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STATISTICAL AND COMPUTATIONAL LIMITS FOR
SPARSE MATRIX DETECTION

By T. Tony Cai¶,∗∗ and Yihong Wu‖,††

University of Pennsylvania∗∗ and Yale University††

This paper investigates the fundamental limits for detecting a
high-dimensional sparse matrix contaminated by white Gaussian noise
from both the statistical and computational perspectives. We con-
sider p×p matrices whose rows and columns are individually k-sparse.
We provide a tight characterization of the statistical and compu-
tational limits for sparse matrix detection, which precisely describe
when achieving optimal detection is easy, hard, or impossible, respec-
tively. Although the sparse matrices considered in this paper have
no apparent submatrix structure and the corresponding estimation
problem has no computational issue at all, the detection problem has
a surprising computational barrier when the sparsity level k exceeds
the cubic root of the matrix size p: attaining the optimal detection
boundary is computationally at least as hard as solving the planted
clique problem.

The same statistical and computational limits also hold in the
sparse covariance matrix model, where each variable is correlated
with at most k others. A key step in the construction of the statisti-
cally optimal test is a structural property of sparse matrices, which
can be of independent interest.

1. Introduction. The problem of detecting sparse signals arises fre-
quently in a wide range of fields and has been particularly well studied in
the Gaussian sequence setting (cf. the monograph [40]). For example, de-
tection of unstructured sparse signals under the Gaussian mixture model
was studied in [27, 39] for the homoskedastic case and in [15] for the het-
eroscedastic case, where sharp detection boundaries were obtained and adap-
tive detection procedures proposed. Optimal detection of structured signals
in the Gaussian noise model has also been investigated in [6, 7, 21]. One com-
mon feature of these vector detection problems is that the optimal statistical
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2 CAI AND WU

performance can always be achieved by computationally efficient procedures
such as thresholding or convex optimization.

Driven by contemporary applications, much recent attention has been
devoted to inference for high-dimensional matrices, including covariance
matrix estimation, principal component analysis (PCA), image denoising,
and multi-task learning, all of which rely on detecting or estimating high-
dimensional matrices with low-dimensional structures such as low-rankness
or sparsity. For a suite of matrix problems, including sparse PCA [10, 54],
biclustering [9, 16, 47], sparse canonical correlation analysis (CCA) [32] and
community detection [34], a new phenomenon known as computational bar-
riers has been recently discovered, which shows that in certain regimes at-
taining the statistical optimum is computationally intractable, unless the
planted clique problem can be solved efficiently.1 In a nutshell, the source of
computational difficulty in the aforementioned problems is their submatrix
sparsity, where the signal of interests is concentrated on a submatrix within
a large noisy matrix. This combinatorial structure provides a direct connec-
tion to, and allows these matrix problems to be reduced in polynomial time
from, the planted clique problem, thereby creating computational gaps for
not only the detection but also support recovery and estimation.

In contrast, another sparsity structure for matrices postulates the rows
and columns are individually sparse, which has been well studied in covari-
ance matrix estimation [13, 22, 28, 42]. The motivation is that in many
real-data applications each variable is only correlated with a few others.
Consequently, each row and each column of the covariance matrix are indi-
vidually sparse but, unlike sparse PCA, biclustering, or group-sparse regres-
sion, their support sets need not be aligned. Therefore this sparsity model
does not postulate any submatrix structure of the signal; indeed, it has been
shown for covariance matrix estimation that entrywise thresholding of the
sample covariance matrix proposed in [13] attains the minimax estimation
rate [22].

The focus of the present paper is to understand the fundamental limits
of detecting sparse matrices from both the statistical and computational
perspectives. While achieving the optimal estimation rate does not suffer
from any computational barrier, it turns out the detection counterpart does
when and only when the sparsity level exceeds the cubic root of the matrix
size. This is perhaps surprising because the sparsity model itself does not

1The planted clique problem [2] refers to detecting or locating a clique of size o(
√
n)

planted in the Erdös-Rényi random graph G(n, 1/2). Conjectured to be computationally
intractable [30, 41], this problem has been frequently used as a basis for quantifying
hardness of average-case problems [1, 37].
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explicitly enforce any submatrix structure, which has been responsible for
problems such as sparse PCA to be reducible from the planted clique. Our
main result is a tight characterization of the statistical and computational
limits of detecting sparse matrices in both the Gaussian noise model and the
covariance matrix model, which precisely describe when achieving optimal
detection is easy, hard, and impossible, respectively.

1.1. Setup. We start by formally defining the sparse matrix model:

Definition 1. We say a p×p matrix M is k-sparse if all of its rows and
columns are k-sparse vectors, i.e., with no more than k non-zeros. Formally,
denote the ith row of M by Mi∗ and the ith column by M∗i. The following
parameter set

(1.1) M(p, k) = {M ∈ Rp×p : ‖Mi∗‖0 ≤ k, ‖M∗i‖0 ≤ k, ∀i ∈ [p]}.

denotes the collection of all k-spares p×pmatrices, where ‖x‖0 ,
∑

i∈[p] 1{xi 6= 0}
for x ∈ Rp.

Consider the following “signal + noise” model, where we observe a sparse
matrix contaminated with Gaussian noise:

(1.2) X = M + Z

where M is a p × p unknown mean matrix, and Z consists of i.i.d. entries
normally distributed as N(0, σ2). Without loss of generality, we shall assume
that σ = 1 throughout the paper.

Given the noisy observation X, the goal is to test whether the mean
matrix is zero or a k-sparse nonzero matrix, measured in the spectral norm.
Formally, we consider the following hypothesis testing problem:

(1.3) H0 : M = 0 versus H1 : M ∈ Θ(p, k, λ),

where the mean matrix M belongs to the parameter space

(1.4) Θ(p, k, λ) = {M ∈ Rp×p : M ∈M(p, k), ‖M‖2 ≥ λ}.

Here we use the spectral norm ‖ · ‖2, namely, the largest singular value, to
measure the signal strength under the alternative hypothesis. It turns out
that if we use the Frobenius norm to define the alternative hypothesis, the
sparsity structure does not help detection, in the sense that, the minimal λ
required to detect 1-sparse matrices is within a constant factor of that in the
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4 CAI AND WU

non-sparse case and the matrix problem collapses to the vectorized version
(see the supplementary material [20, Section 7] for details).

For covariance model, the counterpart of the detection problem (1.4) is the
following. Consider the Gaussian covariance model, where we observe n inde-
pendent samples drawn from the p-variate normal distribution N(0,Σ) with
an unknown covariance matrix Σ. In the sparse covariance matrix model,
each coordinate is correlated with at most k others. Therefore each row of
the covariance matrix Σ has at most k non-zero off-diagonal entries. This
motivates the following detection problem:

(1.5) H0 : Σ = I versus H1 : ‖Σ− I‖2 ≥ λ, Σ− I is k-sparse.

In the context of covariance matrix model, it is natural to use the spectral
norm [13, 22] since it measures the strength of the leading principal com-
ponent. Under the null hypothesis, the samples are pure noise; under the
alternative, there exists at least one significant factor and the entire covari-
ance matrix is k-sparse. The goal is to determine the smallest λ so that the
factor can be detected from the samples.

1.2. Statistical and computational limits. For ease of exposition, let us fo-
cus on the additive Gaussian noise model and consider the following asymp-
totic regime, wherein the sparsity and the signal level grow polynomially in
the dimension as follows:

k = pα and λ = pβ

with α ∈ [0, 1] and β > 0 held fixed and p → ∞. Theorem 1 in Section 2
implies that the critical exponent of λ behaves according to the following
piecewise linear function:

β∗ =

{
α α ≤ 1

3
1+α

4 α ≥ 1
3

in the sense that if β > β∗, there exists a test that achieves vanishing prob-
ability of error of detection uniformly over all k-sparse matrices; conversely,
if β < β∗, no test can outperform random guessing asymptotically.

More precisely, as shown in Figure 1, the phase diagram of α versus β is
divided into four regimes:

(I) β > α: The test based on the largest singular value of the entrywise
thresholding estimator succeeds. In particular, we reject if ‖XTh‖2 &
k
√

log p, where XTh
ij = Xij1

{
|Xij | = Ω(

√
log p)

}
.
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Fig 1. Statistical and computational limits in detecting sparse matrices.

(II) β > 1
2 : The test based on the large singular value of the direct obser-

vation succeeds. In particular, we reject if ‖X‖2 &
√
p.

(III) 1+α
4 < β < α ∧ 1

2 : detection is as hard as solving the planted clique
problem.

(IV) β < α ∧ 1+α
4 : detection is information-theoretically impossible.

As mentioned earlier, the computational intractability in detecting sparse
matrices is perhaps surprising because

(a) achieving the optimal estimation rate does not present any computa-
tional difficulty;

(b) unlike problems such as sparse PCA, the sparse matrix model in Def-
inition 1 does not explicitly impose any submatrix sparsity pattern as
the rows are individually sparse and need not share a common support.

The result in Figure 1 shows that in the moderately sparse regime of
p1/3 � k � p, outperforming entrywise thresholding is at least as hard
as solving planted clique. However, it is possible to improve over entrywise
thresholding using computationally inefficient tests. Next we briefly describe
the construction of the optimal test which detects the signal when λ &
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(kp log p)1/4 and improves over entrywise thresholding which requires λ &
k
√

log p. This test has two stages: The first stage is a standard χ2-test, which
rejects the null hypothesis if the mean matrix M has a large Frobenius norm,
i.e., ‖M‖F &

√
p. Under the alternative hypothesis that ‖M‖2 ≥ λ, if the

data can survive the χ2-test, i.e. ‖M‖F .
√
p, then M has small stable rank,

i.e., sr(M) , ‖M‖2F/‖M‖22 . r , p
λ2

. The key observation is that if a matrix
M is both k-sparse (in the sense of Definition 1) and has stable rank at most
r, then its operator norm is concentrated on a small submatrix, in the sense
that there exists subsets I, J of cardinality m � kr log p such that ‖MIJ‖2 ≥
‖M‖2 for some constant c. Thus, in the second stage we apply a scan test that
rejects if the maximum spectral norm among all m×m submatrices exceeds
a constant multiple of λ. This succeeds provided that λ ≥

√
m, which leads

to the condition that λ & (kp log p)1/4. We emphasize that although scan
test is a well-known idea, here both the specification (that is, what class to
search over as well as how large the submatrices need to be) and the proof
of correctness are new. The crucial difference is the following: scan statistics
typically correspond to generalized likelihood ratio test and are defined by
maximizing over the corresponding hypothesis class. For instance, in the
problem of submatrix detection [14], where the alternative hypothesis is
that the mean matrix has a k × k submatrix with elevated means, the scan
test, naturally, searches over all possible k × k submatrices. In contrast,
the scan test described above does not search over all possible support sets
of k-sparse matrices (in the sense of both row and column sparsity), but
over submatrices of size m � kp log p

λ2
, which far exceeds the row/column-wise

sparsity k. Such a choice follows from the aforementioned structural property
of matrices that are both sparse and of low stable rank (see Theorem 3 for
details).

The crucial structural property of sparse matrices used above is estab-
lished using a celebrated result of Rudelson and Vershynin [51] in random-
ized numerical linear algebra which shows that the Gram matrix of any
matrix M of low stable rank can be approximated by that of a small sub-
matrix of M . The existence of such small submatrix is shown by means of
probabilistic method but does not provide a constructive method to find
it, which, as Figure 1 suggests, is likely to be computationally intractable.
We mention that the computational hardness in the hard regime follows
straightforwardly from the corresponding results from submatrix detection
and sparse PCA, although the sparsity is in fact much bigger than the row-
wise sparsity k. The underlying reason is that in the moderately sparse case
(k = Ω(p1/3)), the least-favorable (up to constant) prior has a submatrix
structure of size approximately

√
kp.
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SPARSE MATRIX DETECTION 7

To conclude this part, we note that, the same statistical and computa-
tional limits in Figure 1 also apply to detecting sparse covariance matrices
when λ is replaced by λ

√
n, under appropriate assumptions on the sample

size; see Section 6 for details.

1.3. Related work. As opposed to the vector case, there exist various no-
tions of sparsity for matrices as motivated by specific applications, including

• Vector sparsity: the total number of nonzeros in the matrix is con-
strained [23], e.g., in robust PCA.
• Row sparsity: each row of the matrix is sparse, e.g. matrix denoising

[43].
• Group sparsity: each row of the matrix is sparse and shares a common

support, e.g., group-sparse regression [46].
• Submatrix sparsity: the matrix is zero except for a small submatrix,

e.g., sparse PCA [11, 18], biclustering [9, 14, 47, 54], sparse SVD [55],
sparse CCA [32], and community detection [35].

The sparse matrix model (Definition 1) studied in this paper is stronger
than the vector or row sparsity and weaker than submatrix sparsity.

The statistical and computational aspects of detecting matrices with sub-
matrix sparsity has been investigated in the literature for the Gaussian
mean, covariance and the Bernoulli models. In particular, for the spiked
covariance model where the leading singular vector is assumed to be sparse,
the optimal detection rate has been obtained in [11, 19]. Detecting submatri-
ces in additive Gaussian noise was studied by Butucea and Ingster [14] who
not only found the optimal rate but also determined the sharp constants. In
the random graph (Bernoulli) setting, the problem of detecting the presence
of a small denser community planted in an Erdös-Rényi graph was studied
in [8]; here the entry of the mean adjacency matrix is p on a small subma-
trix and q < p everywhere else. The computational lower bounds in all three
models were established in [10, 35, 47] by means of reduction to the planted
clique problem.

Another work that is closely related to the present paper is [3, 4], where
the goal is to detect covariance matrices with sparse correlation. Specifically,
in the n-sample Gaussian covariance model, the null hypothesis is the iden-
tity covariance matrix and the alternative hypothesis consists of covariances
matrices whose off-diagonals are equal to a positive constant on a submatrix
and zero otherwise. Assuming various combinatorial structure of the support
set, the optimal tradeoff between the sample size, dimension, sparsity and
the correlation level has been studied. One can apply the results from [4] in
the special case of k-subsets to yield a lower bound for testing sparse covari-
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8 CAI AND WU

ance matrices, which turns out to be highly suboptimal; see Section 2 for
a detailed comparison. Other work on testing high-dimensional covariance
matrices that do not assume sparse alternatives include testing indepen-
dence and sphericity, with specific focus on asymptotic power analysis and
the limiting distribution of test statistics [17, 24, 49, 50]. Finally, we mention
yet another two-dimensional detection problem in Gaussian noise [5], where
the sparse alternative corresponds to paths in a large graph.

1.4. Notation and organization. We introduce the main notation used in
this paper: For any sequences {an} and {bn} of positive numbers, we write
an & bn if an ≥ cbn holds for all n and some absolute constant c > 0, an . bn
if an & bn, and an � bn if both an & bn and an . bn hold. In addition, we
use �k to indicate that the constant depends only on k.

For any q ∈ [1,∞], the `q → `q induced operator norm of an matrix M is
defined as ‖M‖q , max‖x‖`q≤1 ‖Mx‖`q . In particular, ‖M‖2 is the spectral

norm, i.e., the largest singular value of M , and ‖M‖1 (resp. ‖M‖∞) is the
largest `1-norm of the columns (resp. rows) of M . For any p × p matrix
M and I, J ⊂ [p], let MIJ denote the submatrix (Mij)i∈I,j∈J . Let I and J
denote the identity and the all-one matrix. Let 1 denote the all-one vector.
Let Sp denotes the set of p× p positive-semidefinite matrices.

The rest of the paper is organized as follows: Section 2 presents the main
results of the paper in terms of the minimax detection rates for both the
Gaussian noise model and the covariance matrix model. Minimax upper
bounds together with the testing procedures for the mean model are pre-
sented in Section 3, shown optimal by the lower bounds in Section 4; in
particular, Section 3.1 introduces a structural property of sparse matrices
which underpins the optimal tests in the moderately sparse regime. Results
for the covariance model are given in Section 5 together with additional
proofs. Section 6 discusses the computational aspects and explains how to
deduce the computational limit in Figure 1 from that of submatrix detection
and sparse PCA.

2. Main results. We begin with the Gaussian noise model. To quantify
the fundamental limit of the hypothesis testing problem (1.3), we define
ε∗(p, k, λ) as the optimal sum of Type-I and Type-II probability of error:

(2.1) ε∗(p, k, λ) = inf
φ

{
P0(φ = 1) + sup

M∈Θ(p,k,λ)
PM (φ = 0)

}
where PM denotes the distribution of the observation X = M + Z condi-
tioned on the mean matrix M , and the infimum is taken over all decision
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SPARSE MATRIX DETECTION 9

rules φ : Rp×p → {0, 1}.
Our main result is a tight characterization of the optimal detection thresh-

old for λ. Define the following upper bound

(2.2) λ1(k, p) ,

{
k
√

log p k ≤ ( p
log p)

1
3(

kp log ep
k

) 1
4 k ≥ ( p

log p)
1
3

and the lower bound

(2.3) λ0(k, p) ,

k
√

log
(
p log p
k3

)
k ≤ (p log p)

1
3(

kp log ep
k

) 1
4 k ≥ (p log p)

1
3

.

It can be verified that (2.2) and (2.3) differ by at most a factor ofO
(√

log p
log log p

)
.

Theorem 1 (Gaussian noise model). There exists absolute constant
k0, c0, c1, such that the following holds for all k0 ≤ k ≤ p:

1. For any c > c1, if

(2.4) λ ≥ cλ1(k, p),

then ε∗(k, p, λ) ≤ ε1(c), where ε1(c)→ 0 as c→∞.
2. Conversely, for any c > c0, if

(2.5) λ ≤ cλ0(p, k),

then ε∗(k, p, λ) ≥ ε0(c)− op→∞(1), where ε0(c)→ 1 as c→ 0.

To parse the result of Theorem 1, let us denote by λ∗(p, k) the optimal
detection threshold, i.e., the minimal value of λ so that the optimal prob-
ability of error ε∗(p, k, λ) is at most a constant, say, 0.1. Then we have the
following characterization:

• High sparsity: k ≤ p1/3−δ:

λ∗ �δ k
√

log p

• Moderate sparsity: k & (p log p)1/3:

λ∗ �
(
kp log

ep

k

) 1
4
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10 CAI AND WU

• Boundary case: ( p
log p)1/3 . k . (p log p)1/3:

k

√
log

ep log p

k3
. λ∗ .

(
kp log

ep

k

) 1
4
,

where the upper and lower bounds are within a factor of O
(√

log p
log log p

)
.

Furthermore, two generalizations of Theorem 1 will be evident from the
proof: (a) the upper bound in Theorem 1 as well as the corresponding opti-
mal tests apply as long as the noise matrix consists of independent entries
with subgaussian distribution with constant proxy variance; (b) the lower
bound in Theorem 1 continues to hold up even if the mean matrix is con-
strained to be symmetric. Thus, symmetry does not improve the minimax
detection rate.

Next we turn to the sparse covariance model: Given n independent sam-
ples drawn from N(0,Σ), the goal is to test the following hypothesis

(2.6) H0 : Σ = I versus H1 : Σ ∈ Ξ(p, k, λ, τ),

where the parameter space for sparse covariances matrices is

(2.7) Ξ(p, k, λ, τ) = {Σ ∈ Sp : Σ ∈M(p, k), ‖Σ− I‖2 ≥ λ, ‖Σ‖ ≤ τ}.

In other words, under the alternative, the covariance is equal to identity plus
a sparse perturbation. Throughout the paper, the parameter τ is assumed
to be a constant.

Define the minimax probability of error as:

(2.8) ε∗n(p, k, λ) = inf
φ

{
PI(φ = 1) + sup

Σ∈Ξ(p,k,λ,τ)
PΣ(φ = 0)

}

where φ ∈ {0, 1} is a function of the samples (X1, . . . , Xn)
i.i.d.∼ N(0,Σ).

Analogous to Theorem 1, the next result characterizes the optimal detec-
tion threshold for sparse covariance matrices.

Theorem 2 (Covariance model). There exists absolute constants k0, C, c0, c1,
such that the following holds for all k0 ≤ k ≤ p.

1. Assume that n ≥ C log p. For any c > c1, if

(2.9) λ ≥ c√
n
λ1(k, p),

then ε∗n(k, p, λ) ≤ ε1(c), where ε1(c)→ 0 as c→∞.
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SPARSE MATRIX DETECTION 11

2. Assume that

(2.10) n ≥ Cλ0(p, k)2 log p

and

(2.11) n ≥ C ·

{
k6

p

( p
k3

)2δ
log2 p k ≤ p1/3

p k ≥ p1/3
,

where δ is any constant in (0, 2
3 ]. If

(2.12) λ ≤ c√
n
λ0(k, p),

then ε∗(k, p, λ) ≥ ε0(c)− op→∞(1), where ε0(c)→ 1 as c→ 0

In comparison with Theorem 1, we note that the rate-optimal lower bound
in Theorem 2 holds under the assumption that the sample size is sufficiently
large. In particular, the condition (2.10) is very mild because, by the as-
sumption that ‖Σ‖2 is at most a constant, in order for the right hand side
of (2.12) to be bounded, it is necessary to have n ≥ λ0(p, k)2. The extra
assumption (2.11), when k ≥ p1/4, does impose a non-trivial constraint on
the sample size. This assumption is due to the current lower bound tech-
nique based on the χ2-divergence. In fact, the lower bound in [17] for testing
covariance matrix without sparsity uses the same method and also requires
n & p.

The results of Theorems 1 and 2 also demonstrate the phenomenon of the
separation of detection and estimation, which is well-known in the Gaussian
sequence model. The minimax estimation of sparse matrices has been sys-
tematically studied by Cai and Zhou [22] in the covariance model, where
it is shown that entrywise thresholding achieves the minimax rate in the

spectral norm loss of k
√

log p
n provided that n & k2 log3 p and log n . log p;

similar rate of k
√

log p also holds for the Gaussian noise model. In view of
this result, an interesting question is whether a “plug-in” approach for test-
ing, namely, using the spectral norm of the minimax estimator as the test
statistic, achieves the optimal detection rate. This method is indeed optimal
in the very sparse regime of k � p1/3, but fails to achieve the optimal detec-
tion rate in the moderately sparse regime of k � p1/3, which, in turn, can
be attained by a computationally intensive test procedure. This observation
should be also contrasted with the behavior in the vector case. To detect
the presence of a k-sparse p-dimensional vector in Gaussian noise, entrywise
thresholding, which is the optimal estimator for all sparsity levels, achieves
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12 CAI AND WU

the minimax detection rate in `2-norm when k � √p, while the χ2-test,
which disregards sparsity, is optimal when k � √p.

It is instructive to compare Theorem 2 with the results in [3, 4], who
considered the following type of hypotheses testing problem with observation
(X1, . . . , Xn) = Σ:

(2.13) H0 : Σ = I, versus H1 : Σ = (1− ρ)I + ρ1S1>S , for some S ∈ C

where ρ > 0, C is a collection of subsets of [p], and 1S is the indicator vector
of S. In other words, for i 6= j, Σij = ρ if both i and j belong to some S ∈ C
and zero otherwise. The instantiation that is relevant to the present paper is
the collection of k-sets, i.e., C =

( p
[k]

)
, which is a smaller subset of the class

of sparse covariance matrix (2.7) considered in this paper (with λ = ρk).
Therefore none of the upper bounds in [3, 4] applies. On the other hand, the
lower bound from [4] yield a valid lower bound here, which gives λ = Ω( p

k
√
n

)

if
√
p � k � p and λ = Ω

(√
k
n log p

k2

)
if k � √p and k � n log p

k2
(cf. [4,

Eqn. (4.3) and (4.6)] respectively). This is highly suboptimal compared to
Theorem 2 in both the moderately sparse or highly sparse regimes. In fact,
since (2.13) in the case of k-sets is a special instance of sparse PCA, one can
consider the best lower bound that detecting sparse principal components
gives, in which case the eigenvector need not be binary-valued. The sharp
detection rate was found in [19, Proposition 2] (see also [12] for an earlier

suboptimal result) to be
√

k
n log ep

k . Again, this yields a suboptimal lower

bound and, in turn, shows the fundamental difference between the sparse
PCA structure (submatrix sparsity) and that of sparse covariance matrices
in this paper. In terms of the support set of the matrix, the analogy is that
the former corresponds to k-cliques and the latter corresponds to k-regular
graphs.

Finally, we compare the three models for sparse matrices of increas-
ingly stronger structural assumptions, namely, (a) k-sparse matrices (Defini-
tion 1); (b) k× k submatrices; (c) k-sparse principal component (rank-one).
In the normal mean model, the minimax rate of testing (against the zero
null as in (1.3)) and estimation are summarized in Table 1, both with re-
spect to the spectral norm.2 Except for estimation in the k-sparse model
where entrywise thresholding is optimal, attaining the optimal rate in all
other problems demonstrates computational hardness.

3. Test procedures and upper bounds. In this section we con-
sider the two sparsity regimes separately and design the corresponding rate-

2For the estimation rate of k × k submatrices, see [48, Example 1].
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SPARSE MATRIX DETECTION 13

testing estimation

k-sparse matrices k ∧ (kp)1/4 k

k × k submatrix √
k

k-sparse principal component
Table 1

Rates of testing and estimation in various sparsity models (modulo logarithmic factors).

optimal testing procedures. In the highly sparse regime of k . ( p
log p)

1
3 , tests

based on componentwise thresholding turns out to achieve the optimal rate
of detection. In the moderately sparse regime of k & ( p

log p)
1
3 , chi-squared

test combined with the structural property in Section 3.1 is optimal.

3.1. A structural property of sparse matrices. Before we proceed to the
construction of the rate-optimal tests, we first present a structural property
of sparse matrices, which may be of independent interest. Recall that a
matrix M is k-sparse in the sense of Definition 1 if its rows and columns are
sparse but need not to have a common support. If in addition M has low
rank, then the support sets of its rows must be highly aligned, and hence
M has a sparse eigenvector and M is in fact supported on a submatrix. The
main result of this section is an extension of this result to approximately
low-rank matrices, in the sense of stable rank (also known as numerical
rank):

(3.1) sr(M) ,
‖M‖2F
‖M‖22

,

which is always a lower bound of rank(M).
The following lemma shows that for any sparse matrix of low stable rank, a

constant fraction of its operation norm is concentrated on a small submatrix.
The key ingredient of the proof is a celebrated result of Rudelson-Vershynin
[51] in randomized numerical linear algebra which shows that the Gram
matrix of any matrix M of stable rank at most r can be approximated by
that of a submatrix of M formed by O(r log r) rows. The following is a
restatement of [51, Theorem 3.1] without the normalization:

Lemma 1. There exists an absolute constant C0 such that the following
holds. Let y ∈ Rn be a random vector with covariance matrix Σ = E[yy>].
Assume that ‖y‖2 ≤ K holds almost surely. Let y1, . . . , yd be iid copies of y.
Then

E
∥∥∥∥1

d

d∑
i=1

yiy
>
i − Σ

∥∥∥∥
2

≤ C0K

√
‖Σ‖2

log d

d
,
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14 CAI AND WU

provided that the right-hand side is less than ‖Σ‖2.

Theorem 3 (Concentration of operator norm on small submatrices).
Let k ∈ [p]. Let M be a p × p k-sparse matrix (not necessarily symmet-
ric) in the sense that all rows and columns are k-sparse. Let r = sr(M).
Then there exist I, J ⊂ [p], such that

‖MIJ‖2 ≥
1

8
‖M‖2 , |I| ≤ Ckr, |J | ≤ Ckr log r

where C is an absolute constant.

Remark 1. The intuition behind the above result is the following: con-
sider the ideal case where X is low-rank, say, rank(X) ≤ r. Then its right
singular vector belongs to the span of at most r rows and is hence kr-sparse;
so is the left singular vector. Theorem 3 extends this simple observation to
stable rank with an extra log factor. Furthermore, the result in Theorem 3
cannot be improved beyond this log factor. To see this, consider a matrix
M consisting of an m×m submatrix with independent Bern(q) entries and
zero elsewhere, where q = k/(2m) � 1. Then with high probability, M is
k-sparse, ‖M‖2 ≈ qm, and ‖M‖2F ≈ qm2. Although the rank of M is approx-
imately m, its stable rank is much lower sr(M) ≈ 1

q , and the leading singular
vector of M is m-sparse, with m = Θ(k sr(M)). In fact, this example plays
a key role in constructing the least favorable prior for proving the minimax
lower bound in Section 4.

Proof. Denote the ith row of M by Mi∗. Denote the jth row of M by
M∗j . Let

I0 , {i ∈ [p] : ‖Mi∗‖2 ≥ τ}
J0 , {j ∈ [p] : ‖M∗j‖2 ≥ τ} ,

where τ > 0 is to be chosen later. Then

(3.2) |I0| ∨ |J0| ≤
‖M‖2F
τ2

.

Since the operator norm and Frobenius norm are invariant under permuta-
tion of rows and columns, we may and will assume that I0, J0 corresponds
to the first few rows or columns of M . Write M =

(
A C
D B

)
where B = MIc0J

c
0
.

Since each row of B is k-sparse, by the Cauchy-Schwarz inequality its `1-
norm is at most

√
kτ . Consequently its `∞ → `∞ operator norm satisfies
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SPARSE MATRIX DETECTION 15

‖B‖∞ = maxi ‖Bi∗‖1 ≤
√
kτ . Likewise, ‖B‖1 = maxj ‖B∗j‖1 ≤

√
kτ . By

duality (see, e.g., [33, Corollary 2.3.2]),

‖B‖2 ≤
√
‖B‖1‖B‖∞ ≤

√
kτ.(3.3)

Let X = (A C) and Y =
(
A
D

)
. By triangle inequality, we have ‖M‖2 ≤

‖X‖2 + ‖Y ‖2 + ‖B‖2. Setting τ =
‖M‖2
2
√
k

, we have ‖B‖2 ≤ ‖M‖2 /2 and

hence ‖X‖2 ∨ ‖Y ‖2 ≥
‖M‖2

4 . Without loss of generality, assume henceforth

‖X‖2 ≥
‖M‖2

4 . Set I = I0.

Note that X ∈ R`×p, where ` = |I| ≤ ‖M‖
2
F

τ2
=

4k‖M‖2F
‖M‖22

= 4L. Furthermore,

sr(X) =
‖X‖2F
‖X‖22

≤ ‖M‖2F
‖M‖22/16

= 16r. Next we show that X has a submatrix

formed by a few columns whose operator norm is large. We proceed as in
the proof of [51, Theorem 1.1]. Write

X =

[
x>1
...
x>`

]
, X̃ =

1√
d

[
y>1
...
y>d

]
.

Define the random vector y by P
{
y = ‖X‖F

‖xi‖2 xi

}
=
‖xi‖22
‖X‖2F

and let y1, . . . , yd

which are iid copies of y. Then X>X = E[yy>] and X̃>X̃ = 1
d

∑d
i=1 yiy

>
i .

Furthermore, ‖y‖2 ≤ ‖X‖F almost surely and
∥∥E[yy>]

∥∥
2

= ‖X‖22. By
Lemma 1,

E
∥∥∥X̃>X̃ −X>X∥∥∥

2
≤ C0

√
log d

d
‖X‖F ‖X‖2 ≤

1

4
‖X‖22 ,

where the last inequality follows by choosing d = dCr log re with C being a
sufficiently large universal constant. Therefore there exists a realization of
X̃ so that the above inequality holds. Let J be the column support of X̃.
Since the rows of X̃ are scaled version of those of X which are k-sparse,
we have |J | ≤ dk. Let v denote a leading right singular vector of X̃, i.e.,
X̃>X̃v = ‖X̃‖22v and ‖v‖2 = 1. Then supp(v) ⊂ J . Note that

‖Xv‖22 = v>X>Xv = v>X̃>X̃v + v>(X>X − X̃>X̃)v

≥ ‖X̃‖22 − ‖X>X − X̃>X̃‖2
≥ ‖X‖22 − 2‖X>X − X̃>X̃‖2

≥ 1

2
‖X‖22.

Therefore ‖X∗J‖2 ≥ ‖Xv‖2 ≥
1√
2
‖X‖2 ≥

1
4
√

2
‖M‖2. The proof is completed

by noting that X∗J = MIJ .
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16 CAI AND WU

3.2. Highly sparse regime. It is has been shown that, in the covariance
model, entrywise thresholding is rate-optimal for estimating the matrix itself
with respect to the spectral norm [22]. It turns out that in the very sparse
regime entrywise thresholding is optimal for testing as well. Define

M̂ = (Xij1{|Xij | ≥ τ}).

and the following test

ψ(X) = 1
{
‖M̂‖2 ≥ λ

}
.(3.4)

Theorem 4. For any ε ∈ (0, 1), if

(3.5) λ > 2k

√
2 log

4p2

ε

then the test (3.4) with τ =
√

2 log 4p2

ε satisfies

P0(ψ = 1) + sup
M∈Θ(p,k,λ)

PM (ψ = 0) ≤ ε

for all 1 ≤ k ≤ p.

Proof. Denote the event E = {‖Z‖`∞ ≤ τ}. Conditioning on E, for any
k-sparse matrix M ∈M(p, k), we have M̂ ∈M(p, k) and

(3.6) ‖M̂ −M‖2 ≤ kτ.

To see this, note that for any i, j, M̂ij = 0 whenever Mij = 0. Therefore
‖M̂i∗−Mi∗‖`1 ≤ k‖Z‖`∞ ≤ kτ and, consequently, ‖M̂−M‖1 = maxi ‖M̂i∗−
Mi∗‖`1 ≤ kτ . Similarly, ‖M̂ −M‖∞ = maxj ‖M̂∗j −M∗j‖`1 ≤ kτ . Therefore
(3.6) follows from the fact that ‖ ·‖22 ≤ ‖·‖1‖ ·‖∞ for matrix induced norms.
Therefore if λ > 2kτ , then

P0(ψ = 1) + sup
M∈Θ(p,k,λ)

PM (ψ = 0) ≤ 2P {‖Z‖`∞ > τ} ≤ 4p2e−τ
2/2.

This completes the proof.

3.3. Moderately sparse regime. Our test in the moderately sparse regime
relies on the existence of sparse approximate eigenvectors established in
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SPARSE MATRIX DETECTION 17

Theorem 3. More precisely, the test procedure is a combination of the matrix-
wise χ2-test and the scan test based on the largest spectral norm of m×m
submatrices, which is detailed as follows: Let

m = C

√
kp

log ep
k

.

where C is the universal constant from Theorem 3. Define the following test
statistic

(3.7) Tm(X) = max{‖XIJ‖2 : I, J ⊂ [p], |I| = |J | = m}

and the test

ψ(X) = 1
{
‖X‖2F ≥ p2 + s

}
∨ 1{Tm(X) ≥ t}(3.8)

where

(3.9) s , 2 log
1

ε
+ 2p

√
log

1

ε
, t , 2

√
m+ 4

√
m log

ep

m
.

Theorem 5. There exists a universal constant C0 such that the follow-
ing holds. For any ε ∈ (0, 1/2), if

(3.10) λ ≥ C0

{
kp log

1

ε
log

(
p

k
log

1

ε

)} 1
4

,

then the test (3.8) satisfies

P0(ψ = 1) + sup
M∈Θ(p,k,λ)

PM (ψ = 0) ≤ ε

holds for all 1 ≤ k ≤ p.

Proof. First consider the null hypothesis, where M = 0 and X = Z
has iid standard normal entries so that ‖Z‖2F − p2 = OP (p). By standard
concentration equality for χ2 distribution, we have

P
{
|‖Z‖2F − p2| > s

}
≤ ε,

where

s , 2 log
1

ε
+ 2p

√
log

1

ε
.
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18 CAI AND WU

Consequently the false alarm probability satisfies

P0(ψ = 1) ≤ P
{
‖Z‖2F − p2 > C0p

}︸ ︷︷ ︸
≤ε

+

(
p

m

)2

P {‖W‖2 ≥ t}.

where t = 2
√
m + 4

√
m log ep

m and W , Z[m],[m]. By the Davidson-Szarek

inequality [26, Theorem II.7], ‖W‖2
s.t.
≤ N(2

√
m, 1). Then P {‖W‖2 ≥ t} ≤

( emp )m. Hence the false alarm probability vanishes.
Next consider the alternative hypothesis, where, by assumption, M is

row/column k-sparse and ‖M‖2 ≥ λ. To begin, suppose that ‖M‖F ≥ 2
√
s.

Then since ‖X‖2F − p2 = ‖M‖2F + 2 〈M,Z〉+ ‖Z‖2F − p2, we have

P{‖M + Z‖2F − p2 < s} ≤ P
{
‖M‖2F + 2 〈M,Z〉 < 2s

}
+ P

{
‖Z‖2F − p2 < −s

}
≤ exp(−s2/8) + ε.

Therefore, as usual, if ‖M‖F is large, the χ2-test will succeeds with high
probability. Next assume that ‖M‖F < 2

√
s. Therefore M is approximately

low-rank, in the sense that

sr(M) ≤ r , 4s

λ2
.

By Theorem 3, there exists an absolute constant C and I, J ⊂ [p] of cardi-
nality at most

m = Ckr log r = Ck
4s

λ2
log

4s

λ2
,

such that ‖MIJ‖2 ≥
1
8λ. Therefore the statistic defined in (3.7) satisfies

Tm(X) ≥ ‖XIJ‖2 ≥
λ
8 − ‖ZIJ‖2. Therefore Tm(X) ≥ λ

8 − 3
√
m with prob-

ability at least 1 − exp(−Ω(m)). Choose λ so that λ
8 − 3

√
m ≥ t. Since

t + 3
√
m = 5

√
m + 4

√
m log ep

m ≤ 9
√
m log ep

m , it suffices to ensure that

λ ≥ c0

√
m log ep

m for some absolute constant c0. Plugging the expression of

m, we found a sufficient condition is λ ≥ C0(ks log es
k )

1
4 for some absolute

constant C0. The proof is completed by noting that s ≤ 2p(log 1
ε + log 1

ε )
and s 7→ s log es

k is increasing.

4. Minimax lower bound. In this section we prove the lower bound
part of Theorem 1. The key step is to specify a prior π1 under which the ma-
trix is k-sparse with high probability and bound the χ2-divergence between
the null distribution and the mixture of the alternatives. Strictly speaking,
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SPARSE MATRIX DETECTION 19

π1 does not directly qualify as a prior for the alternative hypothesis since it
is not exactly supported on the alternative parameter set; nevertheless, by
conditioning it can be modified to be a valid prior (c.f. [52, Theorem 2.15
(i)] or Lemma 5 in the supplementary material [20, Section 8]).

4.1. Least favorable prior. Let I be chosen uniformly at random from
all subsets of [p] of cardinality m. Let u = (u1, . . . , up) be independent
Rademacher random variables. Let B be a p× p matrix with i.i.d. Bern( km)
entries and let (u, I,B) be independent. Let UI denote the diagonal matrix
defined by (UI)ii = ui1{i ∈ I}. Let t > 0 be specified later. Let the prior π1

be the distribution of the following random sparse matrix:

(4.1) M = tUIBUI ,

i.e., Mij = t1{i ∈ I}1{j ∈ I}uiujbij . Therefore the non-zero pattern of M
has the desired marginal distribution Bern(kp ), but the entries of M are
dependent. Alternatively, M can be generated as follows: First choose an
m ×m principal submatrix with a uniformly chosen support I, fill it with
i.i.d. Bern( km) entries, then pre- and post-multiply by a diagonal matrix
consisting of independent Rademacher variables, which used to randomize
the sign of the leading eigenvector. By construction, with high probability,
the matrix M is O(k)-sparse and, furthermore, its operator norm satisfies
‖M‖2 ≥ kt. Furthermore, the corresponding eigenvector is approximately
1J , which is m-sparse.

The construction of this prior is based on the following intuition. The
operator norm of a matrix highly depends on the correlation of the rows.
Given the `2-norm of the rows, the largest spectral norm is achieved when
all rows are aligned (rank-one), while the smallest spectral norm is achieved
when all rows are orthogonal. In the sparse case, aligned support results in
large spectral norm while disjoint support in small spectral norm. However, if
all rows are aligned, then the signal is prominent enough to be distinguished
from noise. Note that a submatrix structure strikes a precise balance between
the extremal cases of completely aligned and disjoint support, which enforces
that the row support sets are contained in a set of cardinality m, which is
much larger than the row sparsity k but much smaller than the matrix size
p. In fact, the optimal choice of the submatrix size given by m � k2 ∧

√
kp,

which matches the structural property given in Theorem 3. The structure of
the least favorable prior, in a way, shows that the optimality of tests based
on concentration on small submatrices is not a coincidence.

Another perspective is that the sparsity constraint on the matrix forces
the marginal distribution of each entry in the nonzero pattern (1{Mij 6= 0})
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20 CAI AND WU

to be Bern(kp ). However, if all the entries were independent, then it would
be very easy to test from noise. Indeed, perhaps the most straightforward

choice of prior is Mij
i.i.d.∼ t · Bern(kp ), where t � k

p . However, the linear test
statistic based on

∑
ijMij succeeds unless λ . 1. We can improve the prior

by randomize the eigenvector, i.e., Mij
i.i.d.∼ tuiujBern(kp ), but the χ2-test in

Theorem 5 succeeds unless λ .
√
k, which still falls short of the desired

λ � (kp)1/4. Thus, we see that the coupling between the entries is useful to
make the mixture distribution closer to the null hypothesis.

4.2. Key lemmas. The main tool for our lower bound is the χ2-divergence,

defined by χ2(P ‖Q) ,
∫ (

dP
dQ − 1

)2
dQ if P � Q and +∞ otherwise. The

χ2-divergence is related to the total variation via the following inequality
[29, p. 1496]:

(4.2) χ2 ≥ TV log
1 + TV

1− TV
.

Therefore the total variation distance cannot goes to one unless the χ2-
divergence diverges. Furthermore, if χ2-divergence vanishes, then the total
variation also vanishes, which is equivalently to, in view of (8.2), that P
cannot be distinguished from Q better than random guessing.

The following lemma due to Ingster and Suslina (see, e.g., [40, p. 97]) gives
a formula for the χ2-divergence of a normal location mixture with respect
to the standard normal distribution.

Lemma 2. Let P be an arbitrary distribution on Rm. Then

χ2(N(0, Im) ∗ P ‖N(0, Im)) = E[exp(〈X, X̃〉)]− 1

where ∗ denotes convolution and X and X̃ are independently drawn from P .

The proof of the lower bound in Theorem 1 relies on the following lemmas.
These results give non-asymptotic both necessary and sufficient conditions
for certain moment generating functions involving hypergeometric distribu-
tions to be bounded, which show up in the χ2-divergence calculation. Let

H ∼ Hypergeometric(p,m,m), with P {H = i} =
(mi )(

p−m
m−i)

( pm)
, i = 0, . . . ,m.

Lemma 3 ([19, Lemma 1]). Let p ∈ N and m ∈ [p]. Let B1, . . . , Bm be
independently Rademacher distributed. Denote by

Gm ,
m∑
i=1

Bi
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the position of a symmetric random walk on Z starting at 0 after m steps.
Then there exist an absolute constant a0 > 0 and function A : (0, a0) 7→ R+

with A(0+) = 0, such that if t = a
m log ep

m and a < a0, then

(4.3) E
[
exp

(
tG2

H

)]
≤ A(a).

Lemma 4 ([34, Lemma 15, Appendix C]). Let p ∈ N and m ∈ [p]. Then
there exist an absolute constant b0 > 0 and function B : (0, b0) 7→ R+ with

B(0+) = 0, such that if λ = b
(

1
m log ep

m ∧
p2

m4

)
and b < b0, then

(4.4) E
[
exp

(
λH2

)]
≤ B(b).

Remark 2 (Tightness of Lemmas 3–4). The purpose of Lemma 3 is
to seek the largest t, as a function of p and m, such that E

[
exp

(
tG2

H

)]
is

upper bounded by a constant non-asymptotically. The condition that t �
1
m log ep

m is in fact both necessary and sufficient. To see the necessity, note
that P {GH = H|H = i} = 2−i. Therefore

E
[
exp

(
tG2

H

)]
≥ E

[
exp(tH2)2−H

]
≥ exp(tm2)2−m P {H = m} ≥ exp

(
tm2 −m log

2p

m

)
,

which cannot be upper bound bounded by an absolute constant unless t .
1
m log ep

m .

Similarly, the condition λ . 1
m log ep

m ∧
p2

m4 in Lemma 4 is also neces-

sary. To see this, note that E [H] = m2

p . By Jensen’s inequality, we have

E
[
exp

(
λH2

)]
≥ exp(λm

4

p2
). Therefore a necessary condition for (4.3) is

that λ ≤ p2 logB
m4 . On the other hand, we have E

[
exp

(
λH2

)]
≥ exp(λm2 −

m log p
m), which implies that λ . 1

m log ep
m .

4.3. Proof of Theorem 1: lower bound.

Proof. Step 1 : Fix t > 0 to be determined later. Recall the random
sparse matrix M = tUIBUI defined in (4.1), where I is chosen uniformly at
random from all subsets of [p] of cardinality k, u = (u1, . . . , up)

> consists
of independent Rademacher entries, B is a p× p matrix with i.i.d. Bern( km)
entries, and (u, I,B) are independent.

Next we show that the hypothesis H0 : X = Z versus H1 : X = M + Z
cannot be tested with vanishing probability of error, by showing that the
χ2-divergence is bounded. Let (Ũ , Ĩ, B̃) be an independent copy of (U, I,B).
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Then M̃ = ŨĨB̃ŨĨ is an independent copy of M . Put s = t2. By Lemma 2,
we have

χ2(PX|H0
‖PX|H1

) + 1 = E
[
exp

(
〈M, M̃〉

)]
= E

[
exp

(
t2〈UIBUI , ŨĨB̃ŨĨ〉

)]
= E

exp

s ∑
i∈I∩Ĩ

∑
j∈I∩Ĩ

uiũiuj ũjbij b̃ij


(a)
= E

exp

s ∑
i∈I∩Ĩ

∑
j∈I∩Ĩ

uiujaij


(b)
= E

 ∏
i∈I∩Ĩ

∏
j∈J∩J̃

(
1 +

k2

m2
(esuiuj − 1)

)
(c)

≤ E

exp

 k2

m2

∑
i∈I∩Ĩ

∑
j∈I∩Ĩ

(esuiuj − 1)




= E

exp

 k2

m2

∑
i∈I∩Ĩ

∑
j∈I∩Ĩ

(uiuj sinh(s) + cosh(s)− 1)




= E

exp

k2 sinh(s)

m2

( ∑
i∈I∩Ĩ

ui

)2

+
k2(cosh(s)− 1)

m2
|I ∩ Ĩ|2


 ,(4.5)

where (a) is due to (umũm, . . . , umũm)
(d)
=(u1, . . . , um); (b) follows from aij ,

bij b̃ij
i.i.d.∼ Bern( k

2

m2 ); (c) follows from the fact that log(1 + x) ≤ x for all
x > −1; (d) is because for b ∈ {±1}, we have exp(sb) = b sinh(s)+cosh(s)−1.
Recall from Lemma 3 that {Gm : m ≥ 0} denotes the symmetric random
walk on Z. Since I, Ĩ are independently and uniformly drawn from all subsets
of [p] of cardinality k, we haveH , |I∩Ĩ| ∼ Hypergeometric(p,m,m). Define

A(m, s) , E
[
exp

{
2k2 sinh(s)

m2
G2
H

}]
,(4.6)

B(m, s) , E
[
exp

{
2k2(cosh(s)− 1)

m2
H2

}]
.(4.7)

Applying the Cauchy-Schwarz inequality to the right-hand side of (4.5), we
obtain

(4.8) χ2(PX|H0
‖PX|H1

) + 1 ≤
√
A(m, s)B(m, s).
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Therefore upper bounding the χ2-divergence boils down to controlling the
expectations in (4.6) and (4.7) separately.

Applying Lemma 3 and Lemma 4 to A(m, s) and B(m, s) respectively, we
conclude that

k2(cosh(s)− 1)

m2
≤ c

(
1

m
log

ep

m
∧ p2

m4

)
⇒ A(m, s) ≤ C(4.9)

k2 sinh(s)

m2
≤ c

m
log

ep

m
⇒ B(m, s) ≤ C(4.10)

where c, C are constants so that C → 0 as c → 0. Therefore the best lower
bound we get for s is
(4.11)

s∗ = max
k≤m≤p

{
(cosh−1)−1

(
cm

k2
log

ep

m
∧ cp2

m2k2

)
∧ sinh−1

(cm
k2

log
ep

m

)}
,

where the inverses sinh−1 and (cosh−1)−1 are defined with the domain
restricted to R+.

To simplify the maximization in (4.11), we use the following bounds of
the hyperbolic functions:

sinh−1(y) ≥ log(2y), (cosh−1)−1(y) ≥ log y, y ≥ 0.(4.12)

Therefore

s∗ ≥ log max
k≤m≤p

(
cm

k2
log

ep

m
∧ cp2

m2k2

)
.

Choosing m =
(

p2

log p

) 1
3

yields

(4.13) s∗ & log+

(
p log p

k3

)
,

where log+ , max{log, 0}. Note that the above lower bound is vacuous un-

less k ≤ (p log p)
1
3 . To produce a non-trivial lower bound for k ≥ (p log p)

1
3 ,

note that (4.12) can be improved as follows. If the argument y is restricted
to the unit interval, then

sinh−1(y) ≥ sinh−1(1) y, (cosh−1)−1(y) ≥ √y, y ∈ [0, 1],(4.14)

which follows from the Taylor expansion of cosh and the convexity of sinh.
Applying (4.14) to (4.11),

s∗ = max
m: cm

k2
log ep

m
≤1

(√
cp2

m2k2
∧ c sinh−1(1)m

k2
log

ep

m

)
.
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Choosing m =
√

pk
4c2 log ep

k
yields cm

k2
log ep

k ≤ 1. We then obtain

(4.15) s∗ &

√
p

k3
log

ep

k
.

Step 2 : To conclude kt as a valid lower bound for λ with t =
√
s∗ given

in (4.13) and (4.15), we invoke Lemma 5 in the supplementary material [20,
Section 8]. To this end, we need to show that with high probability, M is
O(k)-sparse and ‖M‖2 = Ω(kt). Define events

E1 = {M ∈M(p, 2k)}, E2 = {‖M‖2 ≥ kt/2}.

It remains to show that both are high-probability events. Since I is inde-
pendent of B, we shall assume, without loss of generality, that I = [m]. For
the event E1, by the union bound and Hoeffding’s inequality, we have
(4.16)

P {Ec
1} = P {BII /∈ Θ(m, 2k)} ≤ m2P

{
m∑
i=1

bi1 ≥ 2k

}
≤ m2 exp(−mk2) = o(1),

where bi1
i.i.d.∼ Bern( km). For the event E2, again by Hoeffding’s inequality,

P {E2} = P {‖BII‖2 ≥ k/2} ≥ P
{
‖M1I‖2 ≥

k

2
‖1I‖2

}

≥ P


m∑
j=1

bij ≥
k

2
,∀i ∈ [m]

 ≥ 1−mP


m∑
j=1

b1j <
k

2


≥ 1−m exp(−mk2/4) = 1− o(1).(4.17)

The desired lower bound now follows from Lemma 5 in the supplementary
material [20, Section 8].

Finally, we note that the lower bound continues to hold up to constant
factors even if M is constrained to be symmetric. Indeed, we can replace M
with the symmetrized version M ′ = [ 0 M

M> 0
] and note that the bound on

χ2-divergence remains valid since 〈M ′, M̃ ′〉 = 2〈M, M̃〉.

5. Detecting sparse covariance matrices. In this section we de-
scribe the test procedures for the the covariance model and prove the upper
bound part of Theorem 2. The lower bound proof is given in the supplemen-
tary material [20, Section 9].
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Let X1, . . . , Xn be independently sampled from N(0,Σ). Define the sam-
ple covariance matrix as

(5.1) S =
1

n

n∑
i=1

XiX
>
i ,

which is a sufficient statistic for Σ.
The following result is the counterpart of Theorem 4 for entrywise thresh-

olding that is optimal in the highly sparse regime:

Theorem 6. Let C,C ′ be constants that only depend on τ . Let ε ∈
(0, 1). Define Σ̂ = (Sij1{|Sij | ≥ t}), where τ =

√
C log p

ε . Assume that n ≥

C ′ log p. If λ
√
n > 2kt, then the test ψ(S) = 1

{
‖Σ̂‖2 ≥ λ

}
satisfies

PI(ψ = 1) + sup
Σ∈Ξ(p,k,λ,τ)

PΣ(ψ = 0) ≤ ε

for all 1 ≤ k ≤ p.

To extend the test (3.8) to covariance model, we need a test statistic for
‖Σ− I‖2F. Consider the following U-statistic proposed in [17, 24]:

(5.2) Q(S) = p+
1(
n
2

) ∑
1≤i<j≤n

〈Xi, Xj〉2 − 〈Xi, Xi〉 − 〈Xj , Xj〉 ,

Then Q(S) is a unbiased estimator of ‖Σ−I‖2F. We have the following result
for the moderately sparse regime:

Theorem 7. Let m = C
√

kp
log ep

k
, where C is the universal constant from

Theorem 3. Define the following test statistic

(5.3) Tm(S) = max{‖SII‖2 : I ⊂ [p], |I| = m}

and the test

ψ(S) = 1{Q(S) ≥ s} ∨ 1{Tm(X) ≥ t}(5.4)

where

(5.5) s , 2 log
1

ε
+ 2p

√
log

1

ε
, t , 2

√
m+ 4

√
m log

ep

m
.
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There exists a universal constant C0 such that the following holds. For any
ε ∈ (0, 1/2), if

(5.6) λ ≥ C0

{
kp log

1

ε
log

(
p

k
log

1

ε

)} 1
4

,

then the test (5.4) satisfies

P0(ψ = 1) + sup
M∈Θ(p,k,λ)

PM (ψ = 0) ≤ ε

for all 1 ≤ k ≤ p.

The proofs of Theorems 6 and 7 parallel those of Theorems 4 and 5. Next
we point out the main distinction. For Theorem 6, the only difference is the
Gaussian tail is replaced by the concentration inequality P {|Sij − Σij | ≥ a} ≤
c0 exp(−c1nt

2) for all |t| ≤ c2, where ci’s are constants depending only on

τ [22, Eq. (26)]. For Theorem 7, let S̃ , Σ−
1
2SΣ−

1
2 , which is a k × k stan-

dard Wishart matrix with n degrees of freedom. Applying the deviation
inequality in [18, Proposition 4], we have E[‖S̃ − Ik‖22] . k

n + k2

n2 . Since

‖S − Σ‖2 ≤ ‖Σ‖2 ‖S̃ − Ik‖2, we have E
[
‖S − Σ‖22

]
. λ2

(
k
n + k2

n2

)
.

6. Computational limits. In this section we address the computa-
tional aspects of detecting sparse matrices in both the Gaussian noise and
the covariance model.

Gaussian noise model. The computational hardness of the red region (re-
ducibility from planted clique) in Figure 1 follows from that of submatrix
detection in Gaussian noise [14, 47], which is a special case of the model
considered here. The statistical and computational boundary of submatrix
detection is shown in Figure 2(b), in terms of the tradeoff between the spar-
sity k = pα and the spectral norm of the signal λ = pβ. Below we explain
how Figure 2(b) follows from the results in [47].

The setting in [47] also deals with the additive Gaussian noise model
(1.2), where, under the alternative, the entries of the mean matrix M is at
least θ on a k × k submatrix and zero elsewhere, with k = pα and θ = p−γ .
Since ‖M‖2 ≥ kθ, this instance is included in the alternative hypothesis in
(1.3) with λ = pβ and β = α− γ. It is shown that (see [47, Theorem 2 and
Fig. 1]) detection is computationally at least as hard as solving the planted
clique problem when γ > 0 ∨ (2α− 1), i.e., β < α ∧ (1− α). Note that this
bound is not monotone in α, which can be readily improved to β < α ∧ 1

2 ,
corresponding to the computational limit in Figure 2(b). Similarly, detection
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is statistically impossible when γ > α
2 ∨(2α−1), i.e., β < α

2 ∧(1−α). Taking
the monotone upper envelope leads to β < α

2 ∧
1
3 , yielding the statistical

limit in Figure 2(a). Finally, Figure 1 can be obtained by superimposing the
statistical-computational limits in Figure 2(a) on top of the statistical limit
obtained in the present paper as plotted in Figure 2(b).

0

1
3

β

1
3

1
α

impossible

possible

(a) Statistical boundary for detecting
sparse matrices (this paper).

0

1
3

1
2

1

β

1
2

2
3

1
α

impossible

easy

PC
hard

(b) Statistical-computational boundary for
detecting submatrices [47].

Fig 2. Detection boundary for k-sparse matrices and k×k submatrices M in noise, where
k = pα and ‖M‖2 = λ = pβ.

Sparse covariance model. For the problem of detecting sparse covariance
matrices, which is defined by the 4-tuple (n, p, k, λ), the picture is less com-
plete than the additive-noise counterpart; this is mainly due to the extra
parameter n. Indeed, the statistical lower bound in Theorem 2 holds under
the extra assumptions (2.10) and (2.11) that the sample size is sufficiently
large, while the current computational lower bound for sparse PCA in the
literature [14, 32, 54] also requires a number of conditions including the as-
sumption of n ≤ p. Nevertheless, if we still let k = pα and λ

√
n = pβ and

focus on the tradeoff between the (α, β) pair, the statistical and computa-
tional limits in Figure 1 continue to hold. Next we explain how to deduce
the computational hardness of the red region from that of sparse PCA in
the spiked Gaussian covariance model [32].

To this end, due to monotonicity, it suffices to demonstrate a “hard in-
stance”, i.e., a sequence of triples (n, λ, k) indexed by p, for every (α, β)

such that 1
3 < α < 1

2 and β < 1. Given samples X1, . . . , Xn
i.i.d.∼ N(0,Σ), the
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computational aspect of testing

(6.1) H0 : Σ = I, versus H1 : Σ = I + λuu>,

where the eigenvector u is both k-sparse and unit-norm, has been studied in
[32]. Fix α ∈ (1

3 ,
1
2). Let n = pη, k = pα and λ = ck2

n log2 n
, so that β = 2α− η,

and let 1
a ≤ η ≤ 1 to be chosen later; here a > 1 and c > 0 are absolute

constants from [32, Theorem 5.4]. By assumption, (2α, 4α)∩ ( 1
a , 1) 6= ∅; pick

any η therein. Then we have λ� 1 and (6.1) is indeed an instance of (2.6).
By the choice of the parameters, the conditions of [32, Theorem 5.4] are
fulfilled, namely, β < α and α > η

4 , and the detection problem (6.1) and
hence (2.6) are at least as hard as the planted clique problem.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Statistical and Computational Lim-
its for Sparse Matrix Detection”
(; .pdf). Due to space constraints, some proofs are deferred to the supple-
mentary document [20].
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