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1 Introduction

1.1 Background

Since the ground-breaking work of Markowitz (1952), the mean-variance portfolio has caught

significant attention from both researchers and practitioners. To implement such a strat-

egy in practice, the accuracy in estimating both the expected returns and the covariance

structure of returns is vital. It has been well documented that the estimation of the ex-

pected returns is more difficult than the estimation of covariances (Merton (1980)), and the

impact on portfolio performance caused by the estimation error in the expected returns is

larger than that caused by the error in covariance estimation. These difficulties pose serious

challenges for the practical implementation of the Markowitz portfolio optimization. The

minimum variance portfolio (MVP), on the other hand, avoids the difficulties in estimating

the expected returns and is on the efficient frontier with the minimum variance for a given

set of assets.

The MVP has received growing attention over the past few years (see, e.g., DeMiguel

et al. (2009) and the references therein). In addition to the desirable feature of avoiding

mean estimation, it was found to perform well on real data. Empirical studies in Haugen

and Baker (1991), Chan et al. (1999), Schwartz (2000), Jagannathan and Ma (2003) and

Clarke et al. (2006) have found that the MVP enjoys both lower risks and higher returns

compared with some benchmark portfolios. These features make the MVP an attractive

investment strategy in practice.

The MVP is more natural in the context of high-frequency data, mostly because the
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expected returns are negligible over short time horizons1. As a prudent common practice,

when the time horizon of interest is short, the expected returns are often assumed to be zero

(e.g., see Part II of Christoffersen (2012) and the references therein). Fan et al. (2012a) make

this assumption when considering the management of portfolios that are rebalanced daily or

every other few days. When the expected returns are zero, the mean-variance optimization

reduces to the risk minimization problem, in which one seeks the MVP.

There are also benefits of using high-frequency data. On the one hand, large number

of observations can potentially help better understand the covariance structure of returns;

on the other hand, high-frequency data allows short-horizon rebalancing and hence the

portfolios can adjust quickly to time variability of volatilities/co-volatilities. However, high-

frequency data do come with significant challenges in analysis. Complications arise due to

heteroskedasticity and microstructure noise, among others.

Another interesting problem is the estimation of the global minimum variance. This

provides a reference target for the estimated minimum variance portfolios. Moreover, it is

useful itself in tracking market risks.

Modern portfolios often involve a large number of assets, and this high-dimensionality

poses great challenges. See, for example, Zheng and Li (2011), Fan et al. (2012a), Fan et al.

(2012b) and Ao et al. (2014), Xia and Zheng (2017) on issues about and progress made on

vast portfolio management.

We consider in this paper the estimation of high-dimensional MVP using high-frequency

data. To be more specific, given p assets, which could be p stocks, whose returns X =

1For example, as pointed out in Christoffersen (2012), Chapter 1.6, one of the stylized facts of asset
returns is that the mean return is usually completely dominated by the volatility over a short period of time
such as one day.
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(X1, . . . , Xp)
ᵀ have covariance matrix Σ, we aim to find:

arg min
w

wᵀΣw subject to wᵀ1 = 1, (1.1)

where w = (w1, . . . , wp)
ᵀ represents the weights put on different assets, and 1 = (1, . . . , 1)ᵀ

is the p-dimensional vector with all entries being 1. The optimal solution is given by

wopt =
Σ−11

1ᵀΣ−11
, (1.2)

which yields the minimum risk

Rmin = wᵀ
optΣwopt =

1

1ᵀΣ−11
. (1.3)

More generally, one may be interested in the following optimization problem: for a given

vector β = (β1, . . . , βp)
ᵀ and c,

arg min
w

w̃ᵀΣw̃ subject to wᵀ1 = c, where w̃ = (β1w1, . . . , βpwp), (1.4)

or its equivalent formulation:

arg min
w̃

w̃ᵀΣw̃ subject to w̃ᵀβ−1 = c, where β−1 := (1/β1, . . . , 1/βp)
ᵀ. (1.5)

Such a setting applies, for example, in leveraged investment. Note that the optimiza-

tion problem (1.5) can be reduced to (1.1) by noticing that if w̃ solves (1.5), then w̌ :=
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(w̃1/β1, . . . , w̃p/βp)
ᵀ/c solves (1.1) with Σ̃ = diag(β1, . . . , βp)Σ diag(β1, . . . , βp), and vice

versa. For this reason, the two optimization problems (1.1) and (1.4) or (1.5) can be trans-

formed into each other. In the rest of paper we will focus on the optimization problem

(1.1).

In practice, because the true covariance matrix is unknown, the sample covariance matrix

S is usually used as a proxy, and the resulting “plug-in” portfolio, wp = S−11/1ᵀS−11, has

been widely adopted. How well does such a portfolio perform? This question has been

considered in Basak et al. (2009). The following simulation result visualizes their first

finding (Proposition 1 therein). Figure A.4 shows the risk of the plug-in portfolio based

on 100 replications. One can see that the actual risk R̂p = wᵀ
pΣwp of the plug-in portfolio

can be devastatingly higher than the theoretical minimum risk. On the other hand, the

perceived risk R̂p = wᵀ
pSwp can be even smaller than the theoretical minimum risk. Such

contradictory phenomena lead to two questions: (1) Can we consistently estimate the true

minimum risk? ; and (2) More importantly, can we find a portfolio with a risk close to the

true minimum risk?

[Fig 1 here]

Because of the issue with the plug-in portfolio, alternative methods have been proposed.

Jagannathan and Ma (2003) argue that imposing no short-sale constraint helps. More

generally, Fan et al. (2012b) study the MVP under the following gross-exposure constraint:

arg min
w

wᵀΣw subject to ||w||1 ≤ λ and wᵀ1 = 1, (1.6)
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where ||w||1 =
∑p

i=1 |wi| and λ is a chosen constant. They derive the following bound on

the risk of estimated portfolios. If Σ̂ is an estimator of Σ, then the solution to (1.6) with Σ

replaced by Σ̂, denoted by ŵopt, satisfies that

|Rmin −R(ŵopt)| ≤ λ2 · ||Σ̂−Σ||∞, (1.7)

where for any weight vector w, R(w) = wᵀΣw stands for the risk measured by the variance

of the portfolio return, and for any matrix A = (aij), ||A||∞ := maxij |aij |. In particular,

||Σ̂ − Σ||∞ is the maximum element-wise estimation error in using Σ̂ to estimate Σ. Fan

et al. (2012a) consider the high-frequency setting, where they use the two-scale realized

covariance matrix (Zhang et al. (2005)) to estimate the so-called integrated covariance matrix

(see Section 2.1 below for related background), and establish concentration inequalities for

element-wise estimation errors. These concentration inequalities imply that even if the

number of assets p grows faster than the number of observations n, one still has that

||Σ̂−Σ||∞ → 0 as n→∞; see equation (20) therein for the precise statement. In particular,

bound (1.7) guarantees that under the gross-exposure constraint, the difference between the

risk associated with ŵopt and the minimum risk is asymptotically negligible.

The difference between the risk of an estimated portfolio and the minimum risk going

to zero, however, may not be as attractive as it sounds. In fact, under rather general

assumptions (which do not exclude factor models), the minimum risk Rmin = 1/1ᵀΣ−11

goes to zero as the number of assets p→∞; see Ding et al. (2017) for a thorough discussion.

If indeed the minimum risk goes to 0 as p → ∞, then the difference |Rmin − R(ŵopt)| → 0

is not enough to guarantee (near) optimality. Based on the above consideration, we turn to
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find an asset allocation ŵ which satisfies a stronger sense of consistency in that the ratio

between the risk of the estimated portfolio and the minimum risk goes to one, i.e.,

R(ŵ)

Rmin
→ 1 as p→∞. (1.8)

1.2 Main contributions of this paper

Our contributions mainly lie in the following aspects.

We propose a new perspective to study the minimum variance portfolio, namely, to work

with ratio consistency (1.8). To achieve the stronger convergence (1.8), we introduce a new

approach to estimate the MVP (1.1). It is shown that, under some sparsity assumptions

on the inverse of the covariance matrix (also known as the precision matrix), our estimated

portfolio enjoys the desired convergence (1.8).

We also introduce a consistent estimator of the minimum risk that does not depend on

the sparsity assumption and further establish the related CLT.

Moreover, to utilize high-frequency data, we develop methods to remove impacts due to

heteroschadasticity and market microstructure noise, and establish the statistical properties

of the estimated minimum variance portfolio.

1.3 Organization of the paper

The paper is organized as follows. In Section 2, we present our estimator of the MVP

and show that its risk converges to the minimum risk in the sense of (1.8). We establish

the desired convergence in the high-frequency setting, in which case returns may exhibit
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heteroskedasticity and possibly be contaminated by microstructure noise. A consistent es-

timator of the minimum risk is proposed in Section 3, for which we also establish the CLT.

Section 4 presents simulation results to illustrate the performance of both portfolio and

minimum risk estimations. Empirical analysis results based on NYSE stocks are reported

in Section 5. We conclude our paper with a brief discussion in Section 6. All the proofs are

given in the Appendix.

2 Estimating the MVP

2.1 High-frequency Data

We assume that the latent log-price process (Xt) follows a diffusion model:

dXt = µtdt+ ΘtdWt, for t ∈ [0, 1], (2.1)

where (µt) = (µ1
t , . . . , µ

p
t )

ᵀ is the drift process, (Θt) = (θijt )1≤i,j≤p is a p× p matrix-valued

process called the spot co-volatility process, and (Wt) is a p-dimensional Brownian motion.

Both (µt) and (Θt) are stochastic, càdlàg, and may depend on (Wt), all defined on a

common filtered probability space (Ω,F , (Ft)t≥0). The time interval [0, 1] stands for the

period of interest. For example, if one plans to rebalance portfolio daily, then the time

interval [0, 1] represents one day.

Let

Σt = ΘtΘ
ᵀ
t := (σijt )
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be the spot covariance matrix process. The ex-post integrated covariance (ICV) matrix is

ΣICV = (σij) :=

∫ 1

0
Σtdt.

Denote its inverse by Ω := Σ−1
ICV . The ex-post minimum risk, Rmin, is obtained by replacing

the Σ in (1.3) with ΣICV .

Let us emphasize that in general, ΣICV is a random variable which is only measurable

to F1, and so is Rmin. It is therefore in principle impossible to construct a portfolio that

is measurable to F0 to achieve the minimum risk Rmin. Practical implementation of the

minimum variance portfolio relies on making forecasts about ΣICV based on historical data.

The simplest approach is to assume that ΣICV,1 ≈ ΣICV,2, where ΣICV,i stands for the ICV

matrix in period [i − 1, i]. Under such an assumption, if we can construct a portfolio w

based on the observations during [0, 1] (and hence only measurable to F1) that can approx-

imately minimize the ex-post risk wᵀΣICV,1w, then if we hold the portfolio during the next

period [1, 2], the ex-ante risk wᵀΣICV,2w is still approximately minimized. In this article

we shall adopt such a strategy.

2.2 High-frequency case with no microstructure noise

We first consider the case when there is no microstructure noise, in other words, one observes

the true log-prices (Xi
t).

Our approach to estimate the minimum variance portfolio relies on the constrained l1-

minimization for inverse matrix estimation (CLIME) proposed in Cai et al. (2011). The

CLIME estimator Ω̂ of Ω := Σ−1 is defined as the solution to the following optimization
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problem:

arg min
Ω′

||Ω′||1 subject to ||Σ̂Ω′ − I||∞ ≤ λ, (2.2)

where Σ̂ is an estimator of Σ, I is the p× p identity matrix, and for any matrix A = (aij),

||A||1 :=
∑

i,j |aij | and ||A||∞ := maxij |aij |, and λ is a tuning parameter.

With the CLIME estimator Ω̂, the resulting estimated MVP is given by

ŵ =
Ω̂1

1ᵀΩ̂1
. (2.3)

The risk associated with the portfolio ŵ is

Rn = ŵᵀΣŵ =
(Ω̂1)ᵀΣ(Ω̂1)

(1ᵀΩ̂1)2
. (2.4)

If the true log-prices are observed, one of the most commonly used estimators for ΣICV is

the realized covariance (RCV) matrix. For each stock i, suppose the observations at stage n

are Xi
ti,n`

, where 0 = ti,n0 < ti,n1 < · · · < ti,nNi = 1 are the observation times. The n character-

izes the observation frequency, and Ni →∞ as n→∞. The synchronous observation case

corresponds to

ti,n` ≡ t
n
` for all i = 1, . . . , p, (2.5)

which, in the simplest equidistant setting, reduces to

ti,n` = tn` = `/n, ` = 0, 1, . . . , n. (2.6)
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In the synchronous observation case (2.5), let

∆X` := Xtn`
−Xtn`−1

, ` = 1, . . . , n

be the log-return vectors over the time interval [tn`−1, t
n
` ], then the RCV matrix is defined as

Σ̂RCV =
n∑
`=1

∆X`(∆X`)
ᵀ. (2.7)

For any 0 ≤ q < 1, s0 = s0(p) < ∞ and M = M(p) < ∞, define a uniformity class of

matrices as

U(q, s0,M) =
{

Ω = (Ωij)p×p : Ω positive definite, ||Ω||L1 ≤M, max
1≤i≤p

p∑
j=1

|Ωij |q ≤ s0

}
,

(2.8)

where ||Ω||L1 := max1≤j≤p
∑p

i=1 |Ωij |.

The CLIME estimator is shown in Cai and Liu (2011) to be consistent when the observa-

tions are i.i.d. sub-Gaussian, and the underlying Ω belongs to U(q, s0(p),M(p)) with q, s0(p)

and M(p) satisfying M2−2qs0 (log p/n)(1−q)/2 → 0; see Theorem 1(a) therein.

We remark that the sparsity assumption Ω = Σ−1 ∈ U(q, s0,M) appears to be reason-

able in financial applications. For example, if the returns are assumed to follow a (condi-

tional) multivariate normal distribution with covariance matrix Σ, then the (i, j)th element

in Ω being 0 is equivalent to that the returns of the i-th and j-th stocks are conditionally

independent given the other stock returns. For stocks in different sectors, many pairs might

be conditionally independent or only weakly dependent. Practically, as can be seen from the
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performance of our estimated portfolios in the empirical studies, this assumption appears to

be fine.

We derive our theoretical results under the following

Assumption:

A There exists δ ∈ (0, 1) such that for all p, 0 < δ ≤ λmin ≤ λmax < 1/δ, where λmin

and λmax are the minimum and maximum eigenvalues of ΣICV , respectively.

B The drift processes are such that |µit| ≤ Cµ for some constant Cµ < ∞ for all i =

1, . . . , p and t ∈ [0, 1] almost surely.

C There exists constant Cσ such that |σijt | ≤ Cσ < ∞ for all i = 1, . . . , p and t ∈

[0, 1] almost surely.

D The observation times tn` under the synchronous setting (2.5) satisfy that

sup
n

max
1≤`≤n

n|tn` − tn`−1| ≤ C∆ <∞. (2.9)

E p, n→∞ and log p/n→ 0.

Theorem 1. Suppose that (Xt) satisfies (2.1) and the underlying precision matrix Ω =

Σ−1
ICV ∈ U(q, s0,M). Under Assumptions A-E, with λ = ηM

√
log p/n for some η > 0,

there exist constants C0, C1 > 0 such that

P

(
Rn
Rmin

− 1 = O
(
M2−2qs0

(
(log p/n)(1−q)/2

)))
≥ 1− C0

pC1η2−2
,

where Rn := ŵᵀΣICV ŵ is the risk associated with the portfolio ŵ = Ω̂RCV 1
1ᵀΩ̂RCV 1

, Ω̂RCV is the
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CLIME estimator obtained by replacing Σ̂ with Σ̂RCV in (2.2), and Rmin = 1/(1ᵀΩ1).

Remark 1. Theorem 1 guarantees that as long as M2−2qs0

(
(log p/n)(1−q)/2) → 0, the

risk of our estimated MVP is consistent in the sense of (1.8). The estimated portfolio is

therefore applicable to the ultra-high-dimensional setting where the number of assets can be

much larger than the number of observations.

Remark 2. The case where observations are i.i.d. is actually a special case of the high

frequency setting that we adopt here. In fact, to generate i.i.d. returns under our setting,

one just needs to take constant drift and volatility processes. Our setting is therefore more

general than the i.i.d. observation setting, and all our results readily apply to that case.

Remark 3. Although Theorem 1 is stated for synchronous observation time case, by using

data synchronization methods and following the techniques in Fan et al. (2012a), Theorem 1

can be easily generalized to the asynchronous setting.

2.3 High-frequency case with microstructure noise

In general, the observed prices are believed to be contaminated by microstructure noise. In

other words, instead of observing the true log-prices Xi
ti,n`

, for each stock i, the observations

at stage n are

Y i
ti,n`

= Xi
ti,n`

+ εi`, (2.10)

where εi`’s represent microstructure noise. In this case, if one simply plugs Y i
ti,n`

into the

formula of RCV in (2.7), the resulting estimator is not consistent even when the dimen-

sion p is fixed. Consistent estimators in the univariate case include the two-scales realized

volatility (TSRV, Zhang et al. (2005)), multi-scale realized volatility (MSRV, Zhang (2006)),
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pre-averaging estimator (PAV, Jacod et al. (2009) and Podolskij and Vetter (2009)), real-

ized kernels (RK, Barndorff-Nielsen et al. (2008)), and quasi-maximum likelihood estima-

tor (QMLE, Xiu (2010)). All these estimators, however, are not consistent in the high-

dimensional setting.

In this article we choose to work with the PAV estimator. To reduce non-essential tech-

nical complications, we work with the equidistant time setting (2.6) (such as data sampled

every minute). Asynchrony can be dealt with by using data synchronization techniques such

as the previous tick method (Zhang (2010)) and the refresh time scheme (Barndorff-Nielsen

et al. (2011)). Compared with microstructure noise, asynchrony is less an issue, see, for

example, Section 2.4 in Xia and Zheng (2017).

To implement the PAV estimator, we fix a θ > 0, and let kn = [θn1/2] be the window

length over which the averaging takes place. Define

Y
n
k =

∑kn−1
i=kn/2

Ytk+i −
∑kn/2−1

i=0 Ytk+i

kn
.

The PAV (Jacod et al. (2009)) with weight function g(x) = x ∧ (1 − x) for x ∈ (0, 1) is

defined as

Σ̂PAV =
12

θ
√
n

n−kn+1∑
k=0

Y
n
k · (Y

n
k)ᵀ − 6

θ2n
diag

(
n∑
k=1

(∆Y i
tk

)2

)
i=1,...,p

. (2.11)

Now we state additional assumptions that we need in order to establish the statistical

results concerning the estimation of MVP based on the PAV estimator.

Assumption:

14



F The microstructure noise εi` is strictly stationary and independent with mean zero and

also independent of (Xt).

G For any θ ∈ R,

E(exp(θεi`)) ≤ exp(Cθ2),

where C is a fixed constant. Suppose also that there exists Cε > 0 such that Var(εi`) =

σii ≤ Cε for all i.

H p, n→∞ and log p/
√
n→ 0.

Theorem 2. Suppose that (Xt) satisfies (2.1) and underlying precision matrix Ω = Σ−1
ICV ∈

U(q, s0,M). Under Assumptions A-D and F-H, with λ = ηM
√

log p/n1/4 for some η > 0,

there exist constant C2, C3 > 0 such that

P

(
Rn
Rmin

− 1 = O
(
M2−2qs0

(
(log p)(1−q)/2/n(1−q)/4

)))
≥ 1− C2

p(C3η2−2)
,

where Rn is the risk associated with the portfolio ŵ = Ω̂PAV 1
1ᵀΩ̂PAV 1

, and Ω̂PAV is the CLIME

estimator obtained by replacing Σ̂ with Σ̂PAV in (2.2).

Remark 4. Theorem 2 states that in the noisy case, ifM2−2qs0

(
(log p)(1−q)/2/n(1−q)/4) → 0,

then the risk of our estimated MVP is consistent in the sense of (1.8).

Remark 5. The reduction in the rate from (
√

log p/
√
n)1−q in Theorem 1 to (

√
log p/n1/4)1−q

in the current theorem is an inevitable consequence due to noise. In fact, the optimal rate in

estimating the integrated volatility in the noisy case is O(n1/4) (Gloter and Jacod (2001)),

as is compared with the rate of O(n1/2) in the noiseless case.
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3 Estimating the Minimum Risk

So far we have seen that under certain sparsity assumption on the precision matrix, we can

construct a portfolio with a risk close to the true minimum risk in the sense of (1.8). Now

we turn to consistent estimation of the minimum risk.

3.1 Assuming Sparsity: Using CLIME based Estimator

The CLIME estimator we considered above also leads to an estimator of the true global

minimum risk Rmin. More specifically, define

R̂CLIME =
1

1ᵀΩ̂1
. (3.1)

Here, when working under high-frequency setting without noise, Ω̂ is the CLIME estimator

obtained by replacing Σ̂ with Σ̂RCV in (2.2), denoted as Ω̂RCV . The corresponding minimum

risk estimator is defined as

R̂RCVCLIME =
1

1ᵀΩ̂RCV 1
. (3.2)

Similarly, if microstructure noise is present, then Σ̂PAV is adopted in forming the Ω̂, which

results in the estimator Ω̂PAV . The corresponding minimum risk estimator is then defined

as

R̂PAVCLIME =
1

1ᵀΩ̂PAV 1
. (3.3)

We have the following results for these CLIME-based estimators.

Theorem 3. (i) Under the assumptions in Theorem 1, the minimum risk estimator R̂RCVCLIME
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defined in (3.2) satisfies that

P

(
R̂RCVCLIME

Rmin
− 1 = O

(
M2−2qs0

(
(log p/n)(1−q)/2

)))
≥ 1− C0

pC1η2−2
.

(ii) Under the assumptions in Theorem 2, the minimum risk estimator R̂PAVCLIME defined in

(3.3) satisfies that

P

(
R̂PAVCLIME

Rmin
− 1 = O

(
M2−2qs0

(
(log p)(1−q)/2/n(1−q)/4

)))
≥ 1− C2

p(C3η2−2)
.

We remark that as long as M(p)2−2qs0(p)
(
(log p/n)(1−q)/2)→ 0 in the noise-less case or

M(p)2−2qs0(p)
(
(log p)(1−q)/2/n(1−q)/4) → 0 in the noisy case, we would have a consistent

estimation of the minimum risk. The estimators are hence applicable to the ultra-high-

dimensional setting where the number of assets can be much larger than the number of

observations.

3.2 Without the Sparsity Assumption: Low-frequency I.I.D. Returns

CLIME estimator works under mild sparsity assumptions on the precision matrix. Below

we propose another estimator of the minimum risk, which does not rely on such sparsity

assumption, although on the other hand, it assumes that the observations are i.i.d. normally

distributed. This estimator is hence more suitable for the low frequency setting and can be

used to estimate the minimum risk during a long time period.

More specifically, suppose that we observe n i.i.d. returns X1, . . . ,Xn (possibly in low

frequency). Let S be the sample covariance matrix, and letwp = S−11/1ᵀS−11 be the “plug-
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in” portfolio weights obtained by replacing Σ in (1.2) with S. The corresponding perceived

risk is R̂p = wᵀ
pSwp. We have the following result about the relationship between R̂p

and the minimum risk Rmin, based on which a consistent estimator of the minimum risk is

constructed.

Theorem 4. Suppose that the returns X1, . . . ,Xn ∼i.i.d. N(µ,Σ). Suppose further that

both n and p→∞ in such a way that ρn := p/n→ ρ ∈ (0, 1). Then

∣∣∣∣∣ R̂pRmin
− (1− ρn)

∣∣∣∣∣→p 0. (3.4)

Therefore, if we define

R̂min = 1/(1− ρn) · R̂p, (3.5)

then

R̂min

Rmin
→p 1. (3.6)

Furthermore, we have

√
n− p

(
R̂min

Rmin
− 1

)
⇒ N(0, 2). (3.7)

The convergence (3.7) actually shows “blessing” of dimensionality: the higher the dimen-

sion, the more accurate the estimation.

The convergence (3.4) explains why in Figure A.4 the perceived risk is systematically

lower than the minimum risk. We also remark that the “plug-in” portfolio is not optimal.

In Basak et al. (2009), it is shown that the risk of the plug-in portfolio is on average a

higher-than-one multiple of the minimum risk; see Propositions 1 & 2 therein. Under the
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condition that both p and n→∞ and p/n→ ρ ∈ (0, 1), their result can be strengthened to

be that the risk of the plug-in portfolio is with probability approaching one, a larger-than-

one multiple of the minimum risk. In fact, using the relationship (5) in Basak et al. (2009),

it is easy to show that

R(wp)

Rmin
→p

1

1− ρ
, (3.8)

where R(wp) = wᵀ
pΣwp is the risk of the plug-in portfolio.

4 Simulation Studies

4.1 Case I: when there is no microstructure noise

We first consider a setting in which the log-price process (Xt) can be observed at high

frequeny. We assume that (Xi
t) follows

dXi
t =

(
µit −

∑p
j=1 a

2
ij(σ

j
t )

2

2

)
dt+

p∑
j=1

aijσ
j
t dW

j
t , for t ∈ [0, 1] and i = 1, . . . , p (4.1)

where (µit) and A = (aij) are to be specified, σjt ’s are such that their logarithms %jt := log σjt

follow independent Ornstein-Uhlenbeck processes:

d%jt = αj(βj0 − %
j
t )dt+ βj1 dU

j
t , j = 1, . . . , p, (4.2)

where (Ut) = (U1
t , . . . , U

1
t ) is a p-dimensional standard Brownian motion independent

of (Wt = (W j
t )).

Now we specify A = (aij). It is taken to be such that its inverse is a tri-diagonal Toeplitz
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matrix:

A = B−1, where B =



α β 0 0 · · · 0

β α β 0 · · · 0

0 β α β · · · 0

...
. . . . . . . . .

...
...

0 0 · · · 0 β α


. (4.3)

Elementary calculations show that if α2 6= 4β2, then

aij = (−1)i+jβj−i
(ci1 − ci2)(cp+1−j

1 − cp+1−j
2 )

(c1 − c2)(cp+1
1 − cp+1

2 )
, 1 ≤ i ≤ j ≤ p,

where c1 =
α+
√
α2−4β2

2 and c2 =
α−
√
α2−4β2

2 ; and if α2 = 4β2, then

aij = (−1)i+jβj−i
(α

2

)i−j−1 i(p− j + 1)

p+ 1
, 1 ≤ i ≤ j ≤ p.

In the simulations below, we fix α = 3 and β = −1.

Under such a setting, the spot co-volatility matrix for (Xt) is

Σt = AΣ̃tA,

where Σ̃t = diag
(
(σit)

2
)
, and the ICV matrix is

ICV = A

∫ 1

0
Σ̃t dt A = A

(
diag

(∫ 1

0
(σit)

2dt

))
A.

In the simulations below, we fix the number of stocks to be p = 70. For each day, we
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simulate 79 observed prices at times `/n, ` = 0, 1, . . . , n, for n = 78. This corresponds to

sub-sampling every 5 minutes during the regular trading hours from 9:30 a.m. to 4 p.m.. The

number of days is set to be T = 252, the average number of trading days in a year. The pa-

rameters in (4.2) are taken to be (αj , βj0, β
j
1) ∼ (Unif[1.5, 3],Unif[log(0.025), log(0.12)], 10−2).

With these configurations, the simulated average daily volatility will be around 1.5% to 5.5%,

similar to the levels observed in real data.

We consider using estimated weights to form a portfolio for the next day (except for the

infeasible optimal portfolio, which uses the ICV matrix of the next day). We compare the

performance of different portfolios in terms of the annualized standard deviations of their

daily returns. The initial portfolio value is set to be $100 for all portfolios.

We consider the setting with non-zero (µt), in which case the price process is not a

martingale. The (µit) ≡ µi are sampled independently from Uniform[−5.67e− 6, 5.67e− 6].

The resulting annualized returns fall between −10% and 10%. Figure 2 below shows the

time series plots of four portfolio values:

(i) Oracle portfolio. This is the optimal portfolio obtained by plugging the ICV matrix into

the weight formula (1.2). This portfolio is infeasible because ICV is only measurable to

the filtration at the end of the day while the portfolio is to be held from the beginning

of each day. It is represented by the black curve;

(ii) CLIME-based portfolio. This is our proposed portfolio computed using (2.3) with Ω̂

obtained by replacing Σ̂ with Σ̂RCV in (2.2). The portfolio is represented by the red

curve;

(iii) Equally-weighted portfolio. We include this widely used benchmark portfolio for com-
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parison and it is represented by the purple curve;

(iv) Plug-in portfolio. This is obtained by replacing Σ in (1.2) with the RCV matrix (2.7).

It is represented by the orange curve.

[Fig 2 here]

Table 1 reports the annualized standard deviations of daily returns of the compared

portfolios.

[Table 1 here]

From Figure 2 and Table 1 we see that our CLIME-based portfolio closely tracks the

infeasible optimal portfolio and has a risk close to the minimum risk. In contrast, the

equally-weighted and especially the plug-in portfolios carry much higher risks.

We further apply R̂RCVCLIME to estimate the daily minimum risks. As we discussed in

Section 2.1, the daily minimum risk is a random variable that changes from one day to

the other. Hence, we obtain one estimated minimum risk for each day, and totally 252

estimates. The mean and standard deviation of the estimated minimum risks are 0.471%

and 0.027%, respectively. By the law of total variance, under the stationarity assumption,

the unconditional daily minimum risk is estimated to be
√

0.004722 + 0.000272 ≈ 0.472%,

which corresponds to an annualized risk of 7.50%. This is close to the risk of the oracle

portfolio, confirming the validity of our minimum risk estimator.

Alternatively, we can use daily returns to estimate minimum risk based on Theorem 4.
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Specifically, we treat daily returns as i.i.d. observations and use the estimator in (3.5). The

estimated daily minimum risk is 0.522%, which corresponds to an annualized risk of 8.28%,

again similar to the risk of the oracle portfolio.

4.2 Case II: when there is microstructure noise

Next, we consider a setting where the prices are contaminated with noise. More specifically,

we adopt the same setting for the true log-price process (Xt) with the parameters generated

in the same way as in Case I. In addition, we simulate noise process independently from

N(0, σ2
ε) with σε ∼ Unif[9e− 4, 3.6e− 3].

We still consider p = 70 stocks. For each day, we simulate 391 observed prices at equally

spaced times. This corresponds to sub-sampling every minute during the regular trading

hours. The number of days is again set to be 252. Figure 3 below shows the time series

plots of the following portfolio values:

(i) Oracle portfolio. Again we include this infeasible optimal portfolio in our comparison.

It is represented by the black curve;

(ii) 5-Min CLIME-based portfolio. This is obtained based on Theorem 1 using 5-min

returns and is represented by red curve;

(iii) 1-Min-PAV-CLIME-based portfolio. This is based on Theorem 2 with pre-averaging

estimator using 1-min returns and is represented by blue curve;

(iv) Equally-weighted portfolio. We again include this benchmark portfolio and is repre-

sented by the orange curve;

(v) Plug-in portfolio. The portfolio based on RCV is also constructed using 5-min returns.
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It is represented by the purple curve.

[Fig 3 here]

Table 2 reports the corresponding annualized standard deviations.

[Table 2 here]

Figure 3 and Table 2 show that when there is microstructure noise, our proposed port-

folios based on CLIME using either 5 min returns or pre-averaged 1 min returns can track

the optimal portfolio closely, with risks close to the minimum risk. The plug-in portfolio

carries a much higher risk.

Next, we again use R̂CLIME to estimate the daily minimum risks with high-frequency

data. In this case, we consider the estimation with either RCV using 5-min data or PAV using

1-min data. The resulting estimated annualized risks are 8.73% and 8.82%, respectively. On

the other hand, the estimate based on (3.5) using daily returns is 8.76%. We see that all the

three estimates are similar to each other, and are roughly at the same level as the realized

risk of the infeasible oracle portfolio.

5 Empirical Studies

In this section, we conduct empirical studies and compare minimum variance portfolios

constructed via different estimators as well as the equally-weighted portfolio. We consider

the NYSE composites of SP100 Index during 2011-2013. Among them, there are totally 80

24



stocks that remained as the composites of the Index and have complete data during this

period. Our analysis is based on these 80 stocks. The observations are 1-min intra-day

prices (390 observations for each stock per day, from 9:30:00 to 16:00:00). There are a total

of T = 251, 247, 249 trading days for the year 2011, 2012 and 2013, respectively.

We include the following portfolios in our comparison.

(i) 1-Min-PAV-CLIME-based portfolio. This is based on Theorem 2 with pre-averaging

estimator using 1-min returns with daily re-balancing. To be more specific, for each

day t, we first compute Σ̂PAV,t using 1-min data, and then construct an estimate of Ωt

by replacing Σ̂ with the Σ̂PAV,t in (2.2). We then build a portfolio for day t+ 1:

wt+1 =
Ω̂t1

1ᵀΩ̂t1
, t = 0, 1, . . . , T − 1;

(ii) Daily CLIME-based portfolio. This portfolio weights are recalculated monthly: at

the beginning of each month, we compute RCV based on daily returns during the

immediate past 12 months, and then construct the portfolio using CLIME;

(iii) FFL portfolio. This is based on Fan et al. (2008). We use the S&P 500 ETF (SPY)

as the factor. For each month, we use the daily returns during the past 12 months to

construct the covariance matrix estimator Σ̂t, and plug its inverse into equation (2.3);

(iv) Nonlinear shrinkage portfolio. This is based on Ledoit and Wolf (2012). For each

month, we use the daily returns during the past 12 months to construct the nonlinear

shrinkage estimator Ω̂t, and plug it into equation (2.3);

(v) Equally-weighted portfolio. This serves as the benchmark portfolio for comparison.

We take S0 = $100 for all portfolios to be compared. In addition to the standard
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deviation as a measure of risk, we consider the maximum drawdown (MDD) of each portfolio.

The MDD measures the largest loss from a peak to a trough of a portfolio before a new peak

is reached. Specifically,

MDD = min
τ∈(0,T )

(
P (τ)−maxt∈(0,τ) P (t)

)
maxt∈(0,τ) P (t)

, (5.1)

where P (t) represents the portfolio value at day t.

Year 2012:

Figure 4 shows the time series plot of five portfolio values in Year 2012:

[Fig 4 here]

Table 3 reports some summary statistics for these portfolios.

[Table 3 here]

From Table 3, we observe that 1-Min-PAV-CLIME-based portfolio carries a low risk and

a low maximum drawdown, and at the same time, it yields a high compound return.

Finally, the minimum risk estimated by (3.2) and (3.5) with daily returns, or (3.3) using

1-min intra-day returns are 5.54%, 5.81% and 5.45%, respectively. Comparing such estimates

with Table 3 suggests that CLIME-based portfolios nearly achieve the minimum risk.
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Year 2013:

Figure 5 shows the time series plot of the five portfolio values in Year 2013:

[Fig 5 here]

Some summary statistics for these portfolios are reported in Table 4.

[Table 4 here]

The minimum risk estimates, for Year 2013, based on (3.2) and (3.5) using daily returns

or (3.3) using 1-min intra-day returns are 4.92%, 6.12% and 5.16%, respectively. These

numbers again suggest that CLIME-based portfolios nearly achieve the minimum risk with

low MDD and high compound returns.

Summarizing the comparisons in Year 2012 and 2013, we conclude the following:

(i) For both years tested, based on daily returns, the CLIME-based portfolios have lower

risks than the equally-weighted, FFL and nonlinear shrinkage portfolios.

(ii) Using high-frequency data, specifically, one-minute returns in our case, leads to further

improvements. The 1-Min-PAV-CLIME-based portfolios have similar risks to CLIME-

daily, yet may yield (substantially) higher compound returns.

(iii) The empirical risks of all portfolios studied above are higher than the estimated mini-

mum risks. The risks of CLIME-based portfolios are relatively closer to the estimated

minimum risk, suggesting the gain of our approach.
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6 Conclusion and Discussions

We propose in this paper estimators of the minimum variance portfolio in the high-dimensional

setting based on high-frequency data. The desired risk convergence result (1.8) for the esti-

mated portfolio is obtained under certain sparsity assumptions on the precision matrix. We

further propose consistent estimators of the minimum risk, one based on high-frequency data

under the same sparsity assumptions and the other based on low-frequency data without

assuming sparsity.

Numerical studies demonstrate that our methods perform favorably. An important ob-

servation is that high-frequency volatility/covolatility estimation techniques can add value

to portfolio allocation.

In this paper, we do not incorporate factor structure in our model. Empirical studies

show that our methods compare favorably with the FFL portfolio that makes explicit use

of the factor structure.
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A Appendix: Proofs

We start with a result about the CLIME estimator. It is a direct consequence of Theorem 6

in Cai and Liu (2011) .

Proposition 1. Suppose that Ω ∈ U(q, s0,M). If λ ≥ M ||Σ̂ −Σ||∞ with Σ̂ the estimator

for Σ used to construct CLIME estimator, then we have

||Ω̂−Ω||2 ≤ Cs0M
1−qλ1−q, (A.1)

where C ≤ 2(1 + 21−q + 31−q)41−q.

Next, we show that if (A.1) holds, then under Assumption A and if s0M
1−qλ1−q → 0,

for all p large enough, we have

∣∣∣∣1ᵀΩ1
1ᵀΩ̂1

− 1

∣∣∣∣ ≤ 2

δ
||Ω̂−Ω||2. (A.2)

In fact, if s0M
1−qλ1−q → 0, then (A.1) implies that ||Ω̂−Ω||2 ≤ δ/2 for all p large enough,

in which case we have

∣∣∣∣1ᵀΩ1
1ᵀΩ̂1

− 1

∣∣∣∣ ≤ p||Ω̂−Ω||2
|1ᵀΩ1| − p||Ω̂−Ω||2

≤ p||Ω̂−Ω||2
p(1/λmax − δ/2)

≤ 2

δ
||Ω̂−Ω||2.
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Moreover, for the risk Rn in (2.4) of the portfolio (2.3), we have

Rn
Rmin

=
(Ω̂1)ᵀΣ(Ω̂1)

1ᵀΩ̂1

(
1ᵀΩ1
1ᵀΩ̂1

)
=

(
1 +

(Ω̂1−Ω1)ᵀΣ(Ω̂1−Ω1)

1ᵀΩ̂1
+

1ᵀ(Ω̂1−Ω1)

1ᵀΩ̂1

)(
1ᵀΩ1
1ᵀΩ̂1

)

=

(
1 +

(Ω̂1−Ω1)ᵀΣ(Ω̂1−Ω1)

1ᵀΩ1
1ᵀΩ1
1ᵀΩ̂1

+
1ᵀΩ̂1− 1ᵀΩ1

1ᵀΩ1
1ᵀΩ1
1ᵀΩ̂1

)(
1ᵀΩ1
1ᵀΩ̂1

)
.

Because

|Ω̂1−Ω1|2 ≤
√
p||Ω̂−Ω||2,

|1ᵀΩ̂1− 1ᵀΩ1| ≤ p||Ω̂−Ω||2,

we have

∣∣∣∣∣(Ω̂1−Ω1)ᵀΣ(Ω̂1−Ω1)

1ᵀΩ1

∣∣∣∣∣ ≤ λmax|Ω̂1−Ω1|22
1ᵀΩ1

≤ pλ2
max

p
||Ω̂−Ω||22

≤ 1

δ2
||Ω̂−Ω||22.

Therefore, by (A.2) and (A.1),

Rn
Rmin

=
(

1 +O(||Ω̂−Ω||2)
)(

1 +O(||Ω̂−Ω||2)
)

=
(

1 +O(||Ω̂−Ω||2)
)

=
(
1 +O

(
s0M

1−qλ1−q)) .
(A.3)
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A.1 Proof of Theorem 1

Proof. To prove the theorem, it is sufficient to show that under the Assumption A-E, we

have for η > 0,

P
(
||Σ̂RCV −ΣICV ||∞ > η

√
log p/n

)
≤ C0

pC1η2−2
, (A.4)

for some positive constants C0, C1. Then with λ = ηM
√

log p/n, we have, from Proposi-

tion 1 and (A.3), that with probability greater than 1− C0

pC1η
2−2

,

Rn
Rmin

− 1 = O
(
M2−2qs0

(
(log p/n)(1−q)/2

))
,

where Rn is the risk associated with the portfolio ŵ = Ω̂RCV 1
1ᵀΩ̂RCV 1

, and Ω̂RCV is the CLIME

estimator obtained by replacing Σ̂ with Σ̂RCV in (2.2).

We now prove (A.4). We first consider the estimation of integrated volatility and co-

volatility.

Lemma 1. Suppose that (Xt) satisfies

dXt = µt dt+ σt dWt, t ∈ [0, 1],

and there exist constants Cµ, Cσ such that

|µt| ≤ Cµ, and |σt| ≤ Cσ <∞, for all t ∈ [0, 1] almost surely.

Suppose further that the observation times tni satisfy (2.9) in Assumption D. Denote the
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realized volatility as [X,X]t :=
∑
{i:tni ≤t}

(Xtni
−Xtni−1

)2. Then, we have

P

(√
n|[X,X]1 −

∫ 1

0
σ2
t dt| > x

)
≤ C exp

(
−x2/(32C4

σC
2
∆)
)

(A.5)

for all 0 ≤ x ≤ 2C2
σC∆
√
n, where the constant C > 0 depends on only Cσ and C∆ and can

be specified.

Proof. For notational ease, we shall omit the superscript n and write ti for tni etc. Define

X̃t = X0 +
∫ t

0 σsdWs. Then we have Xt = X̃t +
∫ t

0 µsds. Observe that

[X,X]t −
∫ t

0
σ2
s ds

=
(

[X̃, X̃]t −
∫ t

0
σ2
s ds

)
+
∑
ti≤t

(∫ ti

ti−1

µsds

)2

+ 2
∑
ti≤t

(
X̃ti − X̃ti−1

)
·
∫ ti

ti−1

µsds

:=I1 + I2 + I3.

We first consider terms I1 and I2. By Eqn.(A.6) in Fan et al. (2012a), we have for

|θ| ≤
√
n/(4C2

σC∆),

E
(
exp(θ

√
n · I1)

)
≤ exp(2θ2C4

σC
2
∆). (A.6)

As to term I2, it is easy to see that I2 ≤ C2
µC∆/n. It follows that for |θ| ≤

√
n/(4C2

σC∆),

E
(
exp(θ

√
n(I1 + I2))

)
≤ C1 exp(2θ2C4

σC
2
∆),

where C1 = exp(C2
µ/(4C

2
σ)). By Markov’s inequality, we then obtain that for 0 ≤ θ ≤
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√
n/(4C2

σC∆),

P (
√
n|I1 + I2| > x) ≤ exp(−θx)E

(
exp{θ

√
n|I1 + I2|}

)
≤2C1 exp

(
2θ2C4

σC
2
∆ − x θ

)
.

Taking θ = x/4C4
σC

2
∆ yields that for x ∈ [0,

√
nC2

σC∆],

P (
√
n|I1 + I2| > x) ≤ 2C1 exp

(
− x2

8C4
σC

2
∆

)
. (A.7)

Next we consider term I3. By Cauchy-Schwartz inequality, we have

|I3| ≤ 2

√
[X̃, X̃]1I2 ≤

2Cµ
√
C∆√
n

√
[X̃, X̃]1 ≤

2CµC∆√
n

√
[X̃, X̃]1.

Therefore

P (
√
n|I3| > x) ≤P (4C2

µC
2
∆[X̃, X̃]1 > x2)

≤E exp

(
C2
µ[X̃, X̃]1

2C4
σ

− x2

8C4
σC

2
∆

)
.

By (A.6) and the assumption that |σt| ≤ Cσ, we obtain that when n ≥ 2C2
µC

2
∆/C

2
σ,

P (
√
n|I3| > x) ≤ exp

(
C4
µC

2
∆

2C4
σ n

+
C2
µ

2C2
σ

− x2

8C4
σC

2
∆

)

≤ C2 exp

(
− x2

8C4
σC

2
∆

)
,

(A.8)

where C2 = exp(C2
µ/C

2
σ).

Combining (A.7) and (A.8) we see that for all n ≥ 2C2
µC

2
∆/C

2
σ and all 0 ≤ x ≤
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2C2
σC∆
√
n,

P (
√
n|[X,X]1 −

∫ 1

0
σ2
t dt| > x)

≤P (
√
n|I1 + I2| > x/2) + P (

√
n|I3| > x/2)

≤(2C1 + C2) exp

(
− x2

32C4
σC

2
∆

)
.

The conclusion in the lemma follows by taking C = 2C1 + C2.

Now we focus on estimating co-volatility between two log-price processes. We assume

that two log price processes X and Y satisfy

dXt = X0 + µXt dt+ σXt dW
X
t and dYt = Y0 + µYt dt+ σYt dW

Y
t , (A.9)

where Corr(WX
t ,W

Y
t ) = ρ

(X,Y )
t .

Lemma 2. Suppose that the two processes (X,Y ) satisfy (A.9). Furthermore, assume that

there exist finite positive constants Cµ, Cσ and C∆ such that |µit| ≤ Cµ < ∞, |σit| ≤ Cσ <

∞, a.s., for i = X,Y . Suppose also that the two processes are observed at times {tin} which

satisfy (2.9) in Assumption D. Then, we have for all 0 ≤ x ≤ 4C2
σC∆
√
n,

P

(√
n
∣∣[X,Y ]1 −

∫ 1

0
σXt σ

Y
t ρ

(X,Y )
t dt

∣∣ > x

)
≤ 2C exp

(
− x2

128C4
σC

2
∆

)
,

where the constant C > 0 depends on only Cσ and C∆ and can be specified.

Proof. Again we shall omit the superscript n and write ti for tni etc. Define Z± = X ± Y .

Then

[X,Y ]1 =
1

4
([Z+, Z+]1 − [Z−, Z−]1). (A.10)
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Also both Z± are stochastic processes with bounded drifts and volatilities. As a matter of

fact, they can be represented by

dZ±t = µZ±t
dt+ σZ

±
t dW±t ,

where µZ±t = µXt ± µYt , σZ
±

t =

√
(σXt )2 + (σYt )2 ± 2ρ

(X,Y )
t σXt σ

Y
t , and W± are standard

Brownian motions. Therefore, they both satisfy the conditions in Lemma 1 with bound on

the drift terms being 2Cµ and bound on the volatility terms being 2Cσ. Thus, by Lemma 1,

we have that for all 0 ≤ x ≤ 8C2
σC∆
√
n

P

(√
n|[Z±, Z±]1 −

∫ 1

0
(σZ

±
t )2 dt| > x

)
≤ C exp

(
−x2/(512C4

σC
2
∆)
)
.

It follows from the decomposition (A.10) that

P

(√
n
∣∣[X,Y ]1 −

∫ 1

0
σXt σ

Y
t ρ

(X,Y )
t dt

∣∣ > x

)
≤ 2C exp

(
−x2/(128C4

σC
2
∆)
)
.

With the previous two lemmas, we obtain that there exist positive constants C0, C1

such that for 0 ≤ x ≤ 4C2
σC∆
√
n,

max
i,j

P (
√
n|σ̂ij − σij | > x) ≤ C0 exp(−C1x

2),
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where (σij) =: ΣICV and (σ̂ij) =: Σ̂RCV . Therefore, by the Bonferroni inequality, we have

P
(
||Σ̂RCV −ΣICV ||∞ > η

√
log p/n

)
≤

∑
1≤i,j≤p

P (|σ̂ij − σij | > η
√

log p/n)

≤ p2 · C0 exp(−C1η
2 log(p)) =

C0

pC1η2−2
.

This finishes the proof.

A.2 Proof of Theorem 2

To prove Theorem 2, similar to the proof of Theorem 1, it is sufficient to provide a bound

on the the element-wise estimation error in using Σ̂PAV to estimate Σ. The following result

from Kim and Wang (2016) gives an exponential tail bound for this element-wise estimation

error.

Proposition 2. [Theorem 1 in Kim and Wang (2016)] Suppose that (Xt) satisfies (2.1).

Under Assumption A-D and F-H, the PAV estimator Σ̂PAV satisfies that

P
(
|(Σ̂PAV −ΣICV )ij | ≥ x

)
≤ C2 exp(−

√
nC3x

2),

where (Σ̂PAV −ΣICV )ij denotes the ij-th entry of the matrix (Σ̂PAV −ΣICV ), and x is a

positive number in a neighbor of 0, and C2 and C3 are positive constants independent of n

and p.
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It follows from the Bonferroni inequality that

P
(
||Σ̂PAV −ΣICV ||∞ ≥ η

√
log p/n1/4

)
≤

∑
1≤i,j≤p

P
(
|(Σ̂PAV −Σ)ij | ≥ η

√
log p/n1/4

)
≤

∑
1≤i,j≤p

C2 exp(−
√
nC3(η

√
log p/n1/4)2)

= p2C2 exp(−(C3η
2) log p)

=
C2

p(C3η2−2)
.

(A.11)

Therefore, with λ = ηM
√

log p/n1/4, we have, from (A.3), that with probability greater

than 1− C2

p(C3η
2−2)

,

Rn
Rmin

− 1 = O
(
M2−2qs0

(
(log p)(1−q)/2/n(1−q)/4

))
,

where Rn is the risk associated with the portfolio ŵ = Ω̂PAV 1
1ᵀΩ̂PAV 1

, and Ω̂PAV is the CLIME

estimator obtained by replacing Σ̂ with Σ̂PAV in (2.2). This completes the proof.

A.3 Proof of Theorem 3

Proof. Note that R̂CLIME
Rmin

= 1ᵀΩ1
1ᵀΩ̂1

where Ω̂ is the CLIME estimator based on RCV in the

noiseless case and PAV in the noisy case. The result for the noiseless case follows directly

from (A.2) and (A.4), and in the noisy case follows from (A.2) and (A.11).
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A.4 Proof of Theorem 4

Proof. The first result is a direct consequence of Theorem 4.1 in El Karoui (2010), by which

we have

1ᵀS−11

1ᵀΣ−11
→p

1

(1− ρ)
, (A.12)

The conclusion in the theorem follows by noticing that

R̂p
Rmin

=
wᵀ
pSwp

wᵀ
optΣwopt

=
1ᵀΣ−11
1ᵀS−11

.

For the CLT result, by Theorem 3.1 in El Karoui (2010), we have

(n− 1)
R̂p
Rmin

∼ χ2
n−p, (A.13)

where R̂p = wᵀ
pSwp is the perceived risk of “plug-in” portfolio. Therefore,

(1− ρ)(n− 1)
R̂min

Rmin
=

(n− p)(n− 1)

n

R̂min

Rmin
∼ χ2

n−p.

It follows that, as n, p and n− p→∞,

√
n− p

(
n− 1

n

R̂min

Rmin
− 1

)
⇒ N(0, 2).

The convergence (3.7) follows.
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Figure 1. Comparison of actual and perceived risks of the plug-in portfolio. The portfolios
are constructed based on returns simulated from i.i.d. multivariate normal distribution with
mean zero and covariance matrix Σ1/2 where Σ = 0.05(0.7|i−j|)i,j=1,...,p. The number of
assets and observations are 50 and 75, respectively. The comparison is replicated 100 times.
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Figure 2. Time series plots of portfolio values. The portfolios are built based on the simulated
prices with no microstructure noise.
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Figure 3. Time series plots of portfolio values. The portfolios are built based on the simulated
prices with microstructure noise.
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Figure 4. Evolution of different portfolios under comparison based on the NYSE stocks in
Year 2012. All portfolios start with value $100.
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Figure 5. Evolution of different portfolios under comparison based on the NYSE stocks in
Year 2013. All portfolios start with value $100.

47



Portfolios Oracle CLIME-based Equally-weighted Plug-in
Annualized SD 8.0% 9.33% 11.71% 25.42%

Table 1.
Annualized standard deviations of the portfolios under comparison based on the simulated
prices with no microstructure noise.

Portfolios Annualized SD of daily return
Oracle 9.2%
5-Min CLIME-based 10.7%
1-Min-PAV-CLIME-based 10.4%
Equally-weighted 12.1%
Plug-in 22.9%

Table 2.
Annualized standard deviations of the portfolios under comparison based on the simulated
prices with microstructure noise.
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Portfolio Ann. SD of daily return Compound return MDD
Equally-weighted 10.45% 11.97% −8.04%

FFL 8.15% 12.26% −8.12%

Nonlinear shrinkage 7.42% 2.52% −10.49%

CLIME-daily 7.16% 7.07% −8.97%

1-Min-PAV-CLIME 7.23% 14.53% −8.21%

Table 3. Comparison among the portfolios based on the NYSE data in Year 2012.

Portfolio Ann. SD of daily return Compound return MDD
Equally-weighted 8.87% 18.89% −4.37%

FFL 9.77% 21.15% −8.67%

Nonlinear shrinkage 7.52% 24.05% −5.87%

CLIME-daily 7.37% 22.22% −4.75%

1-Min-PAV-CLIME 7.62% 26.19% −5.43%

Table 4. Comparison among the portfolios based on the NYSE data in Year 2013.
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