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1 Introduction

Consider the nonparametric regression model:

yi = f(ti) + σ zi, i = 1, 2, ..., n, (1)

where ti = i/n, σ is the noise level and zi’s are independent standard normal random

variables. The goal is to estimate the unknown regression function f(·) based on the

sample {yi}.
Wavelet methods have demonstrated considerable success in nonparametric regression.

They achieve a high degree of adaptivity through thresholding of the empirical wavelet

coefficients. Standard wavelet approaches threshold the empirical coefficients term by term

based on their individual magnitudes. See, for example, Donoho and Johnstone (1994a),

Gao (1998), and Antoniadis and Fan (2001). More recent work has demonstrated that block

thresholding, which simultaneously keeps or kills all the coefficients in groups rather than

individually, enjoys a number of advantages over the conventional term-by-term thresh-

olding. Block thresholding increases estimation precision by utilizing information about

neighboring wavelet coefficients and allows the balance between variance and bias to be

varied along the curve which results in adaptive smoothing. The degree of adaptivity,

however, depends on the choice of block size and threshold level.

The idea of block thresholding can be traced back to Efromovich (1985) in orthogonal

series estimators. In the context of wavelet estimation, global level-by-level thresholding

was discussed in Donoho and Johnstone (1995) for regression and in Kerkyacharian, Picard

and Tribouley (1996) for density estimation. But these block thresholding methods are not

local, so they do not enjoy a high degree of spatial adaptivity. Hall, Kerkyacharian and

Picard (1999) introduced a local blockwise hard thresholding procedure with a block size

of the order (log n)2 where n is the sample size. Cai (1999) considered blockwise James-

Stein rules and investigated the effect of block size and threshold level on adaptivity using

an oracle inequality approach. In particular it was shown that a block size of order log n

is optimal in the sense that it leads to an estimator which is both globally and locally

adaptive. Cai and Silverman (2001) considered overlapping block thresholding estimators

and Chicken and Cai (2004) applied block thresholding to density estimation.

The block size and threshold level play important roles in the performance of a block

thresholding estimator. The local block thresholding methods mentioned above all have

fixed block size and threshold and same thresholding rule is applied to all resolution levels

regardless of the distribution of the wavelet coefficients. In the present paper, we propose a

data-driven approach to empirically select both the block size and threshold at individual
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resolution levels. At each resolution level, the procedure, SureBlock, chooses the block

size and threshold empirically by minimizing Stein’s Unbiased Risk Estimate (SURE). By

empirically selecting both the block size and threshold and allowing them to vary from

resolution level to resolution level, the SureBlock estimator has significant advantages over

the more conventional wavelet thresholding estimators with fixed block sizes.

We consider in the present paper both the numerical performance and asymptotic prop-

erties of the SureBlock estimator. It is shown that the minimizer of SURE yields a near-

optimal estimate of the wavelet coefficient vector at each resolution level which in turn

generates an adaptive nonparametric estimator of the regression function f . The theo-

retical properties of the SureBlock estimator are considered in the Besov sequence space

formulation that is by now classical for the analysis of wavelet regression methods. Besov

spaces, denoted by Bα
p,q and defined in Section 4, are a very rich class of function spaces

which contain functions of homogeneous and inhomogeneous smoothness. The theoretical

results show that the SureBlock estimator automatically adapts to the sparsity of the un-

derlying wavelet coefficient sequence and enjoys excellent adaptivity over a wide range of

Besov bodies. In particular, in the “dense case” p ≥ 2 the SureBlock estimator is sharp

adaptive over all Besov bodies Bα
p,q(M) with p = q = 2 and adaptively achieves within a

factor of 1.25 of the minimax risk over Besov bodies Bα
p,q(M) for all p ≥ 2, q ≥ 2. At the

same time the SureBlock estimator achieves simultaneously within a constant factor of the

minimax risk over a wide collection of Besov bodies Bα
p,q(M) in the “sparse case” p < 2.

These properties are not shared simultaneously by many commonly used fixed block size

procedures such as VisuShrink (Donoho and Johnstone (1994a)), SureShrink (Donoho and

Johnstone (1995)) or BlockJS (Cai (1999)).

The SureBlock estimator is completely data-driven and easy to implement. A simu-

lation study is carried out and the numerical findings reconfirm the theoretical results.

The numerical results show that SureBlock has superior finite sample performance in com-

parison to the other leading wavelet estimators. More specifically, SureBlock uniformly

outperforms both VisuShrink and SureShrink (Donoho and Johnstone, 1994a and 1995) in

all 42 simulation cases in terms of the average squared error. SureBlock procedure is better

than BlockJS (Cai (1999)) in 37 out of 42 cases.

The paper is organized as follows. After Section 2 in which basic notation and block

thresholding methods are briefly reviewed, we introduce in Section 3 the SureBlock pro-

cedure. Asymptotic properties of the SureBlock estimator are presented in Section 4.

Numerical implementation and finite-sample performance of the SureBlock estimator are

then discussed in Section 5. The numerical performance of SureBlock is compared with
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those of VisuShrink (Donoho and Johnstone (1994a)), SureShrink (Donoho and Johnstone

(1995)) and BlockJS (Cai (1999)). The proofs are given in Section 6.

2 Wavelets And Block Thresholding

Let {φ, ψ} be a pair of father and mother wavelets. The functions φ and ψ are assumed

to be compactly supported and
∫

φ = 1. Dilation and translation of φ and ψ generate

an orthonormal wavelet basis with an associated orthogonal Discrete Wavelet Transform

(DWT) which transforms sampled data into the wavelet coefficient domain. A wavelet

ψ is called r-regular if ψ has r vanishing moments and r continuous derivatives. See

Daubechies (1992) and Strang (1992) for details on the discrete wavelet transform and

compactly supported wavelets.

Let φj,k(x) = 2
j
2 φ(2jx− k), and ψj,k(x) = 2

j
2 ψ(2jx− k). For a given square-integrable

function f on [0, 1], define the wavelet coefficients of the wavelet expansion of f by

ξj,k = 〈f, φj,k〉, θj,k = 〈f, ψj,k〉.

Suppose we observe the noisy data Y = (y1, y2, ..., yn)′ as in (1) and suppose the sample

size n = 2J for some integer J > 0. We use the standard device of the discrete wavelet

transform to turn the function estimation problem into a problem of estimating wavelet

coefficients. Let Ỹ = W · Y be the discrete wavelet transform of Y . Then Ỹ can be written

as

Ỹ = (ξ̃j0,1, · · · , ξ̃j02j0 , ỹj0,1, · · · , ỹj0,2j0 , · · · , ỹJ−1,1, · · · , ỹJ−1,2J−1)′. (2)

where j0 is some fixed primary resolution level. Here ξ̃j0,k are the gross structure terms at

the lowest resolution level, and ỹj,k are the empirical wavelet coefficients at level j which

represent fine structure at scale 2j. Since the DWT is an orthogonal transform, the ỹj,k

are independent normal random variables with standard deviation σ. Note that the mean

of n−
1
2 ỹj,k equals, up to some “small” approximation errors, the wavelet coefficient θj,k

of f . See Daubechies (1992). Through the discrete wavelet transform the nonparametric

regression problem is then turned into a problem of estimating a high dimensional normal

mean vector.

A block thresholding procedure thresholds wavelet coefficients in groups and makes

simultaneous decisions on all the coefficients within a block. Fix a block size L and a

threshold level λ and divide the empirical wavelet coefficients ỹj,k at any given resolution

level j into nonoverlapping blocks of size L. Denote (jb) the indices of the coefficients in

the b-th block at level j, i.e. (jb) = {(j, k) : (b− 1)L + 1 ≤ k ≤ bL}. Let S2
jb =

∑
k∈(jb) ỹ2

j,k
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denote the sum of squared empirical wavelet coefficients in the block. A block (jb) is

deemed important if S2
jb is larger than the threshold λ and then all the coefficients in the

block are retained; otherwise the block is considered negligible and all the coefficients in

the block are estimated by zero. The most commonly used rules for a given block are the

James-Stein rule

θ̂j,k = ỹj,k · (1− λ

S2
jb

)+ for (j, k) ∈ (jb) (3)

and the hard thresholding rule

θ̂j,k = ỹj,k · I(S2
jb > λ), for (j, k) ∈ (jb). (4)

The estimator of {f(ti), i = 1, 2, . . . , n} is then given by the inverse discrete wavelet trans-

form of the thresholded wavelet coefficients.

Block thresholding estimators depend on the choice of the block size L and threshold

level λ which largely determines the performance of the resulting estimator. It is thus

important to choose L and λ in an optimal way.

3 The SureBlock Procedure

As discussed in the previous section the nonparametric regression problem of estimating

f can be turned into a problem of estimating a high dimensional normal mean vector by

applying the orthogonal discrete wavelet transform to the data. We thus begin in this

section by considering estimation of the mean of a multivariate normal random variable.

Suppose that we observe

xi = θi + σzi, i = 1, 2, ..., d (5)

where zi are independent standard normal random variables and σ is known. Here x =

(x1, · · · , xd) represents the observations in one resolution level in wavelet regression. With-

out loss of generality we assume in this section σ = 1. We wish to estimate θ = (θ1, · · · , θd)

based on the observations x = (x1, · · · , xd) under the average mean squared error:

R(θ̂, θ) =
1

d

d∑
i=1

E(θ̂i − θi)
2. (6)

We shall estimate θ by a blockwise James-Stein estimator with block size L and thresh-

old level λ chosen empirically by minimizing Stein’s Unbiased Risk Estimate (SURE). Let

L ≥ 1 be the possible length of each block, and m = d/L be the number of blocks.

5



(For simplicity we shall assume that d is divisible by L in the following discussion.)

Let x b = (x(b−1)L+1, ..., xbL) represent observations in the b-th block, and similarly θ b =(
θ(b−1)L+1, ..., θbL

)
and z b =

(
z(b−1)L+1, ..., zbL

)
. Let S2

b = ‖x b‖2
2 for b = 1, 2, ..., m. The

Blockwise James-Stein estimator is given by

θ̂ b(λ, L) =

(
1− λ

S2
b

)

+

x b, b = 1, 2, ...,m (7)

where λ ≥ 0 is the threshold level. Write θ̂ b(λ, L) = x b + g(x b), where g is a function from

IRL to IRL. Stein (1981) showed that when g is weakly differentiable, then

Eθ b
‖θ̂b(λ, L)− θ b‖2

2 = Eθ b

{
L + ‖g‖2

2 + 2∇ · g}
.

In our case,

g (x b) =

(
1− λ

S2
b

)

+

x b − x b

is weakly differentiable. Simple calculations show Eθ b
‖θ̂b(λ, L)−θ b‖2

2 = Eθ b
(SURE (x b, λ, L))

where

SURE (x b, λ, L) = L +
λ2 − 2λ (L− 2)

S2
b

I
(
S2

b > λ
)

+
(
S2

b − 2L
)
I

(
S2

b ≤ λ
)
. (8)

This implies that the total risk Eθ‖θ̂(λ, L)− θ‖2
2 = EθSURE (x, λ, L) where

SURE (x, λ, L) =
m∑

b=1

SURE (x b, λ, L) (9)

is an unbiased estimate of risk.

We choose the block size LS and threshold level λS to be the minimizer of SURE (x, λ, L),

i.e. (
λS, LS

)
= arg min

λ, L
SURE (x, λ, L) .

The estimator of θ is then given by (7) with L = LS and λ = λS.

The SURE Block James-Stein estimator has some drawbacks in situations of extreme

sparsity of wavelet coefficients. We propose to use a hybrid scheme similar to Donoho

and Johnstone (1995) and Johnstone (1999). The hybrid method works as follows. Set

Td = d−1
∑

(x2
i − 1), γd = d−

1
2 log

3
2
2 d and λF = 2L log d. For a fixed 0 ≤ v < 1 let (λ∗, L∗)

denote the minimizers of SURE with an additional restriction on the search range :

(λ∗, L∗) = arg min
max{L−2,0}≤λ≤λF ,1≤L≤dv

SURE (x, λ, L) . (10)
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Define the estimator θ̂∗(x) of θ by

θ̂∗b = θ̂b(λ
∗, L∗), if Td > γd, (11)

and

θ̂∗i =

(
1− 2 log d

x2
i

)

+

xi, if Td ≤ γd. (12)

When Td ≤ γd the estimator is a degenerate Block James-Stein estimator with block size

L = 1. In this case the estimator is also called the non-negative garrote estimator. See

Breiman (1995) and Gao (1998). The SURE approach has also been used for the selection

of the threshold level for fixed block size procedures, term-by-term thresholding (L = 1) in

Donoho and Johnstone (1995) and block thresholding (L = log n) in Chicken (2004).

We now return to the nonparametric regression model (1). As in Section 2 denote by

Ỹ j = {ỹj,k : k = 1, ..., 2j} and θj = {θj,k : k = 1, ..., 2j} the empirical and true wavelet

coefficients of the regression function f at resolution level j. We apply the hybrid SURE

Block James-Stein procedure to the empirical wavelet coefficients Ỹ j level by level and then

use the inverse discrete wavelet transform to obtain the estimate of the regression function.

More specifically the procedure for wavelet regression, called SureBlock, has the following

steps.

1. Transform the data into the wavelet domain via the discrete wavelet transform: Ỹ =

W · Y .

2. At each resolution level j, Select the block size L∗j and threshold level λ∗j by minimizing

Stein’s unbiased risk estimate and then estimate the wavelet coefficients by the hybrid

Block James-Stein rule. More precisely, for j0 ≤ j < J

(λ∗j , L
∗
j) = arg min

max{L−2,0}≤λ≤λF ,1≤L≤2vj

SURE
(
σ−1Ỹ j, λ, L

)
(13)

where Ỹ j is the empirical wavelet coefficient vector at resolution level j, and

θ̂j = σ · θ̂∗(σ−1Ỹ j) (14)

where θ̂∗ is the hybrid Block James-Stein estimator given in (11) and (12).

3. Obtain the estimate of the function via the inverse discrete wavelet transform of the

denoised wavelet coefficients: f̂ = W−1 · Θ̂.
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Theoretical results given in Section 4 show that the pair (L∗j , λ
∗
j) is asymptotically

optimal in the sense that the resulting block thresholding estimator adaptively attains the

exact minimax block thresholding risk asymptotically.

Note that, in contrast to some other block thresholding methods, both the block size and

threshold level of the SureBlock estimator are chosen empirically and vary from resolution

level to resolution level. Both the theoretical and numerical results given in the next two

sections show that the SureBlock estimator outperforms wavelet thresholding estimators

with a fixed block size.

4 Theoretical Properties of SureBlock

In this section we turn to the theoretical properties of the SureBlock estimator in the Besov

sequence space formulation that is by now classical for the analysis of wavelet regression

methods. The asymptotic results show that the SureBlock procedure is strongly adaptive.

Besov spaces are a very rich class of function spaces and contain as special cases many

traditional smoothness spaces such as Hölder and Sobolev Spaces. Roughly speaking, the

Besov space Bα
p,q contains functions having α bounded derivatives in Lp norm, the third

parameter q gives a finer gradation of smoothness. Full details of Besov spaces are given,

for example, in Triebel (1983) and DeVore and Popov (1988). For a given r-regular mother

wavelet ψ with r > α and a fixed primary resolution level j0, the Besov sequence norm

‖ · ‖bα
p,q

of the wavelet coefficients of a function f is then defined by

‖f‖bα
p,q

= ‖ξ
j0
‖p +

( ∞∑
j=j0

(2js‖θj‖p)
q

) 1
q

(15)

where ξ
j0

is the vector of the father wavelet coefficients at the primary resolution level j0,

θj is the vector of the wavelet coefficients at level j, and s = α + 1
2
− 1

p
> 0. Note that the

Besov function norm of index (α, p, q) of a function f is equivalent to the sequence norm

(15) of the wavelet coefficients of the function. See Meyer (1992).

We shall focus our theoretical discussion to a sequence space version of the SureBlock

estimator. Suppose that n = 2J for some integer J and that we observe sequence data

yj,k = θj,k + n−
1
2 σzj,k, j ≥ j0, k = 1, 2, · · · , 2j (16)

where zj,k are independent standard normal random variables. We wish to estimate the

mean array θ under the expected squared error

R(θ̂, θ) = E
∑

j,k

(θ̂j,k − θj,k)
2 = E‖θ̂ − θ‖2

2.
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Define the Besov body Bα
p,q(M) by

Bα
p,q(M) = {θ : (

∞∑
j=j0

(2js‖θj‖p)
q)1/q ≤ M} (17)

where, as usual, s = α + 1
2
− 1

p
> 0. The minimax risk of estimating θ over the Besov body

Bα
p,q(M) is

R∗(Bα
p,q(M)) = inf

θ̂
sup

θ∈Bα
p,q(M)

E‖θ̂ − θ‖2
2. (18)

Donoho and Johnstone (1998) show that the minimax risk R∗(Bα
p,q(M)) converges to 0 at

the rate of n−2α/(1+2α) as n →∞.

We apply the SureBlock procedure of Section 3 to the array of empirical coefficients

yj,k for j0 ≤ j < J , to obtain estimated wavelet coefficients θ̂j,k. Set θ̂j,k = 0 for j ≥ J .

The minimax risk among all Block James-Stein estimators with all possible block sizes

1 ≤ Lj ≤ 2jv with 0 ≤ v < 1 and threshold levels λi ≥ 0 is

R∗
T (Bα

p,q(M)) = inf
λj≥0,1≤Lj≤2jv

sup
θ∈Bα

p,q(M)

E

∞∑
j=j0

‖θ̂j(λj, Lj)− θj‖2
2. (19)

We shall call R∗
T (Bα

p,q(M)) the minimax block thresholding risk. It is clear that R∗
T (Bα

p,q(M)) ≥
R∗(Bα

p,q(M)). On the other hand, Theorems 2 and 3 below show R∗
T (Bα

p,q(M)) is within a

small constant factor of the minimax risk R∗(Bα
p,q(M)).

The following theorem shows that the SureBlock estimator adaptively attains the exact

minimax block thresholding risk R∗
T (Bα

p,q(M)) asymptotically over a wide range of Besov

bodies.

Theorem 1 Suppose we observe the sequence model (16). Let θ̂∗ be the SureBlock estima-

tor of θ defined in (11) and (12). Then

sup
θ∈Bα

p,q(M)

Eθ‖θ̂∗ − θ‖2
2 ≤ R∗

T (Bα
p,q(M)) (1 + o (1)) (20)

for 1 ≤ p, q ≤ ∞, 0 < M < ∞, and α > 1
1−v

((1
p
− 1

2
)+ + 1

2
)− 1

2
.

Theorems 2 and 3 below make it clear that the SureBlock procedure is indeed nearly

optimally adaptive over a wide collection of Besov bodies Bα
p,q(M) including both the dense

(p ≥ 2)and sparse (p < 2) cases. The estimator is asymptotically sharp adaptive over Besov

bodies with p = q = 2 in the sense that it adaptively attains both the optimal rate and

optimal constant. Over Besov bodies with p ≥ 2 and q ≥ 2 SureBlock adaptively achieves
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within a factor of 1.25 of the minimax risk. At the same time the maximum risk of the

estimator is simultaneously within a constant factor of the minimax risk over a collection

of Besov bodies Bα
p,q(M) in the sparse case of p < 2.

Theorem 2 (i). The SureBlock estimator is adaptively sharp minimax over Besov bodies

Bα
2,2(M) for all M > 0 and α > v

2(1−v)
. That is,

sup
θ∈Bα

2,2(M)

Eθ‖θ̂∗ − θ‖2
2 ≤ R∗(Bα

2,2(M)) (1 + o (1)) (21)

(ii). The SureBlock estimator is adaptively, asymptotically within a factor of 1.25 of the

minimax risk over Besov bodies Bα
p,q(M),

sup
θ∈Bα

p,q(M)

Eθ‖θ̂∗ − θ‖2
2 ≤ 1.25R∗(Bα

p,q(M)) (1 + o (1)) (22)

for all p ≥ 2, q ≥ 2, M > 0 and α > v/2(1− v).

For the sparse case p < 2, the SureBlock estimator is also simultaneously within a small

constant factor of the minimax risk.

Theorem 3 The SureBlock estimator is asymptotically minimax up to a constant factor

G (p ∧ q) over a large range of Besov bodies with 1 ≤ p, q ≤ ∞, 0 < M < ∞, and

α > 1
1−v

((1
p
− 1

2
)+ + 1

2
)− 1

2
. That is,

sup
θ∈Bα

p,q(M)

Eθ‖θ̂∗ − θ‖2
2 ≤ G (p ∧ q) ·R∗(Bα

p,q(M)) (1 + o (1)) (23)

where G (p ∧ q) is a constant depending only on p ∧ q.

4.1 Analysis of a Single Resolution Level

The proof of the main results given above relies on a detailed risk analysis of the SureBlock

procedure on a single resolution level. In particular we derive the following upper bound

for the risk of SureBlock at a given resolution level. The result may also be of independent

interest for the problem of estimation of a multivariate normal mean.

Consider the sequence model (5) where xi = θi + zi, i = 1, ..., d and zi are independent

normal N(0, 1) variables. Set r(λ, L) = d−1E‖θ̂(λ, L)− θ‖2
2 and let

R (θ) = inf
0≤λ,1≤L≤dv

r (λ, L) = inf
max{L−2,0}≤λ,1≤L≤dv

r (λ, L) (24)

and

RF (θ) = r (2 log d, 1) . (25)

The following theorem gives upper bounds of the risk of the SureBlock estimator.
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Theorem 4 Let the data {xi, i = 1, 2, ..., d} be given as in (5) and let θ̂∗ be the SureBlock

estimator defined in (11) and (12). Set µd = ‖θ‖2
2/d and γd = d−

1
2 log

3
2
2 d. Then

(a). for any constant η > 0 and uniformly in θ ∈ Rd,

d−1Eθ‖θ̂∗ − θ‖2
2 ≤ R (θ) + RF (θ) I (µd ≤ 3γd) + cηd

η− 1
2
+ v

2 ; (26)

(b). for any constant η > 0 and uniformly in µd ≤ 1
3
γd,

d−1Eθ‖θ̂∗ − θ‖2
2 ≤ RF (θ) + cηd

−1−η (27)

where cη is a constant depending only on η.

In the proof of Theorem 1, we will see that R (θ), the ideal risk, is the dominating

term and all other terms in Equations (26) and (27) are negligible. This result shows that

the SureBlock procedure mimics the performance of the oracle procedure where the ideal

threshold level and the ideal block size are given.

Theorem 4 can be regarded as a generalization of Theorem 4 of Donoho and John-

stone(1995) from a fixed block size of one to variable block size. This generalization is

important because it enables the resulting SureBlock estimator to be not only adaptively

rate optimal over a wide collection of Besov bodies across both the dense (p ≥ 2) and

sparse (p < 2) cases, but also sharp adaptive over spaces where linear estimators can be

asymptotically minimax. This property is not shared by fixed block size procedures such as

VisuShrink, SureShrink or BlockJS. The theoretical advantages of the SureBlock estimator

over these fixed block size procedures are also confirmed by the numerical results given in

the next section.

5 Implementation And Numerical Results

We consider in this section the finite sample performance of the SureBlock estimator. The

SureBlock procedure is easy to implement. The following result is useful for numerical im-

plementation as well as the derivation of the theoretical results of the SureBlock estimator.

Proposition 1 Let xi, i = 1, ..., d and SURE (x, λ, L) be given as in (5) and (9), respec-

tively. Let the block size L be given. Then the minimizer λ of SURE (x, λ, L) is an element

of the set A where

A
∆
=

{
x2

i ; 1 ≤ i ≤ d
} ∪ {0} , if L = 1

and

A
∆
=

{
S2

i ; S2
i ≥ L− 2, 1 ≤ i ≤ m

} ∪ {L− 2} , if L ≥ 2.
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Proposition 1 shows that for a given block size L it is sufficient to search over the finite

set A for the threshold λ which minimizes SURE (x, λ, L).

The SureBlock procedure first empirically chooses the optimal threshold and block size

(λ∗, L∗) as in (10). The values of (λ∗, L∗) depend on the choice of the parameter v which

determines the search range for the block size L. In our simulation studies we choose v = 3
4
.

That is,

(λ∗, L∗) = arg min
max{L−2,0}≤λ≤λF ,1≤L≤d

3
4

SURE (x, λ, L) . (28)

The theoretical results given in the next section show that this procedure is adaptively

within a constant factor of the minimax risk over a wide collection of Besov bodies.

The noise level σ is assumed to be known in Section 3. In practice σ needs to be

estimated from the data. We use the following robust estimator of σ given in Donoho and

Johnstone (1994a). The estimator σ̂ is based on the empirical wavelet coefficients at the

highest resolution level,

σ̂ =
1

.6745
median(|ỹJ−1,k| : 1 ≤ k ≤ 2J−1).

In this section we compare the numerical performance of SureBlock with those of Vis-

uShrink (Donoho and Johnstone (1994a)), SureShrink (Donoho and Johnstone (1995)) and

BlockJS (Cai (1999)). VisuShrink thresholds empirical wavelet coefficients individually

with a fixed threshold level. SureShrink is a term by term thresholding procedure which

selects the threshold at each resolution level by minimizing Stein’s unbiased risk estimate.

In the simulation, we use the hybrid method proposed in Donoho and Johnstone (1995).

BlockJS is a block thresholding procedure with a fixed block size log n and a fixed threshold

level. Each of these wavelet estimators has been shown to perform well numerically as well

as theoretically. For further details see the original papers.

Six test functions, representing different level of spatial variability, and various sample

sizes, wavelets and signal to noise ratios are used for a systematic comparison of the four

wavelet procedures. The test functions are plotted in Figure 3 in Appendix. Sample sizes

ranging from n = 256 to n = 16384 and signal-to-noise ratios (SNR) from 3 to 7 were

considered. The SNR is the ratio of the standard deviation of the function values to the

standard deviation of the noise. Different combinations of wavelets and signal-to-noise

ratios yield basically the same results. For reasons of space, we only report in detail the

results for one particular case, using Daubechies’ compactly supported wavelet Symmlet 8

and SNR equal to 7. We use the software package WaveLab for simulations and the

procedures MultiVisu (for VisuShrink) and MultiHybrid (for SureShrink) in WaveLab 802

are used (See http://www-stat.stanford.edu/˜wavelab/).
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Figure 1: The vertical bars represent the ratios of the average squared errors of various estimators
to the corresponding average squared error of SureBlock. The higher the bar the better the relative
performance of SureBlock. The bars are plotted on a log scale and are truncated at the value 2
of the original ratio. For each signal the bars are ordered from left to right by the sample sizes
(n = 256 to 16382).

Table 1 below reports the average squared errors (rounded to three significant digits)

over 50 replications for the four thresholding estimators. A graphical presentation is given

in Figure 1. SureBlock consistently outperforms both VisuShrink and SureShrink in all 42

simulation cases in terms of the average squared error. SureBlock procedure is better than

BlockJS about 88% of times (37 out of 42 cases). SureBlock fails to dominate BlockJS

only for the test function ”Doppler”. For n = 16384 the risk ratio of SureShrink to

BlockJS is 0.021/0.011 ≈ 2. However, SureBlock is almost as good as BlockJS with a

risk ratio 0.012/0.011 ≈ 1. Although SureBlock does not dominate BlockJS for the test

function ”Doppler” , the improvement of SureBlock over BlockJS is significant for other

test functions.
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The simulation results show that, by empirically choosing the block size and threshold

and allowing them to vary from resolution level to resolution level, the SureBlock estimator

has significant numerical advantages over thresholding estimators with fixed block size L =

1 (VisuShrink or SureShrink) or L = log n (BlockJS). These numerical findings reconfirm

the theoretical results given in Section 4.

n VS SS BJS SB n VS SS BJS SB

Blocks Bumps

256 2.635 0.669 0.990 0.583 256 3.360 0.773 0.865 0.636
512 2.143 0.705 0.707 0.481 512 2.758 0.618 0.571 0.487

1024 1.576 0.438 0.473 0.334 1024 1.856 0.537 0.389 0.378
2048 1.038 0.341 0.289 0.251 2048 1.205 0.299 0.237 0.215
4096 0.676 0.204 0.246 0.144 4096 0.745 0.176 0.203 0.139
8192 0.434 0.140 0.143 0.100 8192 0.460 0.108 0.109 0.077

16382 0.279 0.086 0.083 0.057 16382 0.270 0.050 0.056 0.037

Doppler HeaviSine

256 1.512 0.468 0.405 0.359 256 0.420 0.240 0.371 0.228
512 0.953 0.390 0.208 0.304 512 0.285 0.169 0.197 0.160

1024 0.633 0.237 0.146 0.174 1024 0.207 0.093 0.125 0.087
2048 0.403 0.154 0.074 0.110 2048 0.149 0.070 0.074 0.056
4096 0.222 0.073 0.036 0.051 4096 0.081 0.037 0.055 0.033
8192 0.127 0.035 0.020 0.025 8192 0.058 0.027 0.032 0.023

16382 0.079 0.021 0.011 0.013 16382 0.038 0.015 0.018 0.012

Piece-Polynomial Piece-Regular

256 2.400 0.735 1.067 0.582 256 2.265 0.839 0.896 0.601
512 1.687 0.518 0.737 0.431 512 1.503 0.530 0.558 0.427

1024 1.195 0.369 0.424 0.295 1024 0.978 0.328 0.335 0.262
2048 0.805 0.264 0.261 0.199 2048 0.705 0.227 0.199 0.167
4096 0.495 0.157 0.207 0.123 4096 0.419 0.134 0.157 0.098
8192 0.332 0.104 0.116 0.079 8192 0.268 0.086 0.091 0.061

16382 0.207 0.064 0.062 0.044 16382 0.169 0.049 0.049 0.033

Table 1: Average squared errors over 50 replications with SNR = 7. In the table VS stands for
VisuShrink, SS for SureShrink, BJS for BlockJS and SB for SureBlock.

In addition to the comparison of the overall global performance of the wavelet estima-

tors, it is also instructive to compare the performance at individual resolution levels and

to examine the value in the empirical selection of block sizes. Table 2 gives the average

14



squared errors at individual resolution levels over 50 replications for Bumps with n = 1024

and SNR = 7. Table 2 compares the errors for SureBlock, SureShrink and an estimator,

called SureGarrote, which empirically chooses the threshold λ at each level but fixes the

block size L = 1. SureBlock consistently outperforms SureGarrote and SureShrink at each

resolution level. Both SureGarrote and SureShrink have block size L = 1, the results in-

dicate that the Non-negative garrote shrinkage is slightly better than soft thresholding in

this example.

Resolution Level j 3 4 5 6 7 8 9

SureBlock 0.007 0.018 0.029 0.044 0.062 0.077 0.138

SureGarrote 0.026 0.022 0.029 0.050 0.069 0.081 0.139

SureShrink 0.036 0.043 0.030 0.053 0.080 0.101 0.195

Table 2: Average squared errors at individual resolution levels

Figure 2 shows a typical result of the SureBlock procedure applied to the noisy Bumps

signal. The left panel is the noisy signal; the middle panel is a display of the empirical

wavelet coefficients arranged according resolution levels; and the right panel is the Sure-

Block reconstruction (solid line) and the true signal (dotted line). In this example the

block sizes chosen by SureBlock are 2, 3, 1, 5, 3, 5 and 1 from the resolution level j = 3 to

level j = 9.
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Figure 2: SureBlock procedure applied to a noisy Bumps signal.
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6 Proofs

Throughout this section, without loss of generality, we shall assume the noise level σ = 1.

We first prove Theorem 4 and then use it as the main tool to prove Theorem 1. The proofs

of Theorems 2 and 3 and Proposition 1 are given later.

6.1 Notation And Preparatory Results

Before proving the main theorems, we need to introduce some notation and collect a few

technical results. The proofs of some of these preparatory results are long and tedious. For

reasons of space these proofs are omitted here. We refer interested readers to Cai and Zhou

(2005) for the complete proofs.

Consider the sequence model (5) with σ = 1. For a given block size L and threshold

level λ, set rb (λ, L) = Eθ b
‖θ̂b(λ, L)− θ b‖2 and define

r (λ, L) =
1

d

m∑

b=1

rb (λ, L) = ED (λ, L)

where D (λ, L) = 1
d

∑m
b=1 ‖θ̂b(λ, L)− θ b‖2

2. Set

R̃ (θ) = inf
λ≤λF ,1≤L≤dv

r (λ, L) = inf
max{L−2,0}≤λ≤λF ,1≤L≤dv

r (λ, L) . (29)

The difference between R̃(θ) and R(θ) defined in (24) is that the search range for the

threshold λ in R̃(θ) is restricted to be at most λF . The result given below shows that the

effect of this restriction is negligible for any block size L.

Lemma 1 For any fixed η > 0, there exists a constant Cη > 0 such that for all θ ∈ Rd,

R̃ (θ)−R (θ) ≤ Cad
a− 1

2 .

The following simple lemma is adapted from Donoho and Johnstone (1995) and is used

the proof of Theorem 4.

Lemma 2 Let Td = d−1
∑

(x2
i − 1) and µd = d−1‖θ‖2

2. If γ2
dd/ log d →∞, then

sup
µd≥3γd

(1 + µd) P (Td ≤ γd) = o
(
d−

1
2

)
.

We also need the following bounds for the loss of the SureBlock estimator and the

derivative of the risk function rb (λ, L). The first bound is used in the proof of Theorem 1

and the second in the proof of Theorem 4.
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Lemma 3 Let {xi : i = 1, ..., d} be given as in (5) with σ = 1. Then

‖θ̂∗ − θ‖2
2 ≤ 2λF d + 2‖z‖2

2 (30)

and for λ > 0 and L ≥ 1, ∣∣∣∣
∂

∂λ
rb (λ, L)

∣∣∣∣ < 6. (31)

Finally we develop a key technical result for the proof of Theorem 4. Set

U (λ, L)
∆
=

1

d
SURE (x, λ, L) = 1 +

1

d

m∑

b=1

(
λ2 − 2λ (L− 2)

S2
b

I
(
S2

b > λ
)

+
(
S2

b − 2L
)
I

(
S2

b ≤ λ
))

.

Note that both D (λ, L) and U (λ, L) have expectation r (λ, L).

The goal is to show that the minimizer
(
λS, LS

)
of Stein unbiased estimator of risk

U (λ, L) is asymptotically the ideal threshold level and block size. The key step is to show

that the following difference

∆d =

∣∣∣∣ED
(
λS, LS

)− inf
λ,L

r (λ, L)

∣∣∣∣

is negligible for max {L− 2, 0} ≤ λ ≤ λF and 1 ≤ L ≤ dv. It is easy to verify that for any

two functions g and h defined on the same domain, | infx g(x) − infx h(x)| ≤ supx |g(x) −
h(x)|. Hence,

|U(λS, LS)− inf
λ,L

r(λ, L)| = | inf
λ,L

U(λ, L)− inf
λ,L

r(λ, L)| ≤ sup
λ,L

|U(λ, L)− r(λ, L)|

and consequently

∆d ≤ E

∣∣∣∣D
(
λS, LS

)− r
(
λS, LS

)
+ r

(
λS, LS

)− U
(
λS, LS

)
+ U

(
λS, LS

)− inf
λ,L

r (λ, L)

∣∣∣∣
≤ Esup

λ,L
|D (λ, L)− r (λ, L)|+ 2Esup

λ,L
|r (λ, L)− U (λ, L)| . (32)

The following proposition provides the upper bounds for the two terms on the RHS of (32)

and is a key technical result for the proof of Theorem 4.

Proposition 2 Uniformly in θ ∈ Rd , for 0 ≤ v < 1 we have

Eθ sup
max{L−2,0}≤λ≤λF ,1≤L≤dv

|U (λ, L)− r (λ, L)| = o
(
dη− 1

2
+ v

2

)
(33)

Eθ sup
max{L−2,1/ log d}≤λ≤λF ,1≤L≤dv

|D (λ, L)− r (λ, L)| = o
(
dη− 1

2
+ v

2

)
(34)

for any 1− v > η > 0, where λF = 2L log d.

In the proofs we will denote by C a generic constant that may vary from place to place.
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6.2 Proof of Theorem 4

The proof of Theorem 4 is similar to but more involved than those of Theorem 4 of Donoho

and Johnstone(1995) and Theorem 2 of Johnstone (1999) because of variable block size.

Without loss of generality, we may assume λ ≥ 1/ log d since equation (31) implies

R (θ) ≤ inf
1/ log d≤λ,1≤L≤dv

r (λ, L) ≤ (1 + C/ log d) R (θ) ,

which means that the ideal risk over λ ≥ 1/ log d is asymptotically the same as the ideal risk

over all λ ≥ 0. Correspondingly, we shall also restrict the minimizer of U (λ, L) searched

over [1/ log d,∞) instead of over [0,∞) in the SureBlock procedure.

Set Td = d−1
∑

(x2
i − 1) and γd = d−

1
2 log

3
2
2 d. Define the event Ad = {Td ≤ γd} and

decompose the risk of SureBlock procedure into two parts,

Rd (θ) = d−1Eθ‖θ̂∗ − θ‖2
2 = R1,d (θ) + R2,d (θ)

where R1,d (θ) = d−1Eθ

{
‖θ̂∗ − θ‖2

2I (Ad)
}

and R2,d (θ) = d−1Eθ

{
‖θ̂∗ − θ‖2

2I (Ac
d)

}
.

We first consider R1,d (θ). On the event Ad, the signal is sparse and θ̂∗ is the non-

negative garrote estimator θ̂∗i = (1− 2 log d/x2
i )+xi by the definition of θ̂∗ in equation (12).

Decomposing R1,d (θ) further into two parts with either µd = d−1‖θ‖2
2 ≤ 3γd or µd > 3γd

yields that

R1,d (θ) ≤ RF (θ) I (µd ≤ 3γd) + r1,d (θ)

where RF (θ) is the risk of the non-negative garrote estimator and

r1,d (θ) = d−1Eθ

{
‖θ̂∗ − θ‖2

2I (Ad)
}

I (µd > 3γd) .

Note that on the event Ad, ‖θ̂∗‖2
2 ≤ ‖x‖2

2 ≤ d + dγd and so

r1,d(θ) ≤ 2d−1(E‖θ̂∗‖2
2 + ‖θ‖2

2)P (Ad) I (µd > 3γd) ≤ 2 (1 + 2µd) P (Ad) = o(d−
1
2 ) (35)

where the last step follows from Lemma 2.

Note that for any η > 0, Lemma 1 yields that for some constant Cη > 0

R̃ (θ)−R (θ) ≤ Cηd
η− 1

2 (36)

for all θ ∈ Rd, and Equations (32) - (34) yield

R2,d (θ)− R̃ (θ) ≤ ∆d ≤ Cdη− 1
2
+ v

2 . (37)

The proof of part (a) of the theorem is completed by putting together Equations (35)-(37).
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We now turn to part (b). Note first that R1,d (θ) ≤ RF (θ). On the other hand,

R2,d (θ) = d−1E
{
‖θ̂∗ − θ‖2

2I (Ac
d)

}
≤ Cd−1

(
E‖θ̂∗ − θ‖4

2

) 1
2
P

1
2 (Ac

d) .

To complete the proof of (27), it then suffices to show that under the assumption µd ≤ 1
3
γd,

E‖θ̂∗− θ‖4
2 is bounded by a polynomial of d and P (Ac

d) decays faster than any polynomial

of d−1. Note that in this case ‖θ‖2
2 = dµd ≤ d

1
2 log

3
2
2 d. Since ‖θ̂∗‖2

2 ≤ ‖x‖2
2 and xi = θi + zi,

E‖θ̂∗ − θ‖4
2 ≤ E

(
2‖θ̂∗‖2

2 + 2‖θ‖2
2

)2

≤ E
(
2‖x‖2

2 + 2‖θ‖2
2

)2

≤ E
(
4‖θ‖2

2 + 2‖z‖2
2

)2 ≤ 32‖θ‖4
2 + 8E‖z‖4

2

≤ 32d log3
2 d + 16d + 8d2.

On the other hand, it follows from Hoeffding’s inequality and Mill’s inequality that

P (Ac
d) = P

(
d−1

∑ (
z2

i + 2ziθi + θ2
i − 1

)
> d−

1
2 log

3
2
2 d

)

≤ P

(
d−1

∑
(z2

i − 1) >
1

3
d−

1
2 log

3
2
2 d

)
+ P

(
d−1

∑
2ziθi >

1

3
d−

1
2 log

3
2
2 d

)

≤ 2 exp
(−C log3

2 d
)

+
1

2
exp

(−C log3
2 d/µd

)

which decays faster than any polynomial of d−1.

6.3 Proof of Theorem 1

We now use Theorem 4 as one of the main technical tools to prove Theorem 1. Again we

set σ = 1. To more conveniently use the results given in Theorem 4, we shall renormalize

the model (16) so that the noise level is 1. Multiplying by a factor of n
1
2 on both sides, the

sequence model (16) becomes

y′j,k = θ′j,k + zj,k, j ≥ j0, k = 1, 2, · · · , 2j (38)

where y′j,k = n
1
2 yj,k and θ′j,k = n

1
2 θj,k. Note that Eθ‖θ̂∗− θ‖2

2 = n−1Eθ′‖θ̂′∗− θ′‖2
2 where the

expectation on the left side is under model (16) and the right side under the renormalized

model (38). We shall use the sequence model (38) in the proof below.

Fix 0 < ε0 < 1/(1 + 2α) and let J0 be the largest integer satisfying 2J0 ≤ nε0 . Write

n−1Eθ′‖θ̂′∗ − θ′‖2
2 =

(∑
j≤J0

∑

k

+
∑

J0≤j<J1

∑

k

+
∑
j≥J1

∑

k

)
n−1Eθ′‖θ̂′∗ − θ′‖2

2

= S1 + S2 + S3
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where J1 > J0 is to be chosen later. Since 0 < ε0 < 1/(1+2α), nε0n−1 log n = o
(
n−2α/(1+2α)

)
.

It then follows from equation (30) in Lemma 3 that

S1 ≤ CλF nε0n−1 = o
(
n−

2α
1+2α

)

which is negligible relative to the minimax risk. On the other hand, it follows from (26) in

Theorem 4 that

S2 ≤
∑

J0≤j<J1

n−12jR
(
θ′j

)
+

∑
J0≤j<J1

n−12jRF

(
θ′j

)
I (µ′2j ≤ 3γ2j) +

∑
J0≤j<J1

n−1cη2
j(η+1/2+v/2)

= S21 + S22 + S23

where µ′2j = 2−j‖θ′j‖2
2 = 2−jn‖θj‖2

2 and γ2j = 2−
j
2 j

3
2 . It is obvious that

S21 =
∑

J0≤j<J1

n−12jR(θ′j) ≤ R∗
T (Bα

p,q(M)) (39)

and R∗
T (Bα

p,q(M)) ≥ R∗(Bα
p,q(M)) ≥ Cn−2α/(1+2α) for some constant C > 0. We shall see

that both S22 and S23 are negligible relative to the minimax risk. Note that

S23 =
∑

J0≤j<J1

n−1cη2
j(η+1/2+v/2) ≤ Cn−12J1(η+1/2+v/2). (40)

On the other hand, it follows from the Oracle Inequality (3.10) in Cai (1999) with L = 1

and λ = λF = 2 log(2j) that

2jRF (θ′j) ≤
2j∑

j=1

(nθ2
j,k ∧ λF ) + 8(2 log 2j)−

1
2 2−j ≤ n‖θj‖2

2 + 8(2 log 2j)−
1
2 2−j. (41)

Recall that µ′2j = 2−jn‖θj‖2
2 and γ2j = 2−

j
2 j

3
2 . It then follows from (41) that

S22 =
∑

J0≤j<J1

n−12jRF (θ′j)I(µ′2j ≤ 3γ2j) ≤
∑

J0≤j<J1

(
3n−12

j
2 j

3
2 + 8n−1(2 log 2j)−

1
2 2−j

)

≤ Cn−12J1(η+ 1
2)J

3
2
1 . (42)

Hence if J1 satisfies 2J1 = nγ with some γ < 1
(1+2α)(η+1/2+v/2)

, then (40) and (42) yield

S22 + S23 = o
(
n−

2α
1+2α

)
. (43)

We now turn to the term S3. It is easy to check that for θ ∈ Bα
p,q(M), ‖θj‖2

2 ≤ M22−2α′j

where α′ = α− (1
p
− 1

2
)+ > 0. Note that if J1 satisfies 2J1 = nγ for some γ > 1

1/2+2α′ , then
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for all sufficiently large n and all j ≥ J1, µ′2j ≤ 1
3
γ2j where γ2j = 2−

j
2 j

3
2 . It thus follows

from (27) and (41) that whenever α > 2(1
p
− 1

2
)+,

S3 =
∑
j≥J1

∑

k

n−1Eθ′(θ̂
′∗
j,k − θ′j,k)

2 ≤
∑
j≥J1

(
n−12jRF (θ′j) + cηn

−12−jη
)

≤
∑
j≥J1

‖θj‖2
2 + Cn−1 ≤ C2−2α′J1 + Cn−1 = o(n−

2α
1+2α ). (44)

For α > 1
1−v

(
2(1

p
− 1

2
)+ + 1

2

)
− 1

2
, both Equations (43) and (44) hold, and hence the proof

is completed by choosing γ satisfying

1

1/2 + 2
(
α− (1/p− 1/2)+

) < γ <
1

(1 + 2α) (η + 1/2 + v/2)
.

This is always possible by choosing η > 0 sufficiently small.

6.4 Proof of Theorem 2

Define the minimax linear risk by R∗
L(Bα

p,q(M)) = inf θ̂ linear supθ∈Bα
p,q(M) E‖θ̂ − θ‖2

2. It

follows from Donoho, Liu and MacGibbon (1990) that

R∗
L(Bα

p,q(M)) = sup
θ∈Bα

p,q(M)

∞∑
j=j0

∑

k

(
θ2

j,k/n

θ2
j,k + 1/n

)
,

R∗
L(Bα

p,q(M)) = R∗(Bα
p,q(M))(1 + o(1)) for p = q = 2,

and R∗
L(Bα

p,q(M)) ≤ 1.25R∗(Bα
p,q(M))(1 + o(1)), for all p > 2 and q > 2.

It therefore suffices to establish that the SureBlock procedure asymptotically attains

the minimax linear risk, i.e.,

sup
θ∈Bα

p,q(M)

Eθ‖θ̂∗ − θ‖2
2 ≤ R∗

L(Bα
p,q(M))(1 + o(1)), for α > 0, p ≥ 2 and q ≥ 2.

Recall that in the proof of Theorem 1 it is shown that

Eθ‖θ̂∗ − θ‖2
2 ≤ S1 + S21 + S22 + S23 + S3,

where S1 + S22 + S23 + S3 = o(n−2α/(2α+1)) and S21 =
∑

J0≤j<J1
n−12jR(θ′j) with J0 and J1

chosen as in the proof of Theorem 1. Since the minimax risk R∗(Bα
p,q(M)) ³ n−2α/(2α+1),

this implies that S21 is the dominating term in the maximum risk of the SureBlock proce-

dure. It follows from the definition of R(θ′j) given in (24) that

n−12jR(θ′j) ≤ n−1
∑

b

Eθ′b‖θ̂
′
b(Lj − 2, Lj)− θ′b‖2

2
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where the RHS is the risk of the blockwise James-Stein estimator with any fixed block size

1 ≤ Lj ≤ 2jv where 0 ≤ v < 1 and a fixed threshold level Lj − 2.

Stein’s unbiased risk estimate (see for example Lehmann (1983, page 300)) yields that

n−1
∑

b

Eθ′b‖θ̂
′
b(Lj − 2, Lj)− θ′b‖2

2 ≤
∑

b

(
‖θ b‖2 Lj/n

‖θ b‖2 + Lj/n
+

2

n

)
.

Hence the maximum risk of SureBlock procedure satisfies

sup
θ∈Bα

p,q(M)

Eθ‖θ̂∗ − θ‖2
2 ≤ sup

θ∈Bα
p,q(M)

∑
J0≤j<J1

∑

b

(
‖θ b‖2 Lj/n

‖θ b‖2 + Lj/n
+

2

n

)
· (1 + o(1))

= sup
θ∈Bα

p,q(M)

( ∑
J0≤j<J1

∑

b

‖θ b‖2
2Lj/n

‖θ b‖2
2 + Lj/n

+ 2
∑

J0≤j<J1

2j

nLj

)
· (1 + o(1)).

Note that in the proof of Theorem 1, J1 satisfies2J1 = nγ with γ < 1
(1+2α)(η+1/2+v/2)

. Hence

if Lj satisfies 2jρ ≤ Lj ≤ 2jv for some ρ > 1
2
− v

2
− η, then

∑
j≤J1

2j

nLj

≤ 1

n
2 · 2J1( 1

2
+ v

2
+η) = o

(
n−

2α
1+2α

)

and hence

sup
θ∈Bα

p,q(M)

Eθ‖θ̂∗ − θ‖2
2 ≤ sup

θ∈Bα
p,q(M)

∑
J0≤j<J1

∑

b

(
‖θ b‖2 Lj/n

‖θ b‖2 + Lj/n

)
· (1 + o(1)).

To complete the proof it remains to show that

sup
θ∈Bα

p,q(M)

∑
J0≤j<J1

∑

b

(
‖θ b‖2 Lj/n

‖θ b‖2 + Lj/n

)
≤ R∗

L(Bα
p,q(M))(1 + o(1)). (45)

Note that

2j/Lj∑

b=1

‖θ b‖2 Lj/n

‖θ b‖2 + Lj/n
=

Lj

n
(
2j

Lj

−
2j/Lj∑

b=1

Lj/n

‖θ b‖2 + Lj/n
) =

2j

n
−

(
Lj

n

)2 2j/Lj∑

b=1

1

‖θ b‖2 + Lj/n
.

Then the simple inequality (
∑m

i=1 ai)(
∑m

i=1 a−1
i ) ≥ m2, for ai > 0, 1 ≤ i ≤ m yields that

∑
J0≤j<J1

∑

b

(
‖θ b‖2 Lj/n

‖θ b‖2 + Lj/n

)
≤ 2j

n
−

(
Lj

n

)2 (
2j

Lj

)2 2j/Lj∑

b=1

(
‖θ b‖2 +

Lj

n

)

=
2j/n

∑2j/Lj

b=1 ‖θ b‖2

∑2j/Lj

b=1 ‖θ b‖2 + 2j/n
=

2j/n
∑

k |θj,k|2∑
k |θj,k|2 + 2j/n

.
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Theorem 2 in Cai, Low and Zhao (2000) shows that

sup
θ∈Bα

p,q(M)

∑
J0≤j<J1

2j/n
∑

k |θj,k|2∑
k |θj,k|2 + 2j/n

= R∗
L(Bα

p,q(M))(1 + o(1)),

and this proves inequality (45).

6.5 Proof of Theorem 3

To establish the theorem, it suffices to show the following result which plays the role similar

to that of Proposition 16 in Donoho and Johnstone (1994b).

Proposition 3 Let X ∼ N (µ, 1) and let Fp (η) denote the probability measures F (dµ)

satisfying the moment condition
∫ |µ|p F (dµ) ≤ ηp. Let

r (δg
λ, η) = sup

Fp(η)

{
EF rg (µ) :

∫
|µ|p F (dµ) ≤ ηp

}
,

where rg (µ) = Eµ (δg
λ (x)− µ)2 and δg

λ (x) =
(
1− λ2

x2

)
+

x. Let p ∈ (0, 2) and λ =
√

2 log η−p, then

r (δg
λ, η) ≤ 2ηpλ2−p (1 + o (1)) as η → 0.

Proof of Proposition 3 : It follows from an analogous argument to the proof of Proposition

16 in Donoho and Johnstone (1994b) that

rg (δλ, η) = sup
µ≥η

(
η

µ

)p

rg (µ) (1 + o(1)), as η → 0.

Stein’s unbiased risk estimate yields that

rg (µ) = Eµ

[
1 +

(
x2 − 2

)
I (|x| ≤ λ) +

(
2λ2

x2
+

λ4

x2

)
I (|x| ≥ λ)

]

≤ 1 +
(
λ2 − 2

)
P (|x| ≤ λ) +

(
2 + λ2

)
P (|x| ≥ λ)

≤ λ2 (1 + o (1))

which implies that for µ ≥ λ
(

η

µ

)p

rg (µ) ≤ ηpλ2−p (1 + o (1)) , as η → 0. (46)

Similarly,

rg (µ) = Eµ

[
x2 − 1 +

(
2λ2

x2
+

λ4

x2
− x2 + 2

)
I (|x| ≥ λ)

]
≤ µ2 + 4P (|x| ≥ λ) .
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Now the simple inequality P (|x| ≥ λ) ≤ 2φ(λ)
λ

+ µ2

4
= µ2

4
+ o (ηp) yields that for η ≤ µ < λ

(
η

µ

)p

rg (µ) ≤ 2ηpλ2−p (1 + o (1)) , as η → 0. (47)

The proposition now follows from (46) and (47).

We now return to the proof of Theorem 3. Set ρg (η)
∆
= infλ supFp(η) EF rg (µ). Then

Proposition 3 implies that

ρg (η) ≤ r (δg
λ, η) ≤ 2ηp

(
2 log η−p

)(2−p)/2
(1 + o (1)) , as η → 0.

For p ∈ (0, 2), Theorem 18 of Donoho and Johnstone (1994b) shows the univariate Bayes-

minimax risk satisfies

ρ (η)
∆
= inf

δ
sup
Fp(η)

EF Eµ (δ (x)− µ)2 = ηp
(
2 log η−p

)(2−p)/2
(1 + o(1)), as η → 0.

Note that ρg (η) /ρ (η) is bounded as η → 0 and ρg (η) /ρ (η) → 1 as η → ∞. Both

ρg(η) and ρ(η) are continuous on (0,∞), so

G (p) = sup
η

ρg (η)

ρ (η)
< ∞, for p ∈ (0, 2) .

Theorems 4 and 5 in Section 4 of Donoho and Johnstone (1998) derived the asymptotic

minimaxity over Besov bodies from the univariate Bayes-minimax estimators. It then

follows from an analogous argument of Section 5.3 in Donoho and Johnstone (1998) that

R∗
T (Bα

p,q(M)) ≤ inf
λj

sup
θ∈Bα

p,q(M)

E

∞∑
j=j0

‖θ̂j(λj, 1)− θj‖2 ≤ G (p ∧ q) ·R∗(Bα
p,q(M)) (1 + o (1)) .

6.6 Proof of Proposition 1

Proposition 1 in Section 5 shows that the minimizer of the Stein’s unbiased estimator of

risk for the block James-Stein estimator is in a finite set A with cardinality |A| ≤ d + 1.

This makes the implementation of the SureBlock procedure easy. In addition, Proposition

1 is needed for the proof of Proposition 2, a key result to prove Theorem 4.

Proof of Proposition 1: We shall consider two separate cases: L = 1 and L ≥ 2. For

L = 1, we define A = {x2
i ; 1 ≤ i ≤ d} ∪ {0}. From equations (8) and (9), Stein’s unbiased

estimator of risk is

SURE (x, λ, 1) =
d∑

i=1

(
1 +

λ2 + 2λ

x2
i

I
(
x2

i > λ
)

+
(
x2

i − 2
)
I

(
x2

i ≤ λ
))

.
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Suppose, without loss of generality, that the xi have been reordered in the order of increasing

|xi| . On intervals x2
k ≤ λ < x2

k+1 ,

SURE (x, λ, 1) = d +
k∑

i=1

(
x2

i − 2
)

+
∑

i≥k+1

λ2 + 2λ

x2
i

is strictly increasing. So is true on the interval 0 ≤ λ < x2
1. Therefore the minimizer λS of

SURE (x, λ, 1) is either 0 or one of the x2
i .

We now turn to the case L ≥ 2. We first show that λS ≥ L− 2, or equivalently that

SURE (x, λ, L) ≥ SURE (x, L− 2, L) (48)

uniformly for 0 ≤ λ ≤ L− 2. It suffices to show that for every block b

SURE (x b, λ, L) ≥ SURE (x b, L− 2, L) , for 0 ≤ λ ≤ L− 2.

Equation (8) gives

SURE (x b, L− 2, L)− SURE (x b, λ, L)

= −(λ− (L− 2))2

S2
b

I
(
S2

b > L− 2
)

+

(
S4

b − 2LS2
b − λ2 + 2λ (L− 2)

S2
b

)
I

(
λ < S2

b ≤ L− 2
)

The first term on the right side is nonpositive and the second term can be also shown to

be nonpositive. Note that the convex function h (x) = x2 − 2Lx − (λ2 − 2λ (L− 2)) is

nonpositive at two endpoints x = λ and x = L− 2 which implies

S4
b − 2LS2

b − λ2 + 2λ (L− 2) ≤ 0, for λ < S2
b ≤ L− 2.

Thus inequality (48) is established.

We now consider the case λ ≥ L−2 with L ≥ 2. Let S2
(1) ≤ S2

(2) ≤ · · · ≤ S2
(m) denote the

order statistics of S2
i , 1 ≤ i ≤ m. On the interval S2

(k) ≤ λ < S2
(k+1) for some 1 ≤ k ≤ m, we

consider two separate cases: (i) L− 2 ≤ S2
(k) ≤ λ < S2

(k+1); (ii) S2
(k) ≤ L− 2 ≤ λ < S2

(k+1).

If L− 2 ≤ S2
(k) ≤ λ < S2

(k+1), it follows from equation (8) that

SURE (x, λ, L) = d +
k∑

b=1

(
S2

(b) − 2L
)

+
∑

b≥k+1

λ2 − 2λ (L− 2)

S2
(b)

which, as a function of λ, achieves minimum at S2
(k). For the second case, SURE (x, λ, L)

achieves minimum at λ = L−2 from the equation above, and this completes the proof.
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7 Appendix: Proofs of Technical Results

We collect in this Appendix the proofs of the technical results stated in Section 6.1.

7.1 Proof of Lemma 1

Recall that R (θ) and R̃ (θ) are defined as following

R (θ) = inf
λ,1≤L≤nv

r (λ, L) = inf
L−2≤λ,1≤L≤nv

r (λ, L)

R̃ (θ) = inf
λ≤λF ,1≤L≤nv

r (λ, L) = inf
L−2≤λ≤λF ,1≤L≤nv

r (λ, L) ,

If R (θ) = r (λ1, L1) with λ1 ≤ λF , R̃ (θ) − R (θ) = 0. In the case R (θ) = r (λ1, L1) with

λ1 > λF , we have R̃ (θ) ≤ r
(
λF , L1

)
, which implies

R̃ (θ)−R (θ) ≤ r
(
λF , L1

)− r (λ1, L1)

=
1

d

m∑

b=1

(
rb

(
λF , L1

)− rb (λ1, L1)
)

then it is enough to prove

B = rb

(
λF , L

)− rb (λ1, L) ≤ Cdδ−1

uniformly for all λ1, b and L. Recall that

rb (λ, L) = ‖θ b‖2 + Eθ b
g (λ) I

(
S2

b > λ
)

where

g (λ) =
λ2 − 2λ (L− 2)

S2
b

− S2
b + 2L

which is an increasing function of λ for λ ≥ L− 2, then simple algebra gives

B ≤ Eθ b

((
λF

)2 − 2λF (L− 2)

S2
b

− S2
b + 2L

)
I

(
λ1 ≥ S2

b > λF

)

Note that (
λF

)2 − 2λF (L− 2)

S2
b

− S2
b + 2L ≤ 0, when S2

b ≥ λF + 2

so

B ≤ Eθ b

((
λF

)2 − 2λF (L− 2)

S2
b

− S2
b + 2L

)
I

(
λF + 2 ≥ S2

b > λF

)

≤ 4Pθ b

(
λF + 2 ≥ S2

b > λF

)
.
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Then

B ≤ 4Pθ b

(
λF + 2 ≥ S2

b

)

≤ 4Pθ b

(
λF + 2 ≥ 1/2‖θb‖2

2 − ‖zb‖2
2

)
= O

(
d−1

)

when ‖θ b‖2
2 ≥ 4λF .

Now we consider the case ‖θ b‖2 ≤ 4λF . We have

r
(
λF , θ b

)− r (λ1, θb) = −
∫ λ1

λF

∂

∂λ
r (λ, θ b) dλ

= −
∫ λ1

λF

∞∑

k=0

θk
∗e
−θ∗

k!

(∫

y>λ

2λ− 2L + 4

y
fL+2k (y) dy − 4fL+2k (λ)

)
dλ

and

fL+2k (λ) = −
∫

y>λ

f ′L+2k (y) dy

= −
∫

(L + 2k) /2− 1− y/2

y
fL+2k (y) dy

which leads to

r
(
λF , θ b

)− r (λ1, θb)

= −2

∫ λ1

λF

∞∑

k=0

θk
∗e
−θ∗

k!

(∫

y>λ

λ + 2k − y

y
fL+2k (y) dy

)
dλ

= I1 − I2

where

I1 = 2

∫ λ1

λF

∞∑

k=0

θk
∗e
−θ∗

k!

(∫

y>λ+2k

y − (λ + 2k)

y
fL+2k (y) dy

)
dλ

I2 = 2

∫ λ1

λF

∞∑

k=0

θk
∗e
−θ∗

k!

(∫

λ+2k≥y>λ

(λ + 2k)− y

y
fL+2k (y) dy

)
dλ

Note that

I1 = 2

∫ λ1

λF

∞∑

k=0

θk
∗e
−θ∗

k!

(∫

y>λ+4k

+

∫

λ+4k≥y>λ+2k

y − (λ + 2k)

y
fL+2k (y) dy

)
dλ

= I11 + I12

and

I2 = 2

∫ λ1

λF

∞∑

k=0

θk
∗e
−θ∗

k!

(∫ λ+2k

max{λ,L+2k−2}
+

∫ max{λ,L+2k−2}

min{λ,L+2k−2}

(λ + 2k)− y

y
fL+2k (y) dy

)
dλ

= I21 + I22
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where

I11 = o
(
d−1/2

)
,

since
∫

y>λ+4k

y − (λ + 2k)

y
fL+2k (y) dy ≤ P

(
χ2

L+2k ≥ λF + 4k
)

≤ 1

2

[(
λF + 4k

L + 2k

)−1

exp

(
−1

2

(
λF + 4k − L + 2k

))
]

= o
(
d−1/2

)

by Lemma 2 in Cai (1999 ), and I22 ≥ 0, then

I1 − I2 ≤ o
(
d−1/2

)
+ I12 − I21.

When λ ≥ L + 2k − 2, then fL+2k (y) is increasing on [λ,∞), thus we have

∫ λ+4k

λ+2k

y − (λ + 2k)

y
fL+2k (y) dy −

∫ λ+2k

λ

(λ + 2k)− y

y
fL+2k (y) dy

=

∫ 2k

0

[
z

z + λ + 2k
fL+2k (z + λ + 2k)− z

λ + 2k − z
fL+2k (λ + 2k − z)

]
dz ≤ 0

because the integrand is nonpositive. When λ ≤ L + 2k − 2, then k ≥ (
λF − L + 2

)
/2.

Let’s assume k ≤ MλF . In this case, we consider the following difference

∫ λ+4k

λ+2k

y − (λ + 2k)

y
fL+2k (y) dy −

∫ λ+2k

L+2k−2

(λ + 2k)− y

y
fL+2k (y) dy

≤
∫ λ+4k

λ+2k

y − (λ + 2k)

y
fL+2k (y) dy −

∫ (λ+L)/2+2k−2

L+2k−2

(λ + 2k)− y

y
fL+2k (y) dy

Note that, for c1 > c2 > 1 and m = L + 2k we have

fm (c1m)

fm (c2m)
=

(
c1

c2

)m/2−1

e(c2−c1)m/2 =
c2

c1

em(c2−log c2−(c1−log c1)) ≥ c2

c1

em(1−1/c1)(c2−c1)

because (x− log x)′ = 1− 1/x ≥ 1− 1/c1, for c2 ≥ x ≥ c1, as d →∞ we have fm(c1m)
fm(c2m)

À m

which implies as d →∞ the following term is negative

∫ λ+4k

λ+2k

y − (λ + 2k)

y
fL+2k (y) dy −

∫ (λ+L)/2+2k−2

L+2k−2

(λ + 2k)− y

y
fL+2k (y) dy

≤ 2kfL+2k (λ + 2k)−
(

(λ + 2k)− ((λ + L) /2 + 2k − 2)

(λ + L) /2 + 2k − 2

)
fL+2k ((λ + L) /2 + 2k − 2)
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and further I12 ≤ I21, as d →∞. If k ≥ MλF , it is easy to see
∑ θk∗e−θ∗

k!
= o

(
1
d

)
by Stirling

formula when M is sufficient large, which implies
∣∣∣∣∣2

∫ λ1

λF

∞∑

k≥M2L

θk
∗e
−θ∗

k!

(∫

y>λ

λ + 2k − y

y
fL+2k (y) dy

)
dλ

∣∣∣∣∣ = o

(
1

d

)

Putting all together, we obtain the lemma.

7.2 Proof of Lemma 3

As in the proof of Theorem 4, set Td = d−1
∑

(x2
i − 1), γd = d−

1
2 log

3
2
2 d and define the

event Ad = {Td ≤ γd}. Then it follows from the definition of the SureBlock estimator that

‖θ̂∗ − θ‖2
2 =

∑

b

‖θ̂b(λ
∗, L∗)− θb‖2

2I(Ad) + ‖θ̂F − θ‖2
2I(Ac

d) (49)

where θF denotes the non-negative garrote estimator given in (12).

Note that the James-Stein estimator satisfies

‖θ̂b(λ, L)− θb‖2
2 = ‖(1− λ

S2
b

)xb − θb‖2
2 ≤ 2‖zb‖2

2 + 2
λ2

S2
b

if S2
b ≥ λ

= ‖θb‖2
2 ≤ 2S2

b + 2‖zb‖2
2 if S2

b < λ

where zb = x b − θ b. Hence

‖θ̂b(λ, L)− θb‖2
2 ≤ 2λ + 2‖zb‖2

2. (50)

Noting λ∗ ≤ λF and applying (50) to both terms on the RHS of (49), we have

‖θ̂∗ − θ‖2
2 ≤ 2

∑

b

(λ∗ + ‖zb‖2
2)I(Ad) + 2(λF d + ‖z‖2

2)I(Ac
d) ≤ 2λF d + 2‖z‖2

2

and this proves (30).

We now turn to the proof of (31). Note that

SURE (x b, λ, L) =

(
λ2 − 2λ (L− 2)

S2
b

− S2
b + 2L

)
I

(
S2

b > λ
)

+ S2
b − L.

Then

rb (λ, L) = Eθ b
(SURE (x b, λ, L))

= ‖θ b‖2
2 + Eθ b

(
λ2 − 2λ (L− 2)

S2
b

− S2
b + 2L

)
I

(
S2

b > λ
)
.
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Note that S2
b has noncentral chi-squared distribution with density function

h (y) =
∞∑

k=0

θk
∗e
−θ∗

k!
fL+2k (y) ,

where θ∗ = ‖θ b‖2
2/2 and fm (y) = 1

2m/2Γ(m/2)
ym/2−1e−y/2. Straightforward calculations then

yield
∂

∂λ
rb (λ, L) =

∞∑

k=0

θk
∗e
−θ∗

k!

(∫

y>λ

2λ− 2L + 4

y
fL+2k (y) dy − 4fL+2k (λ)

)
.

It is easy to see fm (y) achieves maximum at m− 2, then we have

fm (m− 2) =
(√

π
)−1

(
m− 2

m

)m/2

e1−εm/2m−1/2 (m− 2)−1 < 1

from Stirling formula j! =
√

2πjj+1/2 exp (−j + εj) with 1/ (12j + 1) < εj < 1/ (12j). Thus

∣∣∣∣
∂

∂λ
rb (λ, L)

∣∣∣∣ ≤ 2 + 4h (λ) < 6.

7.3 Proof of Proposition 2

The following lemma is a preparation to prove the key technical result, Proposition 2.

Lemma 4 For λ > max {L− 2, 0} and L ≥ 1, we have

|SURE (x b, λ, L)| ≤ λ + 4 (51)

|rb (λ, L)| ≤ λ + 4 (52)

‖θ̂b(λ, L)− θb‖2
2 ≤ 2λ + 2‖zb‖2

2 (53)∣∣∣∣
∂

∂λ
‖θ̂b(λ, L)− θ b‖2

∣∣∣∣ ≤ 3 +
1

λ
‖zb‖2

2 (54)

Proof : (i) From (8) we have

SURE (x b, λ, L) = L +
λ2 − 2λ (L− 2)

S2
b

I
(
S2

b > λ
)

+
(
S2

b − 2L
)
I

(
S2

b ≤ λ
)

then

|SURE (x b, λ, L)| ≤ max

{∣∣∣∣
(

λ2 − 2λ (L− 2) + S2
b L

S2
b

)
I

(
S2

b > λ
)∣∣∣∣ ,

∣∣(S2
b − L

)
I

(
S2

b ≤ λ
)∣∣

}
.
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It is easy to see

0 ≤ λ2 − 2λ (L− 2) + S2
b L

S2
b

=
λ (λ− (L− 4)) + (S2

b − λ) L

S2
b

≤ λ + 4, if S2
b > λ

− (λ + 2) ≤ −L ≤ S2
b − L ≤ λ− L ≤ λ, if S2

b < λ,

then we have |SURE (x b, λ)| ≤ λ + 4.

(ii) The inequality (51) implies |rb (λ, L)| = |Eθb
(SURE (x b, λ, L))| ≤ λ + 4.

(iii) Inequality (53) follows directly from (50) given in the proof of Lemma 3.

(iv) It is also easy to see almost surely

∣∣∣∣
∂

∂λ
‖θ̂b(λ, L)− θ b‖2

∣∣∣∣ =

∣∣∣∣∣
∑

i

(
2λ

x2
i

S4
b

− 2zi
xi

S2
b

)
I

(
S2

b > λ
)
∣∣∣∣∣ .

where zb = x b − θ b. For S2
b > λ, we have

∑
i 2λ

x2
i

S4
b

= 2λ
S2

b
≤ 2 and

∣∣∣∑i 2zi
xi

S2
b

∣∣∣ ≤ ∑
i

z2
i +x2

i

S2
b
≤

1
λ
‖zb‖2

2 + 1.

Now we are ready to prove the two propositions using the lemma above and the following

exponential inequalities:

(i) Let Y1, . . . , Ym be independent, |max Yi −min Yi| ≤ M, and Y m = m−1
∑m

i=1 Yi and

µ = EY m. For t > 0,

P
(∣∣∣Y m − µ

∣∣∣ ≥ t
)
≤ 2 exp

(−2mt2/M2
)
. (55)

(ii) Let Z1, . . . , Zm be i.i.d N (0, 1) . For t > 0,

P
(∣∣∣m−1

∑ (
Z2

i − 1
)∣∣∣ > t

)
≤ 2 exp (−mt (t ∧ 1) /8) . (56)

Proof of Proposition 2: We first prove (33). Set

Zd (λ, L)
∆
= Ud (λ, L)− r (λ, L) =

1

d

m∑

b=1

(SURE (x b, λ, L)− rb (λ, L))

where m = d/L. For rd = L1/2 (log d)1+ρ with ρ > 1/2 to be specified later, (51) and (52)

imply

|SURE (x b, λ, L)− rb (λ, L)| ≤ 2 (λ + 4) ,

then the exponential inequality (55) gives

P
(|Zd (λ, L)| > rdd

−1/2
)

= P
(|Zd (λ, L)|L > rdd

−1/2L
) ≤ 2 exp

{
− r2

dL

2 (λ + 4)2

}
.
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For distinct λ < λ′ with λ′ − λ ≤ δd, where δd will be specified later, let Nd (λ, λ′) =

# {i : λ < S2
b ≤ λ′} , then from (8)

|U (λ, L)− U (λ′, L)| =
∣∣∣∣∣
1

d

m∑

b=1

(SURE (x b, λ, L)− SURE (x b, λ
′, L))

∣∣∣∣∣ = U1 + U2

where

U1 =

∣∣∣∣∣
1

d

∑

b

(
λ2 − 2λ (L− 2)

S2
b

− S2
b − 2L

)
I

(
λ < S2

b ≤ λ′
)
∣∣∣∣∣

U2 =

∣∣∣∣∣
1

d

∑

b

(
λ2 − 2λ (L− 2)

S2
b

− (λ′)2 − 2λ′ (L− 2)

S2
b

)
I

(
λ′ < S2

b

)
∣∣∣∣∣

Simple algebra gives

U1 =

∣∣∣∣∣
1

d

∑

b

(
(λ + S2

b − 2 (L− 2)) (λ− S2
b ) + 4S2

b

S2
b

)
I

(
λ < S2

b ≤ λ′
)
∣∣∣∣∣

≤ 4

d
(1 + δd/L)Nd (λ, λ′)

U2 =

∣∣∣∣∣
1

d

∑

b

(
(λ′ + λ− 2 (L− 2)) (λ′ − λ)

S2
b

)
I

(
λ′ < S2

b

)
∣∣∣∣∣ ≤ 2δd/L

From (31) we have |r (λ)− r (λ′)| ≤ 6δd/L for λ′ − λ ≤ δd. Then so long as |λ′ − λ| ≤ δd

|Zd (λ, L)− Zd (λ′, L)| ≤ 4

d
(1 + δd/L)Nd (λ, λ′) + 8δd/L

Now choose λj = jδd ∈
[
max {L− 2, 0} , λF

]
, clearly

Ad =

{
sup

[L−2,λF ]

|Zd (λ, L)| ≥ 3rdd
−1/2

}
⊂ Dd ∪ Ed

where

Dd =

{
sup

j
|Zd (λj, L)| ≥ rdd

−1/2

}

Ed =

{
sup

j
sup

|λ−λj |≤δd

|Zd (λ, L)− Zd (λj, L)| ≥ 2rdd
−1/2

}

Choose δd/L = o
(
rdd

−1/2
)
; then Ed is contained in

E ′
d =

{
sup

j

4

d
Nd (λj, λj − δd) ≥ rdd

−1/2

}

⊂
{

sup
j

1

d
|Nd (λj, λj − δd)− ENd (λj, λj − δd)| ≥ 1

5
rdd

−1/2

}

35



say, for large d where we used

ENd (λj, λj − δd) =
m∑

b=1

P
(
λj − δd < S2

b ≤ λj

) ≤ c0
d

L
δd = o

(
rdd

1/2
)
.

Again from exponential inequality (55)

P

(
1

d
|Nd (λj, λj − δd)− ENd (λj, λj − δd)| ≥ 1

5
rdd

−1/2

)

≤ 2 exp

(
−2

(
d

L

)(
1

5
rdd

−/12L

)2
)

= 2 exp
(−2r2

dL/25
)

Finally

P (Ad) ≤ P (Dd) + P (E ′
d) (57)

≤ λF

δd

·
(

2 exp

{
− r2

dL

8 (λ + 4)2

}
+ 2 exp

(−2r2
dL/25

))
,

which decays faster than any polynomial of d when ρ > ν + 1/2. Then

P

{
sup

L−2≤λ≤λF ,1≤L≤dv

|Zd (λ, L)| ≥ 3rdd
−1/2

}
= o

(
d−b+v

)

for any b > 0, which implies

E sup
L−2≤λ≤λF ,1≤L≤dv

|Z (λ, L)| ≤ Cdη−1/2+v/2 +


E

(
sup

max{L−2,1}≤λ≤λF ,1≤L≤dv

|Z (λ, L)|
)2




1/2

P (Ad)

≤ Cdη−1/2+v/2 + 2
(
λF + 4

)
P (Ad) = O

(
dη−1/2+v/2

)

for any η > 0.

We now turn to the proof of (34). Let

W (λ, L) = D (λ, L)− r (λ, L) =
1

d

m∑

b=1

(
‖θ̂b − θ b‖2

2 − r (λ, L)
)

=
1

d

m∑

b=1

Yb

From (31) and (54) we have

sup
L−2≤λ≤λF

|W ′ (λ, L)| ≤ 1

dλ
‖z‖2

2 +
9

L
.
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Let

S1 = ∩j∈J {W (tj)} ≤ dη−1/2+v/2

S2 =

{
sup

L−2≤λ≤λF

|W ′ (λ)| ≤ 11 log d

}

Then so long as 11 (log d) δd ≤ dδ−1/2−v/2, then

S1 ∩ S2 =⇒ sup
L−2≤λ≤λF

|W (λ)| ≤ 2dη−1/2+v/2

Now let’s consider bounds for P (Sc
1) and P (Sc

2). We see E |Yb|k ≤
(
cλF

)k
for some c > 0

from (52) and (53), then

E |W (λ, L)|k ≤ mk/2

dk

(
cλF

)k

for any integer k > 0, and Chebyshev inequality gives

P
(|W (λ)| > dη−1/2+v/2

) ≤ E |W (λ, L)|k
d(η−1/2+v/2)k

≤
(
cλF /L

)k/2 (
cλF

)k/2

d(2η+v)k/2

which decays faster than any polynomial of d when k is large enough, so

P (Sc
1) ≤

λF

δd

max P
(|W (λ)| > dη−1/2+v/2

)

decays faster than any polynomial of d. Thus

P

{
sup

L−2≤λ≤λF ,1≤L≤dv

|W (λ, L)| ≥ dη−1/2+v/2

}
= o

(
d−b+v

)

for any b > 0. It is easy to see that

P (Sc
2) ≤ P

(
1

d

(‖z‖2
2 − 1

) ≥ 1

)
≤ 2e−d/8

also decays faster than any polynomial of d by Hoeffding inequality (56). Thus

E sup
L−2≤λ≤λF ,1≤L≤dv

|W (λ)| ≤ 2dη−1/2 +


E

(
sup

L−2≤λ≤λF ,1≤L≤dv

|W (λ)|
)2




1/2

P (Sc
1 ∪ Sc

2)

= O
(
dη−1/2+v/2

)
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