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Abstract

The standard Wald interval is widely used in applications and textbooks because

of its elementary motivation and simplicity of computation. It has been shown in

several recent papers that the Wald interval suffers from a serious systematic nega-

tive bias in its coverage probability. In this article we propose confidence intervals

in Binomial, Negative Binomial and Poisson distributions which have good coverage

and parsimony properties while possess the same simple form as the Wald interval.

We consider both one-sided and two-sided confidence intervals and give a unified

treatment for all three distributions. The properties of the confidence intervals are

studied through numerical and analytical calculations.
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1 Introduction

The Binomial, Negative Binomial, and Poisson distributions are three important discrete

distributions which belong to the natural exponential family with quadratic variance

functions (NEF-QVF). Interval estimation, both one-sided and two-sided, in these discrete

distributions has a long history, an extensive literature and a wide range of applications.

See, for example, Clevenson and Zidek (1975), Kaplan (1983), Duncan (1986), Santner

and Duffy (1989), and Montgomery (2001).

The popular Wald interval has a very intuitive and simple form and is in nearly

universal use. For binomial proportion, it has been generally known that the Wald interval

is deficient in the coverage probability for p near 0 and 1. See, for example, Cressie (1980),

Blyth and Still (1983), Vollset (1993), Agresti and Coull (1998), and Newcombe (1998).

In recent articles, Brown, Cai and DasGupta (2001, 2002 and 2003) give a comprehensive

treatment of two-sided confidence intervals in binomial and other distributions in the NEF-

QVF. The Wald interval in the binomial case is shown to suffer from a systematic negative

bias in its coverage probability far more persistent than is appreciated. It is also shown

that the problems and the solutions in the binomial proportion case are common to all

the distributions in the NEF-QVF. Alternative intervals with superior coverage properties

are recommended. Among them, the Score interval, produced by inversion of Rao’s Score

test, was shown to always provide major improvements in coverage probability.

Cai (2005) considered one-sided confidence intervals for the discrete distributions in

the NEF-QVF. It was shown that, although there are some common features, the one-

sided interval estimation problem differs significantly from the two-sided problem. In

particular, despite the good performance of the Score interval in the two-sided problem,

the one-sided Score interval does not perform well for each of the three distributions.

Both the one-sided Wald and Score intervals suffer a pronounced systematic bias in the

coverage, although the severity and direction differ.

The Wald interval does not perform well, but its simple form is intuitive and appealing.

The alternative confidence intervals proposed in the papers mentioned above have much

more complicated forms than the Wald interval, with the exception of the Agresti-Coull

interval in the binomial case. For applications as well as for teaching in introductory

statistics courses, elementary motivation and simplicity are important. In the present

paper we construct confidence intervals which have the same simple form as the Wald
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interval and have good coverage and parsimony properties. We call these confidence

intervals plugin intervals. We consider both one-sided and two-sided confidence intervals

and give a unified treatment for all three distributions. The properties of the confidence

intervals are studied through numerical and analytical calculations. Edgeworth expansion

is used for assessing the coverage property of the plugin interval. For confidence sets it

is desirable to have the probability matching property. See Ghosh (1994) and Ghosh

(2001). It is shown that all of our plugin intervals are first-order probability matching.

In contrast, both the one-sided Wald and Score intervals are not first-order probability

matching.

The paper is organized as follows. Section 2 considers the one-sided interval estima-

tion problem. After basic notation and definitions are reviewed, the plugin interval is

introduced. The coverage properties are studied through a two-term Edgeworth expan-

sion and comparisons are made with the Wald and Score intervals. Parsimony property is

considered through an asymptotic expansion of the expected distance from the mean. The

analysis shows that the one-sided plugin interval, with its simple form and good coverage

and parsimony properties, is much preferred over both the Wald and Score intervals in

all three distributions. Section 3 gives an analogous treatment of the two-sided problem.

The proofs are given in the Appendix.

2 One-Sided Interval Estimation

As in Brown, Cai and DasGupta (2003) and Cai (2005), the common setup in the present

paper is that we have iid observations X1, X2, ..., Xn ∼ F where F is Bin(1, p) in the

binomial case, Pois(λ) in the Poisson case, and NBin(1, p), the number of successes before

the first failure, in the Negative Binomial case. These three distributions form the discrete

exponential family with a quadratic variance function where the variance

σ2 ≡ V (µ) = µ + b∗µ2 (1)

with µ = p and b∗ = −1 in the binomial Bin(1, p) case; µ = λ and b∗ = 0 in the

Poisson Pois(λ) case; and µ = p/(1− p) and b∗ = 1 in the Negative Binomial NBin(1, p)

case. See Morris (1982) and Brown (1986) for details on natural exponential family with

quadratic variance functions. Set X =
∑n

i=1 Xi, µ̂ = X̄ =
∑n

i=1 Xi/n and denote by zα the
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100(1−α)th percentile of the standard normal distribution. The objective is to construct

confidence intervals for the mean µ based on the random sample {X1, X2, ..., Xn}.

2.1 The One-Sided Confidence Intervals

The Wald interval is the most commonly used confidence interval in practice and has

a simple form. The 100(1 − α)% upper limit Wald interval is based on the normal

approximation √
n(µ̂− µ)

V
1
2 (µ̂)

=

√
n(µ̂− µ)√
µ̂ + b∗µ̂2

L−→ N(0, 1) (2)

and has the form

CIu
W = [0, µ̂ + zαV

1
2 (µ̂)n−

1
2 ] = [0, µ̂ + zα(µ̂ + b∗µ̂2)

1
2 n−

1
2 ]. (3)

The 100(1−α)% lower limit Wald interval is given by CI l
W = [µ̂− zαV

1
2 (µ̂)n−

1
2 , 1] in

the Binomial case and CI l
W = [µ̂−zαV

1
2 (µ̂)n−

1
2 , ∞) in the Poisson and Negative Binomial

cases. For simplicity we shall combine the three cases and write hereafter the upper limit

of the lower limit intervals as ∞ for all three distributions with the understanding that

it is actually 1 in the Binomial case. For one-sided confidence intervals our focus in this

paper will be mainly on the upper limit intervals. The analysis for the lower limit intervals

is analogous.

Besides the Wald interval, the Score interval is also frequently used. The 100(1−α)%

upper limit Score interval for µ is

CIu
S = [0,

X + z2
α/2

n− b∗z2
α

+
zαn

1
2

n− b∗z2
α

(V (µ̂) +
z2

α

4n
)

1
2 ]. (4)

This confidence interval is derived by inverting the Score test of the one-sided hypotheses

H0 : µ ≥ µ0 against Ha : µ < µ0 using the normal approximation
√

n(µ̂− µ)

V
1
2 (µ)

=

√
n(µ̂− µ)√
µ + b∗µ2

L−→ N(0, 1). (5)

The 100(1− α)% lower limit Score interval is constructed similarly and has the form

CI l
S = [

X + z2
α/2

n− b∗z2
α

− zαn
1
2

n− b∗z2
α

(V (µ̂) +
z2

α

4n
)

1
2 , ∞).

As shown in Cai (2005) that both the one-sided Wald and Score intervals have unsat-

isfactory coverage properties. Figure 1 below plots the actual coverage probability of the
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99% upper limit Wald and Score intervals for the mean of the binomial, Negative Binomial

and Poisson distributions with n = 25. In addition to the unavoidable oscillations for the

nonrandomized intervals, it is clear from the plots that both the Wald interval and Score

interval contain significant systematic bias in the coverage probability. As alternatives to

the Wald and Score intervals, the Jeffreys interval and the second-order corrected interval

were introduced in Cai (2005). These two intervals were shown to possess better coverage

and length properties. However these intervals are also of much more complicated forms

and are difficult to motivate in elementary courses. As mentioned earlier, simplicity is

important in many settings.
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Figure 1: Coverage probability of the upper limit Wald interval (solid line) and upper limit

Score interval (dashed line) for n = 25 and α = .01. From left to right: Binomial, Negative

Binomial and Poisson.

We now introduce a new confidence interval which has the same simple form as the

Wald interval CIW , but with a different µ̂ and a modified value for n. We shall call such

an interval a plugin interval. Let η = 1
3
z2

α + 1
6

and set

X̃ = X + η, ñ = n− 2b∗η and µ̃ =
X̃

ñ
. (6)

The plugin interval takes the same form as the Wald interval, by replacing µ̂ with µ̃ and

n with ñ. The upper limit and lower limit plugin intervals are defined, respectively, as

CIu
P = [0, µ̃ + zαV

1
2 (µ̃)ñ−

1
2 ] and CI l

P = [µ̃− zαV
1
2 (µ̃)ñ−

1
2 , ∞). (7)
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Example: Consider the special Binomial case. The upper limit and lower limit plugin

intervals for p are

CIu
P = [0, p̃ + zα

√
p̃(1− p̃)

ñ
] and CI l

P = [p̃−
√

p̃(1− p̃)

ñ
, ∞) (8)

where ñ = n + 2η and p̃ = X+η
n+2η

with η = 1
3
z2

α + 1
6
.

For the Poisson case, the plugin intervals for λ are

CIu
P = [0, λ̃ + zα

√
λ̃

ñ
] and CI l

P = [λ̃− zα

√
λ̃

n
, ∞) (9)

where λ̃ = (X + 1
3
z2

α + 1
6
)/n.

The plugin interval CIu
P has better coverage property than both the Wald and Score

intervals. This can be easily seen from Figure 2 which compares the coverage probabil-

ities of the three one-sided intervals for n = 35 at the nominal level 99%. Analytical

comparisons are given later.
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Figure 2: Coverage probability of the upper limit Plugin interval (dark solid line) for n = 35

and α = .01. From left to right: Binomial, Negative Binomial and Poisson. The dotted line is

the coverage probability of the Wald interval and the dashed line is that of the Score interval.

Remark: The plugin intervals can be further simplified for easy remembrance and for

teaching in elementary courses. Take the commonly used 95% and 99% confidence inter-

vals as examples. In the first case α = .05, z.05 = 1.645 and η = 1
3
z2

.05 + 1
6

= 1.068 ≈ 1.
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• Binomial: ñ = n + 2 and µ̃ ≈ X+1
n+2

, which can be translated into “adding 1 success

and 1 failure”.

• Negative Binomial: Recall that X is the number of successes before the nth failure.

In this case ñ = n − 2 and µ̃ ≈ X+1
n−2

which means “add 1 success and remove 2

failures”.

• Poisson: ñ = n and µ̃ ≈ X+1
n

which simply means “add 1 arrival”.

For the nominal 99% intervals, α = .01 and η = 1.97 ≈ 2. To construct the plugin

interval, one can apply the simple form of the Wald interval after “adding 2 successes

and 2 failures” in the binomial case, “adding 2 successes and removing 4 failures” in the

Negative Binomial case, and “adding 2 arrivals” in the Poisson case.

2.2 Comparisons of Coverage Probability

The Edgeworth expansions provide an accurate and useful tool in analyzing the coverage

properties of confidence intervals. See Brown, Cai and DasGupta (2002 and 2003) and

Cai (2005). For example, the Edgeworth expansion is particularly useful in understanding

analytically why the Score interval performs better in the two-sided problem than in the

one-sided problem.

A two-term Edgeworth expansion of the coverage probability has a general form of

P (µ ∈ CI) = 1− α + S1 · n− 1
2 + Osc1 · n− 1

2 + S2 · n−1 + Osc2 · n−1 + O(n−
3
2 ) (10)

where the first O(n−
1
2 ) term, S1n

− 1
2 , and the first O(n−1) term, S2n

−1, are respectively the

first and second order smooth terms, and Osc1n
− 1

2 and Osc2n
−1 are the oscillatory terms.

See Bhattacharya and Rao (1976) and Hall (1992) for details on Edgeworth expansions.

The smooth terms in (10) capture the systematic bias in the coverage probability as seen

in Figures 1 and 2. A confidence interval is called first-order probability matching if the

first order smooth term S1n
− 1

2 is vanishing. See Ghosh (1994) and Ghosh (2001) for

general discussions on probability matching and confidence sets. Hall (1982) used the

Edgeworth expansion to construct first-order probability matching one-sided intervals for

a binomial proportion and Poisson mean. However his intervals are not of the simple

plugin form.
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Denote by (x)− the largest integer less than or equal to x and set

g(µ, z) = g(µ, z, n) = nµ + n
1
2 σz − (nµ + n

1
2 σz)−. (11)

So g(µ, z) is the fractional part of nµ + n
1
2 σz. Let

Q1(µ, z) = g(µ, z)− 1

2
and Q2(µ, z) = −1

2
g2(µ, z) +

1

2
g(µ, z)− 1

12
. (12)

Note that Q1(µ, z) and Q2(µ, z) are oscillatory functions. They appear in the Edgeworth

expansions to accurately capture the oscillation in the coverage probability. Denote by

φ and Φ respectively the density and cumulative distribution function of the standard

normal distribution.

We now give the two-term Edgeworth expansion for the upper limit plugin interval.

Let 0 < α < 1 and assume that µ is a fixed point in the interior of the parameter spaces.

Theorem 1 Let zP be defined as in (23) in the appendix. Suppose nµ + n
1
2 σzP is not

an integer. Then the coverage probability of the confidence interval CIu
P defined in (7)

satisfies

P (µ ∈ CIu
P ) = (1− α) + Q1(µ, zP )σ−1φ(zα)n−

1
2

+ { b∗
36

(23z3
α + zα) +

1

72σ2
(10z3

α − zα)}φ(zα)n−1

+ {1

3
(1 + 2b∗µ)Q1(µ, zP ) + Q2(µ, zP )}σ−2zαφ(zα)n−1 + O(n−

3
2 ) (13)

Remark: If nµ + n
1
2 σzP is an integer, then an additional term Pp(X = nµ + n

1
2 σzP ) =

φ(zα)n−1/2σ−1 + O(n−1) should be added to the left-side of (13). The expansions for the

lower limit intervals can be obtained by first replacing α by 1− α and zα by −zα in (13)

and then subtracting it from 1.

We will now use the two term Edgeworth expansions to compare the coverage prop-

erties of the standard Wald interval CIu
W and the Score interval CIu

S with the new plugin

interval. The comparisons are consistent for all three distributions and the conclusions

therefore carry a unifying character.

The Edgeworth expansion for the one-sided Wald and Score intervals are given in

Cai (2005). Denote the nonoscillating terms in the two term expansion of the coverage

probability of CIu
S , CIu

P , and CIu
W by Bu

S, Bu
P , and Bu

W , respectively. Then we have:

Bu
W = −1

6
(2z2

α + 1)(1 + 2b∗µ)σ−1φ(zα)n−
1
2
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− { b∗
36

(8z5
α − 11z3

α + 3zα) +
1

36σ2
(2z5

α + z3
α + 3zα)}φ(zα)n−1 (14)

Bu
S =

1

6
(z2

α − 1)(1 + 2b∗µ)σ−1φ(zα)n−
1
2

− { b∗
36

(2z5
α − 11z3

α + 3zα) +
1

72σ2
(z5

α − 7z3
α + 6zα)}φ(zα)n−1 (15)

Bu
P = { b∗

36
(23z3

α + zα) +
1

72σ2
(10z3

α − zα)}φ(zα)n−1 (16)

Note that the plugin interval CIu
P is first-order probability matching whereas both the

Wald and Score intervals are not probability matching. The first order smooth term is the

main contributor of the systematic bias of the Wald and Score intervals seen in Figures 1

and 2.

Figure 3 plots the smooth terms in the Edgeworth expansions for the three intervals

in the binomial case. The systematic bias in the coverage of the plugin interval is much

less severe compare to that of Wald and Score intervals. In addition, the Plugin interval

CIu
P is more balanced and is conservative near both boundaries. It does not have the

problem of serious under-coverage near one end and serious over-coverage near another

end which is shared by both the Wald and Score intervals. See also Figure 2.

p
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Figure 3: Comparison of the nonoscillating terms in the binomial case with n = 40 and α = .05.

We now turn to the Negative Binomial and Poisson cases. Figure 4 displays the

systematic bias for these two cases with n = 40 and α = .05. In both cases there is a

consistent significant negative bias in the coverage of the Wald interval while the Score

interval has a non-negligible positive systematic bias. The coverage of the plugin interval
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is positively biased and the magnitude of the bias is much small than that of both the

Wald and Score intervals, especially in the Poisson case.

p
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Figure 4: Comparison of the nonoscillating terms in the Negative Binomial and Poisson cases

with n = 40 and α = .05. From top to bottom: Bu
S , Bu

P and Bu
W .

2.3 Expected Distance from the Mean

Besides the coverage probability, parsimony, naturally measured by expected distance

from the mean for one-sided intervals, is another important criterion. The expansion for

the expected distance includes terms of the order n−
1
2 , n−1 and n−

3
2 . The coefficient of

the n−
1
2 term is the same for all the intervals, but the coefficients for the n−1 and n−

3
2

terms differ. So, naturally, the coefficients of the n−1 and n−
3
2 terms will be used as a

basis for comparison of their expected length.

Theorem 2 Let U be the upper limit of the plugin interval CIu
P and let Lu

P = U − µ be

the distance of U from the mean µ. Then

E(Lu
P ) = zα(µ + b∗µ2)

1
2 n−

1
2 + (

1

3
z2

α +
1

6
) · (1 + 2b∗µ)n−1

+ [(
1

6
z3

α −
1

24
zα)(µ + b∗µ2)−

1
2 + (z3

α +
1

2
zα)b∗(µ + b∗µ2)

1
2 ]n−

3
2 + O(n−2). (17)

We first consider the Poisson and Negative Binomial cases. In these two cases, up to

an error of order O(n−2), there is a uniform ranking of the intervals in expected distance

from the mean pointwise for every value of the parameter.
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Corollary 1 Consider the special Poisson case. Then the expected lengths of CIu
W , CIu

P ,

and CIu
S admit the expansions

E(Lu
W ) = zαλ

1
2 n−

1
2 − 1

8
zαλ−

1
2 n−

3
2 + O(n−2)

E(Lu
P ) = zαλ

1
2 n−

1
2 + (

1

3
z2

α +
1

6
)n−1 + (

1

6
z3

α −
1

24
zα)λ−

1
2 n−

3
2 + O(n−2)

E(Lu
S) = zαλ

1
2 n−

1
2 +

1

2
z2

αn−1 +
1

8
(z3

α − zα)λ−
1
2 n−

3
2 + O(n−2).

Hence, up to the error n−2, for every λ > 0, the ranking of the intervals is CIu
W , CIu

P and

CIu
S , from the shortest to the longest, as long as zα ≥ 1. In practice, zα will certainly

be larger than 1 and so, we have a uniform ranking of the intervals. The exactly same

ranking holds in the Negative Binomial case.

Unlike the Poisson and the Negative Binomial cases, a uniform ranking in length

pointwise for all p is not valid in the Binomial case. Assume zα > 1 and note that

b∗ = −1 in the binomial case. For p < 1
2

the Wald interval is too short and the Score

interval too long while for p > 1
2

the Wald interval is too long and the Score interval too

short. Considering together with the coverage properties (see Equations (14) and (15)

and Figure 1), it is clear that this is not desirable in either case. The expected distance

of CIu
P is always between those of CIu

W and CIu
S .
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Figure 5: Expected distance of the upper limit of the three confidence intervals from the mean

µ for n = 30 and α = .01. For all three distributions, from top to bottom, the expected distance

of the upper limit of CIu
S , CIu

P and CIu
W .
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3 Two Sided Confidence Intervals

The two sided Wald interval for µ is constructed based on the normal approximation (2)

and has the simple form of

CIW = µ̂± zα/2V
1
2 (µ̂)n−

1
2 = µ̂± zα/2(µ̂ + b∗µ̂2)

1
2 n−

1
2 . (18)

The two-sided Score interval is formed by inverting the normal approximation (5) to the

family of equal-tailed tests of H0 : µ = µ0 versus Ha : µ 6= µ0 and has the form of

CIS =
X + z2

α/2/2

n− b∗z2
α/2

± zα/2n
1
2

n− b∗z2
α/2

(V (µ̂) +
z2

α/2

4n
)

1
2 . (19)

The twos-sided plugin confidence interval has the same simple form as the Wald in-

terval CIW , but with a different µ̂ and a modified value for n. Let ñ and µ̃ be defined as

in (6) with η = z2
α/2/2. Then the two-sided plugin interval is defined as

CIP = µ̃± zα/2V
1
2 (µ̃)ñ−

1
2 = µ̃± zα/2(µ̃ + b∗µ̃2)

1
2 ñ−

1
2 . (20)

Remark: As in the one-sided case, the two-sided plugin intervals can also be further

simplified for easy remembrance and for teaching in elementary courses. For the commonly

used two-sided 95% confidence intervals, α = .05, z.025 = 1.96 and η = z2
.025/2 = 1.921 ≈ 2.

• Binomial: ñ = n + 4 and µ̃ ≈ X+2
n+4

which means “add 2 success and 2 failure”. This

is the Agresti-Coull interval. See Agresti and Coull (1998).

• Negative Binomial: ñ = n− 4 and µ̃ ≈ X+2
n−4

which translates to “add 2 success and

subtract 4 failures”.

• Poisson: ñ = n and µ̃ ≈ X+2
n

which means “add 2 arrivals”.

For two-sided 90% and 99% confidence intervals, the values of η are 1.35 and 3.32 respec-

tively.

In the binomial case the plugin interval is the Agresti-Coull interval discussed in

detail in BCD (2001 and 2002). See also Agresti-Coull (1998). Here we shall focus on the

Negative Binomial and Poisson cases. Figure 6 displays the coverage probability of the

plugin interval together with those of the Wald and Score intervals. It can be seen from
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Figure 6: Comparison of the coverage probability of the three 95% confidence intervals for

Negative Binomial with n = 40 (left panel) and for Poisson(λ) with n = 1 (right panel). The

top dark line is the coverage probability of the plugin interval, the middle dotted line is that of

the Score interval, and the bottom line is that of the Wald interval.

the plots that, as in the binomial case, the plugin interval is more conservative than the

other two intervals in both Negative Binomial and Poisson distributions.

Similar to the one-sided interval case, an Edgeworth expansion for the coverage prob-

ability of the two-sided plugin interval can be derived.

Theorem 3 Let 0 < α < 1. Suppose nµ + n1/2σ`P is not an integer. Then the coverage

probability of the confidence interval CIP defined in (20) satisfies

Pµ(µ ∈ CIP ) = (1− α) + σ−1{g(µ, `P )− g(µ, uP )} · φ(zα/2)n
−1/2

+ {− b∗
18

(2z5
α/2 − 29z3

α/2 + 3zα/2)− 1

36σ2
(z5

α/2 − 16z3
α/2 + 6zα/2)} · φ(zα/2)n

−1

+ {(1 + 2b∗µ)(
1

6
z2

α/2 −
1

2
)Q21(`P , uP ) + Q22(−zα/2, zα/2)}σ−2zα/2φ(zα/2)n

−1

+ O(n−3/2) (21)

where the quantities `P and uP are defined in (24) in the appendix.

Two term Edgeworth expansions for the Wald and Score intervals are given in BCD

(2003). As in the one-sided problem, the smooth terms in the Edgeworth expansions can

be used as the basis for the comparison of the coverage properties.
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Denote the nonoscillating terms in the two term expansion of the coverage probability

of CIS, CIP , and CIW by BS, BP , and BW , respectively. Then

BW = {− b∗
18

(8z5
α/2 − 11z3

α/2 + 3zα/2)− 1

18σ2
(2z5

α/2 + z3
α/2 + 3zα/2)} · φ(zα/2)n

−1,

BS = {− b∗
18

(2z5
α/2 − 11z3

α/2 + 3zα/2)− 1

36σ2
(z5

α/2 − 7z3
α/2 + 6zα/2)} · φ(zα/2)n

−1,

BP = {− b∗
18

(2z5
α/2 − 29z3

α/2 + 3zα/2)− 1

36σ2
(z5

α/2 − 16z3
α/2 + 6zα/2)} · φ(zα/2)n

−1.

It can be verified directly that BP > BS > BW for all three distributions. Hence the

plugin interval has the highest coverage probability in general. Figure 7 compares the

smooth terms in the Edgeworth expansions for the three intervals.

p
0.2 0.4 0.6 0.8

-0.10
-0.05

0.0
0.05

Binomial

p
0.2 0.4 0.6 0.8

-0.10
-0.05

0.0
0.05

Negative Binomial

lambda
0.0 0.5 1.0 1.5 2.0

-0.10
-0.05

0.0
0.05

Poisson

Figure 7: Comparison of the nonoscillating terms in the coverage probability of the Wald, Score

and Plugin intervals (from bottom to top) for n = 40 and α = .05.

Similarly, an expansion of the expected length can be given for the plugin interval.

Theorem 4 Let LP be the length of the two-sided plugin interval CIP . Then

E(LP ) = 2zα/2(µ + b∗µ2)
1
2 n−

1
2 + [3z3

α/2b∗(µ + b∗µ2)
1
2 +

1

4
(2z3

α/2 − zα/2)(µ + b∗µ2)−
1
2 ]n−

3
2

+ O(n−2). (22)

We now compare the expansion of E(LP ) given in (22) with the those of the expected

length for the Wald and Score intervals which are given in BCD (2003).
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Corollary 2 Consider the special Poisson case. Then the expected lengths of CIW , CIS

and CIP admit the expansions

E(LW ) = 2zα/2λ
1
2 n−

1
2 − 1

4
zα/2λ

− 1
2 n−

3
2 + O(n−2)

E(LS) = 2zα/2λ
1
2 n−

1
2 +

1

4
(z3

α/2 − zα/2)λ
− 1

2 n−
3
2 + O(n−2)

E(LP ) = 2zα/2λ
1
2 n−

1
2 +

1

4
(2z3

α/2 − zα/2)λ
− 1

2 n−
3
2 + O(n−2)

Therefore, pointwise at every λ > 0, there is a uniform ranking of the intervals CIW , CIS

and CIP , from the shortest to the longest, provided α > 0.5. The exact same ranking

holds in the Negative Binomial case.

4 Concluding Remarks

The numerical and analytical results given in the present paper show that the plugin in-

terval not only has the appealing simple form but also has good coverage and parsimony

properties for all three distributions and in both one-sided and two-sided interval estima-

tion problems. These desirable features make the plugin interval an excellent alternative

to the standard Wald interval. The simple form of the plugin interval makes it easy for

computation and for teaching in elementary statistics course.

5 Appendix: Proofs

5.1 Edgeworth Expansions

Proof of Theorem 1: The Edgeworth expansion for the coverage probability of the one-

sided plugin interval CIu
P can be derived by using Proposition 1 of BCD (2003). Set

A = n− b∗(z2
α + 2η)

B = 2(n− 2b∗η)(nµ− (1 + 2b∗µ)η) + z2
αn

C = (n− 2b∗η)(nµ− (1 + 2b∗µ)η)2 − z2
αηn + b∗z2

αη2.

We have, after some straightforward algebra,

Pµ(µ ∈ CIu
P ) = P (n

1
2 (µ̂− µ)/σ ≥ zu

P )

15



where

zu
P =

(
B −√B2 − 4AC

2A
− µ

)
σ−1n

1
2 (23)

Expanding zP , one has

zu
P = −zα +

1

6
(z2

α − 1)(1 + 2b∗µ)σ−1n−
1
2 − {1

6
(4z3

α − zα)b∗ +
1

8
z3

ασ−2}n−1 + O(n−
3
2 ).

Now (13) follows from Proposition 1 in BCD (2003) on some algebra.

Proof of Theorem 3: The Edgeworth expansion for the two-sided plugin interval CIP can

be derived in a similar way. Denote

A = (n− 2z2
α/2b∗)n

2

B = 2µ(n− z2
α/2b∗)

2n + z4
α/2b∗n

C = µ2(n− z2
α/2b∗)

3 − z2
α/2µ(n− z2

α/2b∗)
2 − 1

4
z4

α/2n

We have, after some straightforward algebra,

Pµ(µ ∈ CIP ) = P (`P ≤ n
1
2 (µ̂− µ)/σ ≤ uP )

where

(`P , uP ) =

(
B ±√B2 − 4AC

2A
− µ

)
σ−1n1/2 (24)

The + sign goes with uP and the − sign with `P . Expanding `P and uP , one has

(`P , uP ) = ±{zα/2 + (
1

2
b∗ +

1

8
σ−2)z3

α/2n
−1}+ O(n−3/2) (25)

with the + sign going with uP and the − sign with `P . Now (21) follows from Proposition

1 of BCD (2003).

5.2 Expansions for Expected Length

Proof of Theorem 2: For the one-sided plugin interval CIu
P set Zn = (X̄−µ)(µ+b∗µ2)−

1
2 n

1
2

and write µ̃ = (µ + Zn(µ + b∗µ2)
1
2 n−

1
2 + ηn−1)(1− 2b∗ηn−1)−1. Then

Lu
P = (1 + 2b∗µ)ηn−1 + Zn(1 + 2b∗ηn−1)(µ + b∗µ2)

1
2 n−

1
2

+ zα(µ + b∗µ2)
1
2 (n− 2b∗η)−

1
2 · {1 + [2b∗ +

1

2
(µ + b∗µ2)−1]ηn−1}

− 1

8
zα(n− 2b∗η)−

1
2 (µ + b∗µ2)−

1
2 Z2

nn
−1 + RP (Zn)
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where E(|RP (Zn)|) = O(n−2). Hence

E(Lu
P ) = (1 + 2b∗µ)ηn−1 + zα(µ + b∗µ2)

1
2 (1 + b∗ηn−1)n−

1
2 ·{

1 + 2b∗ηn−1 +
1

8
(4η − 1)(µ + b∗µ2)−1n−1

}
+ O(n−2)

and equation (17) follows on a few steps of algebra.

Proof of Theorem 4: For the interval CIP , the length is LP = 2zα/2(µ̃ + b∗µ̃2)
1
2 ñ−1/2,

where ñ = n− b∗z2
α/2 and µ̃ = (X + z2

α/2/2)/ñ. Set Zn = (X̄ − µ)(µ + b∗µ2)−
1
2 n

1
2 . Then

E(Zn) = 0 and E(Z2
n) = 1. Write

µ̃ = (µ + Zn(µ + b∗µ2)1/2n−1/2 +
1

2
z2

α/2n
−1)(1− b∗z2

α/2n
−1)−1,

and hence, after some algebra,

LP = 2zα/2(µ + b∗µ2)1/2(n− b∗z2
α)−1/2

{
1 + [b∗ +

1

4
(µ + b∗µ2)−1]z2

α/2n
−1

+ [
1

2
b∗ − 1

8
(1 + 2b∗µ)2(µ + b∗µ2)−1]Z2

nn
−1 + RP (Zn)

}
,

where E(|RP (Zn)|) = O(n−3/2). Thus,

E(LP ) = 2zα/2(µ + b∗µ2)1/2(1 +
1

2
b∗z2

α/2n
−1)n−

1
2

{
1 + b∗z2

α/2n
−1 +

1

2
b∗n−1

+
1

4
z2

α/2(µ + b∗µ2)−1n−1 − 1

8
(1 + 2b∗µ)2(µ + b∗µ2)−1n−1

}
+ O(n−2)

which simplifies to equation (22) stated in Theorem 4.
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