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Optimal Detection of Sparse Mixtures Against a
Given Null Distribution

Tony T. Cai and Yihong Wu, Member, IEEE

Abstract— Detection of sparse signals arises in a wide range
of modern scientific studies. The focus so far has been mainly
on Gaussian mixture models. In this paper, we consider the
detection problem under a general sparse mixture model and
obtain explicit expressions for the detection boundary under mild
regularity conditions. In addition, for Gaussian null hypothesis,
we establish the adaptive optimality of the higher criticism
procedure for all sparse mixtures satisfying the same conditions.
In particular, the general results obtained in this paper recover
and extend in a unified manner the previously known results
on sparse detection far beyond the conventional Gaussian model
and other exponential families.

Index Terms— Hypothesis testing, high-dimensional statistics,
sparse mixture, higher criticism, adaptive tests, total variation,
Hellinger distance.

I. INTRODUCTION

DETECTION of sparse mixtures is an important problem
that arises in many scientific applications such as signal

processing [1], biostatistics [2], and astrophysics [3], [4],
where the goal is to determine the existence of a signal
which only appears in a small fraction of the noisy data.
For example, topological defects and Doppler effects manifest
themselves as non-Gaussian convolution component in the
Cosmic Microwave Background (CMB) temperature fluctua-
tions. Detection of non-Gaussian signatures are important to
identify cosmological origins of many phenomena [4]. Another
example is disease surveillance where it is critical to discover
an outbreak when the infected population is small [5]. The
detection problem is of significant interest also because it is
closely connected to a number of other important problems
including estimation, screening, large-scale multiple testing,
and classification. See, for example, [2], and [6]–[9].

A. Detection of Sparse Binary Vectors

One of the earliest work on sparse mixture detection dates
back to Dobrushin [1], who considered the following problem

Manuscript received November 9, 2012; revised January 12, 2014; accepted
January 17, 2014. Date of publication February 3, 2014; date of current version
March 13, 2014. This work was supported in part by NSF FRG under Grant
DMS-0854973, in part by NSF under Grant DMS-1208982, and in part by
NIH under Grant R01 CA127334.

T. T. Cai is with the Department of Statistics, The Wharton
School, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
tcai@wharton.upenn.edu).

Y. Wu was with the Department of Statistics, The Wharton School,
University of Pennsylvania, Philadelphia, PA 19104 USA. He is now with the
Department of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL 61801 USA (e-mail: yihongwu@illinois.edu).

Communicated by G. Moustakides, Associate Editor for Detection and
Estimation.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2014.2304295

originating from multi-channel detection in radiolocation. Let
Ray(α) denote the Rayleigh distribution with the density
2y
α exp(− y2

α ), y ≥ 0. Let {Yi }n
i=1 be independently distrib-

uted according to Ray(αi ), representing the random voltages
observed on the n channels. In the absence of noise, αi ’s are
all equal to one, the nominal value; while in the presence of
signal, exactly one of the αi ’s becomes a known value α > 1.
Denoting the uniform distribution on [n] by Un , the goal is to
test the following competing hypotheses:

H (n)
0 : αi = 1, i ∈ [n], (1)

v.s. H (n)
1 : αi = 1 + (α − 1)1{i=J }, J ∼ Un .

Since the signal only appears once out of the n samples, in
order for the signal to be distinguishable from noise, it is
necessary for the amplitude α to grow with the sample size
n (in fact, at least logarithmically). By proving that the log-
likelihood ratio converges to a stable distribution in the large-n
limit, Dobrushin [1] obtained sharp asymptotics of the smallest
α in order to achieve the desired false alarm and miss detection
probabilities. Similar results are obtained in the continuous-
time Gaussian setting by Burnashev and Begmatov [10].

Subsequent important work include Ingster [11] and
Donoho and Jin [8], which focused on detecting a sparse
binary vector in the presence of Gaussian observation noise.
The problem can be formulated as follows. Given a random
sample {Y1, ...,Yn}, one wishes to test the hypotheses

H (n)
0 : Yi

i.i.d.∼ N (0, 1), i ∈ [n], (2)

v.s. H (n)
1 : Yi

i.i.d.∼ (1 − εn)N (0, 1)+ εnN (μn, 1), i ∈ [n]
where the non-null proportion εn is calibrated according to

εn = n−β, 1

2
< β < 1, (3)

and the non-null effect μn grows with the sample size accord-
ing to

μn = √
2r log n, r > 0. (4)

Equivalently, one can write

Yi = Xi + Zi (5)

where Zi
i.i.d.∼ N (0, 1) is the observation noise. Under the null

hypothesis, the mean vector Xn = (X1, . . . , Xn) is equal to
zero; under the alternative, Xn is a non-zero sparse binary

vector with Xi
i.i.d.∼ (1 − εn)δ0 + εnδμn , where δa denotes the
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point mass at a. This formulation is closely related to the
following minimax composite testing problem:

H0 : Y n ∼ N (0, In), (6)

v.s. H1 : Y n ∼ N (θ, In), θ ∈ {0, μn}n, θ is nεn-sparse,

where the worst-case prior for θ is an n-fold product of
Bernoulli distributions.

The main objectives of studying the sparse detection prob-
lem (2) are two-fold.

1) Determine the detection boundary, which gives the
smallest possible signal strength r as a function of the
sparsity parameter β, denoted by denoted by r∗(β), such
that reliable detection is possible, in the sense that the
sum of Type-I and II error probabilities vanishes as
n → ∞. The strict epigraph {(β, r) : r > r∗(β)} is
known as the detectable region.

2) Construct adaptive optimal tests, which achieve vanish-
ing probability of error for all values of (r, β) inside the
detectable region. Although the Neyman-Pearson lemma
asserts that the optimal test is a likelihood ratio test,
evaluating the likelihood ratio involves parameters in
the alternative distribution, which might not be available
to the statistician in practice. Therefore it is highly
desirable to construct adaptive testing procedures which
are simultaneously optimal for a class of alternatives.
This problem is also known as universal hypothesis
testing (c.f. [12]–[14] and the references therein, for
results on discrete alphabets).

The detection boundary of (2) is given by the following
function [8], [11]:

r∗(β) =
{
β − 1

2
1
2 < β ≤ 3

4

(1 − √
1 − β)2 3

4 < β < 1.
(7)

Therefore, the hypotheses in (2) can be tested with vanishing
probability of error if r > r∗(β); Conversely, if r < r∗(β), the
hypotheses are asymptotically indistinguishable and the sum
of Type-I and II error probabilities goes to one for all tests.
Furthermore, the fraction of the non-zero mean is so small
that most tests based on empirical moments have no power in
detection. To construct adaptive optimal procedures, Ingster
[15], [16] considered generalized likelihood ratio tests over
a growing discretized set of (β, r)-pairs and established its
asymptotic adaptive optimality. A more elegant solution is pro-
vided by Donoho and Jin [8], who proposed an adaptive testing
procedure based on Tukey’s higher criticism statistic and
showed that it attains the optimal detection boundary (7) with-
out requiring the knowledge of the unknown parameters (β, r).

The above results have been generalized along various
directions within the framework of two-component Gaussian
mixtures. Jager and Wellner [17] proposed a family
of goodness-of-fit tests based on the Rényi divergences
[18, p. 554], including the higher criticism test as a special
case, which achieve the optimal detection boundary adaptively.
The detection boundary with correlated noise with known
covariance matrices was established in [19] which also pro-
posed a modified version of the higher criticism that achieves
the corresponding optimal boundary. In a related setup,

[20]–[22] considered detecting a signal with a known geo-
metric shape in Gaussian noise. Minimax estimation of the
non-null proportion εn was studied in Cai, Jin and Low [7].

The setup of [8] and [11] specifically focuses on the
two-point Gaussian mixtures. Although [8] and [11] provide
insightful results for sparse signal detection, the setting is
highly restrictive and idealized. In particular, a major lim-
itation that the signal strength must be constant under the
alternative, i.e., the mean vector Xn takes constant value μn on
its support. In many applications, the signal itself varies among
the non-null portion of the samples. A natural question is the
following: What is the detection boundary if μn varies under
the alternative, say with a distribution Pn? Motivated by these
considerations, the following heteroscedastic Gaussian mixture
model was considered in Cai, Jeng and Jin [6]:

H (n)
0 : Yi

i.i.d.∼ N (0, 1) (8)

v.s. H (n)
1 : Yi

i.i.d.∼ (1 − εn)N (0, 1)+ εnN (μn, σ
2).

In this case, [6, Theorems 2.1 and 2.2] showed that reliable
detection is possible if and only if r > r∗(β, σ 2) where
r∗(β, σ 2) is given by

r∗(β, σ 2)=
{
(2 − σ 2)(β − 1

2 )
1
2 < β ≤ 1 − σ 2

4 , σ
2 < 2

(1 − σ
√

1 − β)2+ otherwise.
(9)

where x+ � max(x, 0). It was also shown that the optimal
detection boundary can be achieved by a double-sided version
of the higher criticism test.

B. Detection of General Sparse Mixture

Although the setup in Cai, Jeng and Jin [6] is more general
than that considered in [11] and [8], it is still restricted to
the two-component Gaussian mixtures. In many applications
such as the aforementioned multi-channel detection [1] and
astrophysical problems [4], the sparse signal may not be binary
and the distribution may not be Gaussian. In the present paper,
we consider the problem of sparse mixture detection in a
general framework where the distributions are not necessarily
Gaussian and the non-null effects are not necessarily a binary
vector. More specifically, given a random sample Y n =
(Y1, ...,Yn), we wish to test the following hypotheses

H (n)
0 : Yi

i.i.d.∼ Qn (10)

v.s. H (n)
1 : Yi

i.i.d.∼ (1 − εn)Qn + εn Gn

where Qn is the null distribution and Gn is a distribution
modeling the statistical variations of the non-null effects. The
non-null proportion εn ∈ (0, 1) is calibrated according to (3).

Following the setup in [8] and [11], our goal is to determine
when the sparse mixture in (10) is detectable, in the sense
that the sum of Type-I and II error probabilities vanishes for
some tests. It should be noted that there are various other
formulations for optimal hypotheses testing, e.g., the Neyman-
Pearson criterion which minimizes the Type-II error under
fixed Type-I error probability, and the Chernoff formulation
dealing with the optimal tradeoff between the speed of decay
of Type-I and II error probabilities. For simplicity as well as
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consistency with previous work, in this paper we focus on the
sum of Type-I and II error and determine the corresponding
detection boundary.

The main contribution of the present paper is as follows:
First we obtain an explicit formula for the fundamental limit
of the general testing problem (10) under mild technical
conditions on the mixture, which are in particular satisfied
by the Gaussian and generalized Gaussian null distributions.
Rather than obtaining the limiting distribution of the log-
likelihood ratio near the detection boundary as in [8], [23]
which relies on the normality assumption of the null distribu-
tion, our analysis is based on analyzing the sharp asymptotics
of the Hellinger distance between the null and the mixed
alternative. Furthermore, under the Gaussian null, we also
establish the adaptive optimality of the higher criticism pro-
cedure for all sparse mixtures satisfying the same regularity
conditions. In particular, the general results obtained in this
paper recover and extend all previously mentioned detection
boundary results in a unified manner. The results also gener-
alize the optimal adaptivity of the higher criticism procedure
far beyond the original equal-signal-strength Gaussian setup
in [8], [11] and the heteroscedastic extension in [6]. In the
most general case, it turns out that detection boundary is
determined by the asymptotic behavior of the log-likelihood
ratio log dGn

dQn
evaluated at an appropriate quantile of the null

distribution Qn .
Although our general approach does not rely on the Gaus-

sianity of the model, it is however instructive to begin by
considering the special case of sparse normal mixture with
Qn = N (0, 1), i.e.,

H (n)
0 : Yi

i.i.d.∼ N (0, 1) (11)

v.s. H (n)
1 : Yi

i.i.d.∼ (1 − εn)N (0, 1)+ εnGn

The special case of the convolution model is interesting since
it corresponds to detecting a sparse signal from additive
Gaussian noise, where

Gn = Pn ∗ N (0, 1) (12)

is a standard normal mixture and ∗ denotes the convolution
of two distributions. Indeed in this case the hypotheses (11)
can be equivalently expressed via the additive-noise model (5),

where Xi = 0 under the null and Xi
i.i.d.∼ (1−εn)δ0+εn Pn under

the alternative. Based on the noisy observation Y n , the goal
is to determine whether Xn is the zero vector or a sparse
vector, whose support size is approximately nεn and non-
zero entries are distributed according to Pn . Therefore, the
distribution Pn represents the prior knowledge of the signal.
The case of Pn being a point mass is treated in [8], [11]. The
case of Rademacher Pn in covered in [23, Chapter 8]. The
heteroscedastic case where Pn is Gaussian is considered in [6].
These results can be recovered by specializing the general
conclusion in the present paper.

Moreover, our results also shed light on what governs
the fundamental detection limit in Gaussian noise when the
signal does not necessarily have equal strength. For example,
consider the classical setup (2) where the signal strength μn

is now a random variable. If we have μn = √
2r log n X for

some random variable X , then the resulting detectable region
is given by the Ingster-Donoho-Jin expression (20) scaled by
the L∞-norm of X . On the other hand, it is also possible
that certain distributions of μn induces different shapes of
detectable region than Fig. 2. See Sections III-A and V-B for
further discussions.

It should be noted that while the setting of the present
paper is quite general, the main assumption is that the null
distribution is known. This is in contrast with the recent
work [24] by Arias-Castro and Wang, which considered
unknown null hypotheses and proposed non-parametric tests
based on the symmetry of the null and asymmetry of the
alternative distributions.

C. Organization

The rest of the paper is organized as follows. Section II
states the setup, defines the fundamental limit of sparse
mixture detection and reviews some previously known results.
The main results of the paper are presented in Sections III
and IV, where we provide an explicit characterization of the
optimal detection boundary under mild technical conditions.
Moreover, it is shown in Section IV that the higher criticism
test achieves the optimal performance adaptively. Section V
particularizes the general result to various special cases to give
explicit formulae of the fundamental limits. Discussions of
generalizations and open problems are presented in Section VI.
The main theorems are proved in Section VII, while the proofs
of the technical lemmas are relegated to the appendices.

D. Notations

Throughout the paper, � and ϕ denote the cumulative
distribution function (CDF) and the density of the standard
normal distribution respectively. Let �̄ = 1−�. Let Pn denote
the n-fold product measure of P . We say P is absolutely con-
tinuous with respect to Q, denoted by P 
 Q, if P(A) = 0
for any measurable set A such that Q(A) = 0. We say P is
singular with respect to Q, denoted by P ⊥ Q, if there exists a
measurable A such that P(A) = 1 and Q(A) = 0. We denote
an = o(bn) if lim supn→∞

|an |
|bn | = 0, an = ω(bn) if bn = o(an),

an = O(bn) if lim supn→∞
|an |
|bn | < ∞ and an = �(bn) if

bn = O(an). These asymptotic notations extend naturally to
probabilistic setups, denoted by oP, ωP, etc., where limits are
in the sense of convergence in probability.

II. FUNDAMENTAL LIMITS AND CHARACTERIZATION

In this section we define the fundamental limits for testing
the hypotheses (10) in terms of the sparsity parameter β. An
equivalent characterization in terms of the Hellinger distance
is also given.

A. Fundamental Limits of Detection

It is easy to see that as the non-null proportion εn decreases,
the signal is more sparse and the testing problem in (10)
becomes more difficult. Recall that εn is given by (3) where
β ≥ 0 parametrizes the sparsity level. Thus, the question of
detectability boils down to characterizing the smallest (resp.
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Fig. 1. Critical values of β and regimes of (in)distinguishability of the
hypotheses (11) in the large-n limit.

largest) β such that the hypotheses in (10) can be distinguished
with probability tending to one (resp. zero), when the sample
size n is large.

For testing between two probability measures P and Q,
denote the optimal sum of Type-I and Type-II error probabil-
ities by

E(P, Q) � inf
A

{P(A)+ Q(�A)}, (13)

where the infimum is over all measurable sets A. By the
Neyman-Pearson Lemma [25], E(P, Q) is achieved by the
likelihood ratio test: declare P if and only if dP

dQ ≥ 1.
Moreover, E(P, Q) can be expressed in terms of the total
variation distance

TV(P, Q) � sup
A

|P(A)− Q(A)| = 1

2

∫
|dP − dQ| (14)

as

E(P, Q) = 1 − TV(P, Q). (15)

For a fixed sequence {(Qn,Gn)}, denote the total variation
between the null and alternative in (10) by

Vn(β) � TV(Qn
n, ((1 − n−β)Qn + n−βGn)

n), (16)

which takes values in the unit interval. In view of (15), the
fundamental limits of testing the hypothesis (10) are defined
as follows.

Definition 1.

β∗ � sup {β ≥ 0 : Vn(β) → 1}, (17)

β
∗ � inf {β ≥ 0 : Vn(β) → 0}. (18)

If β
∗ = β∗, the common value is denoted by β∗.

As illustrated by Fig. 1, the operational meaning of β∗ and
β

∗
are as follows: for any β > β

∗
, all sequences of tests

have vanishing probability of success; for any β < β∗, there
exists a sequence of tests with vanishing probability of error.
In information-theoretic parlance, if β

∗ = β∗ = β∗, we say
strong converse holds, in the sense that if β > β∗, all tests
fail with probability tending to one; if β < β∗, there exists a
sequence of tests with vanishing error probability.

Clearly, β
∗

and β∗ only depend on the sequence
{(Qn,Gn)}. The following lemma, proved in Appendix, shows
that it is always sufficient to restrict the range of β to the unit
interval.

Lemma 1.

0 ≤ β∗ ≤ β
∗ ≤ 1. (19)

In the Gaussian mixture model with Qn = N (0, 1), if
the sequence {Gn} is parametrized by some parameter r , the
fundamental limit β∗ in Definition 1 is a function of r , denoted
by β∗(r). For example, in the Ingster-Donoho-Jin setup (2)

Fig. 2. Ingster-Donoho-Jin detection boundary (20) and the detectable region
(below the curve).

where Gn = N (μn, 1), β∗, denoted by β∗
IDJ, can be obtained

by inverting (7):

β∗
IDJ(r) =

{
1
2 + r 0 < r ≤ 1

4

1 − (1 − √
r)2+ r > 1

4 .
(20)

In terms of (20), the detectable region is given by the strict
hypograph {(r, β) : β < β∗

IDJ(r)}. The function β∗
IDJ, plotted

in Fig. 2, plays an important role in our later derivations.
Similarly, for the heteroscedastic mixture (8), inverting (9)
gives

β∗(r, σ 2) =
{

1
2 + r

2−σ 2 2
√

r + σ 2 ≤ 2

1 − (1−√
r)2+

σ 2 2
√

r + σ 2 > 2.
(21)

As shown in Section V, all the above results can be obtained
in a unified manner as a consequence of the general results in
Section III.

B. Equivalent Characterization Via the Hellinger Distance

Closely related to the total variation distance is the Hellinger
distance [26, Chapter 2]

H 2(P, Q) �
∫
(
√

dP − √
dQ)2,

which takes values in the interval [0, 2] and satisfies the
following relationship:

1

2
H 2(P, Q) ≤ TV(P, Q) ≤ H (P, Q)

√

1 − H 2(P, Q)

4
≤ 1.

(22)

Therefore, the total variation distance converges to zero
(resp. one) is equivalent to the squared Hellinger distance
converges to zero (resp. two). We will be focusing on the
Hellinger distance partly due to the fact that it tensorizes under
the product measures as follows:

H 2(Pn , Qn) = 2 − 2

(
1 − H 2(P, Q)

2

)n

. (23)

Denote the Hellinger distance between the null and the
alternative by

H 2
n (β) � H 2(Qn, (1 − n−β)Qn + n−βGn). (24)
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In view of (17)–(18) and (23), the fundamental limits β
∗

and
β∗ can be equivalently defined as follows in terms of the
asymptotic squared Hellinger distance:

β∗ = sup
{
β ≥ 0 : H 2

n (β) = ω(n−1)
}
, (25)

β
∗ = inf

{
β ≥ 0 : H 2

n (β) = o(n−1)
}
. (26)

III. MAIN RESULTS

In this section we characterize the detectable region explic-
itly by analyzing the exact asymptotics of the Hellinger
distance induced by the sequence of distributions {(Qn,Gn)}.

A. Characterization of β∗ for Gaussian Mixtures

This subsection we focus on the case of sparse normal
mixture with Qn = N (0, 1) and Gn absolutely continuous.
We will argue in Section III-C that by performing the Lebesgue
decomposition on Gn if necessary, we can reduce the general
problem to the absolutely continuous case.

We first note that the essential supremum of a measurable
function f with respect to a measure ν is defined as

ess sup
x

f (x) � inf{a ∈ R : ν({x : f (x) > a}) = 0}.
We omit mentioning ν if ν is the Lebesgue measure. Now we
are ready to state the main result of this section.

Theorem 1. Let Qn = N (0, 1). Assume that Gn has a
density gn with respect to the Lebesgue measure. Denote the
log-likelihood ratio by


n � log
gn

ϕ
. (27)

Let α : R → R be a measurable function and define

β� = 1

2
+ 0 ∨ ess sup

u∈R

{
α(u)− u2 + u2 ∧ 1

2

}
. (28)

1) If

lim inf
n→∞


n(u
√

2 log n)

log n
≥α(u) (29)

uniformly in u ∈ R, where α > 0 on a set of positive
Lebesgue measure, then β∗ ≥ β� .

2) If

lim sup
n→∞


n(u
√

2 log n)

log n
≤ α(u) (30)

uniformly in u ∈ R, then β
∗ ≤ β� .

Consequently, if the limits in (29) and (30) agree and α > 0
on a set of positive Lebesgue measure, then β∗ = β� .

Proof: Section VII-B.
To appreciate the result of Theorem 1, note that the

detectability of the sparse mixture in (11) is determined by the
non-null effect Gn: The more Gn deviates from the standard
normal, the sparser we can afford the alternative to be, and,
consequently, the larger the β∗ is. The difference between Gn

and N (0, 1) relevant to the detection boundary is captured by
the function u �→ α(u), which is determined by the asymptotic
behavior of the log-likelihood ratio 
n evaluated as the n−s and
(1 − n−s)-quantile of the null distribution (with u = ±√

s).

This intuition carries over to the generalization in Section III-B
where the null distribution can be non-Gaussian and dependent
on the sample size n. Recall from (24) that reliable (resp.
unreliable) detection is characterized by the asymptotics of
the Hellinger distance H 2

n (β) = ω(n−1) (resp. o(n−1)), whose
exponent is dictated by the largest exponent of the integral via
a generalized Laplace method. This explains the supremum in
the formula (28).

The role of the function α in characterizing the detection
limit β∗ is fundamental in the following sense. Assuming
the setup of Theorem 1, we ask the question in the reverse
direction: What kind of function α can arise in equations (29)
and (30)? The following lemma (proved in Section VII-B)
gives a necessary and sufficient condition for α. Moreover,
for every function α satisfying the condition (32) below,
there exists a sequence of mixture whose β∗ is given by the
formula (28). In the special case of convolutional models, the
function α needs to satisfy more stringent conditions, which
we also discuss below.

Lemma 2. Suppose

lim
n→∞


n(u
√

2 log n)

log n
= α(u), (31)

holds uniformly in u ∈ R for some measurable function
α : R → R. Then for some t > 0,
∫

R

exp(t (α(u)− u2))du < ∞ and ess sup
u∈R

{α(u)− u2} = 0

(32)

In particular, α(u) ≤ u2 Lebesgue-a.e. Conversely, for all
measurable α that satisfies (32), there exists a sequence of
{Gn}, such that (31) holds.

Additionally, if the model is convolutional, i.e., Gn = Pn ∗
N (0, 1), then α is convex.

In many applications, we want to know how fast the optimal
error probability decays if β lies in the detectable region. The
following result gives the precise asymptotics for the Hellinger
distance, which also gives upper bounds on the total variation,
in view of (22).

Theorem 2. Assume that (31) holds. For any β ≥ 1
2 , the

exponent of the Hellinger distance (24) is given by

lim
n→∞

log H 2
n (β)

log n
= E(β), (33)

where

E(β) = ess sup
u∈R

{(2(α(u)− β)) ∧ (α(u)− β)− u2} (34)

= ess sup
u:α(u)≤β

{2α(u)−2β−u2} ∨ ess sup
u:α(u)>β

{α(u)−β−u2}
(35)

which satisfies E(β) > −1 (resp. E(β) < −1) if and only if
β < β� (resp. β > β�).

As an application of Theorem 1, the following result relates
the fundamental limit β∗ of the convolutional models to the
classical Ingster-Donoho-Jin detection boundary:
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Corollary 1. Let Gn = Pn ∗ N (0, 1). Assume that Pn has
a density pn which satisfies that

lim
n→∞

log pn(t
√

2 log n)

log n
= − f (t) (36)

uniformly in t ∈ R for some measurable f : R → R. Then

β∗ = ess sup
t∈R

{β∗
IDJ(t

2)− f (t)} (37)

where β∗
IDJ is the Ingster-Donoho-Jin detection boundary

defined in (20).
It should be noted that the convolutional case of the

normal mixture detection problem is briefly discussed in
[6, Section 6.1], where inner and outer bounds on the detection
boundary are given but do not meet. Here Corollary 1 com-
pletely settles this question. See Section V for more examples.

We conclude this subsection with a few remarks on
Theorem 1.

Remark 1 (Extremal cases). Under the assumption that
the function α > 0 on a set of positive Lebesgue measure, the
formula (28) shows that the fundamental limit β∗ lies in the
very sparse regime ( 1

2 ≤ β∗ ≤ 1). We discuss the two extremal
cases as follows:

1) Weak signal: Note that β∗ = 1
2 if and only if α(u) ≤

u2 − u2∧1
2 almost everywhere. In this case the non-null

effect is too weak to be detected for any β > 1
2 . One

example is the zero-mean heteroscedastic case Gn =
N (0, σ 2) with σ 2 ≤ 2. Then we have α(u) ≤ u2

2 .
2) Strong signal: Note that β∗ = 1 if and only if there

exists u, such that |u| ≥ 1 and

α(u) = u2. (38)

At this particular u, the density of the signal satis-
fies gn(u

√
2 log n) = n−o(1), which implies that there

exists significant mass beyond
√

2 log n, the extremal
value under the null hypothesis [27]. This suggests the
possibility of constructing test procedures based on the
sample maximum. Indeed, to understand the implication
of (38) more quantitatively, let us look at an even weaker
condition: there exists u such that |u| ≥ 1 and

lim sup
n→∞

1

log n
log

1

P
{
u−1Yn ≥ √

2 log n
} = 0, (39)

which, as shown in Appendix , implies that β∗ = 1.

Remark 2. In general β∗ need not exist. Based on
Theorem 1, it is easy to construct a Gaussian mixture where
β

∗
and β∗ do not coincide. For example, let α0 and α1 be two

measurable functions which satisfy Lemma 2 and give rise to
different values of β� in (28), which we denote by β�0 < β

�
1.

Then there exist sequences of distributions {G(0)
n } and {G(1)

n }
which satisfy (31) for α0 and α1 respectively. Now define {Gn}
by G2k = G(0)

k and G2k+1 = G(1)
k . Then by Theorem 1, we

have β∗ = β
�
0 < β

∗ = β
�
1.

B. Non-Gaussian Mixtures

The detection boundary in [8], [11] is obtained by deriving
the limiting distribution of the log-likelihood ratio which relies

on the normality of the null hypothesis. In contrast, our
approach is based on analyzing the sharp asymptotics of the
Hellinger distance. This method enables us to generalize the
result of Theorem 1 to sparse non-Gaussian mixtures (10),
where we even allow the null distribution Qn to vary with the
sample size n.

Theorem 3. Consider the hypothesis testing problem (10).
Let Gn 
 Qn . Denote by Fn and zn the CDF and the quantile
function of Gn , respectively, i.e.,

zn(p) = inf{y ∈ R : Fn(y) ≥ p}. (40)

Assume that the log-likelihood ratio


n = log
dGn

dQn
(41)

satisfies

lim
n→∞ sup

s≥(log2 n)−1

∣
∣
∣
∣

n(zn(n−s)) ∨ 
n(zn(1 − n−s))

log n
−γ (s)

∣
∣
∣
∣=0

(42)

as n → ∞ uniformly in s ∈ R+ for some measurable function
γ : R+ → R. If γ > 0 on a set of positive Lebesgue measure,
then

β∗ = 1

2
+ 0 ∨ ess sup

s≥0

{
γ (s)− s + s ∧ 1

2

}
. (43)

The function γ appearing in Theorem 3 plays the same role
as the function α in Theorem 1 for the Gaussian case, which
is also determined by the log-likelihood ratio evaluated at the
n−s and (1 − n−s)-quantiles of the null distribution for s > 0.
Indeed, comparing Theorem 3 with Theorem 1, we see that the
uniform convergence condition (31) is naturally replaced by
the uniform convergence of the log-likelihood ratio evaluated
at the null quantile. Using the fact that z

1+z2 ≤ �̄(z)
ϕ(z) ≤ 1

z for
all z > 0 [28, 7.1.13], which implies that

�̄(z) = ϕ(z)

z
(1 + o(1)) (44)

as z → ∞, we can recover Theorem 1 from Theorem 3 by
setting γ (s) = α(−√

s)∨α(√s). Analogously, the function γ
satisfies the same condition as in Lemma 2.

C. Decomposition of the Alternative

The results in Theorem 1 and Theorem 3 are obtained
under the assumption that the non-null effect Gn is absolutely
continuous with respect to the null distribution Qn . Next
we show that it does not lose generality to focus our atten-
tion on this case. Using the Hahn-Lebesgue decomposition
[29, Theorem 1.6.3], we can write

Gn = (1 − κn)G
′
n + κnνn (45)

for some κn ∈ [0, 1], where G′
n 
 Qn and νn ⊥ Qn . Put

ε′
n = εn(1 − κn)

1 − εnκn
and Q′

n = (1 − ε′
n)Qn + ε′

n G′
n, (46)
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which satisfies Q′
n 
 Qn . Then (1 − εn)Qn + εn Gn =

(1 − εnκn)Q′
n + εnκnνn . By Lemma 7,

H 2(Qn, (1 − εn)Qn + εn Gn)

= �(εnκn ∨ H 2((1 − ε′)Qn + ε′
n G′

n)) (47)

Therefore the asymptotic Hellinger distance of the original
problem is completely determined by εnκn and the square-
Hellinger distance H 2((1− ε′

n)Qn + ε′
nG′

n), which is also of a
sparse mixture form, with (εn,Gn) replaced by (ε′

n,G′
n) given

in (46). In particular, we note the following special cases.
1) If εnκn = O(n−1), then H 2(Qn, (1 − εn)Qn + εnGn) =

o(n−1) (resp. ω(n−1)) if and only if H 2(Qn, (1 −
ε′

n)Qn + ε′
n G′

n) = o(n−1) (resp. ω(n−1)), which means
that detectability of the original sparse mixture coincide
with the new mixture.

2) If εnκn = ω(n−1), then H 2(Qn, (1 − εn)Qn + εn Gn) =
ω(n−1), which means that the original sparse mixture
can be detected reliably. In fact, a trivial optimal test is
to reject the null hypothesis if there exists one sample
lying in the support of the singular component νn .

IV. ADAPTIVE OPTIMALITY OF HIGHER CRITICISM TESTS

As discussed in Section II-A, the fundamental limit β∗
of testing sparse normal mixtures (11) can be achieved by
the likelihood ratio test. However, in general the likelihood
ratio test requires the knowledge of the alternative distribution,
which is typically not accessible in practice. To overcome
this limitation, it is desirable to construct adaptive testing
procedures to achieve the optimal performance simultaneously
for a collection of alternatives. The basic idea of adaptive pro-
cedures usually involves comparing the empirical distribution
of the data to the null distribution, which is assumed to be
known.

For the problem of detecting sparse normal mixtures, it is
especially relevant to construct adaptive procedures, since in
practice the underlying sparsity level and the non-zero priors
are usually unknown. Toward this end, Donoho and Jin [8]
introduced an adaptive test based on Tukey’s higher criticism
statistic. For the special case of (2), i.e., Pn = δ√2r log n ,
it is shown that the higher criticism test achieves the optimal
detection boundary (20) while being adaptive to the unknown
non-null parameters (β, r). Following the generalization by
Jager and Wellner [17] via Rényi divergence, next we explain
briefly the gist of the higher criticism test.

Given the data Y1, . . . ,Yn , denote the empirical CDF by

Fn(t) = 1

n

n∑

i=1

1{Yi ≤t},

respectively. Similar to the Kolmogorov-Smirnov statistic
[30, p. 91] which computes the L∞-distance (maximal
absolute difference) between the empirical CDF and the null
CDF, the higher criticism statistic is the maximal pointwise
χ2-divergence between the null and the empirical CDF. We
first introduce a few auxiliary notations. Recall that the
χ2-divergence between two probability measures is defined as

χ2(P || Q) �
∫ (

dP

dQ
− 1

)2

dQ.

In particular, the binary χ2-divergence function (i.e., the
χ2-divergence between Bernoulli distributions) is given by

χ2(Bern(p) || Bern(q)) = (p − q)2

q(1 − q)
,

where Bern(p) denotes the Bernoulli distribution with bias p.
The higher criticism statistic is defined by

HCn � sup
t∈R

√
nχ2(Bern(Fn(t)) || Bern(�(t))) (48)

= √
n sup

t∈R

|Fn(t)−�(t)|
√
�(t)�̄(t)

(49)

Based on the statistics (48), the higher criticism test declares
H1 if and only if

HCn >
√

2(1 + δ) log log n (50)

where δ > 0 is an arbitrary fixed constant.
The next result shows that the higher criticism test achieves

the fundamental limit β∗ characterized by Theorem 1 while
being adaptive to all sequences of distributions {Gn} which
satisfy the regularity condition (31). This result generalizes
the adaptivity of the higher criticism procedure far beyond
the original equal-signal-strength setup in [8] and the het-
eroscedastic extension in [6].

Theorem 4. Under the same assumption of Theorem 1, for
any β > β∗, the sum of Type-I and Type-II error of the higher
criticism test (50) vanishes as n → ∞.

V. EXAMPLES

In this section we particularize the general result in
Theorem 1 to several interesting special cases to obtain explicit
detection boundaries.

A. Ingster-Donoho-Jin Detection Boundary

We derive the classical detection boundary (20) from
Theorem 1 for the equal-signal-strength setup (2), which is
a convolutional model with signal distribution

Pn = δμn (51)

and μn in (4). The log-likelihood ratio is given by


n(y) = log
ϕ(y − μn)

ϕ(y)

= −μ
2
n

2
+ μn y = −r log n + √

2r log n y.

Plugging in y = u
√

2 log n, we have 
n(u
√

2 log n) =
−r log n + 2u

√
r log n. Consequently, the condition (31) is

fulfilled uniformly in u ∈ R with

α(u) = 2u
√

r − r. (52)

Straightforward calculation yields that

ess sup
u∈R

{
2u

√
r − r − u2 + u2 ∧ 1

2

}

=
{

r 0 < r ≤ 1
4

1
2 − (1 − √

r)2+ r > 1
4 .

(53)
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Applying Theorem 1, we obtain the desired expression (20)
for β∗(r).

As a variation of (51), the symmetrized version of (51)

Pn = 1

2
(δμn + δ−μn ) (54)

was considered in [23, Section 8.1.6], whose detection bound-
ary is shown to be identical to (20). Indeed, for binary-valued
signal distributed according to (54), we have


n(u
√

2 log n) = −μ
2
n

2
+ log cosh(μnu

√
2 log n)

= −r log n + log(n2u
√

r + n−2u
√

r )− log 2

which gives rise to

α(u) = 2|u|√r − r (55)

Comparing (55) with (52) and (53), we conclude that the
detection boundary (20) still applies.

B. Dilated Signal Distributions

Generalizing both the unary and binary signal distributions
in Section V-A, we consider Pn that is the distribution of the
random variable

Xn = μn X (56)

where μn > 0 is a sequence of positive numbers and X is
distributed according to a fixed distribution P , parameterizing
the shape of the signal. In other words, Pn is the dilation
of P by μn . We ask the following question: By choosing
the sequence μn and the random variable X , is it possible to
have detection boundaries which are shaped differently than
the classical Ingster-Donoho-Jin detection boundary?

It turns out that for μn = √
2 log n, the answer to the above

question is negative. As the next theorem shows, the detection
boundary is given by that of the classical setup rescaled by
the L∞-norm of X . Note that (51) and (54) corresponds to
P = δ√r and P = 1

2 (δ
√

r + δ−√
r ), respectively.

Corollary 2. Consider the convolutional model Gn = Pn ∗
N (0, 1), where Pn is the distribution of

√
2 log nX . Then

β∗ = β∗
IDJ(‖X‖2∞) =

{
‖X‖2∞ + 1

2 0 < ‖X‖∞ ≤ 1
2

1 − (1 − ‖X‖∞)2+ ‖X‖∞ > 1
2 .

(57)
Proof: Recall that β∗

IDJ(·) denotes the Ingster-Donoho-Jin
detection boundary defined in (20). Since the log-likelihood

ratio is given by 
n(y) = E

[
exp(− X2

n
2 + Xn y)

]
, we have


n(u
√

2 log n) = log E

[
n−X2+2u X

]

= ess sup
X

{−X2 + 2u X
}

log n(1+o(1)), (58)

where we have applied Lemma 3 and the essential supremum
in (58) is with respect to P , the distribution of X . There-
fore α(u) = ess supX

{−X2 + 2u X
}
. Applying Theorem 1

yields the existence of β∗, given by

β∗ = 1

2
+ ess sup

u∈R

{
ess sup

X

{ − X2 + 2u X
} − u2 + u2 ∧ 1

2

}

= 1

2
+ ess sup

X
ess sup

u∈R

{
−X2 + 2u X − u2 + u2 ∧ 1

2

}

= ess sup
X

β∗
IDJ(X

2)

= β∗
IDJ(‖X‖2∞), (59)

where (59) follows from the facts that β∗
IDJ(·) is increasing

and that ‖X‖∞ = ess sup |X |.
Remark 3. Corollary V-B tightens the bounds given at the

end of [6, Section 6.1] based on the interval containing the
signal support. From (57) we see that the detection bound-
ary coincides with the classical case with

√
r replaced by

L∞-norm of X . Therefore, as far as the detection boundary
is concerned, only the support of X matters and the detection
problem is driven by the maximal signal strength. In particular,
for ‖X‖∞ ≥ 1 or non-compactly supported X , we obtain
the degenerate case β∗ = 1 (see also Remark 1 about the
strong-signal regime). However, it is possible that the density
of X plays a role in finer asymptotics of the testing problem,
e.g., the convergence rate of the error probability and the
limiting distribution of the log-likelihood ratio at the detection
boundary.

One of the consequences of Corollary 2 is the following:
as long as μn = √

2 log n, non-compactly supported X results
in the degenerate case of β∗ = 1, since the signal is too
strong to go undetected. However, this conclusion need not be
true if μn behaves differently. We conclude this subsection by
constructing a family of distributions of X with unbounded
support and an appropriately chosen sequence {μn}, such that
the detection boundary is non-degenerate: Let X be distributed
according to the following generalized Gaussian (Subbotin)
distribution Pτ [31] with shape parameter τ > 0, whose
density is

pτ (x) = τ

2�(τ)
exp(−|x |τ ). (60)

Put μn = √
2r(log n)

1
2 − 1

τ . Then the density of Xn is given by
vn(x) = 1

μn
p( x
μn
). Hence

vn(t
√

2 log n) = τ

2�(τ)μn
n−|t |τ r− τ

2
,

which satisfies the condition (36) with f (t) = |t|τr− τ
2 .

Applying Corollary 1, we obtain the detection boundary β∗
(a two-dimensional surface parametrized by (r, τ ) shown in
Fig. 3) as follows

β∗ = sup
t∈R

{β∗
IDJ(t

2)− |t|τr− τ
2 } = sup

z≥0
{β∗

IDJ(r z2)− zτ } (61)

where (20) is the Ingster-Donoho-Jin detection boundary.
Equation (61) can be further simplified for the following

special cases.
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Fig. 3. Detection boundary β∗ given by (61) as a function of r for various
values of τ .

• τ = 1 (Laplace): Plugging (20) into (61), straightforward
computation yields

β∗ = 1

2
∨

(
1 − 1

2
√

r

)2

+
=

⎧
⎨

⎩

(
1 − 1

2
√

r

)2
r > 3

2 + √
2

1
2 r ≤ 3

2 + √
2.

• τ = 2 (Gaussian): In this case we have X ∼ N (0, 1
2 )

and Xn ∼ N (0, r). This is a special case of the het-
eroscedastic case in [6], which will be discussed in detail
in Section V-C. Simplifying (61) we obtain

β∗ = 1

2
∨ r

1 + r
,

which coincides with (67).

C. Heteroscedastic Normal Mixture

The heteroscedastic normal mixtures considered in (8) cor-
responds to

Gn = N (μn, σ
2)

with μn given in (4) and σ 2 ≥ 0. In particular, if σ 2 ≥ 1, Gn

is given by the convolution Gn = � ∗ Pn , where the Gaussian
component Pn = N (μn, σ

2 − 1) models the variation in the
signal amplitude.

For any u ∈ R,


n(u
√

2 log n) = log
ϕ

(
u
√

2 log n−μn
σ

)

ϕ(u
√

2 log n)
= α(u) log n, (62)

where

α(u) = u2 − (u − √
r)2

σ 2 .

Similar to the calculation in Section V-A, we have1

sup
0≤s≤1

{
α(s)− s

2

}
=

{
r

2−σ 2 2
√

r + σ 2 ≤ 2
1
2 − (1−√

r)2+
σ 2 2

√
r + σ 2 > 2

(63)

and

sup
s≥1

{α(s)− s} = − (1 − √
r)2+

σ 2 . (64)

Note that r
2−σ 2 − ( 1

2 − (1−√
r)2+

σ 2 ) ≥ (σ 2+2
√

2−2)2

2σ 2(2−σ 2)
≥ 0 if 2

√
r +

σ 2 ≤ 2. Assembling (63)–(64) and applying Theorem 1, we

1In the first case of (63) it is understood that 0
0 = 0.

have

β∗(r, σ 2) = 1

2
+

(
r

2 − σ 2

)
∨

(
1

2
− (1 − √

r)2+
σ 2

)

(65)

=
{

1
2 + r

2−σ 2 2
√

r + σ 2 ≤ 2

1 − (1−√
r)2+

σ 2 2
√

r + σ 2 > 2.
(66)

Solving the equation β∗(r, σ 2) = β in r yields the equivalent
detection boundary (9) in terms of r . In the special case of
r = 0, where the signal is distributed according to Pn =
N (0, τ 2), we have

β∗(0, 1 + τ 2) = τ 2 ∨ 1

1 + τ 2 ∨ 1
. (67)

Therefore, as long as the signal variance exceeds that of the
noise, reliable detection is possible in the very sparse regime
β > 1

2 , even if the average signal strength does not tend to
infinity.

D. Non-Gaussian Mixtures

We consider the detection boundary of the following gen-
eralized Gaussian location mixture which was studied in
[8, Section 5.2]:

H (n)
0 : Yi

i.i.d.∼ Pτ (·) (68)

v.s. H (n)
1 : Yi

i.i.d.∼ (1 − εn)Pτ (·)+ εn Pτ (· − μn)

where Pτ is defined in (60), and μn = (r log n)
1
τ . Since z(1−

n−s) = z(n−s) = (s log n)
1
τ (1 + o(1)) uniformly in s, (42) is

fulfilled with γ (s) = s − |s 1
τ − r

1
τ |. Applying Theorem 3, we

have

β∗(r) = 1

2
+ 0 ∨ sup

s≥0

(
−|s 1

τ − r
1
τ | + s ∧ 1

2

)

= 1

2
+ 0 ∨ sup

u≥0

(
−|u − r

1
τ | + uτ ∧ 1

2

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 r > 1
1+r

2 τ ≤ 1, r ≤ 1,

1
2 + 1

2 −2
τ

1−τ

(1−2
1

1−τ )τ
r τ ≥ 1, r < (1 − 2

1
1−τ )τ

1 − (1 − r
1
τ )τ τ ≥ 1, r ≥ (1 − 2

1
1−τ )τ .

(69)

It is easy to verify that (69) agrees with the results in
[8, Theorem 5.1]. Similarly, the detection boundary for
exponential-χ2

2 mixture in [8, Theorem 1.7] can also be
derived from Theorem 3.

VI. DISCUSSION

By analyzing the sharp asymptotics of the Hellinger dis-
tance, we obtained explicit expressions for the detection
boundary for sparse normal mixture in Theorem 1 and general-
ized the results to non-Gaussian mixtures in Theorem 3 under
more technical conditions. This method is in contrast with the
approach in [8], [23], which determine the detection boundary
by deriving the limiting distribution of the log-likelihood ratio
and relies on the normality of the null hypothesis, or the
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method of analyzing the truncated χ2-divergence (see, e.g.,
[11], [24], [32]). In view of the discussion in Section II-B,
the limiting behavior of Hellinger distance is an equivalent
characterization for the asymptotic (in)distinguishability of the
hypotheses. It is interesting to find other applications in high-
dimensional detection problems where our Hellinger-based
approach is applicable.

While we have focused on a Bayesian setting with indepen-
dent samples, interesting future directions to pursue include
generalizations to a) minimax detection problems such as
[20]–[22] where the data are independent but the parameter
set are structured, and b) detection with correlated data such
as [19] where the lower bound is also obtained by analyzing
the Hellinger distance.

We conclude the paper with a few discussions and open
problems.

A. Moderately Sparse Regime 0 ≤ β ≤ 1
2

Our main results in Section III only concern the very sparse
regime 1

2 < β < 1. This is because under the assumption in
Theorem 1 that α > 0 on a set of positive Lebesgue measure,
we always have β∗ ≥ 1

2 . One of the major distinctions
between the very sparse and moderately sparse regimes is the
effect of symmetrization. To illustrate this point, consider the
sparse normal mixture model (11). Given any Gn , replacing
it by its symmetrized version G̃n(dx) � Gn(dx)+Gn(−dx)

2
always increases the difficulty of testing. This follows from
the inequality H 2(G̃n,�) ≤ H 2(Gn,�), a consequence
of the convexity of the squared Hellinger distance and the
symmetry of �. A natural question is: Does symmetrization
always have an impact on the detection boundary? In the very
sparse regime, it turns out that under the regularity conditions
imposed in Theorem 1, symmetrization does not affect the
fundamental limit β∗, because both Gn and G̃n give rise to
the same function α. It is unclear whether β

∗
and β∗ remain

unchanged if an arbitrary sequence {Gn} is symmetrized.
However, in the moderately sparse regime, an asymmetric non-
null effect can be much more detectable than its symmetrized
version. For instance, direct calculation (see for example
[6, Section 2.2]) shows that β∗(r) = 1

2 − r for Gn = δn−r , but
β∗(r) = 1

2 − 2r for Gn = 1
2 (δn−r + δ−n−r ).

Moreover, unlike in the very sparse regime, moment-based
tests can be powerful in the moderately sparse regime, which
guarantee that β

∗ ≥ 1
2 . For instance, in the above examples

Gn = δn−r or Gn = 1
2 (δn−r + δ−n−r ), the detection boundary

can be obtained by thresholding the sample mean or sample
variance respectively. More sophisticated moment-based tests
such as the excess kurtosis tests have been studied in the
context of sparse mixtures [4]. It is unclear whether they are
always optimal when β < 1

2 .

B. Adaptive Optimality of Higher Criticism Tests

While Theorem 4 establishes the adaptive optimality of
the higher criticism test in the very sparse regime β > 1

2 ,
the optimality of the higher criticism test in the moderately
sparse case β < 1

2 remains an open question. Note that in
the classical setup (2), it has been shown [6] that the higher

criticism test achieves adaptive optimality for β ∈ [0, 1
2 ] and

μn = n−r . In this case since μn = o(1), we have α ≡ 0
and Theorem 1 thus does not apply. It is possible to obtain
a counterpart of Theorem 1 and an analogous expression for
β∗ for the moderately sparse regime if one assumes a similar
uniform approximation property of the log-likelihood ratio,
for example, 
n(u

√
log n) = n−α(u)+o(1) for some function α.

Another interesting problem is to investigate the optimality
of procedures introduced in [17] based on Rényi divergence
under the same setup of Theorem 4.

The optimality of the higher criticism test is established
for Gaussian null hypothesis. It is of interests to investigate
whether higher criticism test achieves the optimal detection
boundary in the non-Gaussian case under the assumption of
Theorem 3, or the setting in [24] where the null distribution
is unknown.

C. Connections to the Settings of Asymptotic Efficiency

The detection problem considered in this paper is, in a
broad sense, related to the concept of asymptotic efficiency
in the classical statistics literature. For a test ψ which tests
a null hypothesis H0 : θ = θ0 at the significance level a,
denote its power at a given alternative θ by b = Pθ (ψ = 1).
Relative efficiency measures such as the Hodges-Lehmann
efficiency, Pitman efficiency, and Bahadur efficiency quantify
the relative performance of two testing procedures for a fixed
level a as b → 1 (Hodges-Lehmann), a fixed power b as
a → 0 (Bahadur), or fixed a and b (Pitman), by comparing
the required sample sizes for the two tests. See, for example,
[33]–[35]. For the detection problem considered in the present
paper, we characterize conditions on the parameter values
under which there is a detector (test) such that both a → 0
and b → 1. In some broad sense, this complements the three
settings considered in the classical asymptotic efficiency liter-
ature, which hold at least one of the two values a and b fixed.

VII. PROOFS

A. Auxiliary Results

Laplace’s method (see, e.g., [36, Section 2.4]) is a tech-
nique for analyzing the asymptotics of integrals of the form∫

exp(M f )dν when M is large. The proof of Theorem 1
uses the following first-order version of the Laplace’s method.
Since we are only interested in the exponent (i.e., the leading
term), we do not use saddle-point approximation in the usual
Laplace’s method and impose no regularity conditions on the
function f except for the finiteness of the integral. Moreover,
the exponent only depends on the essential supremum of f
with respect to ν, which is invariant if f is modified on a
ν-negligible set.

Lemma 3. Let (X,F , ν) be a measure space. Let F : X ×
R+ → R+ be measurable. Assume that

lim
M→∞

log F(x,M)

M
= f (x) (70)

holds uniformly in x ∈ X for some measurable f : X → R.
If

∫
X exp(M0 f )dν < ∞ for some M0 > 0, then

lim
M→∞

1

M
log

∫

X
F(x,M)dν = ess sup

x∈X
f (x). (71)
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Proof: First we deal with the case of ess sup f = ∞,
which implies that ν({ f > a}) > 0 for all a > 0. Moreover, by
Chernoff bound, ν({ f > a}) < exp(−M0a)

∫
exp(M0 f )dν <

∞. By (70), for any ε > 0, there exists K > M0 such that

exp(M( f (x)− ε)) ≤ F(x,M) ≤ exp(M( f (x)+ ε)) (72)

for all x ∈ X and M ≥ K . Therefore,
∫

F(x,M)dν ≥ exp(−Mε)
∫

exp(M f )dν

≥ exp(M(a − ε))ν({ f > a})
for any M > 0 and a > 0. Then

lim inf
M→∞

1

M
log

∫
exp(M f )dν ≥ a − ε.

Hence limM→∞ 1
M log

∫
exp(M f )dν = ∞, by the arbitrari-

ness of a and ε.
Next we assume that ess sup f < ∞. By replacing f with

f − ess sup f , we can assume that ess sup f = 0 without loss
of any generality. Then f ≤ 0 ν-a.e. Hence, by (72),

∫
F(x,M)dν ≤

∫
exp(M( f + ε))dν

≤ exp(Mε)
∫

exp(M0 f )dν < ∞
holds for all M ≥ K . By the arbitrariness of ε, we have

lim sup
M→∞

1

M
log

∫
exp(M f )dν ≤ 0.

For the lower bound, note that, by the definition of
ess sup f = 0, ν({ f > −δ}) > 0 for all δ > 0. Therefore,
by (72), we have

∫
F(x,M)dν ≥ exp(−Mε)

∫
exp(M f )dν

≥ exp(−M(δ + ε))ν({ f > −δ})
for any M > 0 and δ > 0. First sending M → ∞ then δ ↓ 0
and ε ↓ 0, we have

lim inf
M→∞

1

M
log

∫
exp(M f )dν ≥ 0,

completing the proof of (71).
The following lemma is useful for analyzing the asymptotics

of Hellinger distance.
Lemma 4. 1) For any b > 0, the function s �→

(
√

1 + b(s − 1) − 1)2 is strictly convex on R+ and
strictly decreasing and increasing on [0, 1] and [1,∞),
respectively.

2) For any t ≥ 0,

(
√

2 − 1)2t ∧ t2 ≤ (
√

1 + t − 1)2 ≤ t ∧ t2. (73)

Proof:

1) Since t �→ √
1 + t is strictly concave, s �→

(
√

1 + b(s − 1) − 1)2 = 2 + b(s − 1) − 2
√

b(s − 1)
is strictly convex. Solving for the stationary point yields
the minimum at s = 1.

2) First we consider t ≥ 1. Since t �→ (
√

1 + t − 1)2 =
t − 2

√
1 + t is convex, t �→ (

√
1+t−1)2

t is increasing.

Consequently, we have (
√

2 − 1)2 ≤ (
√

1+t−1)2

t ≤ 1 for
all t ∈ [1,∞).
Next we consider 0 ≤ t ≤ 1. By the concavity of t �→√

1 + t , t �→
√

1+t−1
t is decreasing. Hence

√
2 − 1 ≤√

1+t−1
t ≤ 1

2 for all t ∈ [0, 1]. Assembling the above
two cases yields (73).

The following lemmas are useful in proving Theorem 4.
Lemma 5. Let f : R → R be measurable and μ be any

measure on R. The function g defined by

g(s) = ess sup
q≥s

f (q)

is decreasing and lower-semicontinuous, where the essential
supremum is with respect to μ.

Proof: The monotonicity is obvious. We only prove
lower-semicontinuity, which, in particular, also implies right-
continuity. Let sn → s. By definition of the essential supre-
mum, for any δ, we have μ{q ≥ s : f (q) > g(s) − δ} > 0.
By the dominated convergence theorem, μ{q ≥ sn : f (q) >
g(s) − δ} → μ{q ≥ s : f (q) > g(s) − δ}. Hence there
exists N such that μ{q ≥ sn : f (q) > g(s) − δ} > 0 for all
n ≥ N , which implies that g(sn) ≥ g(s) − δ for all n ≥ N .
By the arbitrariness of δ, we have lim infn→∞ g(sn) ≥ g(s),
completing the proof of the lower semi-continuity.

Lemma 6. Under the conditions of Theorem 1, for any
u ≥ 0,

lim
n→∞

log((1 − Fn(u
√

2 log n)) ∧ Fn(−u
√

2 log n))

log n

= v(u) � ess sup
q≥u

{α(q)− q2}.

Proof: First assume that u > 0. Then

1 − Fn(u
√

2 log n)

=
∫

y≥u
√

2 log n
exp(
n(y))φ(y)dy

=
√

log n

π

∫

q≥u
exp(
n(q

√
2 log n))n−q2

dq

= nv(u)+o(1),

where the last equality follows from Lemma 3. The proof for
u < 0 is completely analogous.

B. Proofs in Section III

Proof of Theorem 1: Let W ∼ N (0, 1). Put νn = (1 −
n−β)N (0, 1)+ n−βGn . By the assumption that Gn 
 �, we
have νn 
 N (0, 1). Denote the likelihood ratio by Ln = gn

ϕ =
exp(
n). Then

dνn

d�
= 1 + n−β(exp(
n)− 1). (74)

(Direct part) Recall the notation β� defined in (28), which can
be equivalently written as

β� = 1

2
+ ess sup

u∈R

{
α+(u)− u2 + u2 ∧ 1

2

}
.

Assuming (29), we show that β∗ ≥ β� by lower bounding
the Hellinger distance. To this end, fix an arbitrary δ > 0.
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Let β = β� − 2δ. Denote by λ the Lebesgue measure on
the real line. By definition of the essential supremum, λ{u :
α+(u)− u2 + u2∧1

2 ≥ β + δ− 1
2 } > 0. Since −u2 + u2∧1

2 ≤ 0
for all u and β + δ − 1

2 ≥ −δ, we must have λ{u : α(u) −
u2 + u2∧1

2 ≥ β+ δ− 1
2 , α(u) ≥ 0} > 0. Since, by assumption,

λ{u : α(u) > 0} > 0, there exists 0 < ε ≤ δ
2 , such that

λ

{
u : α(u)− u2 + u2 ∧ 1

2
≥ β + δ − 1

2
, α(u) ≥ 2ε

}
>0.

(75)

By assumption (29), there exists Nε ∈ N such that


n(u
√

2 log n) ≥ (α(u)− ε) log n (76)

holds for all u ∈ R and all n ≥ Nε . From (75), we have either

λ(E1) > 0 (77)

or

λ(E2) > 0, (78)

where

E1 �
{

u : |u| ≤ 1, α(u)− u2

2
≥ β + δ − 1

2
, α(u) ≥ 2ε

}

E2 �
{
u : |u| ≥ 1, α(u)− u2 ≥ β + δ − 1, α(u) ≥ 2ε

}
.

Next we discuss these two cases separately.
Case I : Assume (77). Let

U = W√
2 log n

∼ N
(

0,
1

2 log n

)
. (79)

The square Hellinger distance can be lower bounded as
follows:

H 2
n (β)

= H 2(P, νn) =
∫ (√

dνn

dP
− 1

)2

dP

= E

[(√
1 + n−β(exp(
n(U

√
2 log n))− 1)− 1

)2]
(80)

≥ E

[(√
1 + n−β(exp(
n(U

√
2 log n))− 1)− 1

)2
1{U∈E1}

]

≥ E

[(√
1 + n−β(nα(U )−ε − 1)− 1

)2
1{U∈E1}

]
(81)

≥ (
√

2 − 1)2

4
E

[
n(α(U )−ε−β)∧2(α(U )−ε−β)1{U∈E1}

]
(82)

= (
√

2 − 1)2
√

log n

4
√
π

∫

E1

n(α(u)−ε−β)∧2(α(u)−ε−β)−u2
du (83)

≥ (
√

2 − 1)2
√

log n

4
√
π

n−1+ δ
2 λ(E1) (84)

where

• (80): By (74).
• (81): By Lemma 4.1 and (76).
• (82): Without loss of generality, we can assume that

nε ≥ 2. Then applying the lower bound in Lemma 4.2
yields the desired inequality.

• (83): We used the density of U defined in (79).

• (84): Given that |u| ≤ 1 and α(u)−u2/2 ≥ β+δ− 1
2 , we

have both α(u)− ε− β− u2 ≥ − 1+v2

2 + δ− ε ≥ −1 + δ
2

and 2α(u)− 2ε − 2β − u2 ≥ −1 + 2δ − 2ε ≥ −1 + δ.

Case II : Now we assume (78). Following analogous steps
as in the previous case, we have

H 2
n (β) ≥ (

√
2 − 1)2

√
log n

4
√
π

∫

E2

n(α(u)−ε−β)∧2(α(u)−ε−β)−u2

≥ (
√

2 − 1)2
√

log n

4
√
π

n−1+ δ
2 λ(E2) (85)

where (85) is due to the following: Since |u| ≥ 1 and α(u)−
u2 ≥ β+ δ−1, we have both α(u)− ε−β−u2 ≥ δ− ε−1 ≥
−1+ δ

2 and 2α(u)−2ε−2β−u2 ≥ v2 −2+2δ−2ε ≥ −1+δ.
Combining (84) and (85) we conclude that H 2

n (β) =
ω(n−1). By the arbitrariness of δ > 0 and the alternative
definition of β∗ in (25), the proof of β∗ ≥ β� is completed.

(Converse part) Fix an arbitrary δ > 0. Let

β = β� + 2δ. (86)

We upper bound the Hellinger integral as follows: First note
that

H 2
n (β) = E

[(√
1 + n−β(Ln − 1)− 1

)2
1{Ln≥1}

]

+E

[(√
1 + n−β(Ln − 1)− 1

)2
1{Ln≤1}

]
. (87)

Applying Lemma 4.1, we have

E

[(√
1 + n−β(Ln − 1)− 1

)2
1{Ln≤1}

]

≤ (
√

1 − n−β − 1)2 ≤ n−2β = o(n−1), (88)

since β > β� ≥ 1
2 by (86). Consequently, the asymptotics of

the Hellinger integral H 2
n (β) is dominated by the first term

in (87), denoted by an , which we analyze below using the
Laplace method.

By (30), there exists Nδ ∈ N such that


n(u
√

2 log n) ≤ (α(u)+ δ) log n (89)

holds for all u ∈ R and all n ≥ Nδ . Then

an � E

[(√
1 + n−β(Ln − 1)− 1

)2
1{Ln≥1}

]

= E

[(√
1 + n−β(exp(
n(U

√
2 log n))− 1)− 1

)2
1{Ln≥1}

]

≤ E

[(√
1 + n−β(nα(U )+δ − 1)− 1

)2
1{α(U )≥−δ}

]
(90)

≤ E

[(√
1 + nα(U )+δ−β − 1

)2]

≤ E

[
n(2(α(U )+δ−β))∧(α(U )+δ−β)

]
(91)

=
√

log n

π

∫
n(2(α(u)+δ−β))∧(α(u)+δ−β)−u2

du (92)

where (90) and (91) are due to (89) and Lemma 4.2, respec-
tively. Next we apply Lemma 3 to analyze the exponent
of (92). First we verify the integrability condition:

∫
n(2(α(u)+δ−β))∧(α(u)+δ−β)−u2

du ≤ nδ−β
∫

nα(u)−u2
du

< ∞,
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in view of (32). Applying (71) to (92), we have

an ≤ ness supu∈R{(2(α(u)+δ−β))∧(α(u)+δ−β)−u2}+o(1). (93)

By (86), α(u)−u2+ u2∧1
2 ≤ β− 1

2 −2δ holds a.e. Consequently,
α(u)−u2 ≤ β−1−2δ holds for almost every u ∈ (−∞,−1]∪
[1,∞) and α(u) − u2

2 ≤ β − 1
2 − 2δ holds for almost every

u ∈ [−1, 1]. These conditions immediately imply that

(2(α(u)+ δ − β)) ∧ (α(u)+ δ − β)− u2 ≤ −1 + δ (94)

holds a.e. Assembling (87) and (93), we conclude that
H 2

n (β) = o(n−1). By the arbitrariness of δ > 0 and the
alternative definition of β

∗
in (26), the proof of β

∗ ≤ β�

is completed.
Proof of Theorem 2: In view of the proof of Theorem 1, the

desired (33) readily follows from combining (84), (85), (88)
and (93).

Proof of Lemma 2: Put

c(t) �
∫

exp(t (α(u)− u2))du. (95)

(Necessity) Since
∫

gn = 1, we have
∫

gn(u
√

log n)du =
(log n)− 1

2 . By assumption, gn(u
√

log n) = nα(u)−u2+o(1)

uniformly in u. Therefore
∫

nα(u)−u2
du = no(1). Hence

c(log n) < ∞. It then follows from Lemma 3 that
ess supu{α(u)− u2} = 0. Hence α(u) ≤ u2 a.e.

(Sufficiency) Let α be a measurable function satisfying (32).
Then c(t) < ∞ for some t > 0. By Hölder’s inequality, c(t) <
∞ for all t > 0. Let Gn be a probability measure with the
density

gn(y) = 1

c(log n)
√

log n
exp

{
α

(
y√

2 log n

)
log n − y2

2

}
,

which is a legitimate density function in view of (95). By
Lemma 3, c(log n) = no(1) as n → ∞. Then the log-likelihood
ratio satisfies 
n(u

√
log n) = log

√
2π

c(log n)
√

log n
+ α(u), which

fulfills (31) uniformly.
For convolutional models, the convexity of α is inherited

from the geometric properties of the log-likelihood ratio in the
normal location model: Since y �→ log E[ϕ(y−X)]

ϕ(y) is convex for
any random variable X (see, e.g., [37, Property 3] and [38]),
we have 
n(((1− t)u + tv)

√
2 log n) ≤ (1− t)
n(u

√
2 log n)+

t
n(v
√

2 log n) for any t ∈ [0, 1] and u, v ∈ R. Dividing both
sides by log n and sending n → ∞, we have α((1−t)u+tv) ≤
(1 − t)α(u) + tα(v).

Proof of Corollary 1: Since gn = ϕ ∗ pn , we have

gn(u
√

2 log n)

=
∫

R

ϕ(u
√

2 log n − x)pn(x)dx

= √
2 log n

∫

R

ϕ((u − t)
√

2 log n)pn(x
√

2 log n)dx

= no(1)
∫

R

n−(u−t)2− f (t)+o(1)dx

= n− ess infz∈R{(u−t)2+ f (t)}+o(1)

where the last equality follows from Lemma 3. Plugging the
above asymptotics into 
n = log gn

ϕ , we see that (31) is fulfilled

uniformly in u ∈ R with α(u) = u2 −ess infz∈R{(u −√
r z)2 +

|z|τ }. Applying Theorem 1, we obtain

β∗ = 1

2
+ ess sup

u∈R

ess sup
t∈R

{
−(u − t)2 − f (t)+ u2 ∧ 1

2

}

= 1

2
+ ess sup

t∈R

{
− f (t)+ ess sup

u∈R

{
−(u − t)2 + u2 ∧ 1

2

}}

= sup
t∈R

{β∗
IDJ(t

2)− f (t)}

where the last step follows from the (53).
Proof of Theorem 3: Let Wn ∼ Qn . Put νn = (1−n−β)�+

n−βGn . Since Gn 
 Qn by assumption, we also have νn 

P . Denote the likelihood ratio (Radon-Nikodym derivative) by
Ln = dGn

dQn
= exp(
n). Then

dνn

dQn
= 1 + n−β(exp(
n)− 1). (96)

The proof proceeds analogously as in that of Theorem 1.
Instead of introducing the random variable U in (79) for
the Gaussian case, we apply the quantile transformation to
generate the distribution of Wn : Let U be uniformly distributed
on the unit interval. Then S = log 1

U which is exponentially
distributed. Putting Sn = S

log n , we have

Wn
(d)=zn(U) = zn

(
n−Sn

)
(d)=zn

(
1 − n−Sn

)
. (97)

Set rn(s) = 
n ◦ zn(n−s) and tn(s) = 
n ◦ zn(1 − n−s), which
satisfy

sup
s≥logn 2

|rn(s)− α0(s) log n| ≤ δ log n (98)

sup
s≥logn 2

|tn(s)− α1(s) log n| ≤ δ log n (99)

for all sufficiently large n. For the converse proof, similar
to (87), we can write the square Hellinger distance as an
expectation with respect to Sn :

H 2
n (β)

= E

[(√
1 + n−β(exp(
n(zn(U)))− 1)− 1

)2
1{

0<U< 1
2

}
]

+E

[(√
1+n−β(exp(
n(zn(1 − U)))−1)− 1

)2
1{

0<U≤ 1
2

}
]

= E

[(√
1 + n−β(exp(rn(Sn))− 1)− 1

)2
1{Sn>logn 2}

]

+ E

[(√
1 + n−β(exp(tn(Sn))− 1)− 1

)2
1{Sn≥logn 2}

]
.

Define the events F1 = {Sn > logn 2, rn(Sn) ≥ 0} and F2 =
{Sn ≥ logn 2, tn(Sn) ≥ 0}. Analogous to (88), by truncating
the log-likelihood ratio at zero, we can show that the Hellinger
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distance is dominated by the following:

E

[(√
1 + n−β(exp(rn(Sn))− 1)− 1

)2
1F1

]

+ E

[(√
1 + n−β(exp(tn(Sn))− 1)− 1

)2
1F2

]
(100)

≤ E

[(√
1 + n−β(nα0(Sn)+δ − 1)− 1

)2

+
(√

1 + n−β(nα1(Sn)+δ − 1)− 1
)2]

(101)

≤ 2 E

[
n2(α0∨α1(U )+δ−β)∧(α0∨α1(U )+δ−β)

]
(102)

≤ n−1−δ (103)

where (101) from (98)–(99) and (103) from (92)–(94). The
direct part of the proof is entirely analogous to that of
Theorem 1 by lower bounding the integral in (100).

C. Proof of Theorem 4

Proof: Let Ui = �(Xi ), which is uniformly distributed
on [0, 1] under the null hypothesis. With a change of variable,
we have

HCn = √
n sup

t∈R

|Fn(t)−�(t)|
√
�(t)�̄(t)

(104)

= √
n sup

0<u<1

|Fn(�
−1(u))− u|√

u(1 − u)
, (105)

which satisfies that HCn√
2 log log n

P−→ 1 [30, p. 604]. Therefore
the Type-I error probability of the test (50) vanishes for any
choice of δ > 0. It remains to show that HCn = ωP(log log n)
under the alternative. To this end, fix 0 < s < 1 and put
rn,s = �(

√
2s log n) and ρn,s = (1 − n−β)�(

√
2s log n) +

n−βGn(
√

2s log n). By (104), we have

HCn ≥ Vn(s) �
√

n
Fn(

√
2s log n)− rn,s√

rn,s(1 − rn,s)
(106)

= Nn(s)− nrn,s√
nrn,s(1 − rn,s)

, (107)

where Nn(s) �
∑n

i=1 1{Xi≥√
2s log n} is binomially distributed

with sample size n and success probability ρn,s . Therefore

E [Vn(s)] = √
n

ρn,s − rn,s√
rn,s(1 − rn,s)

= n
1
2 −β Gn(

√
2s log n)− rn,s√

rn,s(1 − rn,s)
. (108)

and

varVn(s) = ρn,s(1 − ρn,s)

rn,s(1 − rn,s)
. (109)

By Chebyshev’s inequality,

P

{
Vn(s) ≤ 1

2
E [Vn(s)]

}
≤ 4 varVn(s)

E [Vn(s)]2 = 4ρn,s(1 − ρn,s)

n(ρn,s − rn,s)2
.

By Lemma 6,

1 − Gn(
√

2s log n) = nv(s)+o(1), (110)

where v(s) = ess supq≥s{α(q)−q} ≥ −s. Plugging (110) into
(108) and (109) yields

E [Vn(s)] = n
1+s

2 −β+v(s)+o(1) (111)

and

P {V }n(s) ≤ 1

2
E [Vn(s)]

≤ n2β−s−1−2v(s)+o(1)+ nβ−1−v(s)+o(1). (112)

Suppose that β < 1+s
2 + v(s). Then E [Vn(s)] =

ω(
√

log log n). Moreover, we have 2β − s − 1 − 2v(s) < 0
and β − 1 − v(s) ≤ s−1

2 < 0 since s < 1. Combining (106),
(111) and (112), we obtain

P

{
HCn >

√
(2 + δ) log log n

}
= 1 − o(1),

that is, the Type-II error probability also vanishes.
Consequently, a sufficient condition for the higher criticism
test to succeed is

β < sup
0<s<1

1 + s

2
+ v(s) (113)

= ess sup
0<s<1

1 + s

2
+ v(s), (114)

where (114) follows from the following reasoning: By
[39, Proposition 3.5], the supremum and the essential supre-
mum (with respect to the Lebesgue measure) coincide for
all lower semi-continuous functions. Indeed, v is lower semi-
continuous by Lemma 5, and so is s �→ 1+s

2 + v(s).
It remains to show that the right-hand side of (114) coin-

cides with the expression of β∗ in Theorem 1. Indeed, we have

ess sup
0≤s≤1

{s + 2v(s)} = ess sup
0≤s≤1

{
s + 2 ess sup

q≥s
{α(q)− q}

}

= ess sup
q≥0

ess sup
q∧1≤s≤1

{2α(q)− 2q + s}
= ess sup

q≥0
{2α(q)− 2q + q ∧ 1} .

Here the second equality follows from interchanging the
essential suprema: For any bi-measurable function (x, y) �→
f (x, y),

ess sup
x

ess sup
y

f (x, y) = ess sup
y

ess sup
x

f (x, y)

= ess sup
x,y

f (x, y),

where the last essential supremum is with respect to
the product measure. Thus the proof of the theorem is
completed.

APPENDIX

This appendix collects a few properties of total variation
and Hellinger distances for mixture distributions.

Lemma 7. Let 0 ≤ ε ≤ 1 and Q1 ⊥ P . Then

H 2(P, (1 − ε)Q0 + εQ1)

= 2(1 − √
1 − ε)+ √

1 − ε H 2(P, Q0) (115)

which satisfies

1

4
≤ H 2(P, (1 − ε)Q0 + εQ1)

ε ∨ H 2(P, Q0)
≤ 4 (116)
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Proof: Since Q1 ⊥ P , there exists a measurable set E
such that P(E) = 0 and Q1(E) = 1. Then

H 2(P, (1 − ε)Q0 + εQ1)

= 2 − 2
∫ √

dP((1 − ε)dQ0 + εdQ1)

= 2 − 2
√

1 − ε

∫

�E

√
dPdQ0

= 2 − √
1 − ε (2 − H 2(P, Q0)).

The inequalities in (116) follow from (115) and the facts that
ε
2 ≤ √

1 − ε ≤ ε and 0 ≤ H 2 ≤ 2.
Lemma 8. For any probability measures (P, Q), ε �→

H 2(P, (1 − ε)P + εQ) is decreasing on [0, 1].
Proof: Fix 0 ≤ ε < ε′ ≤ 1. Since (1 − ε)P + εQ =

((1 − ε′)P + ε′Q) εε′ + ε̂−ε
ε′ P , the convexity of H 2(P, ·) yields

H 2((1 − ε)P + εQ, P) ≤ ε

ε′ H 2((1 − ε′)P + ε′Q, P). �

We conclude this appendix by proving Lemma 1 presented
in Section II-A.

Proof: By Lemma 8, the function β �→ H 2
n (β) is

decreasing, which, in view of the characterization (25)–(26),
implies that β∗ ≤ β

∗
. Thus it only remains to establish the

rightmost inequality in (19). To this end, we show that as soon
as β exceeds 1, Vn(β) becomes o(1) regardless of the choice
of {Gn}: Fix β > 1. Then

Vn(β) = TV(�n, ((1 − n−β)�+ n−βGn)
n)

≤ TV(δn
0 , ((1 − n−β)δ0 + n−βδ1)

n) (117)

= 1 − (1 − n−β)n

≤ n1−β

= o(1),

where (117) follows from the data-processing inequality,
which is satisfied for all f -divergences [40], in particular, the
total variation: TV(PY , QY ) ≤ TV(PX , QX ), where QY |X =
PY |X is any probability transition kernel.

Remark 4. While Lemma 8 is sufficient for our purpose
in proving Lemma 1, it is unclear whether the monotonicity
carries over to ε �→ TV(Pn , ((1− ε)P + εQ)n), since product
measures do not form a convex set. It is however easy to see
that ε �→ TV(Pn, ((1 − ε)P + εQ)n) is decreasing, which
follows from the proof of Lemma 8 with H 2 replaced by
TV. It is also clear that ε �→ H 2(Pn , ((1 − ε)P + εQ)n) is
decreasing in view of (23).

In this appendix we show that (39) implies that β∗ = 1, i.e.,
for any β < 1, the hypotheses in (11) can be tested reliably.
Without loss of generality, we assume that u ≥ 1. Then

τn � Gn((
√

2 log n,∞)) = n−o(1),

We show that the total variation distance between the product
measures converge to one. Put An = (−∞,

√
2s log n]n . In

view of the first inequality in (14), the total variation distance
can be lower bounded as follows:

Vn(β) ≥ �n(An)− ((1 − n−β)�+ n−βGn)
n(An).

Using (44), we have

�n(An) = (1 − �̄(
√

2s log n))n = 1 − n1−s√
4πs log n

(1 + o(1)).

On the other hand,

((1 − n−β)�+ n−βGn)
n(An)

= (1 − (1 − n−β)�̄(
√

2s log n)− n−βτn)
n

= (1 − n−s+o(1) − n−β−s+o(1) − n−β+o(1))n

= o(1)

where the last equality is due to 0 < β < 1 ≤ s. Therefore
Vn(β) = 1 − o(1) for any β < 1, which proves that β∗ = 1.

In fact, the above derivation also shows that the following
maximum test achieves vanishing probability of error: declare
H1 if and only if maxi |Xi | > |u|√2 log n. In general the
maximum test is suboptimal. For example, in the classical
setting (2) where Gn = δμn , [8, Theorem 1.3] shows that the
maximum test does not attain the Ingster-Donoho-Jin detection
boundary for β ∈ [ 1

2 ,
3
4 ].
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