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RATE-OPTIMAL PERTURBATION BOUNDS FOR SINGULAR
SUBSPACES WITH APPLICATIONS TO

HIGH-DIMENSIONAL STATISTICS
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Perturbation bounds for singular spaces, in particular Wedin’s sin� theo-
rem, are a fundamental tool in many fields including high-dimensional statis-
tics, machine learning and applied mathematics. In this paper, we establish
separate perturbation bounds, measured in both spectral and Frobenius sin�

distances, for the left and right singular subspaces. Lower bounds, which
show that the individual perturbation bounds are rate-optimal, are also given.

The new perturbation bounds are applicable to a wide range of problems.
In this paper, we consider in detail applications to low-rank matrix denois-
ing and singular space estimation, high-dimensional clustering and canonical
correlation analysis (CCA). In particular, separate matching upper and lower
bounds are obtained for estimating the left and right singular spaces. To the
best of our knowledge, this is the first result that gives different optimal rates
for the left and right singular spaces under the same perturbation.

1. Introduction. Singular value decomposition (SVD) and spectral methods
have been widely used in statistics, probability, machine learning and applied
mathematics as well as many applications. Examples include low-rank matrix
denoising [Donoho and Gavish (2014), Shabalin and Nobel (2013), Yang, Ma
and Buja (2016)], matrix completion [Candès and Recht (2009), Candès and Tao
(2010), Chatterjee (2014), Gross (2011), Keshavan, Montanari and Oh (2010)],
principle component analysis [Anderson (2003), Cai, Ma and Wu (2013, 2015b),
Johnstone and Lu (2009)], canonical correlation analysis [Gao, Ma and Zhou
(2014), Gao et al. (2015), Hardoon, Szedmak and Shawe-Taylor (2004), Hotelling
(1936)], community detection [Balakrishnan et al. (2011), Lei and Rinaldo (2015),
Rohe, Chatterjee and Yu (2011), von Luxburg, Belkin and Bousquet (2008)]. Spe-
cific applications include collaborative filtering (the Netflix problem) [Goldberg
et al. (1992)], multi-task learning [Argyriou, Evgeniou and Pontil (2008)], system
identification [Liu and Vandenberghe (2009)] and sensor localization [Singer and
Cucuringu (2010), Candes and Plan (2010)], among many others. In addition, the
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SVD is often used to find a “warm start” for more delicate iterative algorithms;
see, for example, Cai, Li and Ma (2016), Sun and Luo (2015).

Perturbation bounds, which concern how the spectrum changes after a small
perturbation to a matrix, often play a critical role in the analysis of the SVD
and spectral methods. To be more specific, for an approximately low-rank ma-
trix X and a perturbation matrix Z, it is crucial in many applications to under-
stand how much the left or right singular spaces of X and X + Z differ from each
other. This problem has been widely studied in the literature [Davis and Kahan
(1970), Stewart (1991, 2006), Wedin (1972), Weyl (1912), Yu, Wang and Sam-
worth (2015)]. Among these results, the sin� theorems, established by Davis and
Kahan (1970) and Wedin (1972), have become fundamental tools and are com-
monly used in applications. While Davis and Kahan (1970) focused on eigenvec-
tors of symmetric matrices, Wedin’s sin� theorem studies the more general sin-
gular vectors for asymmetric matrices and provides a uniform perturbation bound
for both the left and right singular spaces in terms of the singular value gap and
perturbation level.

Several generalizations and extensions have been made in different settings after
the seminal work of Wedin (1972). For example, Vu (2011), Shabalin and Nobel
(2013), O’Rourke, Vu and Wang (2013), Wang (2015) considered the rotations of
singular vectors after random perturbations; Fan, Wang and Zhong (2016) gave
an �∞ eigenvector perturbation bound and used the result for robust covariance
estimation. See also Dopico (2000), Stewart (2006).

Despite its wide applicability, Wedin’s perturbation bound is not sufficiently
precise for some analyses, as the bound is uniform for both the left and right singu-
lar spaces. It clearly leads to suboptimal result if the left and right singular spaces
change in different orders of magnitude after the perturbation. In a range of ap-
plications, especially when the row and column dimensions of the matrix differ
significantly, it is even possible that one side of the singular space can be accu-
rately recovered, while the other side cannot. The numerical experiment given in
Section 2.3 provides a good illustration for this point. It can be seen from the
experiment that the left and right singular perturbation bounds behave distinctly
when the row and column dimensions are significantly different. Furthermore, for
a range of applications, the primary interest only lies in one of the singular spaces.
For example, in the analysis of bipartite network data, such as the Facebook user-
public-page-subscription network, the interest is often focused on grouping the
public pages (or grouping the users). This is the case for many clustering prob-
lems. See Section 4 for further discussions.

In this paper, we establish separate perturbation bounds for the left and right
singular subspaces. The bounds are measured in both the spectral and Frobenius
sin� distances, which are equivalent to several widely used losses in the literature.
We also derive lower bounds that are within a constant factor of the corresponding
upper bounds. These results together show that the obtained perturbation bounds
are rate-optimal.
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The newly established perturbation bounds are applicable to a wide range of
problems in high-dimensional statistics. In this paper, we discuss in detail the ap-
plications of the perturbation bounds to the following high-dimensional statistical
problems:

1. Low-rank matrix denoising and singular space estimation: Suppose one ob-
serves a low-rank matrix with random additive noise and wishes to estimate the
mean matrix or its left or right singular spaces. Such a problem arises in many
applications. We apply the obtained perturbation bounds to study this problem.
Separate matching upper and lower bounds are given for estimating the left and
right singular spaces. These results together establish the optimal rates of con-
vergence. Our analysis shows an interesting phenomenon that in some settings
it is possible to accurately estimate the left singular space but not the right one
and vice versa. To the best of our knowledge, this is the first result that gives
different optimal rates for the left and right singular spaces under the same per-
turbation. Another fact we observe is that in certain class of low-rank matrices,
one can stably recover the original matrix if and only if one can accurately
recover both its left and right singular spaces.

2. High-dimensional clustering: Unsupervised learning is an important problem
in statistics and machine learning with a wide range of applications. We ap-
ply the perturbation bounds to the analysis of clustering for high-dimensional
Gaussian mixtures. Particularly in a high-dimensional two-class clustering set-
ting, we propose a simple PCA-based clustering method and use the obtained
perturbation bounds to prove matching upper and lower bounds for the misclas-
sification rates.

3. Canonical correlation analysis (CCA): CCA is a commonly used tools in mul-
tivariate analysis to identify and measure the associations among two sets of
random variables. The perturbation bounds are also applied to analyze CCA.
Specifically, we develop sharper upper bounds for estimating the left and right
canonical correlation directions. To the best of our knowledge, this is the first
result that captures the phenomenon that in some settings it is possible to ac-
curately estimate one side of canonical correlation directions but not the other
side.

In addition to these applications, the perturbation bounds can also be applied to
the analysis of community detection in bipartite networks, multidimensional scal-
ing, cross-covariance matrix estimation, and singular space estimation for matrix
completion and other problems to yield better results than what are known in the
literature. These applications demonstrate the usefulness of the newly established
perturbation bounds.

The rest of the paper is organized as follows. In Section 2, after basic notation
and definitions are introduced, the perturbation bounds are presented separately for
the left and right singular subspaces. Both the upper bounds and lower bounds are
provided. We then apply the newly established perturbation bounds to low-rank
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matrix denoising and singular space estimation, high-dimensional clustering and
canonical correlation analysis in Sections 3–5. Section 6 presents some numeri-
cal results and other potential applications are briefly discussed in Section 7. The
main theorems are proved in Section 8 and the proofs of some additional technical
results are given in the supplementary material [Cai and Zhang (2017)].

2. Rate-optimal perturbation bounds for singular subspaces. We establish
in this section rate-optimal perturbation bounds for singular subspaces. We begin
with basic notation and definitions that will be used in the rest of the paper.

2.1. Notation and definitions. For a, b ∈ R, let a ∧ b = min(a, b), a ∨ b =
max(a, b). Let Op,r = {V ∈ R

p×r : V ᵀV = Ir} be the set of all p × r orthonor-
mal columns and write Op for Op,p , the set of p-dimensional orthogonal ma-
trices. For a matrix A ∈ R

p1×p2 , write the SVD as A = U�V ᵀ, where � =
diag{σ1(A), σ2(A), . . .} with the singular values σ1(A) ≥ σ2(A) ≥ · · · ≥ 0 in de-
scending order. In particular, we use σmin(A) = σmin(p1,p2)(A), σmax(A) = σ1(A)

as the smallest and largest nontrivial singular values of A. Several matrix norms

will be used in the paper: ‖A‖ = σ1(A) is the spectral norm; ‖A‖F =
√∑

i σ
2
i (A)

is the Frobenius norm; and ‖A‖∗ = ∑
i σi(A) is the nuclear norm. We denote

PA ∈ R
p1×p1 as the projection operator onto the column space of A, which can

be written as PA = A(AᵀA)†Aᵀ. Here, (·)† represents the Moore–Penrose pseudo-
inverse. Given the SVD A = U�V ᵀ with � nonsingular, a simpler form for PA

is PA = UUᵀ. We adopt the R convention to denote the submatrix: A[a:b,c:d] rep-
resents the a-to-bth row, c-to-dth column of matrix A; we also use A[a:b,:] and
A[:,c:d] to represent a-to-bth full rows of A and c-to-dth full columns of A, respec-
tively. We use C,C0, c, c0, . . . to denote generic constants, whose actual values
may vary from time to time.

We use the sin� distance to measure the difference between two p × r orthog-
onal columns V and V̂ . Suppose the singular values of V ᵀV̂ are σ1 ≥ σ2 ≥ · · · ≥
σr ≥ 0. Then we call

�(V, V̂ ) = diag
(
cos−1(σ1), cos−1(σ2), . . . , cos−1(σr)

)
as the principle angles. A quantitative measure of distance between the column
spaces of V and V̂ is then ‖ sin�(V̂ ,V )‖ or ‖ sin�(V̂ ,V )‖F . Some more con-
venient characterizations and properties of the sin� distances will be given in
Lemma 1 in Section 8.1.

2.2. Perturbation upper bounds and lower bounds. We are now ready to
present the perturbation bounds for the singular subspaces. Let X ∈ R

p1×p2 be
an approximately low-rank matrix and let Z ∈ R

p1×p2 be a “smal” perturbation
matrix. Our goal is to provide separate and rate-sharp bounds for the sin� dis-
tances between the left singular subspaces of X and X + Z and between the right
singular subspaces of X and X + Z.
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Suppose X is approximately rank-r with the SVD X = U�V ᵀ, where a signif-
icant gap exists between σr(X) and σr+1(X). The leading r left and right singular
vectors of X are of particular interest. We decompose X as follows:

(2.1) X = [
U U⊥

] · [�1 0
0 �2

]
·
[
V ᵀ

V
ᵀ
⊥

]
,

where U ∈ Op1,r , V ∈ Op2,r , �1 = diag(σ1(X), . . . , σr(X)) ∈ R
r×r ,�2 =

diag(σr+1(X), . . .) ∈ R
(p1−r)×(p2−r), [U U⊥] ∈ Op1, [V V⊥] ∈ Op2 are orthog-

onal matrices.
Let Z be a perturbation matrix and let X̂ = X + Z. Partition the SVD of X̂ in

the same way as in (2.1),

(2.2) X̂ = X + Z =
[
Û Û⊥

]
·
[
�̂1 0
0 �̂2

]
·
[
V̂ ᵀ

V̂
ᵀ
⊥

]
,

while Û , Û⊥, �̂1, �̂2, V̂ and V̂⊥ have the same structures as U,U⊥,�1,�2,V and
V⊥. Decompose the perturbation Z into four blocks:

(2.3) Z = Z11 + Z12 + Z21 + Z22,

where
Z11 = PUZPV , Z21 = PU⊥ZPV ,

Z12 = PUZPV⊥, Z22 = PU⊥ZPV⊥ .

Define

zij := ‖Zij‖ for i, j = 1,2.

Theorem 1 below provides separate perturbation bounds for the left and right
singular subspaces in terms of both spectral and Frobenius sin� distances.

THEOREM 1 (Perturbation bounds for singular subspaces). Let X, X̂ and Z

be given as (2.1)–(2.3). Denote

α := σmin
(
UᵀX̂V

)
and β := ∥∥Uᵀ

⊥X̂V⊥
∥∥.

If α2 > β2 + z2
12 ∧ z2

21, then

∥∥sin�(V, V̂ )
∥∥≤ αz12 + βz21

α2 − β2 − z2
21 ∧ z2

12

∧ 1,

∥∥sin�(V, V̂ )
∥∥
F ≤ α‖Z12‖F + β‖Z21‖F

α2 − β2 − z2
21 ∧ z2

12

∧ √
r.

(2.4)

∥∥sin�(U, Û)
∥∥≤ αz21 + βz12

α2 − β2 − z2
21 ∧ z2

12

∧ 1,

∥∥sin�(U, Û)
∥∥
F ≤ α‖Z21‖F + β‖Z12‖F

α2 − β2 − z2
21 ∧ z2

12

∧ √
r.

(2.5)
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One can see the respective effects of the perturbation on the left and right singu-
lar spaces. In particular, if z12 ≥ z21 (which is typically the case when p2 � p1),
then Theorem 3 gives a smaller bound for ‖ sin�(U, Û)‖ than for ‖ sin�(V, V̂ )‖.

REMARK 1. The assumption α2 > β2 + z2
12 ∧ z2

21 in Theorem 1 ensures
that the amplitude of UᵀX̂V = �1 + UᵀZV dominates those of U

ᵀ
⊥X̂V⊥ =

�2 + U
ᵀ
⊥ZV⊥, UᵀZV⊥ and U

ᵀ
⊥ZV , so that Û and V̂ can be close to U and V ,

respectively. This assumption essentially means that there exists significant gap
between the r th and (r + 1)st singular values of X and the perturbation term Z is
bounded. We will show in Theorem 2 that Û and V̂ might be inconsistent when
this condition fails to hold.

REMARK 2. Consider the setting where X ∈ R
p1×p2 is a fixed rank-r matrix

with r ≤ p1  p2, and Z ∈ R
p1×p2 is a random matrix with i.i.d. standard normal

entries. In this case, Z11,Z12,Z21, and Z22 are all i.i.d. standard normal matri-
ces of dimensions r × r , r × (p2 − r), (p1 − r) × r , and (p1 − r) × (p2 − r),
respectively. By random matrix theory [see, e.g., Tao (2012), Vershynin (2012)],
α ≥ σr(X)−‖Z11‖ ≥ σr(X)−C(

√
p1 +√

p2), β ≤ C(
√

p1 +√
p2), z12 ≤ C

√
p2

and z21 ≤ C
√

p1 for some constant C > 0 with high probability. When σr(X) ≥
Cgapp2/

√
p1 for some large constant Cgap, Theorem 3 immediately implies

∥∥sin�(V, V̂ )
∥∥≤ C

√
p2

σr(X)
,

∥∥sin�(U, Û)
∥∥≤ C

√
p1

σr(X)
.

Further discussions on perturbation bounds for general sub-Gaussian perturbation
matrix with matching lower bounds with be given in Section 3.

Theorem 1 gives upper bounds for the perturbation effects. We now establish
lower bounds for the differences as measured by the sin� distances. Theorem 2
first states that Û and V̂ might be inconsistent when the condition α2 > β2 + z2

12 ∧
z2

21 fails to hold, and then provides the lower bounds that match those in (2.11) and
(2.12), proving that the results given in Theorem 1 is essentially sharp. Theorem 2
also provides the worst-case matrix pair (X,Z) that nearly achieves the supremum
in (2.9) and (2.7). The matrix pair shows where the lower bound is “close” to the
upper bound, which is useful in understanding the fundamentals about singular
subspace perturbations.

Before stating the lower bounds, we define the following class of (X,Z) pairs
of p1 × p2 matrices and perturbations:

(2.6)

Fr,α,β,z21,z12 = {
(X,Z) : X̂,U,V are given as (2.1) and (2.2),

σmin
(
UᵀX̂V

)≥ α,
∥∥Uᵀ

⊥X̂V⊥
∥∥≤ β,

‖Z12‖ ≤ z12,‖Z21‖ ≤ z21
}
.
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In addition, we also define

(2.7)
Gα,β,z21,z12,z̃21,z̃12

= {
(X,Z) : ‖Z21‖F ≤ z̃21,‖Z12‖F ≤ z̃12, (X,Z) ∈ Fr,α,β,z21,z12

}
.

THEOREM 2 (Perturbation lower bound). If α2 ≤ β2 + z2
12 ∧ z2

21 and r ≤
p1∧p2

2 , then

(2.8) inf
Ṽ

sup
(X,Z)∈F

∥∥sin�(V, Ṽ )
∥∥≥ 1

2
√

2
.

• Provided that α2 > β2 +z2
12 +z2

21, r ≤ p1∧p2
2 we have the following lower bound

for all estimate Ṽ ∈ Op2×r based on the observations X̂:

(2.9) inf
Ṽ

sup
(X,Z)∈F

∥∥sin�(V, Ṽ )
∥∥≥ 1

8
√

10

(
αz12 + βz21

α2 − β2 − z2
12 ∧ z2

21

∧ 1
)
.

In particular, if X = αUV ᵀ + βU⊥V
ᵀ
⊥ and Z = z12UV

ᵀ
⊥ + z21U⊥V ᵀ, then

(X,Z) ∈ F and

1√
10

(
αz12 + βz21

α2 − β2 − z2
21 ∧ z2

12

∧ 1
)

≤ ∥∥sin�(V, V̂ )
∥∥

≤
(

αz12 + βz21

α2 − β2 − z2
21 ∧ z2

12

∧ 1
)
,

when Û , V̂ are the leading r left and right singular vectors of X̂.
• Provided that α2 > β2 + z2

12 + z2
21, z̃2

21 ≤ rz2
21, z̃2

12 ≤ rz2
12, r ≤ p1∧p2

2 , we have

the following lower bound for all estimator Ṽ1 ∈ Op2×r based on the observa-
tions X̂:

(2.10) inf
Ṽ1

sup
(X,Z)∈G

∥∥sin�(V, Ṽ )
∥∥
F ≥ 1

8
√

10

(
αz̃12 + βz̃21

α2 − β2 − z2
12 ∧ z2

21

∧ √
r

)
.

In particular, if X = αUV ᵀ+βU⊥V
ᵀ
⊥, Z = z̃12UV

ᵀ
⊥ + z̃21U⊥V ᵀ, then (X,Z) ∈

G and

1√
10

(
αz̃12 + βz̃21

α2 − β2 − z2
21 ∧ z2

12

∧ √
r

)
≤ ∥∥sin�(V, V̂ )

∥∥

≤
(

αz̃12 + βz̃21

α2 − β2 − z2
21 ∧ z2

12

∧ √
r

)
,

where Û , V̂ are respectively the leading r left and right singular vectors of X̂.



PERTURBATION BOUNDS FOR SINGULAR SUBSPACES 67

The following Proposition 1, which provides upper bounds for the sin� dis-
tances between leading singular vectors of a matrix A and arbitrary orthogonal
columns W , can be viewed as another version of Theorem 1. For some applica-
tions, applying Proposition 1 might be more convenient than using Theorem 1
directly.

PROPOSITION 1. Suppose A ∈R
p1×p2 , Ṽ = [V V⊥] ∈ Op2 are right singular

vectors of A, V ∈ Op2,r , V⊥ ∈ Op2,p2−r correspond to the first r and last (p2 − r)

singular vectors, respectively. W̃ = [W W⊥] ∈ Op2 is any orthogonal matrix with
W ∈ Op2,r ,W⊥ ∈ Op2,p2−r . Given that σr(AW) > σr+1(A), we have

∥∥sin�(V,W)
∥∥≤ σr(AW)‖P(AW)AW⊥‖

σ 2
r (AW) − σ 2

r+1(A)
∧ 1,(2.11)

∥∥sin�(V,W)
∥∥
F ≤ σr(AW)‖P(AW)AW⊥‖F

σ 2
r (AW) − σ 2

r+1(A)
∧ √

r.(2.12)

It is also of practical interest to provide perturbation bounds for a given subset
of singular vectors and in particular for a given singular vector. The following
Corollary 1 provides the one-sided perturbation bound for Û[:,i:j ] and V̂[:,i:j ] when
there are significant gaps between the (i − 1)st and ith and between the j th and
(j + 1)st singular values and the perturbation is bounded. Particularly when i = j ,
Corollary 1 provides the upper bound for the perturbation of the ith left and right
singular vectors of X̂, ûi and v̂i .

COROLLARY 1 (Perturbation bounds for individual singular vectors). Sup-
pose X, X̂ and Z are given as (2.1)–(2.3). For any k ≥ 1, let U(k) = U[:,1:k] ∈
Op1,k , V(k) = V[:,1:k] ∈ Op2,k , and U(k)⊥ ∈ Op1,p1−k,V(k)⊥ ∈ Op2,p2−k be the or-
thogonal complements. Denote

α(k) = σmin
(
U

ᵀ
(k)X̂V(k)

)
, β(k) = ∥∥Uᵀ

(k)⊥X̂V(k)⊥
∥∥,

z
(k)
12 = ∥∥Uᵀ

(k)ZV(k)⊥
∥∥, z

(k)
21 = ∥∥Uᵀ

(k)⊥ZV(k)

∥∥,
for k = 1, . . . , p1 ∧ p2. We further define α(0) = ∞, β(0) = ‖X̂‖, z(0)

12 = z
(0)
21 = 0.

For 1 ≤ i ≤ j ≤ p1 ∧p2, provided that (α(i−1))2 > (β(i−1))2 +(z
(i−1)
12 )2 ∧(z

(i−1)
21 )2

and (α(j))2 > (β(j))2 + (z
(j)
12 )2 ∧ (z

(j)
21 )2, we have

∥∥sin�(V̂[:,i:j ],V[:,i:j ])
∥∥

≤
{ ∑

k∈{i−1,j}

(
(α(k)z

(k)
12 + β(k)z

(k)
21 )

(α(k))2 − (β(k))2 − (z
(k)
21 )2 ∧ (z

(k)
12 )2

)2}1/2
∧ 1



68 T. T. CAI AND A. ZHANG

and ∥∥sin�(Û[:,i:j ],U[:,i:j ])
∥∥

≤
{ ∑

k∈{i−1,j}

(
(α(k)z

(k)
21 + β(k)z

(k)
12 )

(α(k))2 − (β(k))2 − (z
(k)
21 )2 ∧ (z

(k)
12 )2

)2}1/2
∧ 1.

In particular, for any integer 1 ≤ i ≤ p1 ∧p2, if (α(i−1))2 > (β(i−1))2 + (z
(i−1)
12 )2 ∧

(z
(i−1)
21 )2 and (α(i))2 > (β(i))2 + (z

(i)
12 )2 ∧ (z

(i)
21 )2, ui, ûi, vi, v̂i , that is, the ith sin-

gular vectors of X and X̂, are different by

√
1 − (

v
ᵀ
i v̂i

)2 ≤
{

i∑
k=i−1

(
(α(k)z

(k)
12 + β(k)z

(k)
21 )

(α(k))2 − (β(k))2 − (z
(k)
21 )2 ∧ (z

(k)
12 )2

)2
}1/2

∧ 1,

√
1 − (

u
ᵀ
i ûi

)2 ≤
{

i∑
k=i−1

(
(α(k)z

(k)
21 + β(k)z

(k)
12 )

(α(k))2 − (β(k))2 − (z
(k)
21 )2 ∧ (z

(k)
12 )2

)2
}1/2

∧ 1.

REMARK 3. The upper bound given in Corollary 1 is rate-optimal over the
following set of (X,Z) pairs:

H
α(i−1),β(i−1),z

(i−1)
12 ,z

(i−1)
21 ,α(j),β(j),z

(j)
12 ,z

(j)
21

=
{
(X,Z) : σmin

(
U

ᵀ
(k)X̂V(k)

)≥ α(k),
∥∥Uᵀ

(k)⊥X̂V(k)⊥
∥∥≤ β(k),∥∥Uᵀ

(k)ZV(k)⊥
∥∥≤ z

(k)
12 ,

∥∥Uᵀ
(k)⊥ZV(k)

∥∥≤ z
(k)
21 ,

k ∈ {i − 1, j}
}

.

The detailed analysis can be carried out similarly to the one for Theorem 2.

2.3. Comparisons with Wedin’s sin� theorem. Theorems 1 and 2 together es-
tablish separate rate-optimal perturbation bounds for the left and right singular
subspaces. We now compare the results with the well-known Wedin’s sin� theo-
rem, which gives uniform upper bounds for the singular subspaces on both sides.
Specifically, using the same notation as in Section 2.2, Wedin’s sin� theorem
states that if σmin(�̂1) − σmax(�2) = δ > 0, then

max
{∥∥sin�(V, V̂ )

∥∥,∥∥sin�(U, Û)
∥∥}≤ max{‖ZV̂ ‖,‖ÛᵀZ‖}

δ
,

max
{∥∥sin�(V, V̂ )

∥∥
F ,‖ sin�(U, Û)‖F

}≤ max{‖ZV̂ ‖F ,‖ÛᵀZ‖F }
δ

.

When X are Z are symmetric, Theorem 1, Proposition 1 and Wedin’s sin� theo-
rem provide similar upper bound for singular subspace perturbation.

As mentioned in the Introduction, the uniform bound on both left and right
singular subspaces in Wedin’s sin� theorem might be suboptimal in some cases
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when X or Z are asymmetric. For example, in the setting discussed in Remark 2,
applying Wedin’s theorem leads to

max
{∥∥sin�(V, V̂ )

∥∥,∥∥sin�(U, Û)
∥∥}≤ C max{√p1,

√
p2}

σr(X)
,

which is suboptimal for ‖ sin�(U, Û)‖ if p2 � p1.

3. Low-rank matrix denoising and singular-space estimation. In this sec-
tion, we apply the perturbation bounds given in Theorem 1 for low-rank matrix
denoising. It can be seen that the new perturbation bounds are particularly power-
ful when the matrix dimensions differ significantly. We also establish a matching
lower bound for low-rank matrix denoising which shows that the results are rate-
optimal.

As mentioned in the Introduction, accurate recovery of a low-rank matrix based
on noisy observations has a wide range of applications, including magnetic reso-
nance imaging (MRI) and relaxometry; see, for example, Candès, Sing-Long and
Trzasko (2013), Shabalin and Nobel (2013) and the reference therein. This prob-
lem is also important in the context of dimensional reduction. Suppose one ob-
serves a low-rank matrix with additive noise,

Y = X + Z,

where X = U�V ᵀ ∈ R
p1×p2 is a low-rank matrix with U ∈ Op1,r , V ∈ Op2,r , and

� = diag{σ1(X), . . . , σr(X)} ∈ R
r×r , and Z ∈ R

p1×p2 is an i.i.d. mean-zero sub-
Gaussian matrix. The goal is to estimate the underlying low-rank matrix X or its
singular values or singular vectors.

This problem has been actively studied. For example, Benaych-Georges and
Nadakuditi (2012), Bura and Pfeiffer (2008), Capitaine, Donati-Martin and Féral
(2009), Shabalin and Nobel (2013) focused on the asymptotic distributions of sin-
gle singular value and vector when p1, p2 and the singular values grows pro-
portionally. Vu (2011) discussed the squared matrix perturbed by i.i.d. Bernoulli
matrix and derived an upper bound on the rotation angle of singular vectors.
O’Rourke, Vu and Wang (2013) further generalized the results in Vu (2011) and
proposed a trio-concentrated random matrix perturbation setting. Recently, Wang
(2015) provides the �∞ distance under relatively complicated settings when ma-
trix is perturbed by i.i.d. Gaussian noise. Candès, Sing-Long and Trzasko (2013),
Donoho and Gavish (2014), Gavish and Donoho (2014) studied the algorithm for
recovering X, where singular value thresholding (SVT) and hard singular value
thresholding (HSVT), stated as

(3.1)

SVT(Y )λ = arg min
X

{
1

2
‖Y − X‖2

F + λ‖X‖∗
}
,

HSVT(Y )λ = arg min
X

{
1

2
‖Y − X‖2

F + λ rank(X)

}
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were proposed. The optimal choice of thresholding level λ∗ was further discussed
in Donoho and Gavish (2014) and Gavish and Donoho (2014). Especially, Donoho
and Gavish (2014) proves that

inf
X̂

sup
X∈Rp1×p2
rank(X)≤r

E‖X̂ − X‖2
F � r(p1 + p2),

when Z is i.i.d. standard normal random matrix. If one defines the class of rank-
r matrices, Fr,t = {X ∈ R

p1×p2 : σr(X) ≥ t}, the following upper bound for the
relative error is an immediate consequence of our results

(3.2) sup
X∈Fr,t

E
‖X̂ − X‖2

F

‖X‖2
F

≤ C(p1 + p2)

t2 ∧ 1,

where

X̂ =
{

SVT(Y )λ∗ if t2 ≥ C(p1 + p2),

0 if t2 < C(p1 + p2).

In the following discussion, we assume that the entries of Z = (Zij ) have unit
variance (which can be simply achieved by normalization). To be more precise, we
define the class of distributions Gτ for some τ > 0 as follows:

(3.3) If Z ∼ Gτ then EZ = 0,Var(Z) = 1,E exp(tZ) ≤ exp(τ t),∀t ∈ R.

The distribution of the entries of Z, Zij , is assumed to satisfy

Zij
i.i.d.∼ Gτ , 1 ≤ i ≤ p1,1 ≤ j ≤ p2.

Suppose Û and V̂ are respectively the first r left and right singular vectors of Y .
We use Û and V̂ as the estimators of U and V , respectively. Then the perturbation
bounds for singular spaces yield the following results.

THEOREM 3 (Upper bound). Suppose X = U�V ᵀ ∈ R
p1×p2 is of rank-r .

There exists constants C > 0 that only depends on τ such that

E
∥∥sin�(V, V̂ )

∥∥2 ≤ Cp2(σ
2
r (X) + p1)

σ 4
r (X)

∧ 1,

E
∥∥sin�(V, V̂ )

∥∥2
F ≤ Cp2r(σ

2
r (X) + p1)

σ 4
r (X)

∧ r.

E
∥∥sin�(U, Û)

∥∥2 ≤ Cp1(σ
2
r (X) + p2)

σ 4
r (X)

∧ 1,

E
∥∥sin�(U, Û)

∥∥2
F ≤ Cp1r(σ

2
r (X) + p2)

σ 4
r (X)

∧ r.
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Theorem 3 provides a nontrivial perturbation upper bound for sin�(V, V̂ ) [or
sin�(U, Û)] if there exists a constant Cgap > 0 such that

σ 2
r ≥ Cgap

(
(p1p2)

1
2 + p2

)
[or σ 2

r ≥ Cgap((p1p2)
1
2 + p1)]. In contrast, Wedin’s sin� theorem requires the

singular value gap σ 2
r (X) ≥ Cgap(p1 +p2), which shows the power of the proposed

unilateral perturbation bound.
Furthermore, the upper bounds in Theorem 3 are rate-sharp in the sense that the

following matching lower bounds hold. To the best of our knowledge, this is the
first result that gives different optimal rates for the left and right singular spaces
under the same perturbation.

THEOREM 4 (Lower bound). Define the following class of low-rank matrices:

(3.4) Fr,t = {
X ∈ R

p1×p2 : σr(X) ≥ t
}
.

If r ≤ p1
16 ∧ p2

2 , then

inf
Ṽ

sup
X∈Fr,t

E
∥∥sin�(V, Ṽ )

∥∥2 ≥ c

(
p2(t

2 + p1)

t4 ∧ 1
)
,

inf
Ṽ

sup
X∈Fr,t

E
∥∥sin�(V, Ṽ )

∥∥2
F ≥ c

(
p2r(t

2 + p1)

t4 ∧ r

)
.

inf
Ṽ

sup
X∈Fr,t

E
∥∥sin�(U, Ũ)

∥∥2 ≥ c

(
p1(t

2 + p2)

t4 ∧ 1
)
,

inf
Ṽ

sup
X∈Fr,t

E
∥∥sin�(U, Ũ)

∥∥2
F ≥ c

(
p1r(t

2 + p2)

t4 ∧ r

)
.

REMARK 4. Using similar technical arguments, we can also obtain the follow-
ing lower bound for estimating the low-rank matrix X over Fr,t under a relative
error loss:

(3.5) inf
X̃

sup
X∈Fr,t

E
‖X̃ − X‖2

F

‖X‖2
F

≥ c

(
p1 + p2

t2 ∧ 1
)
.

Combining equations (3.2) and (3.5) yields the minimax optimal rate for relative
error in matrix denoising:

inf
X̃

sup
X∈Fr,t

E
‖X̃ − X‖2

F

‖X‖2
F

� c

(
p1 + p2

t2 ∧ 1
)
.
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An interesting fact is that

c

(
p1 + p2

t2 ∧ 1
)

� c

(
p2(t

2 + p1)

t4 ∧ 1
)

+ c

(
p1(t

2 + p2)

t4 ∧ 1
)
,

which yields directly

inf
Ũ

sup
X∈Fr,t

E
∥∥sin�(U, Ũ)

∥∥2 + inf
Ṽ

sup
X∈Fr,t

E
∥∥sin�(V, Ṽ )

∥∥2 � inf
X̃

sup
X∈Fr,t

E
‖X̃ − X‖2

F

‖X‖F

.

Hence, for the class of Fr,t , one can stably recover X in relative Frobenius norm
loss if and only if one can stably recover both U and V in spectral sin� norm.

Another interesting aspect of Theorems 3 and 4 is that, when p1 � p2,

(p1p2)
1
2  t2  p1, there is no stable algorithm for recovery of either the left

singular space U or whole matrix X in the sense that there exists uniform constant
c > 0 such that

inf
Ũ

sup
X∈Fr,t

E
∥∥sin�(U, Ũ)

∥∥2 ≥ c, inf
X̃

sup
X∈Fr,t

E
‖X̃ − X‖2

F

‖X‖2
F

≥ c.

In fact, for X = tUV ᵀ ∈ Fr,t , if we simply apply SVT or HSVT algorithms with
optimal choice of λ as proposed in Donoho and Gavish (2014) and Gavish and
Donoho (2014), with high probability, SVTλ(X̂) = HSVTλ(X̂) = 0. On the other
hand, the spectral method does provide a consistent recovery of the right singular-
space according to Theorem 3:

E
∥∥sin�(V, V̂ )

∥∥2 → 0.

This phenomenon is well demonstrated by the simulation result (Table 1) provided
in Section 1.

4. High-dimensional clustering. Unsupervised learning or clustering is an
ubiquitous problem in statistics and machine learning [Hastie, Tibshirani and
Friedman (2009)]. The perturbation bounds given in Theorem 1 as well as the
results in Theorems 3 and 4 have a direct implication in high-dimensional clus-
tering. Suppose the locations of n points, X = [X1 · · ·Xn] ∈ R

p×n, which lie in a
certain r-dimensional subspace S in R

p , are observed with noise

Yi = Xi + εi, i = 1, . . . , n.

Here, Xi ∈ S ⊆R
p are fixed coordinates, εi ∈ R

p are random noises. The goal is to
cluster the observations Y . Let the SVD of X be given by X = U�V ᵀ, where U ∈
Op,r , V ∈ On,r and � ∈ R

r×r . When p � n, applying the standard algorithms
(e.g., k-means) directly to the coordinates Y may lead to suboptimal results with
expensive computational costs due to the high-dimensionality. A better approach
is to first perform dimension reduction by computing the SVD of Y directly or
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on its random projections, and then carry out clustering based on the first r right
singular vectors V̂ ∈ On,r ; see, for example, Feldman, Schmidt and Sohler (2013)
and Boutsidis et al. (2015), and the references therein. It is important to note that
the left singular space U are not directly used in the clustering procedure. Thus,
Theorem 3 is more suitable for the analysis of the clustering method than Wedin’s
sin� theorem as the method main depends on the accuracy of V̂ as an estimate of
V .

Let us consider the following two-class clustering problem in more detail
[see Azizyan, Singh and Wasserman (2013), Hastie, Tibshirani and Friedman
(2009), Jin, Ke and Wang (2015), Jin and Wang (2016)]. Suppose li ∈ {−1,1},
i = 1, . . . , n, are indicators representing the class label of the nth nodes and let
μ ∈ R

p be a fixed vector. Suppose one observes Y = [Y1, . . . , Yn] where

Yi = liμ + Zi, Zi
i.i.d.∼ N(0, Ip),1 ≤ i ≤ n,

where neither the labels li nor the mean vector μ are observable. The goal is to
cluster the data into two groups. The accuracy of any clustering algorithm is mea-
sured by the misclassification rate

(4.1) M(l, l̂) := 1

n
min

π

∣∣{i : li �= π(l̂i)
}∣∣.

Here, π is any permutations on {−1,1}, as any permutation of the labels {−1,1}
does not change the clustering outcome.

In this case, EYi is either μ or −μ, which lies on a straight line. A simple
PCA-based clustering method is to set

(4.2) l̂ = sgn(v̂),

where v̂ ∈ R
n is the first right singular vector of Y . We now apply the sin� up-

per bound in Theorem 3 to analyze the performance guarantees of this clustering
method. We are particularly interested in the high-dimensional case where p ≥ n.
The case where p < n can be handled similarly.

THEOREM 5. Suppose p ≥ n, π is any permutation on {−1,1}. When ‖μ‖2 ≥
Cgap(p/n)

1
4 for some large constant Cgap > 0, then for some other constant C > 0

the misclassification rate for the PCA-based clustering method l̂ given in (4.2)
satisfies

EM(l̂, l) ≤ C
n‖μ‖2

2 + p

n‖μ‖4
2

.

It is intuitively clear that the clustering accuracy depends on the signal strength
‖μ‖2. The stronger the signal, the easier to cluster. In particular, Theorem 5 re-

quires the minimum signal strength condition ‖μ‖2 ≥ Cgap(p/n)
1
4 . The following
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lower bound result shows that this condition is necessary for consistent cluster-

ing: When the condition ‖μ‖2 ≥ Cgap(p/n)
1
4 does not hold, it is not possible to

essentially do better than random guessing.

THEOREM 6. Suppose p ≥ n, there exists cgap,Cn > 0 such that if n ≥ Cn,

inf
l̃

sup

μ:‖μ‖2≤cgap(p/n)
1
4

l∈{−1,1}n

EM(l̃, l) ≥ 1

4
.

REMARK 5. Azizyan, Singh and Wasserman (2013) considered a similar set-
ting when n ≥ p, li ’s are i.i.d. Rademacher variables and derived rates of con-
vergence for both the upper and lower bounds with a logarithmic gap between
the upper and lower bounds. In contrast, with the help of the newly obtained per-
turbation bounds, we are able to establish the optimal misclassification rate for
high-dimensional setting when n ≤ p.

Moreover, Jin and Wang (2016) and Jin, Ke and Wang (2015) considered the
sparse and highly structured setting, where the contrast mean vector μ is assumed
to be sparse and the nonzero coordinates are all equal. Their method is based on
feature selection and PCA. Our setting is close to the “less sparse/weak signal”
case in Jin, Ke and Wang (2015). In this case, they introduced a simple aggregation
method with

l̂(sa) = sgn(Xμ̂),

where μ̂ = arg maxμ∈{−1,0,1}p ‖Xμ‖q for some q > 0. The statistical limit, that
is, the necessary condition for obtaining correct labels for most of the points, is

‖μ‖2 > C in their setting, which is smaller than the boundary ‖μ‖2 > C(p/n)
1
4 in

Theorem 5. As shown in Theorem 6, the bound ‖μ‖2 > C(p/n)
1
4 is necessary. The

reason for this difference is that they focused on highly structured contrast mean
vector μ which only takes two values {0, ν}. In contrast, we considered the general
μ ∈ R

p , which leads to stronger condition and larger statistical limit. Moreover,
the simple aggregation algorithm is computational difficult for a general signal μ,
thus the PCA-based method considered in this paper is preferred under the general
dense μ setting.

5. Canonical correlation analysis. In this section, we consider an applica-
tion of the perturbation bounds given in Theorem 1 to the canonical correla-
tion analysis (CCA), which is one of the most important tools in multivariate
analysis in exploring the relationship between two sets of variables [Anderson
(2003), Gao, Ma and Zhou (2014), Gao et al. (2015), Hotelling (1936), Ma and
Li (2016), Witten, Tibshirani and Hastie (2009)]. Given two random vectors X

and Y with a certain joint distribution, the CCA first looks for the pair of vectors



PERTURBATION BOUNDS FOR SINGULAR SUBSPACES 75

α(1) ∈ R
p1, β(2) ∈ R

p2 that maximize corr((α(1))ᵀX, (β(1))ᵀY). After obtaining
the first pair of canonical directions, one can further obtain the second pair α(2) ∈
R

p1, β(2) ∈ R
p2 such that Cov((α(1))ᵀX, (α(2))ᵀX) = Cov((β(1))ᵀY, (β(2))ᵀY) =

0, and Corr((α(2))ᵀX, (β(2))ᵀY) is maximized. The higher order canonical direc-
tions can be obtained by repeating this process. If (X,Y ) is further assumed to
have joint covariance, say

Cov
(
X

Y

)
= � =

[
�X �XY

�YX �YY

]
,

the population canonical correlation directions can be inductively defined as the
following optimization problem. For k = 1,2, . . . ,(

α(k), β(k))= arg max
a∈Rp1 ,b∈Rp2

aᵀ�XY b,

subject to aᵀ�Xa = bᵀ�Y b = 1,

aᵀ�Xα(l) = bᵀ�Y β(l) = 0, ∀1 ≤ l ≤ k − 1.

A more explicit form for the canonical correlation directions is given in Hotelling

(1936): (�
1
2
Xα(k),�

1
2
Y β(k)) is the kth pair of singular vectors of �

− 1
2

X �XY �
− 1

2
Y . We

combine the leading r population canonical correlation directions and write

A = [
α(1) · · ·α(r)], B = [

β(1) · · ·β(r)].
Suppose one observes i.i.d. samples (X

ᵀ
i , Y

ᵀ
i )ᵀ ∼ N(0,�). Then the sample

covariance and cross-covariance for X and Y can be calculated as

�̂X = 1

n

n∑
i=1

XiX
ᵀ
i , �̂Y = 1

n

n∑
i=1

YiY
ᵀ
i , �̂XY = 1

n

n∑
i=1

XiY
ᵀ
i .

The standard approach to estimate the canonical correlation directions α(k), β(k) is

via the SVD of �̂
− 1

2
X �̂XY �̂

− 1
2

Y

�̂
− 1

2
X �̂XY �̂

− 1
2

Y = Û ŜV̂ =
p1∧p2∑
k=1

Û[:,k]ŜkkÛ
ᵀ
[:,k].

Then the leading r sample canonical correlation directions can be calculated as

(5.1)
Â = �̂

− 1
2

X Û[:,1:r], Â = [
α̂(1), α̂(2), . . . , α̂(r)],

B̂ = �̂
− 1

2
Y V̂[:,1:r], B̂ = [

β̂(1), β̂(2), . . . , β̂(r)].
Â, B̂ are consistent estimators for the first r left and right canonical directions in
the classical fixed dimension case.
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Let X∗ ∈ R
p1 be an independent copy of the original sample X, we define the

following two losses to measure the accuracy of the estimator of the canonical
correlation directions

Lsp(Â,A) = max
O∈Or

v∈Rr ,‖v‖2=1

EX∗
(
(ÂOv)ᵀX∗ − (Av)ᵀX∗)2,(5.2)

LF (Â,A) = max
O∈Or

EX∗
∥∥(ÂO)ᵀX∗ − AᵀX∗∥∥2

2.(5.3)

These two losses quantify how well the estimator (ÂO)ᵀX∗ can predict the values
of the canonical variables AᵀX∗, where O ∈ Or is a rotation matrix as the objects
of interest here are the directions.

The following theorem gives the upper bound for one side of the canonical
correlation directions. The main technical tool is the perturbation bounds given in
Section 2.

THEOREM 7. Suppose (Xi, Yi) ∼ N(0,�), i = 1, . . . , n, where

S = �
− 1

2
X �XY �

− 1
2

Y is of rank-r . Suppose Â ∈ R
p1×r is given by (5.1). Then

there exist uniform constants Cgap,C, c > 0 such that whenever σr(S)2 ≥
Cgap((p1p2)

1
2 +p1+p

3/2
2 n

− 1
2 )

n

P

(
Lsp(Â,A) ≤ Cp1(nσ 2

r (S) + p2)

n2σ 4
r (S)

)
≥ 1 − C exp(−cp1 ∧ p2),

P

(
LF (Â,A) ≤ Cp1r(nσ 2

r (S) + p2)

n2σ 4
r (S)

)
≥ 1 − C exp(−cp1 ∧ p2).

The results for B̂ can be stated similarly.

REMARK 6. Chen et al. (2013) and Gao, Ma and Zhou (2014), Gao et al.
(2015) considered sparse CCA, where the canonical correlation directions A and
B are assumed to be jointly sparse. In particular, Chen et al. (2013) and Gao et al.
(2015) proposed estimators under different settings and provided a unified rate-
optimal bound for jointly estimating left and right canonical correlations. Gao, Ma
and Zhou (2014) proposed another computationally feasible estimators Â∗ and
B̂∗ and provided a minimax rate-optimal bound for LF (Â∗,A) under regularity
conditions that can also be used to prove the consistency of B̂∗.

Now consider the setting where p2 � p1, p2
n

� σ 2
r (S) = t2 � (p1p2)

1
2

n
. The

lower bound result in Theorem 3.3 by Gao, Ma and Zhou (2014) implies that there
is no consistent estimator for the right canonical correlation directions B . While
Theorem 7 given above shows that the left sample canonical correlation directions
Â are a consistent estimator of A. This interesting phenomena again shows the
merit of our proposed unilateral perturbation bound.
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It is also interesting to develop the lower bounds for Â and B̂ . The best known
result, given in Theorem 3.2 in Gao, Ma and Zhou (2014), is the following two-
sided lower bound for both Â and B̂ in Frobenius norm loss:

inf
Â,B̂

sup
A,B

P

{
max

{
LF (Â,A),LF (B̂,B)

}≥ c

(
r(p1 + p2)

nσ 2
min(S)

∧ 1
)}

≥ 0.8.

Establishing the matching one-sided lower bound for Theorem 7 is technical chal-
lenging. We leave it for future research.

6. Simulations. In this section, we carry out numerical experiments to fur-
ther illustrate the advantages of the separate bounds for the left and right singular
subspaces over the uniform bounds. As mentioned earlier, in a range of cases, es-
pecially when the numbers of rows and columns of the matrix differ significantly,
it is even possible that the singular space on one side can be stably recovered, while
the other side cannot. To illustrates this point, we specifically perform simulation
studies in matrix denoising, high-dimensional clustering and canonical correlation
analysis.

We first consider the matrix denoising model discussed in Section 3. Let X =
tUV ᵀ ∈ R

p1×p2 , where t ∈ R, U and V are p1 × r and p2 × r random uniform
orthonormal columns with respect to the Haar measure. Let the perturbation Z =
(Zij )p1×p2 be randomly generated with Zij

i.i.d.∼ N(0,1). We calculate the SVD
of X + Z and form the first r left and right singular vectors as Û and V̂ . The
average losses in Frobenius and spectral sin� distances for both the left and right
singular space estimates with 1,000 repetitions are given in Table 1 for various
values of (p1,p2, r, t). It can be easily seen from this experiment that the left and
right singular perturbation bounds behave very distinctly when p1 � p2.

We then consider the high-dimensional clustering model studied in Section 4.
Let μ̃ ∼ N(0, Ip) and μ = t (p/n)1/4 · μ̃/‖μ̃‖2 ∈ R

p , where t = ‖μ‖2 essentially

TABLE 1
Average losses in Frobenius and spectral sin� distances for both the left and right singular space

changes after Gaussian noise perturbations

(p1,p2, r, t) ‖sin�(Û,U)‖2 ‖ sin�(V̂ ,V )‖2 ‖ sin�(Û,U)‖2
F ‖ sin�(V̂ ,V )‖2

F

(100, 10, 2, 15) 0.3512 0.0669 0.6252 0.0934
(100, 10, 2, 30) 0.1120 0.0139 0.1984 0.0196
(100, 20, 5, 20) 0.2711 0.0930 0.9993 0.2347
(100, 20, 5, 40) 0.0770 0.0195 0.2835 0.0508
(1000, 20, 5, 30) 0.5838 0.0699 2.6693 0.1786
(1000, 20, 10, 100) 0.1060 0.0036 0.9007 0.0109
(1000, 200, 10, 50) 0.3456 0.0797 2.9430 0.4863
(1000, 200, 50, 100) 0.1289 0.0205 4.3614 0.2731
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TABLE 2
Average misclassification rate for different settings

n

(p, t,ρ) 5 10 20 50 100 200

(100, 1, 1/2) 0.2100 0.1485 0.0690 0.0494 0.0440 0.0333
(100, 1, 3/4) 0.2150 0.1590 0.0680 0.0468 0.0422 0.0290
(100, 3, 1/2) 0.0019 0.0005 0.0000 0.0000 0.0000 0.0000
(100, 3, 3/4) 0.0020 0.0005 0.0000 0.0000 0.0000 0.0000
(1000, 1, 1/2) 0.3260 0.3510 0.3594 0.2855 0.2691 0.1364
(1000, 1, 3/4) 0.3610 0.3610 0.3462 0.3057 0.2696 0.1410
(1000, 3, 1/2) 0.1370 0.0485 0.0066 0.0019 0.0013 0.0003
(1000, 3, 3/4) 0.1160 0.0425 0.0046 0.0019 0.0018 0.0006

represents the signal strength. The group label l ∈ R
n is randomly generated as

li
i.i.d.∼

{
1 with probability ρ,

−1 with probability 1 − ρ.

Based on n i.i.d. observations: Yi = liμ + Zi,Zi
i.i.d.∼ N(0, Ip), i = 1, . . . , n, we

apply the proposed estimator (4.2) to estimate l. The results for different values of
(n,p, t, ρ) are provided in Table 2. It can be seen that the numerical results match
our theoretical analysis—the proposed l̂ achieves good performance roughly when
t ≥ C(p/n)1/4.

We finally investigate the numerical performance of canonical correlation anal-
ysis particularly when the dimensions of two samples differ significantly. Sup-
pose �X = Ip1 + 1

2‖Zp1+Z
ᵀ
p1‖(Zp1 + Z

ᵀ
p1),�Y = Ip2 + 1

2‖Zp2+Z
ᵀ
p2‖(Zp2 + Z

ᵀ
p2),

�XY = �
1/2
X · (tUV ᵀ)�1/2

Y , where Zp1 and Zp2 are i.i.d. Gaussian matrices;
U ∈ Op1,r , V ∈ Op2,r are random orthogonal matrices. With n pairs of observa-
tions, (

Xi

Yi

)
i.i.d.∼ N(0,�), � =

[
�X �XY

�
ᵀ
XY �Y

]
, i = 1, . . . , n,

we apply the procedure discussed in Section 5 to obtain Â and B̂ , that is, the esti-
mates for left and right canonical correlation directions. Since the exact losses in
Lsp(·, ·), LF (·, ·) metrics (5.2) involves difficult optimization, we instead measure
the losses in∥∥sin�(Û,U)

∥∥, ∥∥sin�(Û,U)
∥∥
F ,

∥∥sin�(V̂ ,V )
∥∥

and ∥∥sin�(V̂ ,V )
∥∥
F .
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TABLE 3
Average losses in Lsp(·, ·) and LF (·, ·) metrics for the left and right canonical directions

(p1,p2, r, t) ‖ sin�(ÛS,US)‖ ‖ sin�(ÛS,US)‖F ‖ sin�(V̂S,VS)‖ ‖ sin�(V̂S,VS)‖F

(30, 10, 100, 0.8) 0.3194 0.6609 0.1571 0.2530
(30, 10, 200, 0.5) 0.5348 1.1111 0.3343 0.5256
(100, 10, 200, 0.8) 0.4103 1.0145 0.1120 0.1825
(100, 10, 500, 0.5) 0.5183 1.2821 0.1614 0.2606
(200, 20, 500, 0.8) 0.3239 0.8428 0.0746 0.1442
(200, 20, 800, 0.5) 0.5834 1.5155 0.2423 0.4605
(500, 50, 1000, 0.8) 0.3875 1.0515 0.1091 0.2472
(500, 50, 2000, 0.5) 0.5677 1.5467 0.2216 0.4910

Here, U,V, Û, V̂ are the first r left and right singular vectors of �
−1/2
X �XY �

−1/2
Y

and �̂
−1/2
X �̂XY �̂

−1/2
Y , respectively. It is shown in Step 1 of the proof for Theo-

rem 7 that these measures are equivalent to Lsp and LF . The results under various
choices of (p1,p2, n, t) are collected in Table 3. It can be easily seen that the per-
formance of the right canonical direction estimation is much better than the left
ones when p1 is much larger than p2, which is consistent with the theoretical re-
sults in Theorem 7 and illustrates the power of the newly proposed perturbation
bound results.

7. Discussions. We have established in the present paper new and rate-
optimal perturbation bounds, measured in both spectral and Frobenius sin� dis-
tances, for the left and right singular subspaces separately. These perturbation
bounds are widely applicable to the analysis of many high-dimensional problems.
In particular, we applied the perturbation bounds to study three important problems
in high-dimensional statistics: low-rank matrix denoising and singular space esti-
mation, high-dimensional clustering and CCA. As mentioned in the Introduction,
in addition to these problems and possible extensions discussed in the previous
sections, the obtained perturbation bounds can be used in a range of other applica-
tions including community detection in bipartite networks, multidimensional scal-
ing, cross-covariance matrix estimation and singular space estimation for matrix
completion. We briefly discuss these problems here.

An interesting application of the perturbation bounds given in Section 2 is com-
munity detection in bipartite graphs. Community detection in networks has at-
tracted much recent attention. The focus of the current community detection liter-
ature has been mainly on unipartite graph (i.e., there is only one type of nodes).
However, in some applications, the nodes can be divided into different types and
only the interactions between the different types of nodes are available or of in-
terest, such as people versus committees, Facebook users versus public pages [see
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Alzahrani and Horadam (2016), Melamed (2014)]. The observations on the con-
nectivity of the network between two types of nodes can be described by an ad-
jacency matrix A, where Aij = 1 if the ith Type 1 node and j th Type 2 node
are connected, and Aij = 0 otherwise. The spectral method is one of the most
commonly used approaches in the literature with theoretical guarantees [Lei and
Rinaldo (2015), Rohe, Chatterjee and Yu (2011)]. In a bipartite network, the left
and right singular subspaces could behave very differently from each other. Our
perturbation bounds can be used for community detection in bipartite graph and
potentially lead to sharper results in some settings.

Another possible application lies in multidimensional scaling (MDS) with dis-
tance matrix between two sets of points. MDS is a popular method of visualizing
the data points embedded in low-dimensional space based on the distance matri-
ces [Borg and Groenen (2005)]. Traditionally MDS deals with unipartite distance
matrix, where all distances between any pairs of points are observed. In some ap-
plications, the data points are from two groups and one is only able to observe its
biparitite distance matrix formed by the pairwise distances between points from
different groups. As the SVD is a commonly used technique for dimension reduc-
tion in MDS, the perturbation bounds developed in this paper can be potentially
used for the analysis of MDS with bipartite distance matrix.

In some applications, the cross-covariance matrix, not the overall covariance
matrix, is of particular interest. Cai et al. (2015a) considered multiple testing of
cross-covariances in the context of the phenome-wide association studies (Phe-
WAS). Suppose X ∈ Rp1 and Y ∈ R

p2 are jointly distributed with covariance ma-
trix �. Given n i.i.d. samples (Xi, Yi), i = 1, . . . , n, from the joint distribution, one
wishes to make statistical inference for the cross-covariance matrix �XY . If �XY

has low-rank structure, the perturbation bounds established in Section 2 could be
potentially applied to make statistical inference for �XY .

Matrix completion, whose central goal is to recover a large low-rank matrix
based on a limited number of observable entries, has been widely studied in the
last decade. Among various methods for matrix completion, spectral method is
fast, easy to implement and achieves good performance [Chatterjee (2014), Cho,
Kim and Rohe (2015), Keshavan, Montanari and Oh (2010)]. The new perturba-
tion bounds can be potentially used for singular space estimation under the matrix
completion setting to yield better results.

In addition to the aforementioned problems, high-dimensional clustering with
correlated features is an important extension of the problem of clustering with
independent features considered in the present paper. Specifically, based on n ob-

servations Yi = liμ + Zi ∈ R
p , i = 1, . . . , n, where Zi

i.i.d.∼ N(0,�), one aims to
recover the unknown labels {li}ni=1. When � is known or can be well estimated,
one can transform Ỹi = �−1/2Yi, i = 1, . . . , n and perform the spectral method on
{Ỹi}ni=1. It would be an interesting and challenging problem to consider the general
setting where � is unknown. We leave this for future research.
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8. Proofs. We prove the main results in Sections 2, 3 and 4 in this section. The
proofs for CCA and the additional technical results are given in the supplementary
material [Cai and Zhang (2017)].

8.1. Proofs of general unilateral perturbation bounds. Some technical tools
are needed to prove Theorems 1, 2 and Proposition 1. In particular, we need a
few useful properties of sin� distances given below in Lemma 1. Specifically,
Lemma 1 provides some more convenient expressions than the definitions for the
sin� distances. It also shows that they are indeed distances as they satisfy triangle
inequality. Some other widely used metrics for orthogonal spaces, including

(8.1) Dsp(V̂ ,V ) = inf
O∈Or

‖V̂ − V O‖, DF (V̂ ,V ) = inf
O∈Or

‖V̂ − V O‖F ,

(8.2)
∥∥V̂ V̂ ᵀ − V V ᵀ∥∥, ∥∥V̂ V̂ ᵀ − V V ᵀ∥∥

F

are shown to be equivalent to the sin� distances.

LEMMA 1 (Properties of the sin� distances). The following properties hold
for the sin� distances:

1. (Equivalent expressions.) Suppose V, V̂ ∈ Op,r . If V⊥ is an orthogonal ex-
tension of V , namely [V V⊥] ∈ Op , we have the following equivalent forms
for ‖ sin�(V̂ ,V )‖ and ‖ sin�(V̂ ,V )‖F :

∥∥sin�(V̂ ,V )
∥∥=

√
1 − σ 2

min

(
V̂ ᵀV

)= ∥∥V̂ ᵀV⊥
∥∥,(8.3)

∥∥sin�(V̂ ,V )
∥∥
F =

√
r − ∥∥V ᵀV̂

∥∥2
F = ∥∥V̂ ᵀV⊥

∥∥
F .(8.4)

2. (Triangle inequality.) For any V1,V2,V3 ∈ Op,r ,

(8.5)
∥∥sin�(V2,V3)

∥∥≤ ∥∥sin�(V1,V2)
∥∥+ ∥∥sin�(V1,V3)

∥∥,
(8.6)

∥∥sin�(V2,V3)
∥∥
F ≤ ∥∥sin�(V1,V2)

∥∥
F + ∥∥sin�(V1,V3)

∥∥
F .

3. (Equivalence with other metrics.) The metrics defined as (8.1) and (8.2) are
equivalent to sin� distances as the following inequalities hold:∥∥sin�(V̂ ,V )

∥∥≤ Dsp(V̂ ,V ) ≤ √
2
∥∥sin�(V̂ ,V )

∥∥,∥∥sin�(V̂ ,V )
∥∥
F ≤ DF (V̂ ,V ) ≤ √

2
∥∥sin�(V̂ ,V )

∥∥
F ,∥∥sin�(V̂ ,V )

∥∥≤ ∥∥V̂ V̂ ᵀ − V V ᵀ∥∥≤ 2
∥∥sin�(V̂ ,V )

∥∥,∥∥V̂ V̂ ᵀ − V V ᵀ∥∥
F = √

2
∥∥sin�(V̂ ,V )

∥∥
F .



82 T. T. CAI AND A. ZHANG

PROOF OF PROPOSITION 1. First, we can rotate the right singular space by
right multiplying the whole matrices A,V ᵀ,Wᵀ by [W W⊥] without changing
the singular values and left singular vectors. Thus, without loss of generality, we
assume that

[W W⊥] = Ip2 .

Next, we further calculate the SVD: AW = A[:,1:r] := Ū�̄V̄ ᵀ, where Ū ∈
Op1,r , �̄ ∈ R

r×r , V̄ ∈ Or , and rotate the left singular space by left multiply-
ing the whole matrix A by [Ū Ū⊥]ᵀ, then rotate the right singular space by
right multiplying A[:,1:r] by V̄ . After this rotation, the singular structure of
A, AW are unchanged. Again without loss of generality, we can assume that
[Ū Ū⊥]ᵀ = Ip1, V̄ = Ir . After these two steps of rotations, the formation of A

is much simplified,

(8.7) A =

r p2 − r⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

σ1(AW)

r
. . . ŪᵀAW⊥

σr(AW)

p1 − r 0 Ū
ᵀ
⊥AW⊥

,

while the problem we are considering is still without loss of generality. For conve-
nience, denote

(8.8)
(
ŪᵀAW⊥

)ᵀ = [
y(1) y(2) · · ·y(r)], y(1), . . . , y(r) ∈ R

p2−r .

We can further compute that

(8.9) AᵀA =

r p2 − r⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

σ 2
1 (AW) σ1(AW)y(1)ᵀ

r
. . .

...

σ 2
r (AW) σr(AW)y(r)ᵀ

p2 − r σ1(AW)y(1) · · · σr(AW)y(r) (AW⊥)ᵀAW⊥

.

By basic theory in algebra, the ith eigenvalue of AᵀA is equal to σ 2
i (A), and the ith

eigenvector of AᵀA is equal to the ith right singular vector of A (up-to-sign). Sup-
pose the singular vectors of A are Ṽ = [v(1), v(2), . . . , v(p2)], where the singular
values can be further decomposed into two parts as

(8.10)
v(k) =

[ ]
r α(k)

p2 − r β(k) , or equivalently,

α(k) = Wᵀv(k), β(k) = W
ᵀ
⊥v(k).
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By observing the ith entry of AᵀAv(k) = σ 2
k (A)v(k), we know for 1 ≤ i ≤ r , r +

1 ≤ k ≤ p2,

(8.11)

(
σ 2

i (AW) − σ 2
k (A)

)
α

(k)
i + σi(AW)y(i)ᵀβ(k) = 0,

⇒ α
(k)
i = −σi(AW)

σ 2
i (AW) − σ 2

k (A)
y(i)ᵀβ(k).

Recall the assumption that

(8.12) σ1(AW) ≥ · · · ≥ σr(AW) > σr+1(A) ≥ · · ·σp2(A) ≥ 0.

Also x
x2−y2 = 1

x−y2/x
is a decreasing function for x and a increasing function for

y when x > y ≥ 0, so

(8.13)

σi(AW)

σ 2
i (AW) − σ 2

k (A)

≤ σr(AW)

σ 2
r (AW) − σ 2

r+1(A)
, 1 ≤ i ≤ r, r + 1 ≤ k ≤ p2.

Since [β(r+1) · · · β(p2)] is the submatrix of the orthogonal matrix V ,

(8.14)
∥∥[β(r+1) · · · β(p2)

]∥∥≤ 1.

Now we can give an upper bound for the Frobenius norm of [α(r+1) · · · α(p2)]
∥∥[α(r+1) · · ·α(p2)

]∥∥2
F

=
r∑

i=1

p2∑
k=r+1

(
α

(k)
i

)2
(8.13)≤ σ 2

r (AW)

(σ 2
r (AW) − σ 2

r+1(A))2

r∑
i=1

p2∑
k=r+1

(
y(i)ᵀβ(k))2

≤ σ 2
r (AW)

(σ 2
r (AW) − σ 2

r+1(A))2

∥∥[y1 · · ·yr ]ᵀ
∥∥2
F

∥∥[β(r+1) · · · β(p2)
]∥∥2

(8.8)(8.14)≤ σ 2
r (AW)

(σ 2
r (AW) − σ 2

r+1(A))2

∥∥ŪᵀAW⊥
∥∥2
F .

It is more complicated to give a upper bound for the spectral norm of [α(r+1) · · ·
α(p2)]. Suppose s = (sr+1, . . . , sp2) ∈ R

p2−r is any vector with ‖s‖2 = 1. Based
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on (8.11),

p2∑
k=r+1

skα
(k)
i =

p2∑
k=r+1

−skσi(AW)y(i)ᵀβ(k)

σ 2
i (AW) − σ 2

k (A)

=
p2∑

k=r+1

−sk

σi(AW)

1

1 − σ 2
k (A)/σi(AW)2

y(i)ᵀβ(k)

(8.12)=
p2∑

k=r+1

∞∑
l=0

−skσ
2l
k (A)

σ 2l+1
i (AW)

y(i)ᵀβ(k)

=
∞∑
l=0

−y(i)ᵀ

σ 2l+1
i (AW)

( p2∑
k=r+1

skσ
2l
k (A)β(k)

)
.

Hence,

∥∥∥∥∥
p2∑

k=r+1

skα
(k)

∥∥∥∥∥
2

≤
∞∑
l=0

∥∥∥∥∥
⎡
⎢⎢⎣
y(1)ᵀ/σ 2l+1

1 (AW)
...

y(r)ᵀ/σ 2l+1
r (AW)

⎤
⎥⎥⎦

·
( p2∑

k=r+1

skσ
2l
k (A)β(k)

)∥∥∥∥∥
2

≤
∞∑
l=0

‖[y(1) y(2) · · ·y(r)]‖
σ 2l+1

r (AW)

· ∥∥[β(r+1) β(r+2) · · ·β(p2)
]∥∥

· ∥∥(sr+1σ
2l
r+1(A), . . . , sp2σ

2l
p2

(A)
)∥∥

2

(8.8)(8.14)(8.12)≤
∞∑
l=0

‖ŨᵀAW⊥‖
σ 2l+1

r (AW)
· σ 2l

r+1(A)‖s‖2

= ‖ŨᵀAW⊥‖σr(AW)

σ 2
r (AW) − σ 2

r+1(A)
,

which implies

∥∥[α(r+1) · · · α(p2)
]∥∥≤ ‖ŨᵀAW⊥‖σr(AW)

σ 2
r (AW) − σ 2

r+1(A)
.

Note the definition of α(i) in (8.10), we know[
α(r+1)α(r+2) · · ·α(p2)

]= Ṽ[1:r,(r+1):p2] = (V⊥)[1:r,:].
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Thus,

(8.15)

∥∥sin�(V,W)
∥∥ (8.3)= ∥∥WᵀV⊥

∥∥
= ∥∥[α(r+1) · · ·α(p2)

]∥∥
≤ ‖ŨᵀAW⊥‖σr(AW)

σ 2
r (AW) − σ 2

r+1(A)
,

∥∥sin�(V,W)
∥∥2
F

(8.4)= ∥∥WᵀV⊥
∥∥2
F

= ∥∥[α(r+1) · · · α(p2)
]∥∥2

F

≤ ‖ŨᵀAW⊥‖2
F σ 2

r (AW)

(σ 2
r (AW) − σ 2

r+1(A))2
.

Finally, since Ū is the left singular vectors of AW ,

(8.16)
∥∥ŪᵀAW⊥

∥∥= ‖P(AW)AW⊥‖, ∥∥ŪᵀAW⊥
∥∥
F = ‖P(AW)AW⊥‖.

The upper bounds 1 in (2.11) and
√

r on (2.12) are trivial. Therefore, we have
finished the proof of Proposition 1. �

PROOF OF THEOREM 1. Before proving this theorem, we introduce the fol-
lowing lemma on the inequalities of the singular values in the perturbed matrix.

LEMMA 2. Suppose X ∈ R
p×n, Y ∈R

p×n, rank(X) = a, rank(Y ) = b:

1. σa+b+1−r (X + Y) ≤ min(σa+1−r (X), σb+1−r (Y )) for r ≥ 1;
2. if we further have XᵀY = 0 or XY ᵀ = 0, we must have a + b ≤ n ∧ p, and

σ 2
r (X + Y) ≥ max

(
σ 2

r (X), σ 2
r (Y )

)
for any r ≥ 1. Also,

σ 2
1 (X + Y) ≤ σ 2

1 (X) + σ 2
1 (Y ).

The proof of Lemma 2 is provided in the supplementary materials [Cai and
Zhang (2017)]. Applying Lemma 2, we get

(8.17)
σ 2

min(X̂V ) = σ 2
r (X̂V ) = σ 2

r

(
UUᵀX̂V + U⊥U

ᵀ
⊥X̂V

)
≥ σ 2

r

(
UUᵀX̂V

)= α2 (by Lemma 2, part 2).
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Since U,V have r columns, rank(X̂V V ᵀ), rank(UUᵀX̂) ≤ r . Also since X̂ =
U⊥U

ᵀ
⊥X̂ + UUᵀX̂ = X̂V⊥V

ᵀ
⊥ + X̂V V ᵀ, we have

σ 2
r+1(X̂) ≤ min

{
σ 2

1
(
U⊥U

ᵀ
⊥X̂

)
, σ 2

1
(
X̂V⊥V

ᵀ
⊥
)}

(by Lemma 2, part 1)

= min
{
σ 2

1
(
Z21 + U

ᵀ
⊥X̂V⊥

)
, σ 2

1
(
Z12 + U

ᵀ
⊥X̂V⊥

)}
≤ (

β2 + z2
12
)∧ (

β2 + z2
21
)

(by Lemma 2, part 2)

= β2 + z2
12 ∧ z2

21.

We shall also note the fact that for any matrix A ∈ R
p×r with r ≤ p, denote the

SVD as A = UA�AV
ᵀ
A , then

(8.18)
∥∥A(AᵀA

)†∥∥= ∥∥UA�AV
ᵀ
A

(
VA�2

AV
ᵀ
A

)†∥∥= ∥∥UA�
†
AV

ᵀ
A

∥∥≤ σ−1
min(A).

Thus,

‖P
(X̂V )

X̂V⊥‖ = ‖P
(X̂V )

PUX̂V⊥ + P
(X̂V )

PU⊥X̂V⊥‖
≤ ‖P

(X̂V )
UUᵀX̂V⊥‖ + ‖P

(X̂V )
U⊥U

ᵀ
⊥X̂V⊥‖

≤ ‖UᵀX̂V⊥‖ + ∥∥X̂V
[
(X̂V )ᵀ(X̂V )

]−1
(X̂V )ᵀU⊥U

ᵀ
⊥X̂V⊥

∥∥
≤ ‖UᵀX̂V⊥‖ + ∥∥X̂V

[
(X̂V )ᵀ(X̂V )

]−1∥∥ · ‖Uᵀ
⊥X̂V ‖ · ‖Uᵀ

⊥X̂V⊥‖
(8.18)≤ ‖UᵀZV⊥‖ + 1

σmin(X̂V )
‖Uᵀ

⊥ZV ‖ · ‖Uᵀ
⊥X̂V⊥‖

(8.17)≤ z12 + β

α
z21 = αz12 + βz21

α
.

Similarly,

‖P
(X̂V )

X̂V⊥‖F ≤ α‖Z12‖F + β‖Z21‖F

α
.

Next, applying Proposition 1 by setting A = X̂, W̃ = [V V⊥], Ṽ = [V̂ V̂⊥], we
could obtain (2.4). �

SUPPLEMENTARY MATERIAL

Supplement to “Rate-optimal perturbation bounds for singular sub-
spaces with applications to high-dimensional statistics” (DOI: 10.1214/17-
AOS1541SUPP; .pdf). The supplementary material includes the proofs for Theo-
rem 2, Corollary 1, matrix denoising, high-dimensional clustering, canonical cor-
relation analysis and all the technical lemmas.

https://doi.org/10.1214/17-AOS1541SUPP
https://doi.org/10.1214/17-AOS1541SUPP
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