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Abstract

Motivated by recent research on quantifying bacterial growth dynamics based on genome

assemblies, we consider a permuted monotone matrix model Y = ΘΠ + Z, where the rows

represent different samples, the columns represent contigs in genome assemblies and the ele-

ments represent log-read counts after preprocessing steps and Guanine-Cytosine (GC) adjust-

ment. In this model, Θ is an unknown mean matrix with monotone entries for each row, Π is a

permutation matrix that permutes the columns of Θ, and Z is a noise matrix. This paper stud-

ies the problem of estimation/recovery of Π given the observed noisy matrix Y . We propose

an estimator based on the best linear projection, which is shown to be minimax rate-optimal

for both exact recovery, as measured by the 0-1 loss, and partial recovery, as quantified by

the normalized Kendall’s tau distance. Simulation studies demonstrate the superior empirical

performance of the proposed estimator over alternative methods. We demonstrate the meth-

ods using a synthetic metagenomics dataset of 45 closely related bacterial species and a real

metagenomic dataset to compare the bacterial growth dynamics between the responders and

the non-responders of the IBD patients after 8 weeks of treatment.
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1 INTRODUCTION

1.1 A Motivation Example from Microbiome Studies

The statistical problem considered in this paper is motivated by the problem of estimating the

bacterial growth dynamics based on shotgun metagenomics data (Myhrvold et al. 2015; Abel et al.

2015; Korem et al. 2015; Brown et al. 2016). The growth dynamics of microbial populations

reflects their physiological states and drives variation of microbial compositions, which provide

important feature summary of the microbes in a given community. One way of studying such

communities is through shotgun metagenomic sequencing, which involve direct DNA sequencing

of all the microbiome genomes in a given microbial community. Korem et al. (2015) presented

the first paper on quantifying the bacterial growth dynamics based on shotgun metagenomics data,

where the uneven sequencing read coverage resulting from the bidirectional DNA replications

provides information on the rates of microbial DNA replications. For bacterial species with known

complete genome sequences, Korem et al. (2015) proposed to use the peak-to-trough ratio (PTR)

of read coverages to quantify the bacterial growth dynamics after aligning the sequencing reads to

the complete genome sequences.

However, in many applications, it is of importance to quantify the bacterial growth dynamics

based on genome assemblies for the bacterial species with unknown genomes. These genome as-

semblies may represent new bacterial species that we have seen or sequenced before. The genome

assembly of a bacterium species consists of a collection of contigs (called bin) constructed based on

the overlapping of the sequencing reads (Li et al. 2015; Wu et al. 2014). Compared to the complete

genome, the genome assembled bins are more fragmented and often contained errors or contam-

inations. The noisy read coverage data due to intraspecific variations, interspecific/intraspecific

repeated sequences, limited sequencing depths and the inability of binning algorithms to correctly

cluster all the contigs further complicate the estimation of growth dynamics based on read cov-

erages of the contigs. Besides these noisy count data, one key difficulty in estimating the growth

dynamic based on contig counts is that the accurate locations of the contigs on the original genome
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are unknown. It is therefore not feasible to measure the microbial growth rate directly using peak-

to-trough coverage ratio for the assembled genomes (Brown et al. 2016; Gao and Li 2018).

Brown et al. (2016) presented the first method (called iRep) of estimating the bacterial growth

dynamics based on genome assemblies, where the contigs are ordered based on the GC-adjusted

counts for each sample separately. However, due to noise in the count data, such an ordering

method often leads to wrong ordering of the contigs and therefore inaccurate estimates of the

growth dynamics. Gao and Li (2018) developed a computational algorithm, DEMIC, to accurately

compare growth dynamics of a given assembled species existing in multiple samples by taking

advantage of highly fragmented contigs assembled in typical metagenomics studies. One key step

of DEMIC is to apply a principal components analysis (PCA)-based method to recover the true

ordering of the contigs along the underlying unknown bacterial complete genomes. Gao and Li

(2018) reported excellent empirical performance of DEMIC over existing methods. The goal of

this paper is to provide a rigorous statistical framework to study the problem of optimal permutation

recovery in a permuted monotone matrix model.

1.2 A Permuted Monotone Matrix Model

For a given genome assembly with p contigs, DEMIC first obtains the read coverage for each of the

sliding window of size 5000 bps, denoted by Xijl for the ith sample, jth contig and kth window. In

order to account for the GC-content of the kth window, Gao and Li (2018) considered the following

mixed-effects model,

log2Xijk = α +GCjkβ +Wij + eijk,

where GCjk is the centred GC count of the kth window of the jth contig, Wij is the sample- and

contig- specific random intercept, α is the intercept, β is the regression coefficient, and eijk is the

random error. This model is fitted for each contig to obtain the best linear unbiased predictor of

Wij , which is used as the GC-adjusted log-read count Yij for the ith sample and jth contig. Here

Yij can be regarded as average read coverage over non-overlapping windows of a contig and is

approximately normally distributed.

2



Let Y be the GC-adjusted log-contig count matrix of n samples and p contigs of a genome

assembly with Yij as its entries. Given this, we consider the following permuted monotone matrix

model:

Y = ΘΠ + Z, (1)

where Θ ∈ Rn×p is an unknown nonnegative signal matrix with nondecreasing rows, Z ∈ Rn×p is a

zero-mean noise matrix, and Π ∈ Rp×p is a permutation matrix corresponding to some permutation

π from the symmetric group Sp. That is, after a suitable permutation of the columns of Y , all

the rows of the mean matrix are nondecreasing sequences. In microbiome applications, Θ is the

matrix of true log-coverage of n samples over p contigs along the circular genome of the bacterium,

which is generally hypothesized to have non-decreasing rows. Π represents a permutation due to

unknown locations of the contigs relative to the replication origin. Throughout this paper, we

denote the parameter space

(Θ, π) ∈ D =

{
Θ = (θij) ∈ Rn×p, π ∈ Sp : 0 ≤ θi,j−1 ≤ θi,j <∞ for all 1 ≤ i ≤ n, 2 ≤ j ≤ p

}
.

The focus of this paper is to optimally estimate the permutation π from the noisy observation Y .

1.3 Related Problems and Other Applications

The permutation recovery problem under permuted monotone matrix model bears some similarity

to other problems studied in machine learning literature, including the feature matching between

two sets of observations (Collier and Dalalyan 2016) and linear regression model with permuted

data, where the correspondences between the response and the predictors are unknown (Panan-

jady, Wainwright, and Courtade 2016; Slawski and Ben-David 2017; Pananjady, Wainwright, and

Courtade 2017). More recently, Flammarion, Mao, and Rigollet (2019) considered the problem of

statistical seriation, which has a close affinity to our model (1). However, the focus of Flammarion,

Mao, and Rigollet (2019) is to optimally estimate the signal matrix Θ rather than the underlying

permutation.
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Model (1) can be thought as a natural extension of the shape constrained matrix denoising

model studied in the isotonic regression literature. Specifically, under Model (1) with known

Π = Ip, risk bounds and the minimax rate-optimal estimator for Θ under the Frobenius norm

was obtained in Chatterjee, Guntuboyina, and Sen (2015) for n = 1 and later in Chatterjee, Gun-

tuboyina, and Sen (2018) for general n > 1. Using the idea of optimal transport, a minimax

optimal estimator of the underlying signals was obtained by Rigollet and Weed (2018). However,

their goal is not to recover the underlying permutation.

Besides the microbiome applications, the permuted monotone matrix model is generic and

has other applications. For instance, the problem of permutation recovery is usually equivalent

to statistical ranking/sorting from noisy observations, which arises commonly in finance (Currie

and Pandher 2011), sport analytics (Deshpande and Jensen 2016), and recommendation systems

(Rendle et al. 2009). Specifically, in the latter case, the task of tag recommendation is to provide

a user with a personalized ranked list of tags for a specific item. Under the permuted monotone

matrix model, we can treat the entries of Y , say Yij , as an indicator of the jth tag being related to the

ith item by a given customer, and Θ as a probability matrix characterizing the customer’s tagging

preferences across multiple items. As a result, recovering the underlying permutation provides a

solution of a tag recommender.

1.4 Main Contributions and Organization

In this paper, we investigate the problem of permutation recovery in the permuted monotone matrix

model (1), which relies on certain invariance property of the singular subspace of the monotone

matrices. The properties of the proposed method in terms of both the exact and partial recovery

are studied in detail. In particular, we obtained regions of the signal-to-noise ratio (defined later as

Γ/σ) that are subject to exact/partial recovery (Figure 1). For both exact and partial permutation

recovery, we obtained the matching minimax lower bounds and established the minimax rate-

optimality of the proposed method over a wide range of parameter space (Figure 1). For partial
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recovery, the proof of the lower bound relies on a version of Fano’s lemma and the sphere packing

of the symmetric group equipped with the Kendall’s tau metric.

Figure 1: A graphical illustration of the main result obtained in this paper about the regions of
the signal-to-noise ratio Γ/σ that correspond to exact/partial recovery, and the region with proved
minimax optimality.

The rest of this paper is organized as follows. After a brief introduction of notation and def-

initions, we present in Section 2 the proposed permutation estimator. The theoretical properties

of the proposed method are studied, first under a more illustrative linear growth model in Section

3 and then under a general growth model in Section 4. Section 5 provides results on minimax

lower bounds and the optimality of the proposed estimator. We evaluate the methods using both

simulated data, synthetic and real microbiome datasets and compare with other methods in Section

6. In Section 7, we discuss some implications and extensions of the methods. Finally, the proofs

of our main results are given in Section 8.

1.5 Notation and Definitions

Throughout, we define the permutation π as a bijection from the set {1, 2, ..., p} onto itself. For

simplicity, we denote π = (π(1), π(2), ..., π(p)). All permutations of the set {1, 2, ..., p} form a

symmetric group, equipped with the function composition operation ◦, denoted as Sp. For any

π ∈ Sp, we denote π−1 ∈ Sp as its group inverse, so that π ◦ π−1 = π−1 ◦ π = id, and denote

rev(π) = (π(p), π(p− 1), ...π(1)). In particular, we may use π and its corresponding permutation

matrix Π ∈ Rp×p interchangeably, depending on the context. For a vector a = (a1, ..., an)> ∈ Rn,

we define the `p norm ‖a‖p =
(∑n

i=1 a
p
i

)1/p, and the `∞ norm ‖a‖∞ = max1≤j≤n |ai|. For a

matrix Θ ∈ Rp1×p2 , we denote Θ.i ∈ Rp1 as its i-th column, Θi. ∈ Rp2 as its i-th row, and denote

its (ordered) singular values as λ1(Θ) ≥ λ2(Θ) ≥ ... ≥ λmin{p1,p2}(Θ). Furthermore, for sequences
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{an} and {bn}, we write an = o(bn) if limn an/bn = 0, and write an = O(bn), an . bn or bn & an

if there exists a constant C such that an ≤ Cbn for all n. We write an � bn if an . bn and an & bn.

For a finite set A, we denote |A| as its cardinality. We use the logical symbols ∧ and ∨ to represent

“and” and “or,” respectively. Lastly, C,C0, C1, ... are constants that may vary from place to place.

2 PERMUTATION RECOVERY VIA BEST LINEAR PROJECTION

In the following, we first make some key observations about the connection between the underlying

permutation π and the column linear projections of the observed matrix Y , which motivate our

construction of the proposed estimator.

2.1 Linear Projection

Given the observed noisy matrix Y , we consider the class of the linear projection statistics of the

form w>Y ∈ Rp where w ∈ Rn and ‖w‖2 = 1. Intuitively, by projecting each column of Y onto

the subspace generated by w, the components of w>Y (hereafter referred as “projection scores”)

would quantify the relative position of the columns of Y , so that their order statistics can be used

to recover the original orders of the columns of Θ. To fix ideas, we define the following ranking

operator.

Definition 1 (Ranking Operator). The ranking operator r : Rp → Sp is defined such that for any

vector x ∈ Rp, r(x) is the vector of ranks for components of x in increasing order. Whenever there

are ties, increasing orders are assigned from left to right.

For example, given a vector x = (2, 5, 1, 6, 2)>, we have r(x) = (2, 4, 1, 5, 3). The follow-

ing proposition concerning the invariance property of the column spacing of Θ is the key to our

construction of the minimax optimal estimator.

Proposition 1. Suppose (Θ, π) ∈ D. For any nonnegative unit vector w ∈ Rn, we have

r(w>ΘΠ) = π−1. (2)

Apparently, under the noiseless setting, any nonnegative unit vector would lead to the exact

recovery of the underlying permutation as in this case the relative orders of the columns are exactly
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coded by the relative magnitudes of the projection scores w>Y = w>ΘΠ. However, with the noisy

observations, w>Y = w>ΘΠ + w>Z so that the relative orders of the columns are only partially

preserved by the noisy projection scores w>Y , up to some random perturbations.

Consequently, the best linear projection vector w0 would correspond to the case where w>0 ΘΠ

has the most separated components such that their relative orders are most immune to the random

noises. Specifically, since for any given w ∈ Rn, the i-th component of w>ΘΠ has the expression

w>ΘΠei where {ei}pi=1 is the canonical basis of the Euclidean space Rp, we define

w0 = arg max
w∈Rn
‖w‖2=1

∑
1≤i,j≤p
i 6=j

(w>ΘΠei − w>ΘΠej)
2 = arg max

w∈Rn
‖w‖2=1

p∑
i=1

(
w>ΘΠei −

1

p

p∑
j=1

w>ΘΠej

)2

,

which maximizes the pairwise distances of the components under the squared distance. Now

since w0 relies on the unknown ΘΠ and is not computable from the data, we substitute ΘΠ by its

sample/noisy counterpart Y and define our data-driven best linear projection vector as

ŵ = arg max
w∈Rn
‖w‖2=1

p∑
i=1

(
w>Y ei −

1

p

p∑
i=1

w>Y ei

)2

, (3)

which is actually the first eigenvector of the symmetric matrix

A = Y

p∑
i=1

(
ei −

1

p

p∑
i=1

ei

)(
ei −

1

p

p∑
i=1

ei

)>
Y >, (4)

and can be immediately solved by performing an eigen-decomposition on A. Once ŵ is obtained,

we define our proposed permutation estimator as

π̂ = (r(ŵ>Y ))−1. (5)

Intuitively, the projection vector ŵ assigns different weights to the rows of Y so that more weight

is given to the rows whose elements are better separated and therefore more informative in distin-

guishing the columns of Y or Θ.

2.2 Evaluation Criteria

The main focus of this paper is to investigate the theoretical properties of our proposed estimator

(5) under various loss measures and parameter spaces. For any given estimator π̌, we first consider
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the 0-1 loss

`(π̌, π) = 1{π̌ 6= π},

with the corresponding risk E`(π̌, π) = P (π̌ 6= π). The 0-1 loss is used to evaluate the exact

recovery, which can be a strong requirement for practical applications. As an alternative, we also

consider the more flexible partial recovery, where the loss function is given by the normalized

Kendall’s tau distance (Kendall 1938) defined as

τK(π1, π2) =
{# of discordant pairs between π1 and π2}(

n
2

) . (6)

Technically, for two permutations π1 and π2, the set of discordant pairs is defined as

G(π1, π2) = {(i, j) : i < j, [π1(i) < π1(j) ∧ π2(i) > π2(j)] ∨ [π1(i) > π1(j) ∧ π2(i) < π2(j)]}

so that the numerator in (6) is equal to the cardinality |G(π1, π2)|, which, in fact, is also the min-

imum number of pairwise adjacent transpositions converting π−1
1 into π−1

2 (Diaconis 1988). The

denominator
(
n
2

)
ensures that τK(π1, π2) ∈ [0, 1] where τK(π1, π2) = 0 corresponds to π1 = π2.

3 A LINEAR GROWTH MODEL

We start with a simpler case where the pair (Θ, π) is from the subspace

DL =

{
(Θ, π) ∈ D :

θij = aiηj + bi, where ai, bi ≥ 0 for 1 ≤ i ≤ n,

0 ≤ ηj ≤ ηj+1 for 1 ≤ j ≤ p− 1

}
. (7)

In other words, each row of Θ has a linear growth pattern with possibly different intercepts and

different slopes. In the context of bacterial growth dynamics, this model is sometimes referred

as the Cooper-Helmstetter model (Cooper and Helmstetter 1968; Bremer and Churchward 1977)

that associates the copy number of genes with their relative distances to the replication origin.

Specifically, ai is the ratio of genome replication time and doubling time, which can be used

to quantify the bacterial growth dynamics for the ith sample, ηj is related to distance from the

replication origin for the jth contig, and bi is related to the read counts at the replication origin and

the sequencing depth. If the bacterium is non-dividing in sample i, ai is zero.
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For the linear growth model (7), there are two key quantities that are relevant to permutation

recovery.

Definition 2. For any Θ ∈ DL, we define

Γ =

( n∑
i=1

a2
i

)1/2

· min
1≤i<j≤p

|ηi − ηj| (8)

as the local minimal signal gap of Θ, and define

Λ =

( n∑
i=1

a2
i

)
· 1

p

∑
1≤i<j≤p

(ηi − ηj)2 =

( n∑
i=1

a2
i

)
·

p∑
j=1

(ηj − η̄)2 (9)

as the global signal strength of Θ, where η̄ =
∑p

j=1 ηj/p.

Intuitively, both quantities involve the set {|ηj − ηi|}1≤i<j≤p and the `2 norm of the vector

a = (a1, ..., an)>, which characterize the column spacings and the growth rates (slopes) of Θ,

respectively. Throughout this paper, we assume

(A1) the additive noise matrix Z ∈ Rn×p has i.i.d. entries zij ∼ N(0, σ2).

The Gaussian assumption simplifies our theoretical analysis. But this is not essential because

all the theoretical results remain true if Z has independent sub-Gaussian entries with parameters

bounded by σ2. The following theorem provides conditions on Γ and Λ such that exact recovery

of π can be obtained by π̂ in (5).

Theorem 1 (Exact Recovery, Linear). Suppose (A1) hold, (Θ, π) ∈ DL and Θ satisfies

Γ > C0σ
√

log p, Λ > C1σ
2(nmax{σ2n/Γ2, 1}+

√
npmax{σ2n/Γ2, 1}) (10)

for some C0, C1 > 0. Then with probability at least 1 − O(p−c) for some constant c > 0, up to a

permutation reversion, we have π̂ = π.

Remark 1. Due to non-identifiability between ŵ and −ŵ defined in (3), in Theorem 1, as well

as all the other theoretical results concerning π̂, the statement is up to a possible reversion of π̂.

For example, for permutation π = (2, 4, 1, 5, 3), its reversion would be rev(π) = (4, 2, 5, 1, 3). In

fact, such indeterminacy can be avoided by noting that ai ≥ 0 for all i’s, but we will not pursue
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such a direction in this study as the practical interest only concerns relative orders of the permuted

elements.

Since Γ depends on a only through its `2 norm ‖a‖2, the local minimal signal gap (MSG)

condition Γ ≥ Cσ
√

log p allows for the presence of non-informative signals in the sense that some

components of a can be 0. In contrast, the condition on Λ (GSS) depends on a trade-off between Γ

and σ
√
n. One the one hand, when Γ > σ

√
n, the condition on Λ becomes Λ ≥ σ2(C0n+C1

√
np),

which is independent of Γ, and is minimax optimal for left singular subspace estimation (Cai and

Zhang 2018). On the other hand, when Γ < σ
√
n, a stronger condition on Λ is posed, as a

compensation for small Γ.

In some cases, the GSS condition in (10) can be implied by the MSG condition. We summarize

our results in the following proposition.

Proposition 2. Suppose Γ/σ > 1/p and the MSG condition hold. Then the GSS condition can be

implied by either one of the following conditions

(i) Γ & σ
√
n;

(ii) Γ . σ
√
n, and either (σ4n2/Γ4)1/3 . p . σ2n2/Γ2 or p & σ2n2/Γ2 + (σ3n/Γ3)2/5.

We next turn to the partial recovery and study the rate of convergence of π̂ measured by the

normalized Kendall’s tau distance under the linear growth model. In particular, we will assume an

approximate uniform assignment of {ηj}pj=1 over some subinterval of [0,∞). In other words, the

minimal element and maximal element of the set {|ηj − ηj+1|}p−1
j=1 should have roughly the same

magnitude, so that Γ = ‖a‖2 · min1≤j≤p−1 |ηj − ηj+1| � ‖a‖2 · max1≤j≤p−1 |ηj − ηj+1|. This is

equivalent to assuming that the contigs in genome assemblies are approximately uniformly spaced

along the circular genome.

Theorem 2 (Partial Recovery, Linear). Suppose (A1) hold, (Θ, π) ∈ DL, and Θ satisfies

(i) there exist some C0 > 0 such that max1≤j≤p−1 |ηj − ηj+1| < C0 min1≤j≤p−1 |ηj − ηj+1| for

all p > 0, and
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(ii) Λ > C1σ
2
(

max
{σ2(n+log p)2

Γ2 , n}+
√
pmax

{σ(n+log p)
Γ

,
√
n
})

for some C1 > 0.

Then, up to a permutation reversion,

E[τK(π̂, π)] ≤ 1 ∧
(
c0σ

pΓ
min

{
1, e−Γ2/2σ2

log

(
1 +

2σ2

Γ2

)}
+

c1e
−Γ2/2σ2

p(Γ/σ +
√

8/π)
+

c2

pc+2

)
for some c, c0, c1, c2 > 0.

Remark 2. The risk upper bound derived in the above theorem can be simplified as

E[τK(π̂, π)] .


σ
pΓ
∧ 1 if Γ/σ → 0

σ
pΓ
e−Γ2/2σ2

+ 1/pc+2 otherwise

for some c > 0. In the case of Γ/σ → ∞, simple calculation yields e−Γ2/2σ2
σ/(pΓ) + 1/pc+2 �

e−Γ2/2σ2
σ/Γ when Γ < σ

√
2(c+ 1) log p, whereas e−Γ2/2σ2

σ/(pΓ) + 1/pc+2 � 1/pc+2 when

Γ ≥ σ
√

2(c+ 1) log p. As a result, we also have

E[τK(π̂, π)] .


1/pc+2 if Γ/σ ≥

√
2(c+ 1) log p

σ
pΓ
e−Γ2/2σ2 if 1 . Γ/σ <

√
2(c+ 1) log p

σ
pΓ
∧ 1 if Γ/σ . 1

. (11)

See Figure 2 for an illustration.

In general, Theorem 2 shows that, even with a weaker condition on Γ that is below the require-

ment for the exact recovery, our proposed estimator π̂ is still able to obtain a partial recovery of

π with an exponential rate of convergence if Γ/σ & 1 and a polynomial rate of convergence if

1/p < Γ/σ . 1. As for Λ, the requirement is essentially the same as the exact recovery, except for

an additional log p term, which is negligible in the exact recovery scenario.

Some implications about the practically preferable settings of n and p should be clarified.

Firstly, although Theorem 1 implies that the difficulty for exact recovery increases as p grows (see

also Table 1 from our simulations), our theory suggests a wide range of feasible choices for p.

For example, if the underlying signals θij and the noise level σ2 are of constant order, then we

have Γ �
√
n and Λ � np3, so the conditions of Theorem 1 imply that the exact recovery can

be guaranteed as long as log p . n. In other words, p is allowed to grow exponentially with n,
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Figure 2: A graphical illustration of the risk upper bound for E[τK(π̂, π)], as a function of signal-
to-noise ratio Γ/σ.

which is in line with the modern high-dimensional setting. Secondly, our Theorem 2 implies that,

even if some conditions (such as MSG) for the exact recovery are not satisfied, one can still hope

to partially recover the underlying permutation. In accordance to our theoretical result (11), our

numerical results (Figure 4) show that, for the partial recovery, increasing p indeed reduces the

overall risk of the proposed estimator. Finally, as to the sample size n, we argue that, without

assuming additional structural assumptions such as row-sparsity, it is very unlikely that including

more samples will result in a worse estimate (see Table 1 and Figure 4 for numerical evidences).

4 A GENERAL GROWTH MODEL

In this section we study the permutation recovery over the general parameter space D where the

growth pattern is not necessarily linear and therefore is more realistic inasmuch as the noisy nature

of the shotgun metagenomic datasets (Boulund et al. 2018; Gao and Li 2018). The analysis relies

on a deeper understanding of the relationship between the row-monotonic matrices and its leading

singular vectors.
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Specifically, for any Θ ∈ D, we define the row-centered matrix

Θ′ = Θ(I − p−1ee>) ∈ Rn×p (12)

whose singular value decomposition (SVD) is given by Θ′ =
∑r

i=1 λi(Θ
′)u′iv

′>
i , with r ≤ min{n, p}.

The following proposition is essential to our analysis of the general growth model.

Proposition 3. Let Θ′ be defined as above, then its first right singular vector v′1 is a monotone

vector, i.e., either v′11 ≤ v′12 ≤ ... ≤ v′1p or v′11 ≥ v′12 ≥ ... ≥ v′1p.

Together with Proposition 1, the above proposition justifies our construction of the permutation

estimator π̂ using a PCA based approach. To overcome the identifiability issue, we further assume

λ1(Θ′) has multiplicity one. We first introduce the several quantities that play the key roles in

permutation recovery over D.

Definition 3. For any Θ ∈ D and the corresponding Θ′ defined as above, we define

Γ = min
1≤i<j≤p

|u′>1 (Θ′.i −Θ′.j)| = λ1(Θ′) min
1≤i<j≤p

|v′1i − v′1j|,

as the local minimal signal gap, define

Ξ = max
1≤i≤p−1

‖Θ′.i −Θ′.i+1‖2 = max
1≤i≤p−1

( r∑
j=1

λ2
j(Θ

′)|v′ji − v′j,i+1|2
)1/2

,

as the local maximal signal gap, and define

Λ = λ2
1(Θ′)− λ2

2(Θ′)

as the global signal strength of Θ.

In particular, the above definitions of Γ and Λ generalize the ones given earlier in the linear

growth model as these quantities coincide for Θ ∈ DL. The following theorem concerns the exact

permutation recovery with π̂ over D.

Theorem 3 (Exact Recovery, General). Suppose (A1) hold, n . p, (Θ, π) ∈ D, and Θ satisfies

Γ > C0σ
√

log p and

Λ > C1σ
2

[(
n+

Ξ2

σ2

)
max

{
(n+ log p)σ2

Γ2
, 1

}
+
√
p

(√
n+

Ξ

σ

)
max

{
σ
√
n+ log p

Γ
, 1

}]
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for some C0, C1 > 0. Then with probability at least 1 − O(p−c) for some constant c > 0, up to a

permutation reversion, we have π̂ = π.

As in the case of linear growth model (Theorem 1), in Theorem 3, to guarantee exact recovery,

we need the MSG condition Γ > C0σ
√

log p. Unlike the linear growth model, here Γ only implic-

itly depends on the elements of Θ through its spectral quantities, which makes its interpretation

less clear. To address this issue, we make the following observation that links the minimal singular

vector gap min1≤i<j≤p |v′1i − v′1j| in the definition of Γ to the elements of Θ.

Proposition 4. Let Θ′ in (12) be such that there exists a δ > 0 being the lower bound of the

normalized minimum gap between any two entries in the same row, i.e.

min
1≤k≤n

|θ′k,i − θ′k,j|
‖Θ′k.‖2

≥ δ for some i 6= j.

Then the first singular vector v′1 ∈ Rp of Θ′ satisfies |v′1,i − v′1,j| ≥ δ.

Consequently, the implicit requirement that min1≤i<j≤p |v′1i − v′1j| is large can be guaranteed

when the normalized minimum distance min1≤i<j≤p min1≤k≤n |θ′k,i − θ′k,j|/‖Θ′k.‖2 is large. Our

next theorem concerns the partial recovery over the general parameter space D.

Theorem 4 (Partial Recovery, General). Suppose (A1) hold, n . p, (Θ, π) ∈ D, and Θ satisfies

(i) there exits some C0 > 0 such that max1≤j≤p−1 |v′1j − v′1,j+1| < C0 min1≤j≤p−1 |v′1j − v′1,j+1|

for all p > 0, and

(ii) Λ > C1σ
2
[

max
{ (n+log p)2σ2

Γ2 , n+ Ξ2

σ2

}
+
√
pmax

{σ(n+log p)
Γ

,
√
n+ Ξ

σ

}]
for some C1 > 0.

Then, up to a permutation reversion,

E[τK(π̂, π)] ≤ 1 ∧
(
c0σ

pΓ
min

{
1, e−Γ2/2σ2

log

(
1 +

2σ2

Γ2

)}
+

c1e
−Γ2/2σ2

p(Γ/σ +
√

8/π)
+

c2

pc+2

)
for some c, c0, c1, c2 > 0.

Condition (i) of Theorem 4 parallels the one given in Theorem 2. It essentially requires an

even distancing of the elements (the projected columns of Θ) whose ordering is to be tracked by
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π̂. In contrast, in both Theorem 3 and 4, the conditions on Λ are slightly more complicated than

those in Theorem 1 and 2, as it further depends on the relative magnitude between Ξ/σ and
√
n.

In particular, if Ξ/σ .
√
n, the conditions reduce to the ones required in the linear growth models.

Interestingly, the risk upper bound obtained in Theorem 4 remains the same as in the linear growth

model, which only depends on p and the signal-to-noise ratio Γ/σ.

5 MINIMAX LOWER BOUNDS AND OPTIMALITY

In this section, we establish the minimax lower bounds for both exact and partial recovery con-

sidered in previous sections, in relation to different levels of the signal-to-noise ratio Γ/σ. In the

following theorem, we show the MSG condition for exact recovery is asymptotically sharp.

Theorem 5. Suppose (A1) hold. Let D1 = DL ∩ {(Θ, π) : Γ ≤ σ
4

√
log p} and D′1 = D∩ {(Θ, π) :

Γ ≤ σ
4

√
log p}. Then for any p ≥ 10, we have

inf
π̂

sup
(Θ,π)∈D′

1

P (π̂ 6= π) ≥ inf
π̂

sup
(Θ,π)∈D1

P (π̂ 6= π) ≥ 0.3,

where the infimum is over all the permutation estimators π̂.

This theorem along with Theorem 1 and Theorem 3 indicates that our proposed estimator is

minimax rate-optimal over DL and D in terms of the MSG condition on Γ. In light of Proposition

2, in some situations the MSG condition can be both necessary and sufficient for the exact recovery,

which includes practically important cases such as n � p, n < log p, etc. Using the information-

theoretic language, we have therefore obtained both the achievability result, i.e., the existence of an

algorithm or estimator that exactly recovers signal with high probability, and the converse result,

namely, an upper bound on the probability of exact recovery that applies to any estimators (Cullina

and Kiyavash 2016). See Figure 3 for an illustration.

Our next theorem establishes a minimax lower bound for the expected rate of convergence for

the partial recovery.
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Figure 3: A graphical illustration of the achievability/converse result for exact recovery.

Theorem 6. Suppose (A1) hold, D2(t) = DL ∩ {(Θ, π) : ct ≤ Γ ≤ Ct}, D′2(t) = D ∩ {(Θ, π) :

ct ≤ Γ ≤ Ct} for some C, c > 0, and t/σ ≥ 2. Then there exist constants C1, C2 > 0 such that

inf
π̂

sup
(Θ,π)∈D′

2(t)

E[τK(π̂, π)] ≥ inf
π̂

sup
(Θ,π)∈D2(t)

E[τK(π̂, π)] ≥ C1σ

pt
e−t

2/2σ2

+
C2

p2
.

Comparing the above minimax lower bound to the risk upper bounds obtained in Theorem 2

and 4, we conclude that our proposed estimator π̂ is minimax rate-optimal in terms of the partial

recovery for both the linear growth model and the general growth model over the range whenever

Γ/σ does not diminish (Figure 1). In particular, in Theorem 5 and 6, since the minimax lower

bounds only concern the worst-case scenarios, the same lower bounds should hold for any param-

eter spaces whenever the same worst cases are included. Similarly, the assumption (A1) does not

pose a restriction to the general applicability of such results.

6 NUMERICAL STUDIES

6.1 Simulation with Model-Generated Data

To demonstrate our theoretical results and compare with alternative methods, we generate data

from model (1) with various configurations of the signal matrix Θ. We compare the empirical

performance of our proposed estimator π̂ with the following alternatives:

• πmean : Order the columns of Y by the magnitude of its column means;

• πmax: Order the columns of Y by the magnitude of its column maximums.

We use both the 0-1 loss and the normalized Kendall’s tau distance in comparing these methods.

Due to the identifiability issue, the performance of each estimator is evaluated up to a complete

reversion of the permutation. For example, we use min{τK(π̂, π), τK(π̂, rev(π))} as the empirical
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Kendall’s tau distance. By symmetry, we set the underlying permutation π = id. The signal matrix

Θ = (θij) ∈ Rn×p is generated under the following four regimes:

(i) S1(α, n, p): For any 1 ≤ j ≤ p, θij = log(1 + jαi + βi) where αi ∼ Unif(α/2, α) for

1 ≤ i ≤ n/2, αi ∼ Unif(0, 0.01) for n/2 < i ≤ n, and βi ∼ Unif(1, 3) for all 1 ≤ i ≤ n;

(ii) S2(α, n, p): For any 1 ≤ j ≤ p, θij = jαi + βi where αi ∼ Unif(α/2, α) for 1 ≤ i ≤ n/2,

αi ∼ Unif(0, α/10) for n/2 < i ≤ n, and βi ∼ Unif(1, 3) for all 1 ≤ i ≤ n;

(iii) S3(α, n, p): For any 1 ≤ j ≤ p, θij = log(1 + jαi + βi) where αi ∼ Unif(α/2, α) for

1 ≤ i ≤ 3, αi ∼ Unif(0, 0.01) for 4 < i ≤ n, and βi ∼ Unif(1, 3) for all 1 ≤ i ≤ n;

(iv) S4(α, n, p): For any 1 ≤ j ≤ p, θij = jαi + βi where αi ∼ Unif(α/2, α) for 1 ≤ i ≤ 3,

αi ∼ Unif(0, α/10) for 4 < i ≤ n, and βi ∼ Unif(1, 3) for all 1 ≤ i ≤ n.

Specifically, under each regime, the sample-specific “growth rate” parameter αi is randomly and

uniformly generated either from the interval [α/2, α] or an interval with much smaller values,

namely, [0, α/10] in S2 and S4 and [0, 0.01] in S1 and S3. By construction, the four regimes

consist of the nonlinear growth model where the signals spread out over many samples (S1) or

concentrate at a few rows (S3) and the linear growth model where the signals spread out over many

samples (S2) or concentrate at a few rows (S4). In particular, in accordance to our theory, for

the supposedly “non-informative” samples, we allow the corresponding growth rates to be small

but non-zero, which shows the flexibility of our proposed method. The entries of Z are drawn

from i.i.d. centred normal distributions whose variance σ2 will be given explicitly. In each setting,

we evaluate the empirical performance of each method over a range of n, p or α. Each setting is

repeated for 200 times.

For the exact recovery, in Table 1, we reported the empirical risks of the estimators under the

0-1 loss for various regimes and parameter combinations. The noise level σ2 is chosen for each

regime to better illustrate the differences in the empirical risks among the estimators. From our

simulation results, in consistent to our theory, our proposed estimator has the smallest empirical

risk over all the settings, and the estimation risk decreases as we increase α, n or decrease p.
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Table 1: The empirical risks of the estimators under the 0-1 loss based on 200 simulations for var-
ious combinations of the parameters (p, n, α). π̂: proposed method; πmean: mean-based method;
πmax: max-based method.

p = 75
n = 40

S1(σ2 = 0.025) S2(σ2 = 0.1) S3(σ2 = 0.0075) S4(σ2 = 0.025)
α = 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

π̂ 0.775 0.575 0.415 0.000 0.025 0.020 0.025 0.000
πmean 0.925 0.815 0.955 0.015 0.155 0.135 0.880 0.005
πmax 1.000 1.000 1.000 0.995 0.995 0.970 0.840 0.430
n = 40
α = 0.1

S1(σ2 = 0.025) S2(σ2 = 0.1) S3(σ2 = 0.0075) S4(σ2 = 0.025)
p = 60 90 60 90 60 90 60 90

π̂ 0.410 0.930 0.340 0.470 0.010 0.115 0.000 0.010
πmean 0.720 0.985 0.910 0.980 0.070 0.245 0.775 0.900
πmax 1.000 1.000 1.000 1.000 0.975 1.000 0.815 0.875
p = 75
α = 0.1

S1(σ2 = 0.025) S2(σ2 = 0.1) S3(σ2 = 0.0075) S4(σ2 = 0.025)
n = 40 60 40 60 40 60 40 60

π̂ 0.765 0.440 0.475 0.095 0.050 0.020 0.010 0.005
πmean 0.920 0.645 0.940 0.700 0.175 0.045 0.900 0.905
πmax 1.000 1.000 1.000 1.000 0.995 0.995 0.855 0.820

For partial recovery, in Figure 4, we show boxplots of the empirical normalized Kendall’s tau

between each estimator and the true permutation π. Again, our proposed method outperforms the

alternatives in all the cases. As expected from our theory, under all the four regimes, increasing p

while keeping other parameters fixed results to smaller estimation risk. As for the dependence on

n, under S1 and S2, increasing n leads to smaller risk as it is equivalent to increasing Γ, whereas

under S3 and S4, the risk roughly remains the same across different n’s as in these case Γ doesn’t

change much.

To offer more intuitive interpretation of why π̂ performs better than the alternative methods,

we assessed the weight vectors ŵ of our proposed estimator π̂ under each regime after 200 rounds

of simulations (Figure 3 in Supplemented Material). In comparison, the weight vector for πmean

is simply (1/
√
n, ..., 1/

√
n), which assigns equal weight to all the samples. On the other hand,

since πmax cannot be written in the form of (r(w>Y ))−1 for some weight vector w and therefore

does not belong to the class of linear projection estimators, we reported instead the pseudo-weight

vector w̃ ∈ Rn where the i-th component is the proportion that the i-th sample is used among the

p coordinates. In general, we found that w̃ ∈ Rn assigns larger weights to only a few samples
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among those with higher signal strength, and the weight vector for πmean fails to distinguish the

informative samples from the non-informative ones. In contrast, the weight vectors ŵ for our

proposed estimator π̂ would automatically adapt to the varying signal strengths across the samples

and assign larger weights to the samples with more significant signal changes. This also explains

the interesting phenomenon in Figure 4 that, under the regime S1 and S2, π̂ and πmean perform

better than πmax, whereas under S3 and S4, π̂ and πmax perform better. In summary, methods that

are able to detect and assign larger weight to the more informative samples would perform better

than methods that are not. Observably, π̂ combines the advantages of πmean and πmax in that it finds

the best weights (projection scores) in a data-driven manner.

6.2 Evaluation Using Synthetic Metagenomic Data

We evaluate the empirical performance of our proposed method using a synthetic metagenomic

sequencing dataset used in Gao and Li (2018) by generating sequencing reads based on 45 bacterial

genomes. Instead of estimating the PTRs, which was the focus of Gao and Li (2018), our goal is to

recover the unknown relative orders of the contigs assembled in typical metagenomics studies. In

addition to assisting the estimation of PTRs, such ordering of the contigs could be of independent

interest for other applications, including genome assemblies based on shotgun metagenomics data.

Gao and Li (2018) presented a synthetic shotgun metagenomic sequencing dataset of a com-

munity of 45 phylogenetically related species from 15 genera of five different phyla with known

RefSeq ID, taxonomy and replication origin (Gao, Luo, and Zhang 2013) (see Figure 2 in our Sup-

plementary Material). To generate metagenomics reads, reference genome sequences of randomly

selected three species in each genus were downloaded from NCBI. Read coverages were gener-

ated along the genome based on an exponential distribution with a specified peak-to-trough ratio

and a function of accumulative distribution of read coverages along the genome was calculated.

Sequencing reads were next generated using the above accumulative distribution function and a

random location of each read on the genome, until the total read number achieved a randomly as-

signed average coverage between 0.5 and 10 folds for the species in a sample. Sequencing errors
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including substitution, insertion and deletion were simulated in a position- and nucleotide-specific

pattern according to a recent study on metagenomic sequencing error profiles of Illumina.

For the final dataset, the average nucleotide identities (ANI) between species within each genus

ranged from 66.6% to 91.2% The probability of one species existing in each of the 50 simu-

lated samples was set as 0.6, and a total of 1,336 average coverages and the corresponding PTRs

were randomly and independently assigned. After the same processing and filtering steps and

CG-adjustment step as in Gao and Li (2018), the final dataset included genome assemblies of 41

species. For each species, we obtained the permuted matrix of log-contig counts, with the number

of samples ranging from 29 to 46, and the number of contigs ranging from 47 to 482.

Our proposed method (π̂) was used to estimate the unknown orders of the contigs for each

species and each sample. As a comparison, we also considered the iRep estimator proposed in

Brown et al. (2016), where the contigs of a given species were ordered for each sample separately

based on the read counts observed. We evaluate these methods by comparing the estimated contig

orders to their true orders as measured by the normalized Kendall’s tau distance. To generalize

our evaluation to diverse metagenomic datasets, we also evaluate the effect of sample size as well

as contig numbers by randomly selecting subsets of samples or contigs from each dataset. The

selection was made with replacement.

The results are summarized in Figure 5 by comparing the normalized Kendall’s tau distances.

As n or p varies, our proposed estimator performs consistently better than iRep in recovering the

true contig orders, which explains partially why the DEMIC algorithm worked better in estimating

the bacterial growth dynamics. The results of our methods are not sensitive to the sample size and

the number of contigs from the genome assemblies. Our estimator also shows smaller variability.

6.3 Analysis of a Real Microbiome Metagenomic Data Set

Finally, we complete our numerical studies by analyzing a real metagenomic dataset from the

Pediatric Longitudinal Study of Elemental Diet and Stool Microbiome Composition (PLEASE)

study, a prospective cohort study to investigate the treatment effects on the gut microbiome and
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reduction of inflammation in pediatric Crohn’s disease patients (Lewis et al. 2015). In particular,

sequencing data from the fecal samples of 86 Crohn’s disease children were obtained at baseline,

1 week and 8 weeks after antiTNF or enteral diet treatment. In our analysis, the sequencing data at

the 8th week after treatment was used to compare the bacterial growth dynamics for non-responders

(n = 34) and responders (n = 47). The reads were downloaded from NCBI short read archive

(SRP057027) with the corresponding metadata. After the same coassembly, alignment and binning

steps as in Gao and Li (2018), the DEMIC algorithm was applied to estimate the bacterial growth

rate of a given species represented by a contig cluster (bin) for each sample. In particular, DEMIC

applied our proposed method to the GC-adjusted contig coverage data to recover the original order

of the contigs. After obtaining the ordered contigs, a simple linear regression was fitted to obtain

estimates of the PTRs (ePTRs).

In order to compare the baterial growth rates between responders and non-responders, our

analysis focused on ePTRs of 8 contig clusters over subsets of the non-responders (n1) and the

responders (n2) after 8 weeks of treatment with min{n1, n2} > 5. Other contig clusters were

rare and only appeared in a few samples. For each contig cluster, we compare the ePTRs of the

responders and non-responders Wilcoxon rank sum test (Table S.1 in Supplementary Material).

The taxonomic annotations of these eight contig clusters were obtain by applying the BAT algo-

rithm (von Meijenfeldt et al. 2019) that compares the metagenomic assembled bins to a taxonomy

database. In Table S.1, we show the final taxonomic annotations for each bin to the finest possible

resolution, with the lineage scores indicating the quality of each taxonomic classification.

Among the 8 contig clusters, bin.026 showed a significant difference in ePTRs between respon-

ders and non-responders after either antiTNF or enteral diet treatment for 8 weeks (p=0.0418),

where the growth rate was higher in Crohn’s disease patients who did not respond to the treat-

ment. The taxonomic classification (Table S.1) shows that this contig cluster belongs to the phy-

lum Firmicutes and the order Clostridiales. Since BAT algorithm was not able to classify the order

Clostridiales to finer taxonomic level of known species, this contig cluster may represent a new

species that is important to the treatment outcome of Crohn’s disease patients.
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7 DISCUSSION

In this paper, partial recovery was studied under the normalized Kendall’s tau distance. Another

commonly used metric is the normalized Spearman’s footrule distance defined by

ρ(π1, π2) =
2

p(p− 1)

p∑
i=1

|π1(i)− π2(i)|, π1, π2 ∈ Sp.

A celebrated result by Diaconis and Graham (1977) shows that τK(π1, π2) ≤ ρ(π1, π2) ≤ 2τK(π1, π2),

which means the two distances are equivalent. As a consequence, all the theoretical results pre-

sented in this paper concerning the Kendall’s tau distance also hold for the Spearman’s footrule

distance without any change.

The minimax optimality of the proposed estimator π̂ was investigated in Section 5 by exam-

ining the asymptotic sharpness of the MSG condition for exact recovery, and by obtaining the

matching minimax risk lower bound for partial recovery. There are a few issues that deserve

further investigation. For both exact and partial recovery, it is unclear to what extent the GSS

condition is necessary. In our risk analysis, the perturbation bound for the left singular subspace

(Cai and Zhang 2018) was used. In fact, similar results can be obtained using the concentration

bound for the linear functionals of singular vectors (Koltchinskii and Xia 2016). Nevertheless, it

remains to show whether the GSS condition is also asymptotically sharp. In addition, in Theorem

6, the matching minimax lower bound was obtained only for nonvanishing Γ/σ. It remains to

show whether the rate σ/(pΓ) is minimax optimal when Γ/σ → 0. The difficulty lies in finding a

p1+δ-sphere packing of the group Sp equipped with the Kendall’s tau distance for any 0 < δ < 1,

while the pairwise `2 distances of the packing elements are also well controlled. Some initial steps

have been made in the so-called rank modulation theory (Barg and Mazumdar 2010; Mazumdar,

Barg, and Zemor 2013).

There are several related problems that are also of significant theoretical and practical interest.

Firstly, although we used the Kendall’s tau distance or the equivalent Spearman’s footrule distance

as the metric for partial recovery, other distances such the Hamming distance, Spearman’s rank

correlation distance, and Ulam’s distance have also been used as the performance metrics for par-
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tial recovery in other permutation estimation problems (Göloğlu et al. 2015; Mukherjee 2016). It

is therefore of interest to see how π̂ performs under these losses. Secondly, our proposed estima-

tor π̂ implicitly performs a (linear) dimension reduction technique and only uses the information

contained in the first eigenvector of A in (4). A natural extension is to consider the eigen-subspace

spanned by the first k eigenvectors and to estimate the permutation in a sequential manner.

The present paper focuses on the estimation of the permutation matrix Π. It is also of interest

to estimate the underlying signal matrix Θ or some functionals of it. For example, in microbiome

growth dynamics studies, it is of significant interest to estimate the peak-to-trough ratio exp(θkp−

θk1) for k = 1, ..., n, which measures the microbial growth rate for the kth sample, and to identify

the samples with peak-to-trough ratio of 1. It is also interesting to identify the bacteria that show

differential growth dynamics between disease and normal individuals. Finally, robust permutation

recovery methods that can relax the Gaussian or sub-Gaussian assumption of the noise in the

permuted monotone matrix model are needed. For example, in some applications, the columns

of the noise matrix are not independent, or the variance levels across the noise matrix are not

identical. In these cases, we argue that, as long as the marginal distributions of the noise matrix

entries remain sub-Gaussian, the analytical framework of the current paper can still be applied, but

with more efforts to control the underlying heteroskedasticity. Toward this end, results from the

recent work of Zhang, Cai, and Wu (2018) can be very useful, in terms of the new technical tools

that parallel the ones used in the current paper to analyse the homoskedastic PCA (cf. Lemma 2

and 3). Finally, to account for non-informative samples, sparse PCA (Cai, Ma, and Wu 2013; Yuan

and Zhang 2013) can be considered. These are interesting problems left for future research.

8 PROOFS OF THE MAIN THEOREMS

In this section, we prove Theorems 1 and 2 in detail and briefly sketch the proofs of Theorems

3 and 4. We also prove the minimax lower bounds in Theorems 5 and 6. Proofs of other results

including the technical lemmas can be found in the online Supplementary Materials.
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Proof of Theorem 1. Let X = Θ + Z. It follows that Y = XΠ. By right invariance of the 0-1

loss with respect to permutation composition, we have

`((r(ŵ>Y ))−1, π) = `((r(ŵ>XΠ))−1, π) = `((r(ŵ>X))−1 ◦ π, π) = `((r(ŵ>X))−1, id).

Thus it suffices to study the risk E`((r(ŵ>X))−1, id) = P ((r(ŵ>X))−1 6= id). In fact,

P ((r(ŵ>X))−1 6= id) ≤ P

( p−1⋃
i=1

{ n∑
k=1

ŵkXki ≥
n∑
k=1

ŵkXk,i+1

})

≤
p−1∑
i=1

P

( n∑
k=1

ŵkXki ≥
n∑
k=1

ŵkXk,i+1

)
=

p−1∑
i=1

P

( n∑
k=1

ŵk(Xki −Xk,i+1) ≥ 0

)
, (13)

which further reduces to obtaining an upper bound for Pi = P
(∑n

k=1 ŵk(Xki − Xk,i+1) ≥ 0
)
.

By definition, ŵ is the first eigenvector of A = Y
(
I − 1

p
ee>
)(
I − 1

p
ee>
)
Y >. Simple calculation

yields Π
(
I − 1

p
ee>
)(
I − 1

p
ee>
)
Π> =

(
I − 1

p
ee>
)(
I − 1

p
ee>
)

for any Π ∈ Sp. So ŵ is also the first

eigenvector of A = X
(
I − 1

p
ee>
)(
I − 1

p
ee>
)
X> ≡ TT>, where T ∈ Rn×p. Note that T admits

the decomposition T = Θ′ + E ∈ Rn×p where Eij ∼ N(0, (p − 1)σ2/p) and Θ′ = aη′>,η′j =

ηj − 1
p

∑p
i=1 ηi. In particular, T.i = X.i − X̄row where X̄row = p−1

∑p
i=1X.i ∈ Rn is the vector of

row means of X . We denote φij = T.i − T.j = X.i −X.j and denote w = a/‖a‖2 ∈ Rn as the first

eigenvector of the rank-one matrix Θ′Θ′>. Now following (13), we have

Pi = P

( n∑
k=1

ŵk(Xki −Xk,i+1) ≥ 0

)
= P

(
w>φij + (ŵ − w)>φij ≥ 0

)
= P

(
w>φi,i+1 + (ŵ − w)>φij ≥ 0, |1− (ŵ>w)2| ≤ δ

)
+ P

(
w>φi,i+1 + (ŵ − w)>φij ≥ 0, |1− (ŵ>w)2| > δ

)
for some δ > 0. By definition, up to a change of sign for ŵ, we have 0 ≤ ŵ>w ≤ 1. Then

|1 − (ŵ>w)2| ≤ δ implies |(ŵ − w)>φi,i+1| ≤ ‖ŵ − w‖2‖φi,i+1‖2 ≤
√

2δ‖φi,i+1‖2, where

the first inequality follows from Cauchy-Schwartz and the second inequality used ‖ŵ − w‖2 =√
2(1− ŵ>w) ≤

√
2(1− (ŵ>w)2). Thus

Pi ≤ P

(
w>φi,i+1 ≥ −

√
2δ‖φi,i+1‖2

)
+ P

(
|1− (ŵ>w)2| > δ

)
. (14)
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The following lemmas provide upper bounds for the two probability events in the last expression.

Lemma 1. Under the conditions of Theorem 1, denote Γi = ‖a‖2(ηi − ηi+1), then for any δ > 0,

we have

P

(
w>φi,i+1 ≥ −

√
2δ‖φi,i+1‖

)
≤ Φ

(
C1

√
δΨ

1/2
i +

Γi
σ

)
+
C2

pc
(15)

for Ψi = (
√
n+
√

log p)2 +
Γ2
i

σ2 + |Γi|
σ

√
log p and some constants C1, C2, c > 0.

Lemma 2. Suppose λ2
1(Θ′) ≥ Cσ2(n+

√
np) for some C > 0, it follows that

P

(
|1− (ŵ>w)2| ≤ C1

σ2(λ2
1(Θ′) + σ2p)(n+ log p)

λ4
1(Θ′)

)
≥ 1− C2

pc

for some C1, C2, c > 0.

Now since 1
p

∑
1≤i<j≤p(ηi − ηj)2 =

∑p
j=1

(
ηj − 1

p

∑p
i=1 ηi

)2
=
∑p

j=1 η
′
j
2, we have λ2

1(Θ′) =

Λ > C0σ
2(n+

√
np) for some C0 > 0. Set δ = C0σ

2 (λ21(Θ′)+σ2p)(n+log p)

λ41(Θ′)
. It follows that δ = o(1).

Combining Lemma 1 and Lemma 2, we have

Pi ≤ Φ

(
C
√
δ

[
(
√
n+

√
log p)2 +

Γ2
i

σ2
+
|Γi|
σ

√
log p

]1/2

+
Γi
σ

)
+
C

pc
(16)

for some C, c > 0. The rest of the analysis is divided into several cases.

Case 1. log p . n. In this case, we have Pi ≤ Φ
(
C
√
δ
[
n +

Γ2
i

σ2 + |Γi|
σ

√
log p

]1/2
+ Γi

σ

)
+ C

pc
. In

addition, if |Γi|/σ .
√
n, we have Pi ≤ Φ

(
C
√
δn+Γi

σ

)
+ C
pc
≤ C′

pc
,where the last inequality follows

from
√

log p . Γ/σ ≤ |Γi|/σ .
√
n and Λ & σ2n

(
σ2n
Γ2 +

σ
√
p

Γ

)
. If instead |Γi|/σ &

√
n, we have

Pi ≤ Φ
(
C
√
δ |Γi|
σ

+ Γi
σ

)
+ C

pc
≤ C′

pc
, where the last inequality follows from |Γi|/σ &

√
n &
√

log p

and δ = o(1). Hence, in Case 1, (16) can be bounded by O(p−c).

Case 2. log p & n. In this case, we have Pi ≤ Φ
(
C
√
δ
[

log p +
Γ2
i

σ2 + |Γi|
σ

√
log p

]1/2
+ Γi

σ

)
+ C

pc
.

In addition, since |Γi| ≥ Γ & σ
√

log p and δ = o(1), we have P
(∑n

k=1 ûk(Xki −Xk,i+1) ≥ 0
)
≤

Φ
(
C
√
δ

σ
|Γi|+ Γi

σ

)
+ C

pc
≤ C′

pc
. This shows that, in Case 2, (16) can also be bounded by O(p−c).

As a result, it follows that, up to a change of sign for ŵ, P ((r(ŵ>X))−1 6= id) = O(p−c) for

some constant c > 0.
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Proof of Theorem 2. Firstly, by invariance property of Kendall’s tau distance, E[τK(π̂, π)] =

E[τK((r(ŵ>X))−1, id)] = E[τK((r(ŵ>X)), id)]. It then follows

E[τK(π̂, π)] =
2

p(p− 1)

∑
i<j

P ([r(ŵ>X)]i ≥ [r(ŵ>X)]j)

=
2

p(p− 1)

∑
i<j

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
.

The summation in the last expression can be divided into two parts, namely, the consecutive dif-

ferences and non-consecutive differences, i.e.,∑
i<j

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
=

∑
(i,j):j=i+1

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)

+
∑

(i,j):j>i+1

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
.

In the following, we first show

Pi = P

( n∑
k=1

ŵk(Xki −Xk,i+1) ≥ 0

)
≤ ce−Γ2/2σ2

Γ/σ +
√

Γ2/σ2 + 8/π
+
C

pc
(17)

so that ∑
(i,j):j=i+1

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
≤ cpe−Γ2/2σ2

Γ/σ +
√

Γ2/σ2 + 8/π
+
C

pc
. (18)

for some C, c > 0. Then we show that∑
(i,j):j>i+1

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
≤ C

pσ

Γ
min

{
1, e−Γ2/2σ2

log

(
1 +

2σ2

Γ2

)}
+
C

pc
. (19)

Combining (18) and (19), we conclude that

E[τK(ŵ>Y, π)] ≤ Cσ

pΓ
min

{
1, e−Γ2/2σ2

log

(
1 +

2σ2

Γ2

)}
+

Ce−Γ2/2σ2

p(Γ/σ +
√

8/π)
+

C

pc+2
,

which completes the proof, as the bound E[τK(ŵ>Y, π)] ≤ 1 is trivial.

Proof of (17). Following the same argument as the proof of Theorem 1, we have for 1 ≤ i ≤

p − 1 and δ =
σ2(n+log p)(λ21+σ2p)

λ41
, Pi ≤ P

(
w>φij ≥ −

√
2δ‖φi,i+1‖2

)
+ P

(
|1 − (ŵ>w)2| > δ

)
,

where the second term can be bounded using Lemma 2. For the first term, by Lemma 1, for
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λ4
1(Θ′) ≥ σ2(p+ σ2λ2

1(Θ′))(log p+ n), we have

Pi ≤ Φ

(
C
√
δ

[
(
√
n+

√
log p)2 +

Γ2
i

σ2
+
|Γi|
σ

√
log p

]1/2

+
Γi
σ

)
+
C

pc
.

Using same argument as the proof of Theorem 1, it holds that Pi ≤ Φ
(

Γi
σ

)
+ C

pc
. Equation (17) then

follows by using formula 7.1.13 of Abramowitz and Stegun (1965) that Φ(−t) < 2

t+
√
t2+8/π

φ(t)

for t ≥ 0.

Proof of (19). For the set of indices S = {(i, j) : 1 ≤ i < j ≤ p, j > i+ 1}, we further divide

it into two subsets S1 = {(i, j) : 1 ≤ i < j ≤ p, j > i + bσ
√
C log p/Γc} and S2 = {(i, j) : 1 ≤

i < j ≤ p, i + 1 < j ≤ i + bσ
√
C log p/Γc} for some constant C > 0. Apparently we have the

decomposition∑
(i,j):j>i+1

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
=

∑
(i,j)∈S1

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)

+
∑

(i,j)∈S2

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
(20)

For the first term, by construction, it can be shown using the same argument (see supplementary

materials) in Theorem 1 that∑
(i,j)∈S1

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
≤ C|S1|

pc
≤ C

pc0
. (21)

Now for the second term in (20), similar argument yields, for (i, j) ∈ S2,

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
≤ c exp(−|i− j|2Γ2/(2σ2))

|i− j|Γ/σ +
√
|i− j|2Γ2/σ2 + 8/π

+
C

pc
.

Note that, on the one hand,

e−|i−j|
2Γ2/(2σ2)

|i− j|Γ/σ +
√
|i− j|2Γ2/σ2 + 8/π

≤ σe−|i−j|
2Γ2/2σ2

|i− j|Γ
.

We have ∑
(i,j)∈S2

σe−|i−j|
2Γ2/2σ2

|i− j|Γ
=
σ

Γ

p∧b
√

log p/Γc∑
k=2

(
e−k

2Γ2/2σ2
p

k
− e−k2Γ2/2σ2

)
= T1 − T2.
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For the rest of the proof, we assume Γ ≤ σ
√

log p/2, otherwise the set S2 will vanish. Then

T1 =
σp

Γ

p∧bσ
√

log p/Γc∑
k=2

e−k
2Γ2/2σ2

k
≤ σp

Γ

∫ p∧σ
√

log p/Γ

1

e−x
2Γ2/2σ2

x
dx

where the last inequality used monotonicity of the integrand. The integral in the last inequality,

after change of variable, can be bounded by an exponential integral Ei(Γ2/2σ2), which has an

upper bound∫ p∧σ
√

log p/Γ

1

e−x
2Γ2/2σ2

x
dx =

1

2

∫ (p2Γ2/2σ2)∧(log p/2)

Γ2/2σ2

e−t

t
dt ≤ 1

2

∫ ∞
Γ2/2σ2

e−t

t
dx ≤ e−Γ2/2σ2

log

(
1 +

2σ2

Γ2

)
so that T1 ≤ σp

Γ
e−Γ2/2σ2

log
(
1 + 2σ2

Γ2

)
. For T2, we have T2 = σ

Γ

∑p∧bσ
√

log p/Γc
k=2 e−k

2Γ2/2σ2 ≥
σ
Γ
e−2Γ2/σ2

. Therefore,∑
(i,j)∈S2

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
≤ Cσp

Γ
e−Γ2/2σ2

log

(
1 +

2σ2

Γ2

)
+
C

pc
. (22)

On the other hand, note that

e−|i−j|
2Γ2/(2σ2)

|i− j|Γ/σ +
√
|i− j|2Γ2/σ2 + 8/π

≤ ce−|i−j|
2Γ2/(2σ2).

We have ∑
(i,j)∈S2

e−|i−j|
2Γ2/(2σ2) =

p∧bσ
√

log p/Γc∑
k=2

pe−k
2Γ2/(2σ2) −

p∧bσ
√

log p/Γc∑
k=2

ke−k
2Γ2/(2σ2)

≤ p

∫ ∞
1

e−k
2Γ2/2σ2

dk − 2e−2Γ2/σ2 ≤ Cpσ/Γ.

Thus ∑
(i,j)∈S2

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
≤ Cpσ/Γ +

C ′

pc
. (23)

Combining (22) and (23), we have∑
(i,j)∈S2

P

( n∑
k=1

ŵk(Xki −Xkj) ≥ 0

)
≤ C

pσ

Γ
min

{
1, e−Γ2/2σ2

log

(
1 +

2σ2

Γ2

)}
+
C

pc
(24)

Combining (21) and (24), we have (19).

Proof of Theorem 3 and Theorem 4. Here we only provide a sketch of the proofs. We refer

the readers to our Supplementary Material for detailed proofs. The proofs follow essentially from
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the same argument as the proofs of Theorem 1 and Theorem 2, respectively. However, in place of

Lemma 2 used therein, we need the following lemma that provides a perturbation bound for the

leading eigenvector of approximate rank-one matrices, which could be of independent interest.

Lemma 3. Suppose p & n and λ2
1(Θ′) ≥ λ2

2(Θ′) + Cσ2(n +
√
np) for some C > 0. Let w = u′1

be the first left singular vector of Θ′, it follows that,

P

(
|1− (ŵ>w)2| ≤ Cσ2(λ2

1(Θ′) + σ2p)(n+ log p)

(λ2
1(Θ′)− λ2

2(Θ′))2

)
≥ 1− C

pc
.

The proof of Lemma 3 is nontrivial, which depends on a combination of the generic perturba-

tion bound obtained by Cai and Zhang (2018) and new concentration inequalities of approximate

rank-one matrices (see Supplementary Materials).

Proof of Theorem 5. The proof relies on the following lemma adapted from (Tsybakov 2009).

Lemma 4. Assume that for some integer M ≥ 2 there exist distinct parameters θ0, ..., θM from

the parameter space Θ and mutually absolutely continuous probability measures P0, ..., PM with

Pj = Pθj for j = 0, 1, ...,M , defined on a common probability space (Ω,F) such that the averaged

K-L divergence 1
M

∑M
j=1D(Pj, P0) ≤ 1

8
logM. Then, for every measurable mapping θ̂ : Ω→ Θ,

max
j=0,...,M

Pj(θ̂ 6= θj) ≥
√
M√

M + 1

(
3

4
− 1

2
√

logM

)
.

We construct the (M + 1) = p points parameter space as follows. We define p permutations

from Sp as an identity plus (p−1) consecutive swaps, i.e., π0 = id, πk = (k, k+1) for k = 1, ..., p−

1. The signal matrix Θ0 = aη> where a = (1, ..., 1)> ∈ Rn and η = (0, δ, ..., (p − 1)δ)> ∈ Rp,

δ = σ
4

√
log p/n. In this way, we have Γ = ‖a‖2 · min1≤i≤p−1 |ηj − ηj+1| = σ

4

√
log p. Let Pk

corresponds to the joint probability measure of Y under (Θ0, πk) for k = 0, 1, ..., p − 1, and let

pk be the pdf of Pk, we have p0(x) =
∏n

i=1

∏p
j=1 φηj(xij), pk(x) =

∏n
i=1

∏p
j=1 φηπk(j)(xij) for

k = 1, ..., p − 1, where φµ is the pdf of Gaussian distribution N(µ, σ2). Now we calculate the
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KL-divergence

D(Pk, P0) =

∫
log

(
pk(x)

p0(x)

)
p0(x)dx =

∫
n

2σ2

p∑
i=1

[(x1j − ηπk(j))
2 − (x1j − ηj)2]p0(x)dx

=
nδ2

σ2
=

log p

16
.

Then, we have for p ≥ 10, 1
p−1

∑p−1
k=1D(Pk, P0) = log p

16
≤ 1

8
log(p − 1). It follows from Lemma

4 that, inf π̂ sup(π,Θ)∈D1
P (π̂ 6= π) ≥ inf π̂ maxj=0,...,p−1 Pj(π̂ 6= πj) ≥ 0.3 as long as p ≥ 10. In

addition, inf π̂ sup(π,Θ)∈D′
1
P (π̂ 6= π) ≥ inf π̂ sup(π,Θ)∈D1

P (π̂ 6= π) as D1 ⊂ D′1.

Proof of Theorem 6. The proof relies on the following lemma from Tsybakov (2009).

Lemma 5. Assume that M ≥ 2 and suppose that Θ contains elements θ0, θ1, ..., θM such that: (i)

d(θj, θk) ≥ 2s > 0 for any 0 ≤ j < k ≤ M ; (ii) for any j = 1, ...,M , 1
M

∑M
j=1D(Pj, P0) ≤

α logM with 0 < α < 1/8 and Pj = Pθj for j = 0, 1, ...,M . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
> 0.

We also need the following sphere packing lemma proved by Mao, Weed, and Rigollet (2017),

which is a direct consequence of the well-celebrated Varshamov-Gilbert bound.

Lemma 6. For any r < p/2, there exists a subsetQr of Sp such that (i) log |Qr| ≥ r
5

log(p/r), (ii)

for any elements π1, π2 ∈ Qr, we have
(
p
2

)
· τK(π1, π2) ≥ r, and (iii) for any π ∈ Qr, we have

‖π − id‖2
2 ≤ 2r.

For t/σ ≥ 2, we set r = pσ
t
e−t

2/2σ2
< p/2. Let π0 = id and π1, ..., π|Qr| be the elements ofQr.

The signal matrix Θ0 = aη> where a = (1/
√

320n, ..., 1/
√

320n)> ∈ Rn and η = (t, ..., pt)> ∈

Rp. Let Pk be the joint probability measure of Y under (Θ0, πk) for k = 0, 1, ..., |Qr|, and let pk

be the pdf of Pk. By Lemma 6, the KL-divergence

D(Pk, P0) =

∫
log

(
pk(x)

p0(x)

)
p0(x)dx =

t2

320σ2
‖πk − id‖2

2 ≤
pt

160σ
e−t

2/2σ2

.

and therefore

1

p− 1

p−1∑
k=1

D(Pk, P0) ≤ pt

160σ
e−t

2/2σ2 ≤ pσ

80t
e−t

2/2σ2

log

(
t

σ
et

2/2σ2

)
≤ 1

16
log |Qr|.
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Without loss of generality, we assume |Qr| ≥ 2. By Lemma 5, it then follows that,

inf
π̂

sup
(Θ,π)∈D2(t)

P

(
τK(π̂, π) ≥ σ

2pt
e−t

2/2σ2

)
≥ C1,

for some absolute constant C1 > 0. By Markov’s inequality, we have

inf
π̂

sup
(Θ,π)∈D2(t)

E[τK(π̂, π)] ≥ σ

2pt
e−t

2/2σ2

inf
π̂

sup
(Θ,π)∈D2(t)

P

(
τK(π̂, π) ≥ σ

2pt
e−t

2/2σ2

)
≥ C1σ

pt
e−t

2/2σ2

.

The relationship inf π̂ sup(Θ,π)∈D′
2(t) E[τK(π̂, π)] ≥ inf π̂ sup(Θ,π)∈D2(t) E[τK(π̂, π)] follows from

DL ⊂ D. The rate 1/p2 follows by setting t = C2σ
√

log p for some C2 > 0.
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Figure 4: Boxplots of the empirical normalized Kendall’s distance between the estimated and true permutations
under different models. π̂: proposed estimator; πmean: mean-based estimator; πmax: max-based estimatior.

35



Figure 5: Boxplots of the normalized Kendall’s distance between the estimated contig orders and
the true orders for different sample sizes n and different numbers of contigs p. The lighter ones
correspond to our proposed method and the darker ones correspond to the iRep estimation method.
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