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SUMMARY

Copy number variant is an important type of genetic structural variation appearing in germline
DNA, ranging from common to rare in a population. Both rare and common copy number vari-
ants have been reported to be associated with complex diseases, so it is important to identify both
simultaneously based on a large set of population samples. We develop a proportion adaptive seg-
ment selection procedure that automatically adjusts to the unknown proportions of the carriers
of the segment variants. We characterize the detection boundary that separates the region where
a segment variant is detectable by some method from the region where it cannot be detected.
Although the detection boundaries are very different for the rare and common segment variants,
it is shown that the proposed procedure can reliably identify both whenever they are detectable.
Compared with methods for single-sample analysis, this procedure gains power by pooling infor-
mation from multiple samples. The method is applied to analyse neuroblastoma samples and
identifies a large number of copy number variants that are missed by single-sample methods.

Some key words: DNA copy number variant; Information pooling; Population structural variant.

1. INTRODUCTION

Copy number variant is a type of DNA structural variation that results in the genome hav-
ing abnormal numbers of copies of DNA segments. Copy number variants correspond to rela-
tively large regions of the genome that have been deleted or duplicated on certain chromosomes
(Zhang et al., 2009). Copy number variants can be inherited or caused by de novo mutations and
have been shown to be associated with complex diseases such as cancer (Diskin et al., 2009).
Such associations can involve both rare and common variants. Since recent genome-wide associ-
ation studies have shown that common variants can explain only a small fraction of heritabilities
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of complex phenotypes, genetic studies of rare variants, including rare copy number variants,
have become even more important.

An important problem is to identify all the copy number variants in the human genome, includ-
ing both the rare and common ones, in order to have a complete variant catalog for future asso-
ciation and population genetics analysis. While efficient procedures have been developed for
identifying variants in a long sequence of genome-wide observations, they mostly focus on iden-
tification based on data from a single sample. Important examples include the optimal likelihood
ratio selection method (Jeng et al., 2010), the hidden Markov model-based method (Wang et al.,
2007) and change-point based methods (Olshen et al., 2004). To identify the recurrent copy num-
ber variants that appear in multiple samples, some type of post-processing is often used. This
type of procedure first identifies copy number variants based on individual samples and then
selects regions with highly recurrent variants. One problem with such an approach is that the
power for identifying the recurrent variants does not improve with the increase in the size of
samples. The locations of a recurrent copy number variant mostly overlap across samples, so
identification power can be improved if information from multiple samples can be efficiently
pooled. In addition, most variants from the germline constitutional genome have a range of
less than 20 single nucleotide polymorphisms (Zhang et al., 2009) in a typical Illumina 660K
chip. Many of these short variants cannot be identified even by the optimal method based on
data from a single sample (Jeng et al., 2010). Efficiently pooling information from multiple
samples can greatly benefit the discovery of short variants that are missed in single-sample
analysis.

Methods for simultaneously detecting rare and common copy number variants based on a
large set of population samples have not been fully developed. Zhang et al. (2010) introduced
a method for detecting simultaneous change-points in multiple sequences that is effective only
for detecting the common variants. Siegmund et al. (2010) extended their method by introducing
a prior variant frequency that needs to be specified. No rigorous power studies were given in
these papers. For common variants, the power of identification can be increased by summing
up the test statistics over all the samples (Zhang et al., 2010). This approach, however, fails for
the rare copy number variant identification because the information of the few signals can be
diluted greatly. For rare copy number variants, methods based on outliers of test statistics over
all the samples can be more efficient (Siegmund et al., 2010). There is a need for a unified and
theoretically justifiable approach that can identify both rare and common copy number variants
simultaneously.

In this paper, we propose a proportion adaptive segment selection procedure, which is opti-
mally adaptive to the unknown proportions of the carriers of the segment variants. At its core is
an efficient scanning algorithm based on a test statistic that is sensitive to both the rare and com-
mon segment variants. To study the theoretical properties of this procedure, we first characterize
the detection boundary that separates the region where a segment variant is detectable by some
method from the region where it cannot be detected by any method. The results show that the
detection boundaries are very different for the rare and common segment variants. Despite the
significant differences, it is shown that this adaptive procedure can simultaneously identify both
the rare and common segment variants whenever they are detectable. This procedure automati-
cally adapts to the unknown proportions of the carriers of the segment variants.

Compared with single-sample analysis, the proposed adaptive procedure gains power by pool-
ing information from multiple samples; compared with other information pooling methods, it
provides a unified approach to identify a wide range of copy number variants. In addition to
DNA copy number analysis, the proposed method can also be used for applications where the
detection of recurrent signal segments is of interest. One example is to detect linear objects in
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images with multiple looks where information pooling also sheds light on the discovery of com-
mon and subtle objects.

2. STATISTICAL MODEL AND METHOD

2·1. Statistical model for multisample copy number variation analysis

Suppose there are N linear sequences or samples of noisy data and that each sequence has T
observations. Let Xit be the observed data for the i th sample at the t th location. If there are no
signal variations, Xit varies around zero for any i and t . Suppose that at certain non-overlapping
segments or subintervals I1, . . . , Iq , some samples have elevated or dropped means from the
baseline and others do not. We call the samples that carry the variation the carriers. Denote the
collection of the non-overlapping segments by I = {I1, . . . , Iq}, the carrier proportion at segment
Ik in the population by πk , and the magnitude of the segment for sample i by Aik . Then an
observation for sample i ∈ {1, . . . , N } at location t ∈ {1, . . . , T } can be modelled as

Xit = Aik1{t∈Ik} + Zit , Ik ∈ I, (1)

with

Aik ∼ (1 − πk)δ0 + πk N (μk, τ
2
k ), (2)

where δ0 is a point mass at zero, μk |= 0, and Zit ∼ N (0, σ 2
i ). The noise variance σ 2

i for sample i
can be easily estimated when T is large and the signal segments are sparse in the linear sequence
of data for sample i . For example, the robust median absolute deviation estimate can be applied.
Without loss of generality, we assume σ 2

i = 1 in the theoretical analysis. All of the other parame-
ters Ik, πk, μk , τk (k = 1, . . . , q) are unknown. From this model, if t is not in any signal segment,
Xit is Gaussian noise following N (0, σ 2

i ). If t is in a signal segment Ik , then

Xit ∼ (1 − πk)N (0, σ 2
i ) + πk N (μk, σ

2
i + τ 2

k ). (3)

This Gaussian mixture is both heterogenous and heteroscedastic. The τk of the second component
represents the additional variability introduced by the different magnitudes of signal segments
in the population.

Our goal is to detect the existence of recurrent segment variants across samples; and to identify
the locations of the segments. Precisely, we wish to first test

H0 : I = ∅, H1 : I |= ∅,

and if H0 is rejected, detect each Ik ∈ I. The segment variants can be classified as rare and com-
mon based on their carrier proportions in the population. Specifically, we say that

Ik corresponds to a rare variant if πk � N−1/2, (4)

Ik corresponds to a common variant if πk > N−1/2. (5)

The separation boundary N−1/2 is frequently seen in large-sample theory. See, for example,
Cai et al. (2011) for a similar classification of recurrent signals. For the common variants with
πk > N−1/2, classical large-sample theory implies that methods based on the sample mean are
efficient. For the rare variants with πk � N−1/2, classical results cannot be applied and new
theoretical and methodological developments are needed.
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2·2. Proportion adaptive segment selection procedure

We now introduce the proportion adaptive segment selection procedure, which performs an
efficient scan over long linear sequences of data based on a test statistic that is sensitive to both
the rare and common segment variants. The procedure utilizes the short-segment structure of the
signals by considering only intervals of length at most L , where L � T . Denote the set of these
intervals by JT,N (L). The choice of L should satisfy the condition

L � s̄, (6)

where s̄ is the length of the longest signal segments. This condition is easily satisfied when signal
segments are short, as often seen in copy number variants.

For any interval J ∈ JT,N (L), we calculate the standardized sum of observations in J for each
sample i as

X J,i =
∑
t∈J

Xit/|J |1/2 (i = 1, . . . , N ), (7)

where |J | denotes the length of the interval J . By (1) and the assumption σ 2
i = 1, X J,i ∼ N (0, 1)

under H0. When J overlaps with some signal segment, X J,i follows a heterogeneous and het-
eroscedastic Gaussian mixture according to (3). Specifically, when J = Ik for some Ik ∈ I,

X Ik ,i ∼ (1 − πk)N (0, σ 2
i ) + πk N (μk |Ik |1/2, σ 2

i + τ 2
k ). (8)

The mean of the second component includes the value of jump size μk and length of the segment
variant at Ik .

Based on the X J,i statistic, we pool information from multiple samples by calculating the
extreme value of the standardized ordered p-values of X J,i (i = 1, . . . , N ). The p-values of X J,i

are two-sided, and the ordered p-values are denoted by pJ,(1) � · · · � pJ,(N ). The standardized
ordered p-values are defined as

WJ,(i) = N 1/2 i/N − 2pJ,(i)

{2pJ,(i)(1 − 2pJ,(i))}1/2
(i = 1, . . . , N ). (9)

Since the p-values are uniformly distributed under H0, the WJ,(i) comprise a standardized uni-
form empirical process and its extreme value has a well studied distribution (Shorack & Wellner,
2009, pp. 596–600). We use the extreme value VN (J ) = maxα0�i�N/2 WJ,(i) for some small α0
as our test statistic. If J overlaps with some signal segment, the distribution of the test statistic
deviates to the positive side. An interval is selected if its test statistic passes a certain threshold
and achieves a local maximum. Since the signal intervals are not known, this procedure examines
all the overlapping intervals of length � L and chooses the intervals that achieve a local maxi-
mum of the extreme values {VN (J ), J ∈ JT,N (L)}. The detailed algorithm is given as follows.

Step 1. For each long sequence of data {Xit : t = 1, . . . , T }, standardize the data by subtract-
ing the sample median and dividing by the median absolute deviation estimate of σi .

Step 2. Set the maximum interval length L and denote by JT,N (L) the collection of the inter-
vals with length less than or equal to L .

Step 3. For any given interval J ∈ JT,N (L), calculate X J,i as in (7) and the two-sided p-values
of X J,i as pJ,i =pr{N (0, 1) > |X J,i |} (i = 1, . . . , N ).
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Step 4. Order the p-values as pJ,(1) � · · · � pJ,(N ) and calculate the standardized empirical
process of the p-values as WJ,(i) in (9).

Step 5. Calculate the test statistic for each interval J ∈ JT,N (L) as

VN (J ) = max
α0�i�N/2

WJ,(i), (10)

for some small α0 > 1 and pick candidate set

I
(1) = {J ∈ JT,N (L) : VN (J ) > λT,N } (11)

for some threshold λT,N . If I(1) |= ∅, we reject the null hypothesis, set j = 1, and proceed to the
following steps.

Step 6. Let Î j = arg maxJ∈I( j) VN (J ), and update I( j+1) = I( j)\{J ∈ I( j) : J ∩ Î j |= ∅}.
Step 7. Repeat Steps 6–7 with j = j + 1 until I( j) is empty.

Step 8. Define the collection of selected intervals as Î = { Î1, Î2, . . .} and identify the signal
segments as all the elements in Î.

After the test statistic VN (J ) is calculated for each interval J ∈ JT,N (L), a threshold λT,N

is set based on the distribution of VN (J ) under H0. Since all the intervals in JT,N (L) are con-
sidered, the threshold λT,N needs to adjust for multiple testing, so that the familywise Type I
error is controlled at a desired level. Section 3·1 provides a detailed discussion on setting λT,N

theoretically or by simulations.
Steps 6–7 find all the local peaks in the candidate set I(1). Intuitively, if the signal segments

are well separated, the test statistic VN (Ik) of a signal segment Ik is larger than those of other
intervals overlapping Ik , so that the local peaks provide good estimates of the signal segments.

Remark 1. The tuning parameter α0 in (10) is used to stabilize the procedure and to better
control the familywise error with finite samples. This parameter excludes the endpoints of the
standardized uniform empirical process, where the process diverges. The rationale is that the
convergence of the extreme values without truncation is much slower than the convergence of a
truncated version. By choosing α0 > 1, VN (J ) can be more stable in finite samples, which also
leads to a smaller threshold on VN (J ) to control the overselection, and higher power for detecting
signals with small intensity.

Remark 2. The test statistic VN (J ) is closely related to some other test statistics based on
a standardized uniform empirical process, such as the Anderson & Darling (1952) statistic and
higher criticism (Donoho & Jin, 2004). However, the setting is different here and the adaptivity
of VN (J ) to rare and common segment variants is an interesting new discovery.

The fact that the test statistic VN (J ) is able to capture the signal information of both the rare
and common variants can be illustrated by simulation. In this example, the sample size N = 1600,
so that the separating value for the carrier proportion is N−1/2 = 2·5%. The data are generated
from models (1)–(2) with T = 10 000 and σ 2

i = 1 (i = 1, . . . , N ). Two locations are randomly
selected for segment variants with length |Ik | = 10 for k = 1, 2. The first location has a rare
variant with π1 = 1% and μ1 = 1; the second location has a common variant with π1 = 50%
and μ1 = 0·1. Fix τk = 0·7 for k = 1, 2. Figure 1 shows WI1,(i) and WI2,(i) (i = α0, . . . , N ) with
α0 = 4. The samples are ordered by their p-values of X Ik ,i , and the WIk ,(i) statistics are plotted in

 at U
niversity of Pennsylvania L

ibrary on A
pril 23, 2013

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


162 X. J. JENG, T. T. CAI AND H. LI

0

5

10

15

20

25

30
(a) (b)

W

0 500 1000 1500

0

2

4

6

8

Ordered sample

0 500 1000 1500

Ordered sample

W

Fig. 1. Illustrations of WI1,(i) and WI2,(i) (i = α0, . . . , N ). (a): mean ± median absolute deviation
of WI1,(i) over 100 replications for a rare segment variant with relatively large magnitude. (b): mean
± median absolute deviation of WI2,(i) over 100 replications for a common segment variant with

small magnitude.

the same order. The signal information shows up at different places in these two plots. In Fig. 1(a),
WI1,(i) reaches the peak at the left end, where the small number of large signals locate; whereas
in Fig. 1(b), WI2,(i) reaches the peak to the right of the left end, where the information of many
small signals lumps up. According to (10), the test statistics VN (I1) and VN (I2) capture the peaks
in these two cases respectively. This is essentially the reason for the strong detection power of
the proportion adaptive segment selection for both the rare and common segment variants.

3. OPTIMAL ADAPTIVITY OF THE PROPORTION ADAPTIVE SEGMENT SELECTION

3·1. Familywise error control

In this section, we show that under H0, the proportion adaptive segment selection procedure
with a theoretical threshold asymptotically controls the familywise error. The theoretical thresh-
old is constructed based on the limiting distribution of VN (J ) as N → ∞ under H0. Define

aN = (2 log log N )1/2, bN = 2 log log N .

Then aN VN (J ) − bN converges to a nondegenerate random variable (Shorack & Wellner, 2009,
p. 600). Since all T L intervals in JT,N (L) are considered, the theoretical threshold is defined as

λT,N = {C0 log(T L) + bN }/aN (12)

for some C0 > 1. The following theorem shows that the procedure asymptotically controls the
familywise error for any fixed T .

THEOREM 1. Assume models (1)–(2). The candidate set I(1) constructed in (11) with λT,N

defined in (12) is empty with high probability under H0. More specifically, we have

pr(I(1) |= ∅) � C1(T L)−(C0−1)

for any fixed T and all sufficiently large N, where C1 > 0 is a constant and C0 > 1 is
defined in (12).

The proof of Theorem 1 is given in the Appendix. The proof for the familywise error when T
increases with N is more involved due to the calculation of the convergence rate for the extreme
value of the standardized empirical process. A detailed proof is outside the scope of this paper.
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Table 1. Means and standard deviations (in parentheses) of the data-driven thresholds for VN

over 100 replications

α0 = 1 α0 = 2 α0 = 4 α0 = 7 α0 = 10 α0 = 13

#O = 5 47·7 (10·9) 12·3 (1·6) 6·9 (0·4) 5·6 (0·3) 5·2 (0·2) 5·0 (0·2)
#O = 2 75·5 (26·7) 15·2 (2·3) 7·7 (0·7) 6·0 (0·3) 5·5 (0·3) 5·3 (0·3)
#O = 0 178·9 (163·3) 24·2 (8·9) 9·8 (2·0) 7·1 (1·0) 6·3 (0·6) 5·9 (0·5)

#O , number of overselected intervals; α0, number of observations left out.

The convergence is slow in general, mainly due to the end points of the interval [0, 1] as shown
in Shorack & Wellner (2009), § 16.1. By choosing α0 > 1, the test statistic VN (J ) is more stable
and its familywise error better controlled under H0. While the precise choice of α0 in practice is
difficult, simulation results in Table 1 can provide useful guidance.

Although Theorem 1 shows that the Type I error can be controlled when T and N are suffi-
ciently large, in finite sample situations the convergence of VN (J ) as N → ∞ can be slow for
small α0. In addition, it is difficult to choose the constants C0 and C1 in setting the threshold.
In simulations and real data analysis, we suggest using simulations to determine a data-driven
threshold to control the number of overselections. Section 4·1 presents the details.

3·2. Detection power of the proportion adaptive segment selection

Under the alternative hypothesis, the proposed procedure asymptotically selects either the true
signal segments or short intervals overlapping the true segments, whenever the signal segments
are detectable. We characterize the detection boundary that separates the region where a segment
variant is detectable by some method from the region where it cannot be detected by any methods.
If a method can reliably detect a segment variant whenever it is detectable, we say that the method
is optimal. If a method applies a unified approach to optimally detect both rare and common
segment variants without using the information of their carrier proportions and other unknown
parameters, we say the method is optimally adaptive to the carrier proportions and other unknown
parameters in the model.

The segment variants can be characterized into the rare and common groups by (4) and (5).
We calibrate πk as

πk = N−βk , 0 � βk < 1. (13)

If 1/2 � βk < 1, Ik corresponds to a rare variant, and if 0 � βk < 1/2, Ik corresponds to a com-
mon variant. Extremely rare variants with carrier proportion at the order of N−1 are not con-
sidered here. For a fixed Ik and a sample i , the sufficient statistic X Ik ,i defined in (7) follows a
Gaussian mixture distribution as in (8). Since the mean of the nonnull component has absolute
value |μk ||Ik |1/2, we calibrate |μk ||Ik |1/2 for rare and common variants respectively as

|μk ||Ik |1/2 = (2rk log N )1/2, rk > 0, 1/2 � βk < 1, (14)

|μk ||Ik |1/2 = N−rk , rk � 0, 0 � βk < 1/2. (15)

For a rare variant, the carrier proportion is so small that the signal intensity, which is represented
by |μk ||Ik |1/2, must be sufficiently large to make the variant detectable; whereas for a common
variant, the carrier proportion is so large that a small signal intensity can be amplified to make
the detection successful. This is the reason for the different calibrations of |μk ||Ik |1/2. These cal-
ibrations are similar to those of signal intensity in Cai et al. (2011), where detection of Gaussian
mixtures is considered.
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We find the detection boundary for the rare and common variants, respectively. Let

m(τk) = min

(
1 + τ 2

k

4
,

1

1 + τ 2
k

)
.

If 1/2 � βk < 1, define

ρ+(βk, τk) =
{

[1 − {(1 + τ 2
k )(1 − βk)}1/2]2, 1 − m(τk) < β < 1,

(1 − τ 2
k )+(βk − 1/2), 1/2 � βk < 1 − m(τk);

and if 0 � βk < 1/2, define

ρ−(βk, τk) =
{

1/2 − βk, τk = 0,

∞, τk > 0.

The following proposition shows that ρ+(βk, τk) and ρ−(βk, τk) are the separating lines between
the detectable and undetectable regions for the rare and common segment variants.

PROPOSITION 1. Assume models (1)–(2) and (6). Suppose I1 is known and π1 and μ1|I1|1/2

are calibrated as in (13), (14), and (15). If r1 > ρ+(β1, τ1) for 1/2 � β1 < 1, or if r1 < ρ−(β1, τ1)

for 0 � β1 < 1/2, there exists a consistent test for H∗
0 : π1 = 0 vs H∗

1 : π1 > 0 for which the sum of
Type I and Type II error probabilities tends to 0 as N → ∞. If r1 < ρ+(β1, τ1) for 1/2 � β1 < 1,
or if r1 > ρ−(β1, τ1) for 0 � β1 < 1/2, a consistent test does not exist.

Proposition 1 is an extension of Theorems 2.1–2.4 in Cai et al. (2011), where, based on a
random sample {Y1, . . . , YN }, the problem is to test

H (N )
0 : Yi ∼ N (0, 1), H (N )

1 : Yi ∼ (1 − ε)N (0, 1) + εN (A, σ 2),

where ε, A, and σ 2 are unknown parameters. Here the information in I1 for sample i is summa-
rized by the sufficient statistic X I1,i , then for I1, the sufficient statistics of the N observations,
X I1,1, . . . , X I1,N , are treated as a random sample. It is easy to see that X I1,i ∼ N (0, 1) under H∗

0
and X I1,i ∼ (1 − π1)N (0, 1) + π1 N (μ1|I1|1/2, 1 + τ1) under H∗

1 . Therefore, the mixture model

of X I1,i under H∗
1 is a special case of the mixture model of Yi under H (n)

1 with σ 2 > 1. So the
detection boundary for the segment variant at I1 can be derived in a similar way as that in Cai et al.
(2011). We omit the proof here.

The detection boundary can be used as a benchmark to evaluate the performance of a method
theoretically. Our problem is more difficult than detecting Gaussian mixtures at a fixed inter-
val, because the locations I1, . . . , Iq are unknown. The proportion adaptive segment selection
procedure first pools information across samples for all intervals in JN ,T (L) and then searches
through these intervals to detect segment variants. The following theorem states that as long as
the length of the sequence T is not too large compared to the sample size N , any segment variant
in the detectable region is included with a high probability in the candidate set of the propor-
tion adaptive selection, implying that the proportion adaptive segment selection procedure with
the theoretical threshold is an asymptotically optimal procedure for detecting segment variants.
Furthermore, the implementation of the proportion adaptive segment selection does not require
the information of {q, πk, Ik, μk, τk : k = 1, . . . , q}. Therefore, the procedure is asymptotically
optimally adaptive to all the unknown parameters in the model.
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THEOREM 2. Assume models (1)–(2) and (6). Suppose I |= ∅, and for any Ik ∈ I, calibrate πk

and μk |Ik |1/2 as in (13), (14), and (15). In addition, assume N C � log T for any C > 0 and
α0 = o(N C ) for any C > 0. Then, if rk > ρ+(βk, τk) for 1/2 � βk < 1 or if rk < ρ−(βk, τk) for
0 � βk < 1/2, we have

pr(Ik ∈ I
(1)) � 1 − C N−C(rk ,βk ,τk) → 1,

where

C(rk, βk, τk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − βk − (1 − r1/2
k )2/(1 + τ 2

k ), τk � 1, 1/2 < β < 1,

1 − βk − (1 − r1/2
k )2/(1 + τ 2

k ), τk < 1, 1 − m(τk) � βk < 1,

min{1 − βk − (1 + τ 2
k )rk/(1 − τ 2

k )2,

1 − 2βk + 2rk/(1 − τ 2
k )}, τk < 1, 1/2 < βk < 1 − m(τk),

1 − 2βk − 2rk, 0 � βk < 1/2, τk = 0,

1 − 2βk, 0 � βk < 1/2, τk > 0.

(16)

Clearly, the convergence rate is larger for smaller βk , which corresponds to a larger carrier
proportion. The interval Ik being in I(1) implies that either Ik itself or a short interval overlapping
with Ik is selected in the final collection Î. In applications, follow-up studies rarely just look at
the selected intervals but rather examine small regions covering the selected intervals to verify
the exact locations of signal segments.

In order to see the power gain of the proportion adaptive segment selection by pooling infor-
mation from multiple samples, we consider the situation when only one sequence of data with
length T is available. In this situation, a theoretically optimal likelihood ratio selection has been
developed in Jeng et al. (2010). For the likelihood ratio selection to successfully detect a signal
segment I1, the condition on μ1|I1|1/2 is μ1|I1|1/2 � {2(1 + εn) log T }1/2 for some εn = o(1).
This condition is in general stronger than the condition on μ1|I1|1/2 in Theorem 2, which is
μ1|I1|1/2 � C(log N )1/2 for 1/2 � β1 < 1 or μ1|I1|1/2 � N−C for 0 � β1 < 1/2, when T is much
larger than N . In high-throughput copy number variation data analysis, T is usually above 500 000
and N mostly under 1000. Significant power gains can be achieved especially for detecting com-
mon variants.

4. SIMULATION STUDIES

4·1. Choice of α0

The parameter α0 in (10) of the algorithm determines how many end points of the empirical
process of the p-values are left out from the test statistic VN . By choosing α0 > 1, VN can be more
stable with finite samples, which also leads to a smaller threshold on VN to control over-selection,
and higher power for detecting small-intensity signals. To demonstrate this, Table 1 shows the
mean and standard deviation of the data-driven threshold based on 100 replications of simulated
data. In each replication, we generate 400 sequences, and each sequence has 5000 observations
generated from the standard normal distribution. We apply our procedure with L = 6. The data-
driven threshold is defined as the smallest threshold to guarantee that there is no more than a
prespecified number of intervals in Î that do not overlap with any of the segments in I. The
value of α0 has a great effect on the threshold and therefore on the power of the test statistic VN .
Since α0 − 1 samples with the extreme p-values are left out from the test statistic, the proposed
procedure cannot be very effective in identifying extremely rare copy number variants.
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Table 2. Empirical power (%) and standard error (in parentheses) of the proportion
adaptive segment selection and the single-sample method over 100 replications

μ = 0·5 μ = 0·7 μ = 0·9 μ = 1·1
PASS 21 (4·0) 54 (4·9) 89 (3·3) 100 (0·0)
LRS 22 (4·2) 29 (4·7) 38 (4·9) 59 (4·9)

PASS, proportion adaptive segment selection; LRS, single-sample method of Jeng et al. (2010).

4·2. Improvement over the single-sample method

In this section, simulation studies are carried out to investigate the numerical performance of
the proportion adaptive segment selection and to compare it with other methods. In the following
simulations, we set N = 400, T = 5000, and σ 2

i = 1 for each sample i .
We begin by considering testing H0 against H1. The power gain of information pooling is

shown by comparing the performance of the proportion adaptive segment selection with the
single-sample method in Jeng et al. (2010), which scans through all the intervals of length at
most L for each sample and calculates the sufficient statistic for each interval as in (7). The
single-sample method rejects H0 if the extreme value of all the sufficient statistics has absolute
value greater than {2 log(N T L)}1/2. This is derived from the distribution theory of the extreme
value under H0. The single-sample method does not utilize the information that the locations of
a recurrent variant across samples are mostly overlapping.

To assess the Type I error, we generate each Xit ∼ N (0, 1) and calculate the empirical Type I
error of the proportion adaptive segment selection with L = 6 and α0 = 10 and the single-sample
method. The empirical Type I error is defined as the percentage of replications in which some
interval is selected under H0. We observe empirical Type I errors of 0·081 and 0·097, respectively,
both with standard error 0·009. To assess the power of detecting the segments, one segment I
is randomly selected and each Xit in that segment is generated from models (1)–(2) with |I | =
|I1| = 5, τ = τ1 = 1, π = π1 = 0·1, and μ = μ1 = 0·5, 0·7, 0·9 and 1·1. The empirical power
based on 100 replications is defined as the percentage of replications in which some interval in
Î overlaps with the segment I . Table 2 shows that proportion adaptive selection outperforms the
single-sample method, resulting in much higher power for a wide range of μ values.

The estimated standard errors of the empirical power over 100 replications are also included
in Table 2. To estimate the standard error of the medians, we generate 500 bootstrap samples
from the 100 replication results, then calculate a median for each bootstrap sample. The standard
error is the standard deviation of the 500 bootstrap medians. The standard errors are in general
small for all the simulations in § § 4·2–4·4.

4·3. Effects of segment length and signal variance

Further simulations are provided to demonstrate the effect of segment length and signal vari-
ance on the proportion adaptive segment selection. We randomly select three locations for seg-
ment variants with different segment length, |I1| = 4, |I2| = 9, and |I3| = 16. The other param-
eters are set as μk = 1, πk = 0·05, and τk = 2·5, 1·5 and 0·0 for k = 1, 2, 3. Table 3 shows the
estimation accuracy and the control of overselection for the proportion adaptive selection with
L = 20 and α0 = 10. The estimation accuracy for signal segment Ik is demonstrated by the dis-
similarity measure

Dk = min
Î j ∈Î

{1 − | Î j ∩ Ik |/(| Î j ||Ik |)1/2},
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Table 3. Medians and standard errors (in parentheses) of the dissimilarity
measure Dk (k = 1, 2, 3) and the number of overselections for the proportion
adaptive segment selection over 100 replications. The lengths of the intervals

are |I1| = 4, |I2| = 9 and |I3| = 16
τ D1 D2 D3 #O

2·5 1 (0·3) 0·18 (0·02) 0·10 (0·01) 2 (0·2)
1·5 1 (0·1) 0·10 (0·02) 0·06 (0·01) 2 (0·0)
0·0 1 (0·0) 0·05 (0·02) 0·03 (0·01) 2 (0·3)

#O , number of overselected intervals.

where Î denotes the collection of intervals selected by proportion adaptive segment selection.
Apparently, Dk ∈ [0, 1] and smaller values of Dk correspond to a greater overlap of Ik with some
intervals in Î. Table 3 shows that longer segment length and/or smaller signal variance result in
better identification of the segments by proportion adaptive segment selection.

4·4. Simultaneous discovery of rare and common segment variants

We demonstrate the adaptivity property of the proportion adaptive segment identification
by comparing its performance with two recently published methods. One method developed by
Zhang et al. (2010), which pools information through the sum of observations over all the sam-
ples, is expected to work well for common signals with weak signal intensity. Another method
developed by Siegmund et al. (2010) with the prior probability of carrier fixed at p0 = 0·01 pools
information through the outliers of observations over all the samples and is more efficient for
detecting rare signals with strong signal intensity. Since these methods control the genome-wide
Type I error at a given level and our method does not provide a fixed-level Type I error con-
trol, their parameters are tuned to obtain a comparable overselection of intervals. Specifically,
we choose α0 = 10 and a data-driven threshold at 5·52 to control the number of overselected
intervals fewer than two.

The simulations are repeated 100 times. The parameters used are N = 400, T = 5000, q = 5,
L = 6 and |Ik | = 5, τk = 0 for k = 1, . . . , q. We consider two different scenarios. The first sce-
nario considers rare segment variants with a large signal intensity where μ is fixed at 1 and the
πk vary from 0·04 to 0·08. The second scenario considers common segment variants with a small
signal intensity where μ is fixed at 0·3 and the πk vary from 0·4 to 0·8. We compare the perfor-
mances of these methods in terms of overselection and empirical power in Table 4. The numbers
of overselections are comparable for all these methods. The method of Zhang et al. (2010) per-
forms best for identifying the common segment variants, while that of Siegmund et al. (2010)
with p0 = 0·01 performs best for rare ones. The performance of the proportion adaptive seg-
ment selection lies between these two methods, demonstrating its adaptability and good power
for identifying both rare and common segment variants simultaneously. We finally compare the
results from the combined method of applying Zhang et al. (2010) and Siegmund et al. (2010)
with p0 = 0·01 together with the median number of overselections of two. The proportion adap-
tive procedure results in slightly lower power than the combined method.

5. APPLICATION TO NEUROBLASTOMA SAMPLES

We apply the proportion adaptive segment selection to a sample of 674 neuroblastoma cases
that were collected as part of a large-scale genome-wide association study of neuroblastoma
(Diskin et al., 2009). For each sample, over 600 000 single nucleotide polymorphism markers

 at U
niversity of Pennsylvania L

ibrary on A
pril 23, 2013

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


168 X. J. JENG, T. T. CAI AND H. LI

Table 4. Empirical power (%) and median of the number of overselection #O for proportion
adaptive segment selection and methods of Zhang et al. (2010) and Siegmund et al. (2010) over

100 replications. The standard errors appear in parentheses

Rare and strong signal

μ = 1 π1 = 0·04 π2 = 0·05 π3 = 0·06 π4 = 0·07 π5 = 0·08 #O
PASS 35 (4·8) 46 (4·8) 66 (4·7) 86 (3·6) 91 (2·8) 2·5 (0·4)
MSCP1 20 (3·9) 34 (4·7) 60 (5·1) 73 (4·5) 86 (3·3) 1 (0·0)
MSCP001 46 (4·9) 56 (4·9) 77 (4·5) 85 (3·5) 95 (2·2) 2 (0·4)
COMB 45 (5·1) 57 (4·8) 70 (4·3) 82 (3·8) 93 (2·5) 2 (0·1)

Common and weak signal
μ = 0·3 π1 = 0·4 π2 = 0·5 π3 = 0·6 π4 = 0·7 π5 = 0·8 #O
PASS 8 (2·6) 19 (3·8) 21 (4·1) 41 (5·0) 54 (5·2) 2 (0·4)
MSCP1 11 (3·3) 25 (4·4) 36 (4·7) 58 (4·9) 69 (4·6) 1 (0·1)
MSCP001 11 (3·3) 9 (2·9) 12 (3·1) 24 (4·1) 24 (4·2) 2 (0·2)
COMB 12 (3·3) 21 (4·0) 26 (4·4) 45 (5·0) 57 (5·2) 2 (0·5)

PASS, proportion adaptive segment selection with α0 = 10; MSCP1, methods of Zhang et al. (2010); MSCP001, method
of Siegmund et al. (2010) with p0 =0·01; COMB, combined MSCP1 and MSCP001.

were genotyped using the Illumina genotype platform and the log R-ratio data were obtained.
In order to account for possible wave-effect or local effects, we performed similar processing
as in Siegmund et al. (2010) to obtain the normalized data by subtracting the sample median
and regressing on the first principal component. In our analysis, we considered only data from
chromosome 1, which includes T = 40 929 log R-ratios.

In our analysis, we choose L = 20 and α0 = 4 to allow the selection of the copy number variant
with four or more carriers. We then use simulations to determine the threshold for VN to con-
trol the number of overselections to zero. Specifically, 674 samples and 40 929 observations are
simulated 50 times from a standard normal distribution. The mean and standard deviation of the
simulated threshold are 12·57 and 2·98. With the threshold set at 12·57, our proportion adaptive
procedure resulted in selection of 335 copy number variants with three or more markers, includ-
ing 171 copy number variants with three markers, and 100 copy number variants with 4 markers,
and 11 copy number variants with 10 or more markers. The median size of the copy number
variants identified is 4165 bps with a range of 462 to 1 038 000 bps. Figure 2 shows likelihood
ratio statistics and the data plots for six copy number variants that we identified, demonstrating
different characteristics. The first two plots show two common copy number variants detected in
these 674 neuroblastoma samples, where the first copy number variant with 8 markers overlaps
with the 7-marker copy number variant that was showed to be associated with the risk of neurob-
lastoma in Diskin et al. (2009). The second 3-marker copy number variant is very common and
is also validated by Redon et al. (2006). The third and fourth plots show two rare copy number
variants that were detected by the proportion adaptive segment selection, where only a few sam-
ples show large likelihood ratio statistics. These two copy number variants were also validated
by Redon et al. (2006). These results indicate that the proportion adaptive segment selection can
indeed detect both rare and common copy number variants.

Since the identification of the short copy number variants is more susceptible to local wave
effects or other artifacts of the data, we should interpret the copy number variants of three or
four markers with caution and focus the following comparison on the 64 identified copy number
variants of five or more markers. Among these 64 copy number variants, 30 overlap with the copy
number variants in the database of genomic variants (Zhang et al., 2006). This database includes
only the relatively common copy number variants identified in healthy human cases. To further
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Fig. 2. Examples of the copy number variants identified. Top two panels are the likelihood ratio statistic for each
sample, the bottom two panels show the heatmap of absolute value of the observed log R-ratio values for the

markers within and around the copy number variants identified (vertical white lines).
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demonstrate the power of the proportion adaptive selection, we also performed single-sample
copy number identification using the optimal likelihood ratio selection procedure of Jeng et al.
(2010). Among the 64 copy number variants, 20 of them did not reach the theoretical threshold
of {2 log(T L)}1/2 = 5·22 in any of the 674 samples, indicating loss of power of detecting the
copy number variants based on the single-sample analysis. Of these 20 copy number variants
missed by the single-sample analysis, ten overlap with the copy number variants in the genomic
variants database (Zhang et al., 2006). These copy number variants were reported in Redon et al.
(2006). As an example, the fourth and fifth panels of Figure 2 show the likelihood ratio statistics
and the observed log R-ratios for two copy number variants identified by the proportion adaptive
selection, but no samples pass the theoretical threshold value for single-sample analysis.
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APPENDIX

Proof of Theorem 1

Based on results for the extreme values of a standardized uniform empirical process, we have for any t
free of N ,

pr{aN VN (J ) − bN � t} → exp(−e−t ),

as N → ∞, which implies

pr{aN VN (J ) − bN � t} � exp(−C1e−t )

for any fixed t and sufficiently large N , where C1 is a constant. This combined with the choice of λT,N

implies that

pr{aN VN (J ) − bN � aN λT,N − bN } = pr{aN VN (J ) − bN � C0 log(T L)} � exp{−C1(T L)−C0}.

Therefore,

pr(I(1) |= ∅) = pr{there exists a J ∈ JT,N (L) such that VN (J ) > λT,N }
� T L[1 − pr{aN VN (J ) − bN � aN λT,N − bN }]
� T L[1 − exp{−C1(T L)−C0}]
� T LC1(T L)−C0

= C1(T L)−(C0−1),

where the third inequality uses the fact that e−x � 1 − x . The result follows by the condition C0 > 1.

Proof of Theorem 2

By the calibration of πk and the condition on α0, the carrier proportion remains N−βk when the (α0 − 1)

smallest p-values are excluded in (10). By the construction of I(1), it is enough to show that for any Ik ∈ I
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with rk > ρ+(βk, τk) for 1/2 < βk < 1 or rk > ρ−(βk, τk) for 0 < βk < 1/2,

pr{VN (Ik) � λT,N } � C N−C(rk ,βk ,τk ) → 0. (A1)

Defining the standardized empirical process as

WN ,Ik (t) = N 1/2 F̄N ,Ik (t) − �̄(t)

[�̄(t){1 − �̄(t)}]1/2
,

where �̄(t) is the survival function of a standard normal random variable and

F̄N ,Ik (t) = 1

N

N∑
i=1

1(X Ik ,i > t),

we can rewrite VN (Ik) defined in (10) as VN (Ik) = sup−∞<t<∞ WN ,Ik (t). For any fixed t ,

E{WN ,Ik (t)} =
N 1/2πk

[
�̄
{

t−μk |Ik |1/2

(1+τ 2
k )1/2

}
− �̄(t)

]
[�̄(t){1 − �̄(t)}]1/2

, var{WN ,Ik (t)} = F̄(t){1 − F̄(t)}
�̄(t){1 − �̄(t)} . (A2)

The key step of the proof is to find a t value such that WN ,Ik (t) > λT,N with large probability. Define

t∗
k =

⎧⎪⎨
⎪⎩

min{2(2rk log N )1/2/(1 − τ 2
k ), (2 log N )1/2}, τk < 1, 1/2 < βk < 1,

(2 log N )1/2, τk � 1, 1/2 < βk < 1,

1, 0 � βk < 1/2,

(A3)

When τk < 1, 1/2 � βk < 1 and rk > ρ+(βk, τk), we have m(τk) = (1 + τ 2
k )/4 and βk � 1 − m(τk) if and

only if
2(2rk log N )1/2/(1 − τ 2

k ) � (2 log N )1/2.

Then,

t∗
k =

{
(2 log N )1/2, τk < 1, 1 − m(τk) � βk < 1,

2(2rk log N )1/2/(1 − τ 2
k ), τk < 1, 1/2 < βk < 1 − m(τk).

(A4)

Applying calibrations of μk |Ik |1/2 for 1/2 � βk < 1 and 0 � βk < 1/2 respectively, we have,

E{WN ,Ik (t
∗
k )} ∼

⎧⎪⎪⎨
⎪⎪⎩

C N 1/2−βk �̄
{

t∗
k −(2rk log N )1/2

(1+τ 2
k )1/2

}
/{�̄(t∗

k )}1/2, 1/2 < βk < 1,

C N 1/2−βk+rk , 0 � βk < 1/2, τk = 0,

C N 1/2−βk , 0 � βk < 1/2, τk > 0.

Combining the above with (A3), (A4) and the fact that

�̄

{
(2q log N )1/2 − (2rk log N )1/2

(1 + τ 2
k )1/2

}
∼ C

(log N )1/2
N−(q1/2−r1/2

k )2/(1+τ 2
k ),

we have

E{WN ,Ik (t
∗
k )} ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C

(log N )1/2
N 1−βk−(1−r1/2

k )2/(1+τ 2
k ), τk � 1, 1/2 < β < 1,

C

(log N )1/2
N 1−βk−(1−r1/2

k )2/(1+τ 2
k ), τk < 1, 1 − m(τk) � βk < 1,

C

(log N )1/2
Nrk/(1−τ 2

k )−(βk−1/2), τk < 1, 1/2 < βk < 1 − m(τk),

C N 1/2−βk−rk , 0 � βk < 1/2, τk = 0,

C N 1/2−βk , 0 � βk < 1/2, τk > 0.
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Then it can be shown that E{WN ,Ik (t
∗
k )} � C N C for some C > 0 given rk > ρ+(βk, τk) for 1/2 � βk < 1

or rk < ρ−(βk, τk) for 0 � βk < 1/2. Further, by condition N C � log T for any C > 0, we have

E{WN ,Ik (t
∗
k )} � C N C � λT,N . (A5)

By Chebyshev’s inequality, (A2), and (A5),

pr{WN ,Ik (t
∗
k ) � λT,N } � C

var{WN ,Ik (t
∗
k )}

[E{WN ,Ik (t
∗
k )}]2

� C F̄(t∗
k )

Nπ2
k

[
�̄
{

t∗
k −μk |Ik |1/2

(1+τ 2
k )1/2

}
− �̄(t∗

k )
]2 .

Applying (A3) and condition rk > ρ+(βk, τk) for 1/2 � βk < 1 or rk < ρ−(βk, τk) for 0 � βk < 1/2 to the
above, we have

pr{WN ,Ik (t
∗
k ) � λT,N } � C N−C(rk ,βk ,τk ) → 0, (A6)

where C(rk, βk, τk) is as in (16). By combining (A6) and the fact that

pr{VN (Ik) � λT,N } � PH1{WN ,Ik (t
∗
k ) � λT,N },

(A1) is verified.
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