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LIMITING LAWS FOR DIVERGENT SPIKED
EIGENVALUES AND LARGEST NON-SPIKED

EIGENVALUE OF SAMPLE COVARIANCE MATRICES

By T. Tony Cai∗,‡ Xiao Han†,§

and Guangming Pan†,§

University of Pennsylvania‡ and Nanyang Technological University§

We study the asymptotic distributions of the spiked eigenvalues
and the largest nonspiked eigenvalue of the sample covariance matrix
under a general covariance model with divergent spiked eigenvalues,
while the other eigenvalues are bounded but otherwise arbitrary. The
limiting normal distribution for the spiked sample eigenvalues is es-
tablished. It has distinct features that the asymptotic mean relies
on not only the population spikes but also the nonspikes and that
the asymptotic variance in general depends on the population eigen-
vectors. In addition, the limiting Tracy-Widom law for the largest
nonspiked sample eigenvalue is obtained.

Estimation of the number of spikes and the convergence of the
leading eigenvectors are also considered. The results hold even when
the number of the spikes diverges. As a key technical tool, we develop
a Central Limit Theorem for a type of random quadratic forms where
the random vectors and random matrices involved are dependent.
This result can be of independent interest.

1. Introduction. Covariance matrix plays a fundamental role in multi-
variate analysis and high-dimensional statistics. There has been significant
recent interest in studying the properties of the leading eigenvalues and
their corresponding eigenvectors of the sample covariance matrix, especially
in the high-dimensional setting. See, for example, [29, 24, 2, 36, 32, 30, 31,
12, 14, 15]. These problems are not only of interest in their own right they
also have close connections to other important statistical problems such as
principal component analysis and testing for the covariance structure of
high-dimensional data.

Principal component analysis (PCA) is a widely used technique for a range
of purposes, including dimension reduction, data visualization, clustering,
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and feature extraction [1, 23]. PCA is particularly well suited for the set-
tings where the signal of interest lies in a much lower dimensional subspace
and it has been applied in a broad range of fields such as genomics, image
recognition, data compression, and financial econometrics. For example, the
widely used factor models in financial econometrics typically assume that a
small number of unknown common factors drive the asset returns [17]. In
PCA, the leading eigenvalues and eigenvectors of the population covariance
matrix need to be estimated from data and are conventionally estimated by
their empirical counterparts. It is thus important to understand the spectral
properties of the sample covariance matrix.

1.1. The Problem. To be concrete, consider the data matrix Y = ΓX
where X = (x1, · · · ,xn) is a (p + l) × n random matrix whose entries are
independent with zero mean and unit variance and Γ is a p× (p+ l) deter-
ministic matrix with l/p → 0. Let Σ = ΓΓᵀ be the population covariance
matrix. The sample covariance matrix is defined as

(1.1) Sn =
1

n
YYᵀ =

1

n
ΓXXᵀΓᵀ.

Denote the singular value decomposition (SVD) of Γ by

(1.2) Γ = VΛ
1
2 U,

where V and U are p × p and p × (p + l) orthogonal matrices respectively
(VVᵀ = UUᵀ = I), and Λ is a diagonal matrix consisting in descending
order of the eigenvalues µ1 ≥ · · · ≥ µp of Σ.

In statistical applications such as PCA, one is most interested in the
setting where there is a clear separation between a few leading eigenvalues
and the rest. In this case, the leading principal components account for
a large proportion of the total variability of the data. We consider in the
present paper the setting where there are K spiked eigenvalues that are
separated from the rest. More specifically, we assume that µ1 ≥ · · · ≥ µK
tend to infinity, while the other eigenvalues µK+1 ≥ · · · ≥ µp are bounded
but otherwise arbitrary. Write

(1.3) Λ =

(
ΛS 0
0 ΛP

)
,

where ΛS = diag(µ1, ..., µK) and ΛP = diag(µK+1, ..., µp).
A typical example of (1.3) is the factor model

(1.4) Y = Λ1F + TZ = (Λ1 T)

(
F
Z

)
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where Λ1 is p×K-dimensional factor loading, F is the corresponding K×n
factor, T is p× p matrix and Z is the idiosyncratic noise matrix. A common
assumption is that the singular values of the factor component Λ1F are
significantly larger than those of the noise component (otherwise the signals
are overwhelmed by noise). Indeed, [33] considered the weak factor model to
test the number of factors, where the leading eigenvalues contributed by the
factor component are of order pθ for some θ ∈ (0, 1). [4] and [21] assume that
the leading eigenvalues of the pervasive factor model are of order p. Here
Γ = (Λ1 T) is not a square matrix, and thus it is necessary to consider the
setting where Γ is rectangular.

A second example is the covariance matrix Σ used in the intraclass cor-
relation model, where the covariance matrix is of the form

Σ = (1− ρ)Ip + ρeeᵀ.

Here Ip is a p×p identity matrix, e = (1, 1, ..., 1)ᵀ and 0 < ρ < 1. It is easy to
see that the leading eigenvalue of Σ is pρ+(1−ρ), while the other eigenvalues
are equal to (1− ρ), i.e. K = 1, ΛS = pρ+ (1− ρ) and ΛP = (1− ρ)Ip−1 in
(1.3). One can refer to [31] for more discussions about this model.

We study in the present paper the asymptotic distributions of the leading
eigenvalues and the largest nonspiked eigenvalue of the sample covariance
matrix Sn, under the general spiked covariance matrix model given in (1.2)
and (1.3) with divergent spiked eigenvalues µ1 ≥ · · · ≥ µK . In many sta-
tistical applications, determining the number of principal components is an
important problem. In addition, properties of the eigenvectors associated
with the spiked eigenvalues are of significant interest. In this paper, we also
consider estimation of the number of spikes as well as the convergence of the
leading eigenvectors.

The model defined through (1.2) and (1.3) belongs to the class of spiked
covariance matrix models. Johnstone [29] was the first to introduce a specific
spiked covariance matrix model, where the population covariance matrix is
diagonal and is of the form

Σ = diag(µ2
1, ..., µ

2
K , 1, ..., 1)(1.5)

with µ1 > µ2 · · · ≥ µK > 1. [29] established the limiting Tracy-Widom
distribution for the maximum eigenvalue of the real Wishart matrices when
p and n are comparable. The spiked covariance matrix model (1.5) has been
extended in various directions. So far the focus has mostly been on the
settings of bounded spiked eigenvalues with all the nonspiked eigenvalues
being equal to 1. See more discussion in Section 1.3.

1.2. Our contributions. In this paper, we first establish the limiting nor-
mal distribution for the spiked eigenvalues of the sample covariance matrix
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Sn. The limiting distribution has a distinct feature. Unlike in the more con-
ventional settings, the asymptotic variance in general depends on the pop-
ulation eigenvectors. More precisely, the variance of a spiked sample eigen-
value depends on the right singular vector matrix U defined in the SVD
(1.2) (but not the left singular vector matrix V). The limiting distribution
of the spiked sample eigenvalues also precisely characterizes the dependence
on the corresponding spiked population eigenvalues as well as the nonspiked
ones. New technical tools are needed to establish the result. In particular,
we develop a Central Limit Theorem (CLT) for a type of random quadratic
forms where the random vectors and random matrices involved are depen-
dent. This result can be of independent interest. In addition, we establish
the limiting Tracy-Widom law for the largest nonspiked eigenvalue of Sn. We
also consider the properties of the leading principal components and show
that they are consistent estimators of their population counterparts under
the L2 loss. An important improvement of our paper over many known re-
sults in the literature is that our results hold even when the number of the
spikes diverges as n, p → ∞, and we allow the nonspiked eigenvalues to be
unequal.

The limiting distributions for the spiked eigenvalues and the largest non-
spiked eigenvalue have important applications. In particular, based on our
theoretical results, we propose an algorithm for estimating the number of
the spikes, which is of interest in many statistical applications.

1.3. Background and related work. Since the seminal work of Johnstone
[29], the special spiked covariance matrix model (1.5) has been studied much
further and the model has been extended in several directions. See, for ex-
ample [2, 3, 8, 13, 30, 31, 36, 38, 41, 14, 15]. We discuss briefly here some
of these results. This review is by no means exhaustive.

Paul [36] showed that if p/n → γ ∈ (0, 1) as n → ∞, and the largest
eigenvalue µ1 of Σ satisfies µ1 ≤ 1 +

√
γ, then the leading sample principal

eigenvector v̂1 is asymptotically almost surely orthogonal to the leading
population eigenvector v1, i.e., |v′1v̂1| → 0 almost surely. Thus, in this case,
v̂1 is not useful at all as an estimate of v1. Even when µ1 > 1 +

√
γ, the

angle between v1 and v̂1 still does not converge to zero unless µ1 →∞.
Baik and Silverstein [2] considered a case where the covariance matrix

Σ = V

(
ΛS 0
0 I

)
Vᵀ(1.6)

with ΛS being a diagonal matrix of fixed rank and V a unitary matrix. It is
shown that the spiked eigenvalues tend to some limits in probability, assum-
ing that the spectral norm of ΛS is bounded and limn→∞

p
n = γ ∈ (0,∞).

Bai and Yao [8] further showed that the spiked eigenvalues converge in dis-
tribution to Gaussian distribution or the eigenvalues of a finite dimensional
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matrix with i.i.d. Gaussian entries. Baik, et al. [3] investigated the asymp-
totic behavior of the largest eigenvalue when the entries of X follow the
standard complex Gaussian distribution and observed a phase transition
phenomenon that the asymptotic distribution depends on the scale of the
spiked population eigenvalues. El Karoui [20] proved that the largest eigen-
value tends to Type-2 Tracy-Widom distribution for the general Σ without
the spiked part, i.e., ΛS = 0. Shi [39] discussed asymptotics of the compo-
nents of the sample eigenvectors corresponding to the sample spiked eigen-

values for Σ =

(
ΛS 0
0 I

)
under some moment conditions on X. Recently,

Bloemendal et al. [13] obtained the precise large deviation of the spiked
eigenvalues and non-spiked eigenvalues under a more general model than
(1.6). We should note that the above results except [20] are only for the
case of bounded spiked eigenvalues with the nonspiked eigenvalues all being
equal to 1.

Jung and Marron [31] and Shen et al. [38] considered the model

Y = VΛ
1
2 X,(1.7)

where the entries of X are i.i.d. standard normal random variables, and
Λ = diag(µ1, ..., µK , µK+1, · · · , µp) is the diagonal matrix consisting of the
population eigenvalues, and V is an orthogonal matrix. [31] and [38] showed
the almost sure convergence of the spiked eigenvalues when the spiked pop-
ulation eigenvalues satisfy that p/(µjn), j = 1, · · · ,K, tend to nonnegative
constants and µK+1, · · · , µp are approximately equal to one. The almost sure
convergence of the eigenvectors associated with the spikes is also studied.

Wang and Fan [41] further developed the asymptotic distribution for each
λj (j = 1, ...,K) of the model (1.7) under a more general setting, which
allows µK+1, ..., µp to be any bounded number, p/(µjn) to be bounded,
µj
µj+1

≥ c for some constant c > 1, j = 1, · · · ,K and the entries of X to

be i.i.d. sub-Gaussian random variables. The asymptotic behaviors of the
corresponding eigenvectors are also discussed in [41]. Here we would like to
point out that [41] did not provide the limits in probability of the spikes

unless
√
p√
nµj

= o(1) and the joint distribution of {λj}, j = 1, ...,K. To the

best of our knowledge, the asymptotic behavior of the spiked eigenvalues
for general µK+1, ..., µp when p/(µjn), j = 1, · · · ,K, converge to positive
constants is still open for the model (1.1). More recently, [42] considered
a similar spiked model with the population eigenvalues µj = αjd

αj , j =
1, · · · ,K. They proposed a bias corrected estimator of eigenvalues when
either p→∞, n→∞ and αj > 1/2 or p2−4αj/n→ 0 and 0 < αj ≤ 1/2 .

Note that [31], [38] and [41] swapped the roles of the sample size n and
the dimension p so that they essentially studied the matrix XᵀΛX. This is
equivalent to assuming that the population covariance matrix is diagonal.
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Indeed, as will be seen later, in general the asymptotic variance of the spiked
eigenvalues depends on the population eigenvectors. This phenomenon does
not occur under the previously studied model.

As we mentioned before, an important application of (1.1) is high dimen-
sional factor model (1.4). There is a significant interest in the estimation of
Λ1 and F. See for example [5], [6], [35], [40] and [41]. The asymptotic prop-
erties of their respective estimators have been investigated in these papers
under different conditions. Another important problem is to determine the
number of factors K in (1.4). There are several popular procedures available
to estimate K, including PCp and ICp ([4] and [6]), AIC and BIC ([9]), and
the spectral method ([33] and [34]).

1.4. Organization of the paper. The rest of the paper is organized as fol-
lows. Section 2 establishes the limiting normal distribution for the spiked
eigenvalues and the limiting Tracy-Widom distribution for the largest non-
spiked eigenvalue of the sample covariance matrix Sn. An algorithm for
identifying the number of spikes is developed in Section 3. Section 4 consid-
ers the properties of the principal components and shows that the sample
eigenvectors corresponding to the spiked eigenvalues are consistent estima-
tors of the population eigenvectors in terms of the L2 norm. Most of the
results developed for Sn also hold for the centralized sample covariance ma-
trices and this is discussed in Section 5. Section 6 investigates the numerical
performance through simulations and an application of a factor model. The
proof of Theorem 2.4 is given in Section 7 and the proof of the other re-
sults, including Theorems 2.1-2.3, 2.5 and 4.1, and other technical results,
are provided in the supplementary material [16].

2. Asymptotics for Spiked Eigenvalues and Largest Nonspiked
Eigenvalue of Sn. We investigate in this section the limiting laws for
the leading eigenvalues and the largest nonspiked eigenvalue of the sample
covariance matrix Sn under the general spiked covariance matrix model (1.2)
and (1.3) with divergent spiked eigenvalues µ1 ≥ · · · ≥ µK , while the other
eigenvalues are bounded but otherwise arbitrary. We begin with the notation
that will be used throughout the rest of the paper.

For two sequences of positive numbers an and bn, we write an & bn when
an ≥ cbn for some absolute constant c > 0, and an . bn when bn & an.
Alternatively we denote an & bn by an = Ω(bn). We write an ∼ bn when both
an & bn and an . bn hold. Moreover, we write an � bn when an/bn → 0.
Then we say an = O(bn) or bn = Ω(an). For a sequence of random variables

An, if An converges to b in probability, then we write An
i.p.→ b. We say

an event An holds with high probability if P(An) ≥ 1 − O(n−l) for some
constant l > 0. Denote the j-th largest eigenvalue of a symmetric matrix M
by λj(M) and the largest singular value by ‖M‖. Set ‖M‖F =

√
tr(MMᵀ).
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For simplicity, denote by λ1 ≥ λ2 ≥ ... ≥ λK ≥ · · · ≥ λp the ordered
eigenvalues of the sample covariance matrix Sn, and denote by µ1 ≥ µ2 ≥
... ≥ µK ≥ · · · ≥ µp the ordered eigenvalues of the population covariance
matrix Σ. Throughout this paper c and C are constants that may vary from
place to place.

To investigate the sample covariance matrix Sn = 1
nΓXXᵀΓᵀ with the

population covariance matrix Σ specified in (1.2) and (1.3) we make the
following assumptions.

Assumption 1. {xj = (x1j , · · · ,xp+l,j)ᵀ, j = 1, ..., n} are i.i.d. random
vectors. {xij : i = 1, ..., p+ l, j = 1, ..., n} are independent random variables
such that Exij = 0, E|xij |2 = 1, E|xij |4 = γ4i and supi γ4i ≤ C.

Assumption 2. p & n and the K largest population eigenvalues µi are
such that di ≡ p

nµi
→ 0, i = 1, 2, ...,K. And for i = K + 1, ..., p, µi are

bounded by C. Moreover, K
n1/6 → 0 and K2dK → 0.

Assumption 2′. p
n → 0, µi � 1, i = 1, ...,K and K � min{p, n1/6}.

That is to say, we focus on the matrix Sn with the population covariance
matrix Σ = ΓΓᵀ satisfying Assumption 2 or 2′.

Remark 1. Here the requirement about the order of K comes from the
fact that the study of the spiked eigenvalues essentially boils down to an
K ×K matrix. In order to allow K to tend to infinity we have to analyze
the convergence rate of each entry of the matrix. One can see (10.15) in [16]
for more details.

Note that we do not assume that p and n are of the same order. The
following theorems hold either under Assumption 2 or Assumption 2′ except
Theorem 2.5. We only give the proofs under Assumption 2. The proofs under
Assumption 2′ are similar and thus we omit them.

Assumption 3. There exists a positive constant c not depending on n
such that µi−1

µi
≥ c > 1, i = 1, 2, ...,K.

2.1. Asymptotic behavior of the spiked sample eigenvalues. Our first re-
sult gives the limits in probability for the spiked eigenvalues of Sn, λ1 ≥
... ≥ λK .

Theorem 2.1. Suppose that Assumption 1 holds. Moreover, either As-
sumption 2 or Assumption 2′ holds. Then

λi
µi
− 1 = Op(di +

K4

n
+

1

µi
),(2.1)
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uniformly for all i = 1, ...,K.

Remark 2. As mentioned in the introduction, PCA is an important
statistical tool for analyzing high-dimensional data. Several recent results
on high-dimensional PCA are quite relevant to Theorem 2.1. Recently [9]
considered AIC and BIC criteria for selecting the number of significant com-
ponents in high dimensional PCA when p and n are comparable. Comparing
to the paper [9], Theorem 2.1 here covers Lemma 2.2(i) of [9] and we allow
K to tend to infinity. Their assumption µK+1 = · · · = µp = 1 is also relaxed
to bounded eigenvalues here. In addition, checking the proof of Theorems
3.3 and 3.4 of [9], we find that for general population covariance matrices,
their criteria Ãj and B̃j for estimating the number of spikes may not work
since the proof highly depends on the assumption µK+1 = · · · = µp = 1, as
demonstrated in Table 4 given in Section 6. In addition, Theorem 2.1 also
covers part of Theorem 3.1 in [38] where it assumes normality for the data.

Note that λi
µi

i.p.→ 1 does not imply that λi is a good estimator of µi
due to the fact that µi tends to infinity. Moreover, Theorem 2.1 does not
precisely characterize how the nonspiked population eigenvalues affect the
spiked sample eigenvalues. To see this, it is helpful to make a comparison
with the conventional setting studied in [2]. Consider the model (1.6) and
recall the assumptions of [2] that 1 +

√
γ < µi = O(1) and γ = limn→∞

p
n ∈

(0,∞). It was shown in [2] that

(2.2) λi
a.s.→ µi +

γµi
µi − 1

.

So the effect of the population eigenvalues on the corresponding sample
eigenvalues can be precisely characterized in the setting considered in [2].
On the other hand, one cannot see the effect of the nonspiked population
eigenvalues on the spiked sample eigenvalues from (2.2). Note that if there
are no spikes, then all the sample eigenvalues are not bigger than (1+

√
γ)2+c

for any positive constant c with probability one. When there are sufficiently
large spikes, the sample spikes are pulled outside of the boundary (1 +

√
γ)2

due to the population spikes with probability one. Moreover, (2.2) precisely
quantifies the effect of the population spike. In view of this, one would ask
whether there is a similar phenomenon for unbounded spikes. Indeed, it
is natural to imagine that for the case µi → ∞, the term γµi

µi−1 will not
disappear and thus one needs to subtract it from λi in order to obtain the
CLT. Surprisingly, a more precise limit of λi turns out to be determined not
only by µi but also the nonspiked eigenvalues. This is very different from
(2.2) and can be seen clearly from (2.9) below.

We now characterize how the population eigenvalues including spiked
eigenvalues and non-spiked eigenvalues affect the sample spiked eigenval-
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ues. To this end, corresponding to (1.3), partition U as U =

(
U1

U2

)
, where

U1 is the K × (p+ l) submatrix of U, and define

(2.3) Σ1 = Uᵀ
2ΛPU2.

For any distribution function H, its Stieltjes transform is defined by

mH(z) =

∫
1

λ− z
dH(λ), for all z ∈ C+.

For any θ 6= 0, let m̃θ(z) be the unique solution to the following equation

m̃θ(z) = −
(
z − 1

n
tr

[
(I + m̃θ(z)

Σ1

θ
)−1 Σ1

θ

])−1

, z ∈ C+,(2.4)

where C+ denotes the complex upper half plane and Σ1 is defined in (2.3).
Indeed, as will be seen, for θ � p

n ,

m̃θ(z) +
1

n
Etr(zI− 1

nθ
XᵀΣ1X)−1 → 0,

for z ∈ C+ by a slight modification of the proof of Appendix 7.2. One can
also refer to (1.6) of [11] or (6.12)-(6.15) of [7] for (2.4). One may see below
that m̃θ(z) describes the collective contribution of the nonspiked eigenvalues
of Σ to the spiked sample eigenvalues.

By (2.4), we set θi to be the solution to

m̃θi(1) +
θi
µi

= 0,(2.5)

where m̃θi(1) = lim
z∈C+→1

m̃θi(z). It turns out that θi instead of µi is the more

precise limit of the spiked sample eigenvalues λi. From (2.5) one can see that
θi depends on µi as well as the nonspiked part Σ1. Indeed, this point can
be seen more clearly from (2.9) below. A similar dependence of θi on µi as
well as the nonspiked part Σ1 has appeared in [35], where a different factor
model is considered.

Assumption 4. Assume that the following limits exist:

σi = lim
p→∞

√√√√p+l∑
s=1

(γ4s − 3)u4
is + 2, σij = lim

p→∞

p+l∑
s=1

(γ4s − 3)u2
isu

2
js, i, j ≤ K.

Remark 3. If max1≤t≤K,1≤s≤p+l |uts| → 0 then σi =
√

2 and σij = 0.
Furthermore, if U1 is a random unitary matrix independent of X with the
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condition max1≤t≤K,1≤s≤p+l |uts|
i.p.−→ 0, then

|
p+l∑
s=1

(γ4s − 3)u2
isu

2
js| ≤ max

s
|γ4s − 3| max

1≤t≤K,1≤s≤p+l
|uts|2

p+l∑
s=1

|ujs|2
i.p.−→ 0,

p+l∑
s=1

(γ4s − 3)u4
is

i.p.−→ 0.

Therefore σi
i.p.−→
√

2 and σij
i.p.−→ 0. In addition, when U is haar distributed,

then σi
i.p.−→
√

2 and σij
i.p.−→ 0( e.g. see [28]).

We are ready to state the asymptotic distribution of the spiked eigenvalues
of Sn. Let uᵀ

i be the i-th row of U with uij being the (i, j)-th entry of U.

Theorem 2.2. Suppose that Assumptions 1, 3, and 4 hold. Moreover,
either Assumption 2 or Assumption 2′ hold. Then for all i = 1, 2, ...,K,

√
n
λi − θi
θi

D−→ N
(
0, σ2

i

)
.(2.6)

Moreover, for any fixed r ≥ 2(√
n
λ1 − θ1

θ1
, ...,
√
n
λr − θr
θr

)
D−→ N

(
0,Σ(r)

)
,(2.7)

where Σ(r) = (Σ
(r)
ij ) with

Σ
(r)
ij =

{
σ2
i , i = j

σij , i 6= j,

It follows from (2.4) and (2.5) that m̃θi(1)→ −1. Therefore θi
µi
→ 1. How-

ever, we can not replace θi by µi in (2.7) directly because the convergence
rate of θi

µi
to 1 is unknown. Indeed, by (2.4), we have

θ = − θ

m̃θ(1)
+
p−K
n

∫
tdFΛP

(t)

1 + tm̃θ(1)θ−1
,(2.8)

where FΛP
is the empirical spectral distribution of ΛP . Here for any n× n

symmetric matrix A with real eigenvalues, the empirical spectral distribu-
tion (ESD) of A is defined as

FA(x) =
1

n

n∑
i=1

I{λi(A)≤x}.
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Together with (2.5), we conclude that

θi = µi(1 +
p−K
n

∫
t

µi − t
dFΛP

(t)).(2.9)

By the Taylor’s expansion we have

θi
µi

= 1 + ffi +O(
p

nµ2
i

),(2.10)

where

f =
1

p−K

p∑
j=K+1

µj and fi =
p−K
nµi

.

In particular, for the special case µK+1 = ... = µp = 1, (2.9) yields that

(2.11) θi = µi(1 +
p−K

n(µi − 1)
).

It is interesting to note that, although here the spiked eigenvalues µ1, · · · , µK
are divergent, this is consistent with the right hand side of (2.2), which is
for the conventional setting of bounded spiked eigenvalues. It then follows
from (2.10) that

(2.12)
√
n
(λi
µi
− 1− ffi +O(

p

nµ2
i

)
)

D→ N
(
0, σ2

i

)
.

Remark 4. We note that Assumption 4 is not needed if we consider
the individual asymptotic distribution of the spiked sample eigenvalues. To

see this, it suffices to normalize (λi − θi)/θi by σi =

√
p+l∑
j=1

(γ4j − 3)u4
ij + 2.

Moreover, the joint distribution of λi−θi
σiθi

, i = 1, ..., r tends to the normal
distribution with the covariance matrix being the correlation matrix corre-
sponding to Σ(r).

Remark 5. It is helpful to compare the above theorem with Theorem
3.1 of [41]. Besides the difference between the models in (1.2) and (1.7),
one of the key differences is that σ2

i in (2.12) depends on the entries of the
eigenvector matrix U while the variance in Theorem 3.1 of [41] does not
depend on it. This is due to the fact that [41] assumes that U = I. Secondly,

Theorem 3.1 of [41] involves Op(
√
p√
nµi

) which reduces to O( p
nµ2i

) (essentially

O( 1
µi

)) in (2.12) by dropping the additional
√
p√
n

. Thirdly we also allow K

to diverge. Fourthly [41] assumes xij to be subGaussian random variables
while Theorem 2.2 holds under the bounded fourth moment assumption.
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Remark 6. We would compare the above theorem with Theorem 2 in
[5] which deals with the factor model (1.4). Recall the estimator of Λ1 in [5],
i.e. the estimator Λ̃1 is such that Λ̃T1 Λ̃1 = diag(λ1, ..., λr) essentially. Hence,
we have proved the central limit theorem for Λ̃T1 Λ̃1 (when r is fixed). While
Theorem 2 of [5] shows the CLT of (Λ̃1)i, where (Λ̃1)i is the i-th row of Λ̃1.
Checking the dimension condition in Theorem 2 of [5], the CLT holds for
di → 0 and µi ∼ n, which is a special case of Assumption 2.

In view of (2.10) we need to estimate f and fi in practice. A natural
estimator of fi is p−K

nλi
by Theorem 2.1. For f , one can use

(2.13) f̂ =
1
n tr(ΓXXᵀΓ)−

∑K
i=1 λi

p−K − pK/n
which was proposed in [41]. When p ∼ n, by Proposition 1 in the next
section, K can be estimated accurately.

Moreover, Theorem 2.2 can be extended to the case when the population
eigenvalues µi have multiplicity more than one.

Assumption 5. Suppose that K � n1/6, αL = µK = ... = µK−nL <
αL−1 = µK−nL+1... < α1 = µn1 = ... = µ1, and there exists a constant c
such that αi−1

αi
≥ c > 1, i = 1, 2, ...,L. Moreover, n1,..., nL are finite.

Assumption 6. Suppose that the following limits exist

G(ri, k1, k2, l1, l2) = lim
n→∞

n2 × Cov(uᵀ
ri+k1

x1u
ᵀ
ri+l1

x1,u
ᵀ
ri+k2

x1u
ᵀ
ri+l2

x1).

If either the fourth moments γ4s = 3, s = 1, ..., p+ l or the entries of the
population eigenvectors satisfy min

r∈{k1,k2,l1,l2}
max
j
|uri+r,j | = o(1), then

g(ri, k1, k2, l1, l2) =

{
1 if k1 = k2 and l1 = l2 or k1 = l2 and l1 = k2

0 otherwise.

Then we have the following result.

Theorem 2.3. Suppose that Assumptions 1, 5 and 6 hold. Moreover,
either Assumption 2 or Assumption 2′ holds. Let

θi = αi

(
1 +

p−K
n

∫
t

αi − t
dFΛP

(t)
)
.

Let ri =
∑i−1

j=0 nj, for i = 1, 2, ...,L. Then
√
n

θi
(λri+1 − θi, λri+2 − θi, ..., λri+ni − θi)

D→ Ri,(2.14)

where Ri are the eigenvalues of ni × ni Gaussian matrix Si with ESi = 0
and the covariance of the (Si)k1,l1 and (Si)k2,l2 being G(ri, k1, k2, l1, l2).
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The proof of Theorem 2.2 requires new technical tools. The following CLT
for a type of random quadratic forms, where the random vectors and random
matrices involved are dependent, plays a key role in the proof. This result
can be of independent interest.

Theorem 2.4. Suppose that Assumption 1 holds and the spectral norm
of Σ1 is bounded. In addition, suppose that there exists an orthogonal unit
vector w1 such that wᵀ

1Uᵀ
2 = 0. If θ

p+l
n

→∞ and θ →∞, then

√
n

σ̃1

(
wᵀ

1X(nI−XᵀΣ1

θ
X)−1Xᵀw1 + m̃θ(1)

)
D→ N (0, 1) .(2.15)

Moreover, if there exists another unit vector w2 such that wᵀ
2Uᵀ

2 = 0 and
wᵀ

1w2 = 0, we have

√
n

σ̃12
wᵀ

1X(nI−XᵀΣ1

θ
X)−1Xᵀw2

D→ N (0, 1)(2.16)

where σ̃2
1 =

∑p+l
j=1[(γ4j − 3)w4

1j ] + 2, σ̃2
12 =

p+l∑
s=1

[(γ4s − 3)w2
1sw

2
2s] + 1 and wij

is the j-th element of wi, i = 1, 2.

2.2. Tracy-Widow law for the largest nonspiked eigenvalue of Sn. We
now turn to the limiting distribution of the largest nonspiked eigenvalue of
the sample covariance matrix Sn. The limiting law is of interest in its own
right and it is also important for the estimation of the number of the spikes.
To this end we introduce additional assumptions.

Assumption 7. There exist constants ck such that E|xij |k ≤ ck for all
k ∈ N+.

Assumption 8. Let mΣ1(z) be the solution to

mΣ1(z) = − 1

z − 1
n tr(I +mΣ1(z)Σ1)−1Σ1

, z ∈ C+,(2.17)

and define
γ+ = inf{x ∈ R, F0(x) = 1},

where F0(x) is the c.d.f. determined by mΣ1(z) (One can also refer to page
4 of [11]). Suppose that

lim sup
n
µK+1d < 1,(2.18)

where d = − lim
z∈C+→γ+

mΣ1(z).
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Intuitively, (2.18) restricts the upper bound of µK+1 to ensure λK+1 to be
a nonspiked eigenvalue. Denote the i-th largest eigenvalue of 1

nXᵀΣ1X by
νi. Note that the limiting law of ν1 is the Type-1 Tracy-Widom distribution.
Recall the definition of l above (1.1). i.e. Γ is a p × (p + l) matrix and l is
the dimensional difference of columns and rows of Γ. By contrast, K is the
number of spiked eigenvalues.

Theorem 2.5. Suppose Assumptions 1, 7, and 8 hold. In addition, ei-
ther Assumption 2 or 5 holds. l � n1/6 and p ∼ n. For any i satisfying
1 ≤ i−K ≤ log n, we have, with high probability,

|λi − νi−K | ≤ n−2/3−ε,

In particular, λK+1 has limiting Type-1 Tracy-Widom distribution.

Remark 7. Theorem 2.5 shows that the non-spiked sample eigenvalues
λK+1, λK+2,..., λK+r share the same asymptotic distribution as ν1, ν2,..., νr
since the fluctuation of ν1, ν2,..., νr are n−2/3 � n−2/3−ε. Here r is a fixed
integer. See [10] and [25] for more details.

3. Estimating The Number of Spiked Eigenvalues. Identifying
the number of spikes is an important problem for a range of statistical ap-
plications. For example, a critical step in PCA is the determination of the
number of the significant principal components. This issue arises in virtually
all practical applications where PCA is used. Choosing the number of prin-
cipal components is often subjective and based on heuristic methods. As an
application of the main theorems discussed in the last section, we propose
in this section a procedure to identify the number of the spiked eigenvalues.

Suppose that the conditions of Theorem 2.5 hold. Define the asymptotic
variance of ν1 by (see also (3) of [20] )

σ3
n =

1

d3
(1 +

p−K
n

∫
(

λd

1− λd
)3dFΛP

(λ)).(3.1)

By Theorem 2.5, λK+1 has the same asymptotic distribution as ν1. Together
with Theorem 1 of [20], we have

n2/3λK+1 − γ+

σn

D−→ TW1,(3.2)

where TW1 is the Type-1 Tracy-Widom distribution. Onatski [33] also es-
tablished such a result for the complex case, but Theorem 1 of [33] requires
that the spiked eigenvalues are much bigger than n2/3 and p/n = o(1).
Moreover, the statistics used in [33] does not estimate γ+ and σn, while our
approach estimates them.
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From (3.2) one can see that the confidence interval of γ+ is [λK+1 −
w∗σnn

−2/3, λK+1 + w∗σnn
−2/3], where w∗ is a suitable critical value from

the Type-1 Tracy-Widom distribution. This, together with Theorem 2.2,
implies that it suffices to count the number of the eigenvalues of Sn that lie
beyond (γ+ + w∗σnn

−2/3 log n) to estimate the number of spikes K where
log n can be replaced by any number tending to infinity. However, in practice
γ+ and σn are unknown and need to be estimated.

We first consider estimation of σn. It turns out that

σn =

− lim
z→γ++

∫ dF0(x)
(x−z)3

(
∫ dF0(x)

(x−z)2 )3

1/3

.(3.3)

Moreover, one can verify that with high probability

λK+1 ≤ λnα + log n× n−
2(1−α)

3 ,(3.4)

where α is a constant such that α ∈ [1/6, 1) (see Section 8 in the sup-
plementary material). In view of (3.4) we estimate F0(x) by its empirical
version λnα , λnα+1, ..., λn in (3.3), i.e. we exclude the first nα eigenvalues of
Sn. Moreover, for γ+ in (3.3), we use λnα + n−4/9 to replace it. The reason
for using λnα + n−4/9 to estimate γ+ instead of λnα is to avoid singularity

in
∫ dF0(x)

(x−γ+)3
. The estimator of σn is then given by

σ̂n =

(
−

1
n−nα

∑n
i=nα

1
(λi−z0)3

( 1
n−nα

∑n
i=nα

1
(λi−z0)2

)3

)1/3

, where z0 = λnα + n−4/9.

We next consider estimation of γ+ defined below (2.17). By the assump-
tion that K � n1/6, it follows from Theorems 2.2 and 2.5 that λn1/6 is not a
spiked eigenvalue. Based on this, an upper bound of λK+1 is given in (3.4).
Hence we use the following p̂0 as an initial upper bound of λK+1

p̂0 = λnα + log n× n−
2(1−α)

3 .(3.5)

Although p̂0 is a good upper bound for λK+1 theoretically, it does not
depend on σn and hence in practice p̂0 may not work well. Based on (3.2),
we propose the following iteration approach to update p̂0. The idea behind
the iteration is that even if p̂0 is not larger than λK+1 in practice, p̂0 is still
close to λK+1. Thus by (3.2), there is at least one eigenvalue in the interval
[p̂0, p̂0 + w∗mnσnn

−2/3], where mn →∞.
Theorem 2.5 implies that K̂ is a good estimator of the number of signifi-

cant components K.

Proposition 1. Under the conditions of Theorem 2.5, we have K̂ = K
with high probability.
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Algorithm 1
1: Define the initial value p̂0 in (3.5).

2: Suppose that we have p̂m−1. If there is at least one eigenvalue of Sn belonging to
[p̂m−1, p̂m−1 + 2.02(logn)σnn

−2/3], where 2.02 is the 99% quantile of Type-1 Tracy-
Widom distribution, we renew p̂n = p̂n−1 + 2.02 lognσnn

−2/3. Here logn can be also
replaced by the other number tending to infinity too. Otherwise the iteration stops.

3: After getting p̂n, we return to Step 2 until the iteration stops.

4: Denote the final value of the above iteration by p̂end. We define K̂ to be the number
of eigenvalues larger than p̂end.

Identifying The Number of Factors. A closely related problem is the
estimation of the number of factors under a factor model, which is widely
used in financial econometrics. Consider the factor model

yt = Λ1ft + Tεt, t = 1, 2, . . . , n,(3.6)

where Λ1 is p × K-dimensional factor loading, ft is the corresponding K-
dimensional factor, {εit : i = 1, 2, . . . , p; t = 1, 2, . . . , n} are the independent
idiosyncratic components.

In many applications, the number of factors K is unknown. An important
step in factor analysis is to determine the value of K. Let F = (f1, ..., fn),
Z = (ε1, ..., εn) and Y = (y1, ...,yn). Then (3.6) can be rewritten as

(3.7) Y = Λ1F + TZ = (Λ1 T)

(
F
Z

)
.

Suppose that

(
F
Z

)
satisfies Assumptions 1 and 7 and (Λ1 T) satisfies

Assumptions 2 and 8. It is easy to conclude that the (K + 1)-st largest
eigenvalue of 1

nYYᵀ follows the Type-1 Tracy-Widom distribution asymp-
totically. The following result is a direct consequence of Proposition 1.

Corollary 1. For the model (3.6), if

(
F
Z

)
satisfies Assumptions 1 and

7 and (Λ1 T) satisfies Assumptions 2 and 8, K � n1/6 and p ∼ n, then

we have K̂ = K with high probability.

Comparing to the approaches in [4] and [33], here we allow the number
of factors K to diverge with n. Moreover, we only assume that the spiked
population eigenvalues diverge to infinity, while [4] and [33] assume that
they are much larger than n2/3 or grow linearly with n.
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4. Estimating the Eigenvectors. As mentioned in the introduction,
the leading eigenvectors of the population covariance matrix are of signif-
icant interest in PCA and many other statistical applications. They are
conventionally estimated by their empirical counterparts.

We consider in this section estimation of the population eigenvectors as-
sociated with the spiked population eigenvalues µ1,...,µK , involved in σ2

i in
(2.7). To this end, we first characterize the relationship between the sam-
ple eigenvectors and the corresponding population eigenvectors. Write the
population eigenvectors matrix V as V = (v1, · · · ,vp).

Theorem 4.1. Suppose that the conditions of Theorem 2.2 hold. Let
ξi be the eigenvector of Sn corresponding to the eigenvalue λi. Then for
1 ≤ i ≤ K, we have

vᵀ
i ξiξ

ᵀ
i vi

i.p.−→ 1.(4.1)

Theorem 4.1 also implies that for i = 1, ...,K, j = 1, ..., p, i 6= j, we have

vᵀ
j ξiξ

ᵀ
i vj

i.p.−→ 0.

One should notice that the convergence is uniformly for j = 1, ..., p since
1 = ξᵀi ξi =

∑p
j=1 vᵀ

j ξiξ
ᵀ
i vj .

Theorem 4.1 shows that the sample eigenvector ξi is a good estimator of
vi up to a sign difference. An immediate application of Theorem 4.1 is to
estimate σ2

i for the case when V = Uᵀ and γ41 = ... = γ4p = γ4 by Corollary
2. This corollary shows that the empirical eigenvector plays an important
role in statistical inference of the spiked eigenvalue.

Corollary 2. Under the conditions of Theorem 4.1, we have

p∑
j=1

v4
ij −

p∑
j=1

ξ4
ij

i.p.−→ 0.

We now consider the extension to the case when the multiplicity of the
population eigenvalues µi is more than one. Correspondingly the following
corollary holds and its proof is the same as that of Theorem 4.1.

Corollary 3. Recall the definition of ri above (2.14). Under the con-
ditions of Theorem 2.3, The angle between vk, k ∈ {ri−1 + 1, ..., ri} and the
subspace spanned by {ξj , j = ri−1 + 1, ..., ri} tends to 0 in probability. In
other words, we have

vᵀ
k(

ri∑
j=ri−1+1

ξjξ
ᵀ
j )vk

i.p.−→ 1, k ∈ {ri−1 + 1, ..., ri}.
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Corollary 3 shows that the sample eigenvectors {ξj , j = ri−1 + 1, ..., rj}
are close to the space spaned by {vj , j = ri−1 + 1, ..., rj}.

5. Centralized sample covariance matrices. So far we have focused
on the non-centralized sample covariance matrix Sn. We now turn to its
centralized version

S̃n =
1

n

n∑
i=1

Γ(xi − x̄)(xi − x̄)ᵀΓᵀ = ΓX(I− 1

n
11ᵀ)XᵀΓᵀ,

where 1 is the n× 1 vector with all elements being 1. Denote (I− 1
n11ᵀ) by

Υ. First we have the following Lemma.

Lemma 1. Under the conditions of Theorem 1, we have

√
n

σ̃1

(
wᵀ

1XΥ(nI−ΥXᵀΣ1

θ
XΥ)−1Xᵀw1 + m̃θ(1)

)
D→ N (0, 1)(5.1)

and
√
n

σ̃12
wᵀ

1XΥ(nI−ΥXᵀΣ1

θ
XΥ)−1ΥXᵀw2

D→ N (0, 1)(5.2)

where σ̃2
1 =

∑p+l
j=1[(γ4j − 3)w4

1j ] + 2, σ̃2
12 =

p+l∑
s=1

[(γ4s− 3)w2
1sw

2
2s] + 1 and wij

is the j-th element of wi, i = 1, 2.

By Lemma 1 and checking carefully the proofs of the main results, it can
be seen that all arguments remain valid if X is replaced by XΥ (note that
Υ2 = Υ). So Theorem 2.1–Corollary 3 hold for 1

nΓXΥXᵀΓᵀ as well.

6. Numerical Results . In this section we illustrate some of the theo-
retical results obtained earlier through numerical experiments. We first use
simulation to confirm that the asymptotic behavior of the spiked eigenvalues
is indeed affected by the population eigenvectors.

Let K = 2 and ΛP = diag(µ3, ..., µp). Suppose that {µi, i = 3, ..., p} are
i.i.d. copies of the uniform random variable U(1, 2). Define v1 = ( 1√

2
, 1√

2
)ᵀ,

v2 = ( 1√
2
,− 1√

2
)ᵀ, V̆ = (v1,v2) and ΛS = diag(800, 200). We now define two

different population matrices

Σ2 =

(
ΛS 0
0 ΛP

)
, Σ3 =

(
V̆ΛSV̆ᵀ 0

0 ΛP

)
.

Then the eigenvalues of Σ2 and Σ3 are the same but the eigenvectors corre-
sponding to the first two largest eigenvalues are different. Consider the case
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p = n and X = (xij) are i.i.d. U(−
√

3,
√

3). Denote by λ̌1 and λ̆1 respectively

the largest eigenvalues of the sample covariance matrices 1
nΣ

1/2
2 XXᵀΣ

1/2
2

and 1
nΣ

1/2
3 XXᵀΣ

1/2
3 . Table 1 reports the sample variance of the rescaled

eigenvalues
√
nλ̌1

800 and
√
nλ̆1

800 . It can be seen that the behavior of the spiked
sample eigenvalues is indeed affected by the population eigenvectors.

Table 1
The variances of the rescaled largest eigenvalues

p 200 400 600 800 1000

Σ2 0.8111 0.7965 0.8287 0.7574 0.7874
Σ3 1.2507 1.4051 1.2800 1.5012 1.3911

We now consider estimating the number of factors under the factor model
(3.7):

Y = Λ1F + TZ.

In the simulation, the entries of F and Z follow the standard Gaussian
distribution. Consider two choices: T = T1 or T2, where T1 = I, T2 =

diag(1, 1, ..., 1︸ ︷︷ ︸
p/2

,
1√
2
, ...,

1√
2︸ ︷︷ ︸

p/2

). Let Λ1 be a p ×K matrix with nonzero entries

being (Λ11, ...,ΛKK) = (
√
b21 − 1, ...,

√
b2K − 1) where K = 5dn1/7e+ 1, and

(b1, .., bK) =
√

(6, ..., 6 +K − 1) ∗ r + 1, 0 ≤ r ≤ 1.
We compare the accuracy of three methods for estimating the number

of factors K: our procedure proposed in Section 3, the method introduced
in [34] , and the approach given in [9], which are denoted by CHP, Ons,
and BYK, respectively. Here we omit the simulation results of BIC used in
[9] for reasons of space. The initial value of p̂0 is given in (3.5) and note
that K � n1/6. However this requirement may be violated in practice when
the sample size n is not sufficiently large. For example when n = 100 in
our simulation setting n1/6 is as small as three while K = 5dn1/7e+ 1 = 11.
Therefore one has to replace the initial value of p̂0 by λc1dn1/6e+log n×n−5/9

where c1 is a constant such that K = 5dn1/7e + 1 � c1dn1/6e. Here we set
c1 = 15 according to our extensive simulations in order to reduce the number
of updating iteration (such a replacement does not change the conclusions
of the theoretical results developed in Section 3). In contrast to the size of
n, such an initial value of p̂0 is essentially a conservative choice. One can
see that λ15dn1/6e is a nonspiked eigenvalue. The approach in Section IV of
[34] uses an iteration approach to estimate K, which also requires the rough
information of the number of nonspiked eigenvalues. In addition, we also
set 15dn1/6e as the initial value for the algorithm in [34] when running the
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algorithm there. [9] uses AIC based on sample eigenvalues to estimate K.
Different combinations of n and p are considered. The following tables

report the proportion of times the number of factors is correctly identified,
i.e. K̂ = K, where for each (n, p) we repeat 500 times. Different choices of
r (ranging from 0.3 to 1) are also considered. From Tables 2 and 3, one can
see that the accuracy of our approach increases as (n, p) become larger. Our
approach works better in comparison to [34]. This is likely due to the fact
that our method allows the number of factors K to be increasing with n,
while [34] requires K to be fixed. Tables 2 and 3 show that the method based
on the AIC criterion and our procedure have similar performance. But as
mentioned earlier in Remark 2, the model in [9] only allows that µK+1 =
... = µp = 1, which is a special case of what we consider in the present
paper. Indeed, Table 4 also confirms that for the non-identity matrix T2, the
method based on the AIC criterion performs much worse than our approach.
Therefore, our procedure is preferred for the case where µK+1, ..., µp are
unknown.

7. Proofs. In this section, we prove only one of the main results, Theo-
rem 2.4. The proof of Theorem 2.2 is involved and is given in the supplement
[16]. The proofs of the other results and additional technical lemmas are also
provided in the supplement [16].

7.1. Proof of Theorem 2.4. The main idea of this proof is to first express
wᵀ

1X(nI − Xᵀ Σ1
θ X)−1Xᵀw1 as a sum of martingale differences and then

apply the central limit theorem for the martingale difference.
We below consider the case p & n and prove (2.15) only because the

case p
n → 0 and (2.16) can be proved similarly. First of all, we need to do

truncation and centralization on xij as in the first paragraph of Section 12
in the supplement [16]. In fact, by (12.2)-(12.6) in [16], we conclude that
the truncation and centralization do not affect the CLT. i.e. we can get the
following inequality similar to (12.7) in [16]

wᵀ
1X(nI−XᵀΣ1

θ
X)−1Xᵀw1 = wᵀ

1X̃(nI− X̃ᵀΣ1

θ
X̃)−1X̃ᵀw1 + op(

1√
n

),

where X̃ is the truncated and centralized version of X. The argument is
standard and we omit the details here. Therefore, for simplicity we below
assume that

Exij = 0, |xij | ≤ δn 4
√
np.

CLT of the random part. Define the following events

Fd = {‖ 1

n
XᵀΣ1X‖ ≤ 4‖Σ1‖(1+

p

n
)}, F (k)

d = {‖ 1

n
Xᵀ
kΣ1Xk‖ ≤ 4‖Σ1‖(1+

p

n
)}, k = 1, ..., n,
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Table 2
Ratio of Identifying The Correct Number of Factors with T1

r\(n, p) (50,50) (50,100) (50,150)

CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.608 0.000 0.610 0.192 0.000 0.330 0.068 0.002 0.122
0.4 0.816 0.020 0.706 0.442 0.000 0.618 0.184 0.000 0.368
0.5 0.904 0.008 0.662 0.676 0.012 0.788 0.450 0.002 0.606
0.6 0.892 0.044 0.612 0.832 0.012 0.880 0.638 0.006 0.800
0.7 0.906 0.040 0.636 0.880 0.014 0.870 0.756 0.002 0.866
0.8 0.914 0.040 0.638 0.918 0.022 0.886 0.868 0.010 0.880
0.9 0.908 0.030 0.648 0.948 0.022 0.866 0.916 0.016 0.910
1.0 0.914 0.042 0.616 0.946 0.014 0.872 0.912 0.020 0.896

Table 3
Ratio of Identifying The Correct Number of Factors with T1

r\(n, p) (100,100) (100,200) (100,300)

CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.954 0.130 0.974 0.772 0.056 0.854 0.392 0.006 0.482
0.4 0.980 0.234 0.982 0.942 0.088 0.984 0.782 0.005 0.908
0.5 0.956 0.272 0.974 0.964 0.148 0.990 0.938 0.068 0.976
0.6 0.972 0.330 0.976 0.980 0.162 0.994 0.966 0.124 0.990
0.7 0.970 0.396 0.974 0.978 0.234 0.986 0.972 0.158 0.996
0.8 0.954 0.412 0.974 0.972 0.272 0.998 0.984 0.178 0.980
0.9 0.954 0.446 0.980 0.970 0.316 0.986 0.980 0.240 0.984
1.0 0.950 0.444 0.972 0.958 0.326 0.984 0.982 0.290 0.988

Table 4
Ratio of Identifying The Correct Number of Factors with T2

r\(n, p) (100,100) (100,200) (100,300)

CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.946 0.264 0.490 0.938 0.088 0.658 0.792 0.042 0.716
0.4 0.928 0.296 0.454 0.974 0.178 0.624 0.968 0.070 0.710
0.5 0.944 0.360 0.424 0.968 0.236 0.682 0.986 0.148 0.704
0.6 0.926 0.400 0.440 0.966 0.276 0.672 0.978 0.206 0.654
0.7 0.926 0.466 0.434 0.970 0.336 0.662 0.972 0.262 0.670
0.8 0.918 0.512 0.450 0.978 0.390 0.650 0.986 0.270 0.660
0.9 0.928 0.510 0.434 0.978 0.402 0.608 0.980 0.310 0.670
1.0 0.930 0.544 0.410 0.980 0.418 0.614 0.976 0.386 0.658
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where Xk = X−xke
ᵀ
k, xk is the k-th column of X and ek = (0, .., 0, 1, 0, ..., 0)ᵀ

is a M -dimensional vector with only k-th element being 1. By Theorem 2 of
[18], we have

(7.1) I(Fd) = 1 and I(F
(k)
d ) = 1, k = 1, ..., n

with high probability.
We define Σ1

θ = Σ̃1, A = I− 1
nXᵀΣ̃1X, Ak = I− 1

nXᵀ
kΣ̃1Xk and A(k) =

Ak− 1
nXᵀ

kΣ̃1xke
ᵀ
k. Then A = Ak− 1

n(ekx
ᵀ
kΣ̃1Xk+Xᵀ

kΣ̃1xke
ᵀ
k+ekx

ᵀ
kΣ̃1xke

ᵀ
k).

Therefore,

wᵀ
1X(nI−XᵀΣ1

θ
X)−1Xᵀw1 =

1

n
wᵀ

1XA−1Xᵀw1.(7.2)

By the definition of Xk and Ak, we observe that the k-th row and k-th
colomn of Ak are 0 except for the diagonal entry. Hence it is not hard to
conclude the following important facts

eᵀkA
−1
k ek = 1,(7.3)

eᵀiA
−1
k ek = 0, i 6= k(7.4)

and

XkA
−1
k ek = Xkek = 0.(7.5)

In the sequel, we prove the central limit theorem for 1
nwᵀ

1XA−1Xᵀw1I(Fd)
instead of 1

nwᵀ
1XA−1Xᵀw1. In fact, it follows from (7.1) that I(Fd) = 1 with

high probability. Therefore 1
nwᵀ

1XA−1Xᵀw1 and 1
nwᵀ

1XA−1Xᵀw1I(Fd) have
the same central limit theorem. Let Ek = E(.|x1, ...,xk), E = E(.) and write

wᵀ
1XA−1Xᵀw1I(Fd)− Ewᵀ

1XA−1Xᵀw1I(Fd)(7.6)

=
n∑
k=1

(Ek − Ek−1)wᵀ
1XA−1Xᵀw1I(Fd)

=
n∑
k=1

(Ek − Ek−1)
(
wᵀ

1XA−1Xᵀw1I(Fd)−wᵀ
1XkA

−1
k Xᵀ

kw1I(F
(k)
d )

)
=

n∑
k=1

(Ek − Ek−1)
(
wᵀ

1XA−1Xᵀw1 −wᵀ
1XkA

−1
k Xᵀ

kw1

)
I(Fd) + op(n

−2)

=

n∑
k=1

(Ek − Ek−1)(I1 + 2I2 + I3 −wᵀ
1XkA

−1
k Xᵀ

kw1)I(Fd) + op(n
−2),
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where the third equality follows from (7.1), I1 = (wᵀ
1xk)

2eᵀkA
−1ek, I2 =∑

i 6=k wᵀ
1xkw

ᵀ
1xie

ᵀ
iA
−1ek, and I3 =

∑
i,j 6=k wᵀ

1xiw
ᵀ
1xje

ᵀ
iA
−1ej . We define

ak = 1− 1

n
(xᵀ
kΣ̃1XkA

−1
(k)ek + xᵀ

kΣ̃1xke
ᵀ
kA
−1
(k)ek)(7.7)

and

bk = 1− 1

n
eᵀkA

−1
k Xᵀ

kΣ̃1xk.(7.8)

We next simplify the formula. Noting that wᵀ
1X = wᵀ

1Xk + wᵀ
1xke

ᵀ
k, by

the formulas

W−1 = Q−1 − Q−1(W −Q)Q−1

1 + tr(Q−1(W −Q))
(7.9)

and

(Q +
m∑
j=1

abᵀj )
−1a =

Q−1a

1 +
∑m

j=1 b
ᵀ
jQ
−1a

,(7.10)

we have

(7.11)

A−1 = A−1
(k) +

A−1
(k)(ekx

ᵀ
kΣ̃1Xk + ekx

ᵀ
kΣ̃1xke

ᵀ
k)A

−1
(k)

nak

= A−1
k +

A−1
k Xᵀ

kΣ̃1xke
ᵀ
kA
−1
k

nbk
+

A−1
(k)(ekx

ᵀ
kΣ̃1Xk + ekx

ᵀ
kΣ̃1xke

ᵀ
k)A

−1
(k)

nak

and

I1 = (wᵀ
1xk)

2eᵀkA
−1ek =

(w1xk)
2eᵀkA

−1
(k)ek

ak
(7.12)

=
(w1xk)

2eᵀkA
−1
k ek

ak(1− 1
neᵀkA

−1
k Xᵀ

kΣ̃1xk)
=

(w1xk)
2eᵀkA

−1
k ek

akbk
=

(w1xk)
2

akbk
.

Moreover, it follows from (7.3), (7.4) and (7.9) that

bk = 1− 1

n
eᵀkA

−1
k Xᵀ

kΣ̃1xk = 1(7.13)

and

ak = 1− 1

n
xᵀ
kΣ̃1XkA

−1
(k)ek = 1− 1

n2
eᵀkA

−1
k ekx

ᵀ
kΣ̃1XkA

−1
k Xᵀ

kΣ̃1xk(7.14)

= 1− 1

n2
xᵀ
kΣ̃1XkA

−1
k Xᵀ

kΣ̃1xk.
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By the Cauchy interlacing property we know

1

n2
xᵀ
kΣ̃1XkA

−1
k Xᵀ

kΣ̃1xkI(Fd) ≤
1

n2
xᵀ
kΣ̃1xk‖Σ̃

1/2
1 XkA

−1
k Xᵀ

kΣ̃
1/2
1 ‖I(Fd)(7.15)

=
1

n2
xᵀ
kΣ̃1xk‖A−1

k Xᵀ
kΣ̃1Xk‖I(Fd) ≤

1

n2
xᵀ
kΣ̃1xk‖A−1

k ‖‖X
ᵀ
kΣ̃1Xk‖I(Fd)

≤ 2(
p

nθ
)2.

This implies that

akI(Fd) = 1 +O((
p

nθ
)2).(7.16)

As for the term i 6= k, by (7.4), (7.5), (7.9) and (7.10) we have
(7.17)

A−1ek =
A−1

(k)ek

ak
=

A−1
k ek
ak

+
A−1
k Xᵀ

kΣ̃1xk
akbk

=
A−1
k ek
ak

+
A−1
k Xᵀ

kΣ̃1xk
ak

.

We then conclude that

I2 =
∑
i 6=k

wᵀ
1xkw

ᵀ
1xie

ᵀ
iA
−1ek =

wᵀ
1XkA

−1
k Xᵀ

kΣ̃1xkx
ᵀ
kw1

nak
.(7.18)

It follows from (7.4), (7.5) and (7.11) that for i, j 6= k

(7.19)

I3 =
∑
i,j 6=k

wᵀ
1xiw

ᵀ
1xje

ᵀ
iA
−1ej

=
∑
i,j 6=k

wᵀ
1xiw

ᵀ
1xje

ᵀ
iA
−1
k ej +

∑
i,j 6=k

wᵀ
1xiw

ᵀ
1xje

ᵀ
i

A−1
(k)(ekx

ᵀ
kΣ̃1xke

ᵀ
k + ekx

ᵀ
kΣ̃1Xk)A

−1
(k)

nak
ej

= wᵀ
1XkA

−1
k Xᵀ

kw1 +
wᵀ

1XkA
−1
(k)(ekx

ᵀ
kΣ̃1xke

ᵀ
k + ekx

ᵀ
kΣ̃1Xk)A

−1
(k)X

ᵀ
kw1

nak
.

Consider (Ek − Ek−1)(I3 −wᵀ
1XkA

−1
k Xᵀ

kw1)I(Fd) next.
We claim that

wᵀ
1XkA

−1
(k)(ekx

ᵀ
kΣ̃1xke

ᵀ
k + ekx

ᵀ
kΣ̃1Xk)A

−1
(k)X

ᵀ
kw1

nak
(7.20)

is negligible. Let Bk = Σ̃1XkA
−1
k Xᵀ

kw1w
ᵀ
1XkA

−1
k Xᵀ

kΣ̃1. Indeed, by (7.9)

and (7.3)-(7.5) we have A−1
(k) = A−1

k + 1
nA−1

k Xᵀ
kΣ̃1xke

ᵀ
kA
−1
k . This, together

with (7.3), (7.4) and (7.5) implies that

(7.20) =
wᵀ

1XkA
−1
k Xᵀ

kΣ̃1xke
ᵀ
kA
−1
k ekx

ᵀ
kΣ̃1XkA

−1
k Xᵀ

kw1

n2ak
=

xᵀ
kBkxk
n2ak

.
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It follows from (7.19) and (7.3)-(7.5) that

n∑
k=1

(Ek−Ek−1)(I3−wᵀ
1XkA

−1
k Xᵀ

kw1)I(Fd) =

n∑
k=1

(Ek−Ek−1)
xᵀ
kBkxk
n2ak

I(F
(k)
d )+op(n

−2).

Considering the second moment of the above equation, by Lemma 8.10 of
[7] we have

n∑
k=1

E|(Ek − Ek−1)
xᵀ
kBkxk
n2ak

|2I(F
(k)
d ) ≤ 4

n4

n∑
k=1

E|xᵀ
kBkxk|2I(F

(k)
d )(7.21)

≤ 8

n4

n∑
k=1

E|xᵀ
kBkxk − trBk|2I(F

(k)
d ) +

8

n4

n∑
k=1

E|trBk|2I(F
(k)
d )

≤ Cp2

nθ2
� N,

where we used the inequality

trBk ≤ XkA
−1
k Xᵀ

kΣ̃
2
1XkA

−1
k Xᵀ

kI(F
(k)
d ) = O(

p2

θ2
).

We conclude that

1

n

n∑
k=1

(Ek − Ek−1)(I3 −wᵀ
1XkA

−1
k Xᵀ

kw1)I(Fd) = op(
1√
n

),

which is negligible.
Next we consider I1 and I2. It follows from (7.12) and (7.18) that

1√
n

n∑
k=1

(Ek − Ek−1)(I1 + 2I2)I(Fd)(7.22)

=
2√
n

n∑
k=1

(Ek − Ek−1)
((w1xk)

2

2ak
+

wᵀ
1XkA

−1
k Xᵀ

kΣ̃1xkx
ᵀ
kw1

nak

)
I(Fd).

We claim that the second term of (7.22) is negligible. Actually, similar to
(7.21), it is easy to show that

n∑
k=1

(Ek − Ek−1)
wᵀ

1XkA
−1
k Xᵀ

kΣ̃1xkx
ᵀ
kw1

nak
I(Fd) = op(

√
n)

Therefore, the leading term of (7.22) is

1√
n

n∑
k=1

(Ek − Ek−1)
(wᵀ

1xk)
2

ak
I(Fd)

=
1√
n

n∑
k=1

(Ek − Ek−1)
(1− ak)(wᵀ

1xk)
2

ak
I(Fd) +

1√
n

n∑
k=1

(Ek − Ek−1)(wᵀ
1xk)

2I(Fd).



26 T. TONY CAI ET AL.

Similar to (7.21), by (7.16) we can show that

1√
n

n∑
k=1

(Ek − Ek−1)
(1− ak)(wᵀ

1xk)
2

ak
I(Fd) = op(1).

It suffices to show CLT for

1√
n

n∑
k=1

(Ek − Ek−1)(wᵀ
1xk)

2 =
1√
n

n∑
k=1

[
(wᵀ

1xk)
2 − 1

]
.(7.23)

By the CLT for the sum of i.i.d. variables, we conclude that

1√
nσ

n∑
k=1

(Ek − Ek−1)(wᵀ
1xk)

2 D→ N(0, σ2),

where

σ2 =
1

n
E
[
(wᵀ

1xk)
2 − 1

]2
=

∑p+l
i=1 γ4iw

4
1i + 3

∑p+l
i 6=j w2

1iw
2
1j − 1

n
(7.24)

=

p+l∑
i=1

(γ4i − 3)w4
1i + 2.

7.2. Calculation of the Mean. This section is to calculate the expecta-
tion of 1

nwᵀ
1XA−1Xᵀw1I(Fd). The strategy is to prove that

√
nE
[

1

n
wᵀ

1X0A−1(X0)ᵀw1I(Fd) + m̃θ(1)

]
→ 0,(7.25)

and

1√
n
E
[
wᵀ

1XA−1Xᵀw1I(Fd)−wᵀ
1X0A−1(X0)ᵀw1I(Fd)

]
→ 0,(7.26)

where X0 = (x0
1, ...,x

0
n) is (p + l) × n matrix with i.i.d. standard Gaussian

random variables. As before, we omit I(Fd) in the following proof.
We prove (7.26) first by the Lindeberg’s strategy. Define

Z1
k =

k∑
i=1

xie
ᵀ
i +

n∑
i=k+1

x0
i e

ᵀ
i , Z0

k =

k−1∑
i=1

xie
ᵀ
i +

n∑
i=k

x0
i e

ᵀ
i ,

Zk =
k−1∑
i=1

xie
ᵀ
i +

N∑
i=k+1

x0
i e

ᵀ
i , Â1

k = I− 1

n
(Z1

k)
ᵀΣ̃1Z

1
k,

Â0
k = I− 1

n
(Z0

k)
ᵀΣ̃1Z

0
k and Âk = I− 1

n
Zᵀ
kΣ̃1Zk.
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Then we have X = Z1
N , X0 = Z0

1, Z0
k+1 = Z1

k. It follows that

1√
n
E
[
wᵀ

1XA−1Xᵀw1 −wᵀ
1X0A−1(X0)ᵀw1

]
(7.27)

=
1√
n

n∑
k=1

E
[
wᵀ

1Z1
k(Â

1
k)
−1(Z1

k)
ᵀw1 −wᵀ

1Z0
k(Â

0
k)
−1(Z0

k)
ᵀw1

]
=

1√
n

n∑
k=1

E
[
wᵀ

1Z1
k(Â

1
k)
−1(Z1

k)
ᵀw1 −wᵀ

1ZkÂ
−1
k Zᵀ

kw1

]
+

1√
n

n∑
k=1

E
[
wᵀ

1ZkÂ
−1
k Zᵀ

kw1 −wᵀ
1Z0

k(Â
0
k)
−1(Z0

k)
ᵀw1

]
.

For any k, similar to the expansions from (7.11)-(7.20), we can get

E
[
wᵀ

1Z1
k(Â

1
k)
−1(Z1

k)
ᵀw1 −wᵀ

1ZkÂ
−1
k Zᵀ

kw1

]
(7.28)

= E

[
(w1xk)

2

âk
+

2wᵀ
1ZkÂ

−1
k Zᵀ

kΣ̃1xkx
ᵀ
kw1

nâk
+

xᵀ
kB̂kxk
n2âk

]
,

where B̂k = Σ̃1ZkÂ
−1
k Zᵀ

kw1w
ᵀ
1ZkÂ

−1
k Zᵀ

kΣ̃1 and âk = 1− 1
n2 xᵀ

kΣ̃1ZkÂ
−1
k Zᵀ

kΣ̃1xk.

Let āk = 1− 1
n2 trΣ̃1ZkÂ

−1
k Zᵀ

kΣ̃1, τk = âk − āk. Then we have

1

âk
=

1

āk
− τk
âkāk

.(7.29)

By Lemma 8.10 of [7], we conclude that

E|τk|2 = E| 1

n2
xᵀ
kΣ̃1ZkÂ

−1
k Zᵀ

kΣ̃1xk −
1

n2
trΣ̃1ZkÂ

−1
k Zᵀ

kΣ̃1|2(7.30)

≤ C

n4
tr(Σ̃1ZkÂ

−1
k Zᵀ

kΣ̃1)2 = O(
d2

p
).

Consider the first term at the right hand side of (7.28). It follows from (7.29),
(7.30) and Holder’s inequality that
(7.31)

|E(
(w1xk)

2

âk
− (w1xk)

2

āk
)| = |E(w1xk)

2τk
âkāk

| ≤ C
√

E(w1xk)4
√
Eτ2

k = O(
d
√
p

).

Thus we conclude that

E
(w1xk)

2

âk
= E

(w1xk)
2

āk
+O(

d
√
p

) = E
1

āk
+ o(

1√
n

).
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Moreover, a similar approach can be applied to the other terms at the right
hand side of (7.28) and thus we have

1√
n

n∑
k=1

E
[
wᵀ

1Z1
k(Â

1
k)
−1(Z1

k)
ᵀw1 −wᵀ

1ZkÂ
−1
k Zᵀ

kw1

]
(7.32)

=
1√
n

n∑
k=1

E

[
1

āk
+

2wᵀ
1ZkÂ

−1
k Zᵀ

kΣ̃1w1

nāk
+
trB̂k

n2āk

]
+ o(1).

By the same arguments above, we can also get

1√
n

n∑
k=1

E
[
wᵀ

1ZkÂ
−1
k Zᵀ

kw1 −wᵀ
1Z0

k(Â
0
k)
−1(Z0

k)
ᵀw1

]
(7.33)

= − 1√
n

n∑
k=1

E

[
1

āk
+

2wᵀ
1ZkÂ

−1
k Zᵀ

kΣ̃1w1

nāk
+
trB̂k

n2āk

]
+ o(1).

Combining (7.27), (7.32) and (7.33), the equation (7.26) holds.
We next prove (7.25). To simplify notation, we use X for X0 and hence

assume that X follows standard normal distribution. By wᵀ
1Uᵀ

2 = 0, we
conclude that wᵀ

1X is independent of A and hence 1
nEwᵀ

1XA−1Xᵀw1 =
1
nEtrA

−1. By (6.2.4) of [7](or Lemma 3.1 of [11]), we have

1

n
EtrA−1 = E

1

1 + rᵀ1A
−1
1 r1

,

where we denote A = Σ̃
1/2
1 XXᵀΣ̃

1/2
1 −I, ri = 1√

N
Σ̃

1/2
1 xi and Aj =

∑
i 6=j rir

ᵀ
i−

I. By Lemma 8.10 of [7], we have

E|rᵀ1A
−1
1 r1 −

1

θN
trA−1

1 Σ1| ≤
C

n2
trΣ̃2

1 = o(M−1),(7.34)

which concludes that E 1
1+rᵀ1A−1

1 r1
= E 1

1+ 1
θN

trA−1
1 Σ1

+ o(n−1/2). Moreover,

E| 1

1 + 1
θN trA

−1
1 Σ1

− 1

1 + 1
θNEtrA−1

1 Σ1

|2 ≤ C

n2
E|trA−1

1 Σ1 − EtrA−1
1 Σ1|2

≤ C

n
E|β12r

ᵀ
2A
−2
12 r2|2 = o(n−1).(7.35)

Hence E 1
1+ 1

θN
trA−1

1 Σ1
= 1

1+ 1
θN

EtrA−1
1 Σ1

+ o(n−1/2). Define βi = 1
1+rᵀiA

−1
i ri

,

bi = 1
1+ 1

nθ
EtrΣ1A−1

i

, and αi = rᵀiA
−1
i ri − 1

nθ trΣ1A
−1
i . By the equality that

A1 + I− b(θ)Σ̃1 =
∑
i 6=1

rir
ᵀ
i − b(θ)Σ̃1,
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we have

A−1
1 = −(I− b1(θ)Σ̃1)−1 + b1(z)A(θ) +B(θ) + C(θ),(7.36)

where

A(θ) =
∑
i 6=1

(I− b1(θ)Σ̃1)−1(rir
ᵀ
i −

1

nθ
Σ1)A−1

i ,

B(θ) =
∑
i 6=1

(βi − b1)(I− b1(θ)Σ̃1)−1rir
ᵀ
iA
−1
i ,

C(θ) = n−1b1(I− b1(θ)Σ1)−1Σ̃1

∑
i 6=1

(A−1
1 −A−1

1i ).

For A(θ), similar to (7.34) we have
(7.37)
1

n
E|trA(θ)Σ̃1| ≤

1

n

∑
i 6=2

E|rᵀi A−1i Σ̃1(I−b1(θ)Σ̃1)−1ri−
1

nθ
tr(Σ1A

−1
i Σ̃1(I−b1(θ)Σ̃1)−1)| = o(M−1).

Similar to the previous inequalities (7.34)-(7.35) or as in Chapter 9 of [7],
we can also show that B(θ) and C(θ) are negligible. Hence we get

(7.38)
1

n
EtrA−1

1 Σ̃1 = − 1

n
tr(I− b1(θ)Σ̃1)−1Σ̃1 + o(n−1/2),

which implies that

1

n
EtrA−1 =

1

1− 1
n tr(I−

1
n(EtrA−1)Σ̃1)−1Σ̃1

+ o(n−1/2),(7.39)

By the Steiltjes transform of the limit of the ESD of any sample covariance
matrix, there exists only one m̃θ(z) such that (One can also refer to (1.6) of
[11] or (6.12)-(6.15) of [7])

m̃θ(z) = − 1

z − 1
n tr(I + m̃θ(z)Σ̃1)−1Σ̃1

, z ∈ C+.(7.40)

Consider the difference between (7.39)-(7.40) and denote δ = 1
nEtrA

−1 +
m̃θ(1). It is easy to conclude that

δ(1+

1
n tr

[
(I− 1

n(EtrA−1)Σ̃1)−1Σ̃1(I + m̃θ(1)Σ̃1)−1Σ̃1

]
(1− 1

n tr(I−
1
n(EtrA−1)Σ̃1)−1Σ̃1)(1− 1

n tr(I + m̃θ(1)Σ̃1)−1Σ̃1)
) = o(n−1/2).

Together with the fact that ‖Σ̃1‖ = O(θ−1), it follows that δ = o(1/
√
n).

Therefore, we have shown that

√
n(

1

n
EtrA−1 + m̃θ(1))→ 0.(7.41)
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