> 6= Π̌Θ0Π̌, by the definition of Θ0, it is equivalent to showing Π 6= Π̌, or r(v̂) 6= r(v).

The rest of the proof is devoted to

lim
n→∞

inf
Π∈S′n

PΘ0,Π(r(v̂) 6= r(v)) ≥ 1/2. (IX.18)

Let B + E =
∑n
i=1 λ̂iûiû

>
i be the eigendecomposition of B + E with λ̂1 ≤ λ̂2 ≤ ... ≤ λ̂n. In other words, we

have v̂ = û2. We also define v̂− as the eigenvector associated to the second smallest eigenvalue of B−E.

In order to show r(v̂) 6= r(v), we note that by Lemma 7, the minimal distance between any two consecutive

components in v is bounded by

min
1≤i 6=j≤n

|u2i − u2j | ≤
√

2

n
· π
n
· sin

(
1

2n

)
≤ π√

2n5/2
.

If we are able to show that ‖v̂−v‖∞ > π√
2n5/2

, then it follows that r(v̂) 6= r(v). Since ‖v̂−v‖∞ ≥ 1√
n
‖v̂−v‖2,

it suffices to show that ‖v̂ − v‖2 > π√
2n2

. To this end, we obtain the following proposition, proved in Section X
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below.

Proposition 3: Define the probability eventAn = {‖Ev‖2 ≥ C1σ
√
n, ‖E‖ ≤ C2σ

√
n log n, |v>Ev| ≤ C3σ

√
log n}.

Then we have limn→∞ P (An) = 1, where C1, C2, C3 > 0 are some universal constants. In addition, under the

event An, for any constant c > 0 we have ‖v̂ − v‖2 + ‖v̂− − v‖2 ≥ c/n2 for sufficiently large n.

Since the distribution of E is the same as that of −E, the distributions of the corresponding eigenvectors v̂ and

v̂− should also be identical. In other words, we have P (‖v̂ − v‖2 ≥ z) = P (‖v̂− − v‖2 ≥ z) for all z ∈ R. It

then follows that, for any constant c > 0,

P (An) = P (An, ‖v̂ − v‖2 + ‖v̂− − v‖2 ≥ c/n2)

≤ P ((An ∩ {‖v̂ − v‖2 ≥
c

2n2
}) ∪ (An ∩ {‖v̂− − v‖2 ≥

c

2n2
}))

≤ P (‖v̂ − v‖2 ≥ cn−2/2) + P (‖v̂− − v‖2 ≥ cn−2/2)

= 2P (‖v̂ − v‖2 ≥ cn−2/2),

which implies limn→∞ P (‖v̂ − v‖2 ≥ c′n−2) ≥ 1/2 This completes the proof.

E. Proof of Theorem 4

We define the class of λ-ridged Topelitz matrices as

T Rn (λ) =

{
Θ ∈ Tn : θ1 − θdn/2e ≥ λ

}
. (IX.19)

Then we have the following propositions hold.

Proposition 4 (Theoretical guarantee over λ-ridged Topelitz matrices): There exists some absolute constants

C, c > 0 such that, whenever λ ≥ Cσn, we have sup(Θ,Π)∈T R
n (λ)×Sn PΘ,Π(Π̃ΘΠ̃> 6= ΠΘΠ>) ≤ n−c.

Proposition 5 (Sharp λ-ρ∗ correspondence): For any T ′n ⊆ Tn and any S ′n ⊆ Sn such that ρ∗(T ′n,S ′n) ≥ C1nλ
∗

for some absolute constant C1 > 0, there exists some absolute constant C2 > 0 such that T ′n ⊆ T Rn (λ) for

λ = C2λ
∗. On the other hand, the above characterization is asymptotically sharp in the sense that, for any λ∗, there

exists some (T ′n,S ′n) ⊆ Tn × Sn such that T ′n ⊆ T R(λ∗) and ρ∗(T ′n,S ′n) = Cnλ∗.

The proofs of these propositions can be found in Section X below. With the above results, Theorem 4 is then

proved by combining Propositions 4 and 5 with λ∗ = σn. In particular, the sharp λ-ρ∗ correspondence in Proposition

5 suggests that the argument for proving Theorem 4, and therefore the obtained minimal signal strength condition

(IV.1) for the adaptive sorting algorithm, are asymptotically tight.
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X. PROOF OF TECHNICAL RESULTS

A. Dudley’s Integral Inequality: Proof of Lemma 4

The integral inequality stated in the lemma generalizes the results in [71]. Specifically, by Remark 8.1.5 (supre-

mum of increments) of [71], we have

E sup
t∈T
|Xt −Xt0 | ≤ CK

∫ diam(T )

0

√
logN (T, d, ε)dε,

holds for any fixed t0 ∈ T . Then our lemma follows immediately from the simple inequality E supt∈T |Xt| ≤

E supt∈T |Xt −Xt0 |+ E|Xt0 |.

B. Metric Entropy Calculation: Proof of Lemma 5

In order to study the metric entropy of the set Mn, we consider the permutation set S ′n and denote S ′n =

{Π1, ...,Π|S′n|}. For any given element H ∈Mn, there exists an element Πi ∈ S ′n and a Toeplitz matrix Q∗ ∈ T ′n

such that

H = (Π∗)>ΠiQ
∗Π>i Π∗ − t−1Θ∗.

In other words, if we define F̄i ≡ {(Π∗)>ΠiQΠ>i Π∗ − t−1Θ∗ : Q ∈ T ∗n } where T ∗n is the set of all the n × n

symmetric Toeplitz matrices, then there exists an i ∈ {1, ..., |S ′n|} such that H ∈ F̄i. Hence, we have

Mn ⊆
⋃

1≤i≤|S′n|

F̄i. (X.1)

Moreover, by definition we also have Mn ⊆ B(0, 1), so that

Mn ⊆
⋃

1≤i≤|S′n|

F̄i ∩ B(0, 1). (X.2)

By the union bound, we have

logN (Mn, d2, ε) ≤ log

[ ∑
1≤i≤|S′n|

N (F̄i ∩ B(0, 1), d2, ε)

]

≤ log |S ′n|+ log

[
max

1≤i≤|S′n|
N (F̄i ∩ B(0, 1), d2, ε)

]
≤ log(n!) + log

[
max

1≤i≤m
N (F̄i ∩ B(0, 1), d2, ε)

]
.

For the first term in the last inequality, by Stirling’s formula, we have

log(n!) ≤ (n+ 1) log
n+ 1

e
+ 1 ≤ 3n log n, (X.3)
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where the last inequality holds for all n ≥ 2. In the following, we control the second term in the last inequality, to

obtain an upper bound for logN (Mn, d2, ε).

We control the metric entropy logN (F̄i ∩ B(0, 1), d2, ε) for any i ∈ {1, 2, ..., |S ′n|}. Suppose without loss of

generality we consider the set F̄i0 , associated to the permutation Πi0 ∈ S ′n. Recall that we denote πi0 : [n]→ [n] as

the permutation map associated to the permutation matrix Πi0 . Now we consider the map Φi0 : (Rn, d2)→ (F̄i, d2),

where for each γ = (γ1, ..., γn) ∈ Rn, we define a matrix H ∈ F̄i as follows:

1) Define a symmetric Toeplitz matrix Q∗(γ) such that its first row is γ.

2) Set Φi0(γ) = (Π∗)>Πi0Q
∗(γ)Π>i0Π∗ − t−1Θ∗.

The map Φi0 plays a key role in translating the metric entropy of F̄i0 ∩ B(0, 1) in (Rn×n, d2) to that of the

Euclidean ball Bn(0, 1) in (Rn, d2). Specifically, we will need the following lemma concerning the property of

covering numbers with respect to Lipschitz maps.

Lemma 8 ([72]): Let (M,d) and (M1, d1) be metric spaces, K ⊂M , Φ : M →M1, and let L > 0. If Φ satisfies

d1(Φ(x),Φ(y)) ≤ Ld(x, y) for x, y,∈M , then, for every ε > 0, we have N (Φ(K), d1, Lε) ≤ N (K, d, ε).

Now to use Lemma 8, for any x, y ∈ Rn, we have, on the one hand,

‖Φi0(x)− Φi0(y)‖2F = ‖(Π∗)>Πi0Q
∗(x)Π>i0Π∗ − (Π∗)>Πi0Q

∗(y)Π>i0Π∗‖2F

= ‖Q∗(x)−Q∗(y)‖2F

≤ 2n‖x− y‖22, (X.4)

where the last inequality follows from the property of symmetric Toeplitz matrices, and on the other hand

‖Φi0(x)− Φi0(y)‖2F = ‖(Π∗)>Πi0Q
∗(x)Π>i0Π∗ − (Π∗)>Πi0Q

∗(y)Π>i0Π∗‖2F

= ‖Q∗(x)−Q∗(y)‖2F

≥ ‖x− y‖22, (X.5)

where the last inequality follows by only considering the first rows of Q∗(x)−Q∗(y). By the above lower bound

(X.5), it follows that {
γ ∈ Rn : ‖Φi0(γ)‖F ≤ 1

}
⊆
{
γ ∈ Rn : ‖γ‖2 ≤ 1

}
. (X.6)

In addition, for any H ∈ F̄i0 ∩B(0, 1), there exists a vector γ ∈
{
γ ∈ Rn : ‖Φi0(γ)‖F ≤ 1

}
such that Φi0(γ) = H.

Then we also have

F̄i0 ∩ B(0, 1) ⊆ Φi0({γ ∈ Rn : ‖Φi0(γ)‖F ≤ 1}). (X.7)
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By taking the images of both sides of (X.6) under the map Φi0 and applying (X.7), we have

F̄i0 ∩ B(0, 1) ⊆ Φi0(Bn(0, 1)),

which implies

logN (F̄i ∩ B(0, 1), d2, ε) ≤ logN (Φi0(Bn(0, 1)), d2, ε).

The right-hand side of the inequality can be further bounded by Lemma 8 and the upper bound (X.4) as

logN (Φi0(Bn(0, 1)), d2, ε) ≤ logN (Bn(0, 1), d2, ε/
√

2n) ≤ n log

(
2
√

2n

ε
+ 1

)
, (X.8)

where the last inequality is a direct consequence of the following entropy bound for the Euclidean unit ball

N (Bn(0, 1), d2, ε) ≤ (2/ε+ 1)n,

which can be found, for example, in Corollary 4.2.13 (covering numbers of the Euclidean ball) of [71]. Hence,

combining inequalities (X.3) and (X.8), we have

logN (Mn, d2, ε) . n log n+ n log

(
2
√

2n

ε
+ 1

)
. (X.9)

Finally, since Mn ⊆ B(0, 1), we have for n ≥ 2,

∫ diam(Mn)

0

√
logN (Mn, d2, ε)dε ≤ C

∫ 2

0

√
n log n+ n log

(
2
√

2n

ε
+ 1

)
dε

≤ C
√
n log n+ C

√
n

∫ 2

0

√
log

(
2
√

2n

ε
+ 1

)
dε ≤ C

√
n log n,

where the last inequality follows from

∫ 2

0

√
log

(
2
√

2n

ε
+ 1

)
dε ≤

∫ 2

0

√
log

(
4
√
n

ε

)
dε ≤ C

√
log n+ C

∫ 2

0

√
log

(
1

ε

)
dε

≤ C
√

log n+ C

∫ ∞
0

t2e−t
2

dt ≤ C
√

log n.

This completes the proof of the lemma.

C. Inconsistency of Sample Eigenvectors: Proof of Proposition 3

We define B−E =
∑n
i=1 λ̃iũiũ

>
i where λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃n are the eigenvalues, and {ũi} are the eigenvectors.

We denote ∠(g,h) as the angle between two vectors h and g. Because the eigenvectors are identifiable up to a

change of sign, we assume without loss of generality that all the angles are between 0 and π/2. The proof of this

proposition is separated into the following steps:
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1) We show that under event An, if instead ‖v̂− v‖2 ≤ c/n2 and ‖v̂− − v‖2 ≤ c/n2 for some constant c > 0,

then the angle ∠(v̂, (B−E)v̂) ≥ π
2 − ε1 for some sufficiently small constant ε1 ∈ (0, π/2).

2) We show that the above statement implies that ‖v̂− v̂−‖2 ≥ ε2 for some constant ε2 > 0. A contradiction to

the first statement by triangle inequality. Thus, we conclude that under event An, we must have ‖v̂− v‖2 +

‖v̂− − v‖2 ≥ c/n2.

3) We finish the proof by showing that event An holds in probability.

The detailed proofs are presented in order.

a) Step I: Note that λ̂2v̂ = (B + E)v̂. Then

∠(v̂, (B−E)v̂) = ∠((B + E)v̂, (B−E)v̂) ≥ ∠((B + E)v̂,Bv̂). (X.10)

Now consider the triangle with sides Bv̂,Ev̂ and (B + E)v̂. By the sine rule, we have

sin∠(Bv̂, (B + E)v̂) =
‖Ev̂‖2
‖Bv̂‖2

· sin∠(Ev̂, v̂) (X.11)

Note that

‖Bv̂‖2 ≤ ‖Bv‖2 + ‖B(v − v̂)‖2 ≤ λ2 + λn · ‖v − v̂‖2 .
δ

n2
+

δ

n2
. σ
√
n, (X.12)

where the second last inequality follows from the assumption that ‖v − v̂‖2 . n−2, and Lemma 7. On the other

hand, we have

‖Ev̂‖2 ≥ ‖Ev‖2 − ‖E(v − v̂)‖2 ≥ ‖Ev‖2 − ‖E‖ · ‖v − v̂‖2 ≥ C1σ
√
n− C2

σ
√
n log n

n2
& σ
√
n, (X.13)

where the second last inequality follows from the definition of An (i.e., E1 and E2) and the assumption that

‖v − v̂‖2 . n−2. Finally, note that cos∠(Ev̂, v̂) = v̂>Ev̂
‖Ev̂‖2 . For the numerator, we have

|v̂>Ev̂| ≤ |v>Ev|+ |(v − v̂)>Ev|+ |v̂>E(v − v̂)| . σ
√

log n+ σ

√
log n

n3
. σ

√
log n,

where the second last inequality follows from the definition of An (i.e., E2 and E3) and the assumption ‖v− v̂‖2 .

n−2. For the denominator, we already have ‖Ev̂‖2 & σ
√
n for sufficiently large n. Hence, it follows that

cos∠(Ev̂, v̂) ≤ C
√

log n

n
, (X.14)

which implies that, for any small constant c > 0, we have

sin∠(Ev̂, v̂) ≥ 1− c (X.15)
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for all sufficiently large n. Plugging in the above results back to (X.11), by the above arguments (X.12) and (X.13),

we can choose δ = C0σn
2
√
n for a sufficiently small C0 > 0, such that ‖Ev̂‖2/‖Bv̂‖2 > 1. Therefore,

sin∠(Bv̂, (B + E)v̂) ≥ 1− c (X.16)

for some small constant c > 0. This proves the first statement.

b) Step II: Suppose the first statement hold. Then for any small constant c > 0, we have

cos(v̂, (B−E)v̂) =
v̂>(B−E)v̂

‖(B−E)v̂‖2
< c. (X.17)

For the numerator, we have

v̂>(B−E)v̂ =

n∑
i=1

λ̃i(ũ
>
i v̂)2. (X.18)

Under the assumption ‖v − v̂−‖2 ≤ cn−2 and event An (i.e., E2 and E3), we have

|λ̃2 − λ2| ≤ Cσ
√

log n. (X.19)

To see this, note that λ̃2 = v̂>−(B−E)v̂− = λ2(v>v̂−)2 +
∑
i 6=2 λi(u

>
i v̂−)2 − v̂>−Ev̂−. Then we have

|λ̃2 − λ2| ≤ λ2|1− (v>v̂−)2|+ λn
∑
i 6=2

(u>i v̂−)2 + |v>Ev|+ 2|(v − v̂−)>Ev|

.
λ2

n4
+
λn
n3

+ σ
√

log n+
σ
√
n log n

n2
,

where the last inequality follows from

|v̂>−v̂| = |1− 1

2
‖v̂− − v̂‖22| ≥ 1− c1n−4, (X.20)

and ∑
i6=2

(u>i v̂−)2 ≤
∑
i 6=2

(u>i v−)2 +
∑
i 6=2

[u>i (v− − v̂−)]2 ≤ c2
n3
, (X.21)

for sufficiently large n and some constants c1, c2 > 0. Thus, by (X.19), it holds that

λ̃2 ≥ λ2 − |λ̃2 − λ2| &
δ

n2
− σ

√
log n > 0, (X.22)

for sufficiently large n. As B−E is a Laplacian matrix, {λ̃i}1≤i≤n must contain an eigenvalue 0, it follows that

λ̃1 = 0, so that min1≤i≤n λ̃i ≥ 0. This implies that

v̂>(B−E)v̂ ≥ λ̃2(ũ>2 v̂)2 = λ̃2(v̂>−v̂)2 ≥ (λ2 − |λ2 − λ̃2|) · |v̂>−v̂| · (1− cn−4) &
δ|v̂>−v̂|
n2

, (X.23)

where the second last inequality follows from the assumption ‖v − v̂‖2 + ‖v − v̂−‖2 . n−2, (X.20) and (X.22).
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For the denominator of (X.17), we have

‖(B−E)v̂‖2 ≤ ‖Bv‖2 + ‖B(v̂ − v)‖2 + ‖Ev‖2 + ‖E(v̂ − v)‖2

≤ λ2 +
λn
n2

+ Cσ
√
n+

Cσ
√
n log n

n2
.

δ

n2

Thus, we have

c >
v̂>(B−E)v̂

‖(B−E)v̂‖2
≥ C|v̂>−v̂|. (X.24)

Since c can be chosen arbitrarily small, we conclude that |v̂>−v̂| ≤ c′ for some sufficiently small constant c′ > cC−1.

In other words, ‖v̂−v̂−‖2 ≥ ε2 for some constant ε2 > 0. This contradicts the first statement that ‖v̂−v̂−‖2 ≤ cn−2.

This completes the proof of Step II.

c) Step III: Finally, we show each of the following events holds with probability at least 1 − n−c for some

constant c > 0:

E1 =

{
‖Ev‖2 ≥ C1σ

√
n

}
, E2 =

{
‖E‖ ≤ C2σ

√
n log n

}
, E3 =

{
|v>Ev| ≤ C3σ

√
log n

}
.

We start with E3.

For E3, note that

v>Ev = 2
∑
i>j

zij(vi − vj)2,

is a normal random variable with mean 0 and variance

E
[
2
∑
i>j

zij(vi − vj)2

]2

= 2
∑
i>j

Ez2
ij(vi − vj)4 = 2σ2

∑
i>j

(vi − vj)4,

where

v = (v1, ..., vn)> =
1√
n/2

(
cos

(
π

2n

)
, cos

(
3π

2n

)
, ..., cos

(
(2n− 1)π

2n

))>
. (X.25)

Calculate that ∑
i>j

(vi − vj)4 =

n∑
i=1

[(vi − vi+1)4 + ...+ (vi − vn)4] ≤ n2 · c
n2
≤ c,

where the second last inequality follows from

max
i6=j
|vi − vj | ≤

c√
n
. (X.26)

We know that v>Ev is a normal random variable with bounded variance. Thus, by the tail bound of normal random

variable, we have E3 holds with probability at least 1− n−c.
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For E1, we denote Ev = (ξ1, ..., ξn)>, so that

ξi =
∑
j 6=i

zij(vi − vj), i = 1, ..., n.

In particular, we know that ξi is a normal random variable with mean 0 and variance

Eξ2
i =

∑
k,j 6=i

Ezijzik(vi − vj)(vi − vk) = σ2
∑
j 6=i

(vi − vj)2.

By (X.25), we have ∑
j 6=i

(vi − vj)2 ≤ n · c
n2
≤ c.

If i < n/2, then ∑
j 6=i

(vi − vj)2 ≥
i+n/2∑
j=i+n/4

(vi − vj)2 ≥ n

4
· c1
n
≥ c2,

for some constants c1, c2 > 0. By a similar argument, the above inequality
∑
j 6=i(vi − vj)2 ≥ c2 also holds if

i ≥ n/2. Thus we obtain Eξ2
i � 1 for all i = 1, ..., n. Moreover, for any i 6= j, we have

Eξiξj =
∑
` 6=j

∑
k 6=i

Ezikzj`(vi − vk)(vj − v`) = Ez2
ij(vi − vj)2 = σ2(vi − vj)2.

In particular, by (X.26), we have (vi − vj)2 ≤ c/n. Therefore, Ev is a multivariate normal random vector with

mean 0 and covariance matrix Σn, whose diagonal entries are of order σ2, and the off-diagonal entries are bounded

in absolute value by O(σ2/n). By the property of multivariate normal distribution, there exists a matrix Σ
1/2
n such

that, for i.i.d. standard normal random variables {ζi}1≤i≤n,

Ev = (ξ1, ..., ξn)> = Σ1/2
n (ζ1, ..., ζn)>.

Hence, the quadratic form v>E2v can be written as v>E2v = ζ>Σnζ, where ζ = (ζ1, ..., ζn)>. Note that

‖Σn‖2F . σ2n. By the decomposition Σn = ΣDn +ΣOn of Σn into a diagonal matrix ΣDn and an off-diagonal matrix

ΣOn , we also have

‖Σn‖ ≤ ‖ΣDn ‖+ ‖ΣOn ‖ ≤ max
1≤i≤n

[Σn]ii + ‖ΣOn ‖F = O(σ2).

Now we could apply Hanson-Wright inequality [73], to obtain the concentration inequality

P (|ζ>Σnζ − Eζ>Σnζ| > t) ≤ 2 exp(−cmin{t2/(nσ2), t/σ4}), t ≥ 0. (X.27)

By choosing t = Cσ2
√
n log n, we have

P (|ζ>Σnζ − Eζ>Σnζ| > σ2
√
n log n) ≤ n−c. (X.28)



37

Finally, since Eζ>Σnζ =
∑n
i=1[Σn]ii � σ2n, we have

P (ζ>Σnζ ≤ Eζ>Σnζ − Cσ2
√
n log n) ≤ n−c,

or

P (v>E2v ≥ Cσ2n) ≥ 1− n−c.

This proves E1 holds with probability at least 1− n−c, by noting that v>E2v = ‖Ev‖22.

For E2, to obtain an upper bound for ‖E‖, we note that

‖E‖ = ‖L(Z)‖ ≤ ‖D(Z)‖+ ‖Z‖ ≤ max
1≤i≤n

n∑
j=1

Zij + ‖Z‖.

Since the Laplacian operator L(·) is invariant to the diagonal entries of the input, we assume without loss of

generality that the diagonal entries of Z is i.i.d. Gaussian N(0, 2σ2), so that Z/σ is Gaussian Orthogonal Ensemble

(GOE). The upper bounds for max1≤i≤n
∑n
j=1 Zij and ‖Z‖ are obtained previously. Specifically, the well-celebrated

Bai-Yin theorem [74] implies that for any ε > 0,

lim
n→∞

P

(
‖Z‖
σ
√
n
≤ 2 + ε

)
= 1, (X.29)

whereas the standard tail bound for the Gaussian random variable and an union bound argument imply that for any

ε > 0,

lim
n→∞

P

(
max

1≤i≤n

n∑
j=1

Zij ≤ σ
√

(2 + ε)(n+ 1) log n

)
= 1. (X.30)

These results imply

lim
n→∞

P (‖E‖ ≤ 8σ
√
n log n) = 1. (X.31)

D. Theoretical Guarantee for λ-Ridged Toeplitz Matrices: Proof of Proposition 4

The proof of this proposition is separated into two parts, corresponding to the initialization (Step 1) and the

iterative sorting part (Step 2) of the algorithm, respectively.

a) Part I: We start by showing that the initialization step successfully identifies the first or the last row of Θ.

Set δn = n−c for some c > 0. Without loss of generality, we assume Π = Idn. In other words, we need to show

that,

PΘ,Π(π̃(1) ∈ {1, n}) ≥ 1− δn/n, (X.32)

for any (Θ,Π) ∈ RRn (λ)× Sn. In fact, (X.32) is implied by

PΘ,Π(S1 < min
2≤i≤n−1

Si) ≥ 1− δn/n. (X.33)
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Then it suffices to show that, for some τn,

PΘ,Π(S1 < τn) ≥ 1− δn
2n
, (X.34)

and

PΘ,Π( min
2≤i≤n−1

Si > τn) ≥ 1− δn
2n
. (X.35)

The rest of the proof is devoted to (X.34) and (X.35).

On the one hand, let S1 =
∑
i6=1 Y1i =

∑
1≤i≤n−1 θi +

∑
i6=1 Z1i where Z1i’s are independent subgaussian

random variables. By the concentration inequality for subgaussian random variables [75], we have

P

(
S1 −

n−1∑
i=1

θi < Cσ
√
nt

)
≥ 1− e−t

2

. (X.36)

On the other hand, for any 2 ≤ i ≤ n− 1, we have Si =
∑
j 6=i Yij =

∑i−1
j=1 θj +

∑n−i
j=1 θj +

∑
j 6=i Zij where Zij’s

are independent subgaussian random variables, so that

P

(
Si −

i−1∑
j=1

θj −
n−i∑
j=1

θj > −Cσ
√
nt

)
≥ 1− e−t

2

. (X.37)

By setting t =
√

log(4n/δn) in (X.36) and t =
√

log(4n2/δn) in (X.36), we have

P

(
S1 <

n−1∑
i=1

θi + Cσ
√
n log(4n/δn)

)
≥ 1− δn

4n
, (X.38)

P

(
Si >

i−1∑
j=1

θj +

n−i∑
j=1

θj − Cσ
√
n log(4n2/δn)

)
≥ 1− δn

4n2
. (X.39)

Since for any 2 ≤ i ≤ n− 1, we have

i−1∑
j=1

θj +
n−i∑
j=1

θj ≥ θ1 +
n−2∑
j=1

θj ,

then we have

P

(
Si > θ1 +

n−2∑
j=1

θj − Cσ
√
n log(4n2/δn)

)
≥ 1− δn

4n2

for all 2 ≤ i ≤ n− 1. A union bound applied to (X.39) implies

P

(
min

2≤i≤n
Si > θ1 +

n−2∑
j=1

θj − Cσ
√
n log(4n2/δn)

)
≥ 1− δn

4n
.

Now note that by assumption we have

θ1 +

n−2∑
j=1

θj − Cσ
√
n log(4n2/δn) ≥

n−1∑
i=1

θi + Cσ
√
n log(4n/δn),
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as for λ ≥ 4Cσn we have

θ1 − θn−1 ≥ λ ≥ Cσ
√
n log(4n/δn) + Cσ

√
n log(4n2/δn),

for sufficiently large n. Therefore, we have shown (X.34) and (X.35) with τn = Cσ
√
n log(4n/δn)+Cσ

√
n log(4n2/δn).

This proves (X.32).

b) Part II: In this part, we show that, for each 1 ≤ k ≤ n− 2,

PΘ,Π(π̃(k + 1) = k + 1|π̃(i) = i, ∀i ≤ k) ≥ 1− δn/n, (X.40)

PΘ,Π(π̃(k + 1) = n− k|π̃(i) = n− i+ 1,∀i ≤ k) ≥ 1− δn/n. (X.41)

This along with Part I implies that

PΘ,Π(π̃ = id) = P (π̃(1) = 1)

n−2∏
k=1

PΘ,Π(π̃(k + 1) = k + 1|π̃(i) = i,∀i ≤ k) ≥ P (π̃(1) = 1)(1− δn/n)n−2,

PΘ,Π(π̃ = id−1) = P (π̃(1) = n)

n−2∏
k=1

PΘ,Π(π̃(k + 1) = n− k|π̃(i) = n− i+ 1,∀i ≤ k)

≥ P (π̃(1) = n)(1− δn/n)n−2,

for n ≥ 1. Combining the above two inequalities, by the result from Part I we have

PΘ,Π(π̃ ∈ {id, id−1}) ≥ [P (π̃(1) = 1) + P (π̃(1) = n)](1− δn/n)n−2 ≥ P (π̃(1) ∈ {1, n})(1− δn/n)n−2

≥ (1− δn/n)n−1 ≥ 1− δn,

which in turn proves the proposition.

The rest of the proof is devoted to (X.40), as the proof of (X.41) follows by symmetry. Suppose π̃(i) = i,∀i ≤ k.

Then the event π̃(k + 1) = k + 1 is equivalent to

‖Yk,−k −Yk+1,−(k+1)‖1 < min
j∈[n]\[k+1]

‖Yk,−k −Yj,−j‖1,

or

‖Yk,−k −Yk+1,−(k+1)‖1 < ‖Yk,−k −Yj,−j‖1, for all j ∈ [n] \ [k + 1].

In the following, we show that, for any j ∈ [n] \ [k + 1], it holds that

P (‖Yk,−k −Yk+1,−(k+1)‖1 < ‖Yk,−k −Yj,−j‖1) ≥ 1− δn
2n2

. (X.42)
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Thus, by applying the union bound, we have

P (‖Yk,−k −Yk+1,−(k+1)‖1 ≤ min
j∈[n]\[k+1]

‖Yk,−k −Yj,−j‖1) ≥ 1− δn
2n
. (X.43)

To obtain (X.42), we will show that there exists some τn such that

P (‖Yk,−k −Yk+1,−(k+1)‖1 ≤ τn) ≥ 1− δn
4n2

, (X.44)

P (τn ≤ ‖Yk,−k −Yj,−j‖1) ≥ 1− δn
4n2

. (X.45)

On the one hand, if we denote Yk,−k −Yk+1,−(k+1) = (ξ
(k+1)
1 , ξ

(k+1)
2 , ..., ξ

(k+1)
n−1 ), it follows that {ξ(k+1)

i } are

independent subgaussian variables with variances bounded by Cσ2, and means satisfying

Eξ(k+1)
i = θk−i − θk−i+1, for i < k, (X.46)

Eξ(k+1)
i = θi−k+1 − θi−k, for i > k, (X.47)

and Eξ(k+1)
k = 0. To see this, note that the k-th row of the signal matrix Θ with the main diagonal removed is

[θk−1 θk−2 ... θ2 θ1︸ ︷︷ ︸
k−1

θ1 θ2 ... θn−k︸ ︷︷ ︸
n−k

]

Then, we can write ‖Yk,−k − Yk+1,−(k+1)‖1 =
∑n−1
i=1 |ξ

(k+1)
i | =

∑n−1
i=1 |Eξ

(k+1)
i + wi| for some independent

subgaussian random variables wi with mean 0 and variance bounded by Cσ2. By the concentration inequality for

subgaussian random variables, we have

P

( n−1∑
i=1

|ξ(k+1)
i | ≤

n−1∑
i=1

Eξ(k+1)
i +

n−1∑
i=1

|wi| ≤ τ1
)
≥ 1− δn

2n2
,

where τ1 =
∑
i<k |θk−i − θk−i+1|+

∑
i>k |θi−k+1 − θi−k|+Cσn+Cσ

√
n log(2n2/δn). On the other hand, for

any j ∈ [n] \ [k + 1], if we denote Yk,−k −Yj,−j = (ξ
(j)
1 , ξ

(j)
2 , ..., ξ

(j)
n−1), it follows that {ξ(j)

i } are subgaussian

variables with

Eξ(j)
i = θk−i − θj−i, for i < k,

Eξ(j)
i = θi−k+1 − θj−i, for k ≤ i < j,

Eξ(j)
i = θi−k+1 − θi−j+1, for i ≥ j.

In addition, out of the (n− 1) elements in {ξ(j)
i }, (n− 3) elements are mutually independent, whereas the rest two

elements, corresponding to the entries Ykj and Yjk, are correlated with covariance bounded by Cσ2, but independent

from the others. By the similar argument for the (n− 3) independent variables and by the sub-Gaussian property
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of the two dependent variables, we still have

P

( n−1∑
i=1

|ξ(j)
i | ≥ τ2

)
≥ 1− δn

2n2
,

where τ2 =
∑
i<k |θk−i−θj−i|+

∑
k≤i<j |θi−k+1−θj−i|+

∑
i≥j |θi−k+1−θi−j+1|−Cnσ−Cσ

√
n log(2n2/δn).

Now we claim that, if λ ≥ 4Cσn, we have, τ2 ≥ τ1 for sufficiently large n, or

∑
i<k

|θk−i − θj−i|+
∑
k≤i<j

|θi−k+1 − θj−i|+
∑
i≥j

|θi−k+1 − θi−j+1|

≥
∑
i<k

|θk−i − θk−i+1|+
∑
i>k

|θi−k+1 − θi−k|+ 2Cnσ + 2Cσ
√
n log(4n2/δn). (X.48)

To see this, it suffices to show that, by the definition of T Rn (λ), it holds that

∑
i<k

|θk−i − θj−i|+
∑
k≤i<j

|θi−k+1 − θj−i|+
∑
i≥j

|θi−k+1 − θi−j+1|

−
∑
i<k

|θk−i − θk−i+1| −
∑
i>k

|θi−k+1 − θi−k| ≥
dn/2e−1∑
i=1

|θi − θi+1| ≥ λ. (X.49)

Specifically, if we denote δk = θk − θk+1 for 1 ≤ k ≤ n− 2, then

∑
i<k

|θk−i − θk−i+1|+
∑
i>k

|θi−k+1 − θi−k| =
∑
i<k

δk−i +
∑
i>k

δi−k =

k−1∑
i=1

δi +

n−k−1∑
i=1

δi,

and

∑
i<k

|θk−i − θj−i|+
∑
k≤i<j

|θi−k+1 − θj−i|+
∑
i≥j

|θi−k+1 − θi−j+1|

≥
∑
i<k

|θk−i − θj−i|+ 2δ1 +
∑
i≥j

|θi−k+1 − θi−j+1|

=
∑
i<k

(δk−i + δk−i+1 + ...+ δj−i−1) +
∑
i≥j

(δi−j+1 + δi−j+2 + ...+ δi−k) + 2δ1

=

k−1∑
i=1

(δi + δi+1 + ...+ δi+j−k−1) +

n−j+1∑
i=1

(δi + δi+1 + ...+ δi+j−k−1) + 2δ1. (X.50)

Thus, we have

∑
i<k

|θk−i − θj−i|+
∑
k≤i<j

|θi−k+1 − θj−i|+
∑
i≥j

|θi−k+1 − θi−j+1| −
∑
i<k

|θk−i − θk−i+1| −
∑
i>k

|θi−k+1 − θi−k|

≥
k−1∑
i=1

(δi + δi+1 + ...+ δi+j−k−1) +

n−j+1∑
i=1

(δi + δi+1 + ...+ δi+j−k−1) + 2δ1 −
k−1∑
i=1

δi −
n−k−1∑
i=1

δi

≥
k∑
i=1

δi +

n−k∑
i=1

δi ≥
dn/2e−1∑
i=1

δi,
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where in the second last inequality we used the fact that

n−j+1∑
i=1

(δi + δi+1 + ...+ δi+j−k−1)−
n−k−1∑
i=1

δi ≥
n−k∑
i=2

δi. (X.51)

To see this, note that

n−j+1∑
i=1

(δi + δi+1 + ...+ δi+j−k−1)−
n−k−1∑
i=1

δi

= (δ1 + δ2 + ...+ δj−k) + (δ2 + δ3 + ...+ δj−k+1) + ...+ (δn−j+1 + ...+ δn−k)−
n−k−1∑
i=1

δi.

If n− j + 1 < j − k, then we have

(δ1 + δ2 + ...+ δj−k) + (δn−j+1 + ...+ δn−k)−
n−k−1∑
i=1

δi ≥ δn−k,

so that

(δ1 + δ2 + ...+ δj−k) + (δ2 + δ3 + ...+ δj−k+1) + ...+ (δn−j+1 + ...+ δn−k)−
n−k−1∑
i=1

δi

≥ (δ2 + δ3 + ...+ δj−k+1) + ...+ (δn−j + ...+ δn−k−1) + δn−k ≥
n−k∑
i=2

δi.

If n− j + 1 ≥ j − k, then we can "extract" the first terms in each of the first n− j sums, and all but the last term

δn−k in the (n− j + 1)-th sum, and get

(δ1 + δ2 + ...+ δj−k) + (δ2 + δ3 + ...+ δj−k+1) + ...+ (δn−j+1 + ...+ δn−k)−
n−k−1∑
i=1

δi

≥ (δ2 + δ3 + ...+ δj−k) + (δ3 + δ4 + ...+ δj−k+1) + ...+ (δn−j+1 + ...+ δn−k−1) + δn−k ≥
n−k∑
i=2

δi.

This proves (X.49) or (X.48) under the condition that Θ ∈ T Rn (λ). Thus, we can take any τn ∈ [τ1, τ2], to get

(X.44) and (X.45), which imply (X.42) and (X.43). This proves (X.40) under the conditions of the proposition.

E. Sharp λ-ρ∗ Correspondence: Proof of Proposition 5

a) Sufficiency: By the conditions of Proposition 5, for all Θ ∈ T ′n, we have ρ(Θ,S ′n) ≥ Cnλ∗. Denote the

diagonal values of Θ as {θ0, ..., θn−1}. By the definition of ρ(Θ,S ′n), we have

[ρ(Θ,S ′n)]2 = min
Π1,Π2∈S′n

‖Π1ΘΠ>1 −Π2ΘΠ>2 ‖2F ≤ n(n− 1) · 4(θ1 − θdn/2e)2,

where the last inequality follows from the fact that (θj−θk)2 ≤ (θ1−θn)2 for any j 6= k, and the "ridge" condition

θ1 − θdn/2e ≥ θdn/2e − θn−1. Thus, ρ(Θ,S ′n) ≥ Cnλ∗ implies θ1 − θdn/2e ≥ Cλ∗

2 , that is, Θ ∈ T Rn (λ) for

λ = C2λ
∗ where C2 = C/2. Since this holds for any such Θ ∈ T ′n, we have proven the first part of Proposition 5.



43

b) Necessity: To begin with, we first show that, there exists some T ′n ⊆ Tn and S ′n ⊆ S such that

ρ∗(T ′n,S ′n) = Cσnλ, T ′n ⊆ T Rn (λ), (X.52)

for some absolute constant C > 0. To prove this, without loss of generality, we assume n = 4m for some integer

m > 0, and consider the class of symmetric Toeplitz matrices

T ′n =

{
Θ ∈ Tn : θ0 = 0, θk = α+ (n− k)β,∀k ∈ {1, 2, ..., n− 1}, α ≥ 0

}
,

where β(n/2−1) = λ. As a result, we can easily check that T ′n ⊆ T Rn (λ). On the other hand, we consider the permu-

tation set S ′n ⊆ Sn including only two permutations π0 = id and π1 = (n, ..., 3n/4+1, n/4+1, ..., 3n/4, n/4, ..., 1).

In other words, π1 exchanges the first n/4 elements with the last n/4 elements, and arranges them in the reversed

order. Let Π0 and Π1 be the permutation matrices associated with π0 and π1, respectively. In the following, we

show that for any Θ ∈ T ′n, we have

‖Π0ΘΠ>0 −Π1ΘΠ>1 ‖2F = C0n
2λ2, (X.53)

which implies (X.52). To obtain (X.53), we denote A = (aij) = Π0ΘΠ>0 and B = (bij) = Π1ΘΠ>1 , and calculate

the differences ‖A.i −B.i‖22 carefully.

Due to the invariance of the difference with respect to a translation of Θ, we assume without loss of generality

that α = 0. For i = 1, we have

A.1 = Θ.1 = (0, (n− 1)β, (n− 2)β, ..., 2β, β)>,

B.1 = Π1Θ.n = Π1 · (β, 2β, ..., (n− 1)β, 0)>

= (0, (n− 1)β, (n− 2)β, ..., (3n/4 + 1)β︸ ︷︷ ︸
n/4

, (n/4 + 1)β, ..., (3n/4)β︸ ︷︷ ︸
n/2

, (n/4)β, ..., 2β, β︸ ︷︷ ︸
n/4

)>.

Thus,

‖A.1 −B.1‖22 = 2β2

n/4−1∑
k=0

(n/2− 2k − 1)2 = 2β2

n/4∑
k=1

(2k − 1)2 =
β2n(n/2− 1)(n/2 + 1)

6
.

For i = 2, we have

A.2 = Θ.2 = ((n− 1)β, 0, (n− 1)β, (n− 2)β, ..., 3β, 2β)>

B.2 = Π1Θ.(n−1) = Π1 · (2β, 3β, ..., (n− 1)β, 0, (n− 1)β)>

= ((n− 1)β, 0, (n− 1)β, ..., (3n/4 + 2)β︸ ︷︷ ︸
n/4

, (n/4 + 2)β, ..., (3n/4 + 1)β︸ ︷︷ ︸
n/2

, (n/4 + 1)β, ..., 3β, 2β︸ ︷︷ ︸
n/4

)>.
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Thus,

‖A.2 −B.2‖22 = 2β2

n/4∑
k=1

(2k − 1)2 =
β2n(n/2− 1)(n/2 + 1)

6
.

Similarly, one can show that,

‖A.i −B.i‖22 =
β2n(n/2− 1)(n/2 + 1)

6
, for all i ∈ {1, 2, ..., n/4}. (X.54)

Hence, by adding up the above differences, we have

‖A−B‖2F ≥
β2n2(n/2− 1)(n/2 + 1)

24
≥ β2n4

24× 8

for n ≥ 3. On the other hand, we have

‖A−B‖2F ≤ 2‖A‖2F + 2‖B‖2F = 4‖Θ‖2F ≤ 2β2
n−1∑
k=1

k3 =
β2n2(n− 1)2

2
≤ β2n4.

Combining the above results, we have shown ‖A−B‖2F � β2n4 � λ2n2, or (X.53).

F. An Information Lower Bound for Adaptive Sorting

In this part, we show that, for the adaptive sorting to achieve exact matrix reordering, a minimal signal strength

condition that is strictly stronger than that required by the constrained LSE is in fact needed. The result is summarized

as the following theorem.

Theorem 6: Suppose the noise matrix has i.i.d. entries up to symmetry generated from N(0, σ2). Then there

exists some T ′n ⊂ Tn and S ′n ⊆ Sn satisfying ρ∗(T ′n,S ′n) = Cσn3/2 for some absolute constant C > 0, such that

sup(Θ,Π)∈T ′n×S′n PΘ,Π(Π̃ΘΠ̃> 6= ΠΘΠ>) ≥ 0.2.

In particular, in light of the second part of Proposition 5, it suffices to show the following proposition.

Proposition 6 (Lower bound for λ-ridged Topelitz matrices): Suppose the noise matrix Z has i.i.d. entries up

to symmetry generated from N(0, σ2). Then there exists some T ′n ⊆ T Rn (λ) where λ = cσ
√
n for some absolute

constant c > 0, and S ′n ⊆ Sn, such that sup(Θ,Π)∈T ′n×S′n PΘ,Π(Π̃ΘΠ̃> 6= ΠΘΠ>) ≥ 0.2.

Proof. To prove this proposition, we start with the set of symmetric Toeplitz matrices

T ′n =

{
Θ ∈ Tn : θ0 = 0, θk = α+ (n− k)β,∀k ∈ {1, 2, ..., n− 1}, α ≥ 0

}
,

with β = λ/(n − 2), and the permutation set S ′n ⊆ Sn including only two permutations π0 = id and π1 =

(n, ..., 3n/4 + 1, n/4 + 1, ..., 3n/4, n/4, ..., 1), constructed in the proof of the second statement of Proposition 5.

In particular, we can easily check that T ′n ⊆ T Rn (λ), and that, for any Θ ∈ T ′n, we have

‖Π0ΘΠ>0 −Π1ΘΠ>1 ‖2F = C0n
2λ2, (X.55)
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In what follows, we will show that, for λ = cσ
√
n, we have PΘ,Π(Π̃ΘΠ̃> 6= ΠΘΠ>) ≥ 0.2 for any (Θ,Π) ∈

T ′n × S ′n. In fact, we only need to show that, in such a case,

PΘ,Π(π̃(1) /∈ {1, n}) ≥ 0.2. (X.56)

To show this, we show that

PΘ,Π(S1 > S2) ≥ 0.49, PΘ,Π(Sn > Sn−1) ≥ 0.49, (X.57)

where Sj =
∑
i6=j Yji. If we are able to show that event {S1 > S2} is independent of the event {Sn > Sn−1},

then we have

PΘ,Π(π̃(1) /∈ {1, n}) ≥ PΘ,Π(min{S1, Sn} > min
2≤i≤n−1

Si) ≥ PΘ,Π(S1 > S2, Sn > Sn−1)

≥ PΘ,Π(S1 > S2) · PΘ,Π(Sn > Sn−1) ≥ 0.2.

The rest of the proof is devoted to (X.57) and the independence between {S1 > S2} and {Sn > Sn−1}.

On the one hand, note that S1−S2 =
∑
i 6=1 Y1i−

∑
i 6=2 Y2i =

∑n−1
i=1 θi+

∑
i 6=1 Z1i−θ1−

∑n−2
j=1 θj−

∑
j 6=2 Z2j

where Zki’s are independent Gaussian random variables for k = 1, 2. By the tail bound of the Gaussian random

variable
∑
i6=1 Z1i −

∑
j 6=2 Z2j ∼ N(0, 2(n− 1)σ2), we have

P (S1 − S2 ≥ 0) = P

(
θn−1 − θ1 +

∑
i 6=1

Z1i −
∑
j 6=2

Z2j ≥ 0

)
= Φ

(
θn−1 − θ1

σ
√

2(n− 1)

)
≥ 0.49

if λ = cσ
√
n for some small constant c > 0. Similarly, we can also show P (Sn − Sn−1 ≥ 0) ≥ 0.49. This

completes the proof of (X.57).

On the other hand, we write

S1 − S2 =

n−1∑
i=1

θi − θ1 −
n−2∑
j=1

θj +
∑
i6=1

Z1i −
∑
j 6=2

Z2j

=

n−1∑
i=1

θi − θ1 −
n−2∑
j=1

θj +
∑

i/∈{1,2,n−1,n}

Z1i −
∑

j /∈{1,2,n−1,n}

Z2j

+ Z1,n−1 + Z1,n − Z2,n−1 − Z2,n,
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and

Sn − Sn−1 =

n−1∑
i=1

θi − θ1 −
n−2∑
j=1

θj +
∑
i6=n

Zn,i −
∑

j 6=n−1

Zn−1,j

=

n−1∑
i=1

θi − θ1 −
n−2∑
j=1

θj +
∑

i/∈{1,2,n−1,n}

Zn,i −
∑

j /∈{1,2,n−1,n}

Zn−1,j

+ Z1,n−1 + Z2,n−1 − Z1,n − Z2,n.

By the property of normal random variables, we have that Z1,n−1 + Z1,n is independent of Z1,n−1 − Z1,n, and

Z2,n−1 +Z2,n is independent of Z2,n−1−Z2,n. Therefore, noting that
∑
i/∈{1,2,n−1,n} Z1i−

∑
j /∈{1,2,n−1,n} Z2j is

independent of
∑
i/∈{1,2,n−1,n} Zn,i−

∑
j /∈{1,2,n−1,n} Zn−1,j , we conclude that the event S1−S2 ≥ 0 is independent

of Sn − Sn−1 ≥ 0. This completes the proof of the proposition.
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