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Summary. The paper considers in the high dimensional setting a canonical testing problem
in multivariate analysis, namely testing the equality of two mean vectors. We introduce a new
test statistic that is based on a linear transformation of the data by the precision matrix which
incorporates the correlations between the variables. The limiting null distribution of the test
statistic and the power of the test are analysed. It is shown that the test is particularly powerful
against sparse alternatives and enjoys certain optimality. A simulation study is carried out to
examine the numerical performance of the test and to compare it with other tests given in the
literature. The results show that the test proposed significantly outperforms those tests in a
range of settings.
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1. Introduction

A canonical testing problem in multivariate analysis is that of testing the equality of two mean
vectors μ1 and μ2 based on independent random samples, one from a distribution with mean
μ1 and covariance matrix Σ and another from a distribution with mean μ2 and the same
covariance matrix Σ. This testing problem arises in many scientific applications, including
genetics, econometrics and signal processing. In the Gaussian setting where one observes Xk ∼IID

Np.μ1,Σ/, k = 1, : : : , n1, and Yk ∼IID Np.μ2,Σ/, k = 1, : : : , n2, the classical test for testing the
hypotheses

H0 :μ1 =μ2 versus H1 :μ1 �=μ2 .1/

is Hotelling’s T 2-test with the test statistic given by

T 2 = n1n2

n1 +n2
.X̄ − Ȳ/′Σ̂−1

.X̄ − Ȳ/,
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where X̄ =n−1
1 Σn1

k=1Xk and Ȳ =n−1
2 Σn2

k=1Yk are the sample means and Σ̂ is the sample covari-
ance matrix. The properties of Hotelling’s T 2-test have been well studied in the conventional
low dimensional setting. It enjoys desirable properties when the dimension p is fixed. See, for
example, Anderson (2003).

In many contemporary applications, high dimensional data, whose dimension is often compa-
rable with or even much larger than the sample size, are commonly available. Examples include
genomics, medical imaging, risk management and Web search problems. In such high dimen-
sional settings, classical methods designed for the low dimensional case either perform poorly or
are no longer applicable. For example, the performance of Hotelling’s T 2-test is unsatisfactory
when the dimension is high relative to the sample sizes.

Several proposals for correcting Hotelling’s T 2-statistic have been introduced in high dimen-
sional settings. For example, Bai and Saranadasa (1996) proposed to remove Σ̂

−1
in T 2 and

introduced a new statistic based on the squared Euclidean norm ‖X̄ − Ȳ‖2
2. Srivastava and Du

(2008) and Srivastava (2009) constructed test statistics by replacing Σ̂
−1

with the inverse of the
diagonal of Σ̂. Chen and Qin (2010) introduced a test statistic by removing the cross-product
terms Σn1

i=1X′
iXi and Σn2

i=1Y′
iYi in ‖X̄ − Ȳ‖2

2. All of these test statistics are based on an estima-
tor of .μ1 −μ2/TA.μ1 −μ2/ for some given positive definite matrix A. We shall call these test
statistics sum-of-squares type statistics as they all aim to estimate the squared Euclidean norm
‖A1=2.μ1 −μ2/‖2

2.
It is known that tests based on the sum-of-squares type statistics can have good power against

the ‘dense’ alternatives, i.e. under the alternative hypothesis H1 the signals in μ1 −μ2 spread out
over a large number of co-ordinates. For a range of applications including anomaly detection,
medical imaging and genomics, however, the means of the two populations are typically either
identical or are quite similar in the sense that they possibly differ in only a small number of co-
ordinates. In other words, under the alternative H1, the difference of the two means μ1 −μ2 is
sparse. For example, for ultrasonic flaw detection in highly scattering materials, many scattering
centres such as grain boundaries produce echoes and the ensemble of these echoes is usually
defined as background noise, whereas small cracks, flaws or other metallurgical defects would be
defined as signals. See, for example, Zhang et al. (2000). In this case, it is natural to take μ1 −μ2
to be sparse when the metallurgical defects exist. Similarly, for detection of hydrocarbons in
materials, instantaneous spectral analysis is often used to detect hydrocarbons through low
frequency shadows, which are usually considered as sparse signals. See Castagna et al. (2003).
In medical imaging, magnetic resonance imaging is commonly used for breast cancer detection.
It is used to visualize microcalcifications, which can be an indication of breast cancer. The
signals are rare in such applications; see James et al. (2001). Another application is the shape
analysis of brain structures, in which the differences in shape, if any, are commonly assumed to
be confined to a small number of isolated regions inside the whole brain. This is equivalent to the
sparse alternative. See Cao and Worsley (1999) and Taylor and Worsley (2008). In these sparse
settings, tests based on the sum-of-squares type statistics are not powerful. For example, the
three tests that were mentioned earlier all require .n1 +n2/‖μ1 −μ2‖2

2=p1=2 →∞ for any of the
tests to be able to distinguish between the null and the alternative hypotheses with probability
tending to 1.

The goal of this paper is to develop a test that performs well in general and is particularly
powerful against sparse alternatives in the high dimensional setting under dependence. To
explore the advantages of the dependence between the variables, we introduce a new test statistic
that is based on a linear transformation of the observations by the precision matrix Ω. Suppose
for the moment that the precision matrix Ω=Σ−1 is known. For testing the null hypothesis H0 :
μ1 = μ2, we first transform the samples {Xk; 1 � k � n1} and {Yk; 1 � k � n2} by multiplying
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with Ω to obtain the transformed samples {ΩXk; 1 � k �n1} and {ΩYk; 1 � k �n2}. The new
test statistic is then defined to be the maximum of the squared two-sample t-statistics of the
transformed observations {ΩXk; 1�k �n1} and {ΩYk; 1�k �n2}. We shall first show that the
limiting null distribution of this test statistic is the extreme value distribution of type I, and we
then construct an asymptotically α-level test based on the limiting distribution. It is shown that
this test enjoys certain optimality and uniformly outperforms two other natural tests against
sparse alternatives. The asymptotic properties including the power of the tests are investigated
in Section 3.

The covariance matrix Σ and the precision matrix Ω are typically unknown in practice and
thus need to be estimated. Estimation of Σ and Ω in the high dimensional setting has been
well studied in the last few years. See, for example, Yuan and Lin (2007), Bickel and Levina
(2008), Rothman et al. (2008), Ravikumar et al. (2008), Cai et al. (2010), Yuan (2010), Cai and
Liu (2011), Cai et al. (2011) and Cai and Yuan (2012). In particular, when Ω is sparse, it can
be well estimated by the constrained l1-minimization method that was proposed in Cai et al.
(2011). When such information is not available, the adaptive thresholding procedure that was
introduced in Cai and Liu (2011) can be applied to estimate Σ and its inverse is then used to
estimate Ω. The estimate of Ω is then plugged into the test statistic mentioned above to yield a
data-driven procedure. In principle, other ‘good’ estimators of Ω can also be used. It is shown
that, under regularity conditions, the data-driven test performs asymptotically as well as the
test based on the oracle statistic and thus shares the same optimality.

A simulation study is carried out to investigate the numerical performance of the proposed
test in a wide range of settings. The numerical results show that the power of the test proposed
uniformly and significantly dominates those of the tests based on the sum-of-squares type
statistics when either Σ or Ω is sparse. When both Σ and Ω are non-sparse, the proposed test
with the inverse of the adaptive thresholding estimator of Σ still significantly outperforms the
sum-of-squares type tests.

The rest of the paper is organized as follows. After reviewing basic notation and definitions,
Section 2 introduces the new test statistics. Theoretical properties of the tests proposed are
investigated in Section 3. Limiting null distributions of the test statistics and the power of the
tests, both for the case that the precision matrix Ω is known and the case that Ω is unknown,
are analysed. Extensions to the non-Gaussian distributions are given in Section 4. A simulation
study is carried out in Section 5 to investigate the numerical performance of the tests. Discussions
of the results and other related work are given in Section 6. The proofs of the main results are
delegated to Appendix A. Additional simulation results and theoretical analysis are given in the
on-line supplementary material.

The program that was used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Methodology

This section considers the testing problem in the setting of Gaussian distributions. Extensions to
the non-Gaussian case will be discussed in Section 4. We shall first present our testing procedure
in the oracle setting in Section 2.1 where the precision matrix Ω is assumed to be known. In
addition, two other natural testing procedures are introduced in this setting. A data-driven
procedure is given in Section 2.2 for the general case of the unknown precision matrix Ω by
using an estimator of the precision matrix Ω.

We begin with basic notation and definitions. For a vector β = .β1, : : : , βp/′ ∈ Rp, define
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the lq-norm by |β|q = .Σp
i=1|βi|q/1=q for 1 � q � ∞ with the usual modification for q = ∞. A

vector β is called k sparse if it has at most k non-zero entries. For a matrix Ω= .ωi,j/p×p, the
matrix 1-norm is the maximum absolute column sum, ‖Ω‖L1 =max1�j�p Σp

i=1|ωi,j|, the matrix
elementwise infinity norm is defined to be |Ω|∞ =max1�i,j�p |ωi,j| and the elementwise l1-norm
is ‖Ω‖1 =Σp

i=1Σ
p
j=1|ωi,j|. For a matrix Ω, we say that Ω is k sparse if each row or column has at

most k non-zero entries. We shall denote the difference μ1 −μ2 by δ so the null hypothesis can
be equivalently written as H0 : δ = 0. For two sequences of real numbers {an} and {bn}, write
an =O.bn/ if there is a constant C such that |an|�C|bn| holds for all sufficiently large n, write
an =o.bn/ if limn→∞.an=bn/=0, and write an 	bn if there are positive constants c and C such
that c�an=bn �C for all n�1.

2.1. Oracle procedures
Suppose that we observe independent p-dimensional random samples

X1, : : : , Xn1

IID∼ N.μ1,Σ/,

Y1, : : : , Yn2

IID∼ N.μ2,Σ/

where the precision matrix Ω=Σ−1 is known. In this case, the null hypothesis H0 : δ = 0 is
equivalent to H0 :Ωδ =0. An unbiased estimator of Ωδ is the sample mean vector Ω.X̄ − Ȳ/=:
Z̄= .Z̄1, : : : , Z̄p/′. We propose to test the null hypothesis H0 : δ =0 on the basis of test statistic

MΩ = n1n2

n1 +n2
max

1�i�p

Z̄2
i

ωi,i
: .2/

At first sight, the test statistic MΩ is not the most intuitive choice for testing H0 : δ=0. We first
briefly illustrate the motivation on the linear transformation of the data by the precision matrix.
Under a sparse alternative, the power of a test mainly depends on the magnitudes of the signals
(non-zero co-ordinates of δ) and the number of the signals. It will be shown in Appendix A that
.Ωδ/i is approximately equal to δiωi,i for all i in the support of δ. The magnitudes of the non-
zero signals δi are then transformed to |δi|ω1=2

i,i after normalization by the standard deviation
of the transformed variable .ΩX/i. In comparison, the magnitudes of the signals in the original
data are |δi|=σ1=2

i,i . It can be seen from the elementary inequality ωi,iσi,i � 1 for 1 � i � p that
|δi|ω1=2

i,i � |δi|=σ1=2
i,i , i.e. such a linear transformation magnifies the signals and the number

of the signals owing to the dependence in the data. The transformation thus helps to distin-
guish the null and alternative hypotheses. The advantage of this linear transformation will be
proved rigorously in Appendix A. In the context of signal detection under a Gaussian mixture
model, Hall and Jin (2010) introduced the innovated higher criticism procedure which is also
based on the transformation of a precision matrix. We should note that the innovated higher crit-
icism procedure is only for the purpose of detection, and it does not provide an asymptotically
α-level test.

The asymptotic null distribution of MΩ will be studied in Section 3. Note that MΩ is the
maximum of p dependent normal random variables. It is well known that the limiting distribu-
tion of the maximum of p independent χ2

1 random variables after normalization is the extreme
value distribution of type I. This result was generalized by Berman (1964) to the dependent
case, where the limiting distribution for the maximum of a stationary sequence was considered.
In the setting of the present paper, the precision matrix Ω does not have any natural order and
the result in Berman (1964) thus does not apply. We shall prove by using different techniques
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that MΩ still converges to the extreme value distribution of type I under the null hypothesis
H0.

More generally, for a given invertible p×p matrix A, the null hypothesis H0 : δ=0 is equivalent
to H0 : Aδ = 0. Set δA = .δA

1 , : : : , δA
p /′ := A.X̄ − Ȳ/. Denote the covariance matrix of AX by

B= .bi,j/ and define the test statistic

MA = n1n2

n1 +n2
max

1�i�p

.δA
i /2

bi,i
: .3/

The most natural choices of A are arguably A = Ω1=2 and A = I. In the case A = Ω1=2, the
components of Ω1=2X and Ω1=2Y are independent. Set W̄ = .W̄1, : : : , W̄p/′ :=Ω1=2.X̄− Ȳ/. It is
natural to consider the test statistic

MΩ1=2 = n1n2

n1 +n2
max

1�i�p
W̄

2
i : .4/

As we shall show later the test based on MΩ uniformly outperforms the test based on MΩ1=2 for
testing against sparse alternatives.

Another natural choice is A = I, i.e. the test is directly based on the difference of the sample
means X̄ − Ȳ. Set δ̄ = .δ̄1, : : : , δ̄p/′ := X̄ − Ȳ and define the test statistic

MI = n1n2

n1 +n2
max

1�i�p

δ̄
2
i

σi,i
.5/

where σi,i are the diagonal elements of Σ. Here MI is the maximum of the squared two-sample
t-statistics based on the samples {Xk} and {Yk} directly. It will be shown that the test based
on MI is uniformly outperformed by the test based on MΩ for testing against sparse alterna-
tives.

2.2. Data-driven procedure
We have so far focused on the oracle case in which the precision matrix Ω is known. However, in
most applications Ω is unknown and thus needs to be estimated. We consider in this paper two
procedures for estimating the precision matrix. When Ω is known to be sparse, the constrained
l1-minimization for inverse matrix estimation (CLIME) estimator that was proposed in Cai
et al. (2011) is used to estimate Ω directly. If such information is not available, we first estimate
the covariance matrix Σ by the inverse of the adaptive thresholding estimator Σ̂

Å
that was

introduced in Cai and Liu (2011), and then estimate Ω by .Σ̂
Å
/−1.

We first consider the CLIME estimator. Let Σn be the pooled sample covariance matrix

.σ̂i,j/p×p =Σn = 1
n1 +n2

{
n1∑

k=1
.Xk − X̄/.Xk − X̄/′ +

n2∑
k=1

.Yk − Ȳ/.Yk − Ȳ/′
}

:

Let Ω̂1 = .ω̂1
i,j/ be a solution of the optimization problem

min ‖Ω‖1 subject to |ΣnΩ− I|∞ �λn,

where ‖·‖1 is the elementwise l1-norm, and λn =C{log.p/=n} for some sufficiently large constant
C. In practice, λn can be chosen through cross-validation. See Cai et al. (2011) for further details.
The estimator of the precision matrix Ω is defined to be Ω̂= .ω̂i,j/p×p, where

ω̂i,j = ω̂j,i = ω̂1
i, j I.|ω̂1

i,j|� |ω̂1
j,i|/+ ω̂1

j,i I.|ω̂1
i,j|> |ω̂1

j,i|/:
The estimator Ω̂ is called the CLIME estimator and can be implemented by linear programming.
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It enjoys desirable theoretical and numerical properties. See Cai et al. (2011) for more details on
the properties and implementation of this estimator.

When the precision matrix Ω is not known to be sparse, we estimate Ω by Ω̂ = .Σ̂
Å
/−1,

the inverse of the adaptive thresholding estimator of Σ. The adaptive thresholding estimator
Σ̂

Å = .σ̂Å
i,j/p×p is defined by

σ̂Å
i,j = σ̂i,j I.|σ̂i,j|�λi,j/

with λi,j = δ
√{θ̂i,j log.p/=n}, where

θ̂i,j = 1
n1 +n2

[
n1∑

k=1
{.Xki − X̄

i
/.Xkj − X̄

j
/− σ̂i,j}2 +

n2∑
k=1

{.Yki − Ȳ
i
/.Ykj − Ȳ

j
/− σ̂i, j}2

]
,

X̄
i =n−1

1

n1∑
k=1

Xki,

Ȳ
i =n−1

2

n2∑
k=1

Yki,

is an estimate of θi,j =var{.Xi −μi/.Xj −μj/}. Here δ is a tuning parameter which can be taken
as fixed at δ =2 or can be chosen empirically through cross-validation. This estimator is easy to
implement and it enjoys desirable theoretical and numerical properties. See Cai and Liu (2011)
for more details on the properties of this estimator.

For testing the hypothesis H0 :μ1 =μ2 in the case of unknown precision matrix Ω, motivated
by the oracle procedure MΩ given in Section 2.1, our final test statistic is MΩ̂ defined by

MΩ̂ = n1n2

n1 +n2
max

1�i�p

Ẑ
2
i

ω̂
.0/
i,i

, .6/

where Ẑ= .Ẑ1, : : : , Ẑp/′ := Ω̂.X̄ − Ȳ/ and

ω̂
.0/
i,i = n1

n1 +n2
ω̂

.1/
i,i + n2

n1 +n2
ω̂

.2/
i,i

with

.ω̂
.1/
i,j / := 1

n1

n1∑
k=1

.Ω̂Xk − X̄Ω̂/.Ω̂Xk − X̄Ω̂/′,

.ω̂
.2/
i,j / := 1

n2

n2∑
k=1

.Ω̂Yk − ȲΩ̂/.Ω̂Yk − ȲΩ̂/′,

X̄Ω̂ =n−1
1

n1∑
k=1

Ω̂Xk,

ȲΩ̂ =n−1
2

n2∑
k=1

Ω̂Yk: .7/

It will be shown in Section 3 that MΩ̂ and MΩ have the same asymptotic null distribution and
power under certain regularity conditions. Other estimators of the precision matrix Ω can also
be used to construct a good test. See more discussion in Section 3.2.2.

Remark 1. The CLIME estimator Ω̂ is positive definite with high probability when λmin.Ω/>

c > 0. However, for a given realization, Ω̂ is not guaranteed to be positive definite. The testing
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procedure still works even when Ω̂ is not positive definite as the procedure uses Ω̂ directly.
If a positive semidefinite or positive definite estimator is still desired, the following simple
additional step leads to an estimator of Ω which is positive definite and achieves the same
rate of convergence.

Write the eigendecomposition of Ω̂as Ω̂=Σp
i=1λ̂iviv

′
i, where the λ̂is and vis are respectively the

eigenvalues and eigenvectors of Ω̂. Set λ̂
Å
i = max{λ̂i, 0 log.p/=n} and define Ω̂

+ =Σp
i=1λ̂

Å
i viv

′
i.

Then Ω̂
+

is positive definite and attains the same rate of convergence. This method can also
be applied to the adaptive thresholding estimator Σ̂

Å
to ensure the positive definiteness of the

estimator. See, for example, Cai and Zhou (2011) and Cai and Yuan (2012). All the results in
the present paper hold with the estimator Ω̂ replaced by Ω̂

+
.

3. Theoretical analysis

We now turn to the analysis of the properties of MΩ and MΩ̂ including the limiting null distribu-
tion and the power of the corresponding tests. It is shown that the test based on MΩ̂ performs as
well as that based on MΩ and enjoys certain optimality under regularity conditions. The asymp-
totic null distributions of MΩ1=2 and MI are also derived and the power of the corresponding
tests is studied.

3.1. Asymptotic distributions of the oracle test statistics
We first establish the asymptotic null distributions for the oracle test statistics MΩ, MΩ1=2 and
MI. Let D1 = diag.σ1,1, : : : , σp,p/ and D2 = diag.ω1,1, : : : , ωp,p/, where σk,k and ωk,k are the
diagonal entries of Σ and Ω respectively. The correlation matrix of X and Y is then Γ= .γi,j/=
D−1=2

1 ΣD−1=2
1 and the correlation matrix of ΩX and ΩY is R= .ri,j/=D−1=2

2 ΩD−1=2
2 . To obtain

the limiting null distributions, we assume that the eigenvalues of the covariance matrix Σ are
bounded from above and below, and the correlations in Γ and R are bounded away from −1
and 1. More specifically we assume the following conditions.

Condition 1. C−1
0 �λmin.Σ/�λmax.Σ/�C0 for some constant C0 > 0.

Condition 2. max1�i<j�p |γi,j|� r1 < 1 for some constant 0 <r1 < 1.

Condition 3. max1�i<j�p |ri,j|� r2 < 1 for some constant 0 <r2 < 1.

Condition 1 on the eigenvalues is a common assumption in the high dimensional setting.
Conditions 2 and 3 are also mild. For example, if max1�i<j�p |ri,j|=1, then Σ is singular. The
following theorem states the asymptotic null distributions for the three oracle statistics MΩ,
MΩ1=2 and MI.

Theorem 1. Let the test statistics MΩ, MΩ1=2 and MI be defined as in equations (2), (4) and
(5) respectively.

(a) Suppose that conditions 1 and 3 hold. Then, for any x∈R,

PH0 [MΩ −2 log.p/+ log{log.p/}�x]→ exp
{

− 1√
π

exp
(

− x

2

)}
, as p→∞:

(b) For any x∈R,

PH0 [MΩ1=2 −2 log.p/+ log{log.p/}�x]→ exp
{

− 1√
π

exp
(

− x

2

)}
, as p→∞:
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(c) Suppose that conditions 1 and 2 hold. Then, for any x∈R,

PH0 [MI −2 log.p/+ log{log.p/}�x]→ exp
{

− 1√
π

exp
(

− x

2

)}
, as p→∞:

Theorem 1 holds for any fixed sample sizes n1 and n2 and it shows that MΩ, MΩ1=2 and MI
have the same asymptotic null distribution. On the basis of the limiting null distribution, three
asymptotically α-level tests can be defined as follows:

Φα.Ω/= I[MΩ �2 log.p/− log{log.p/}+qα],

Φα.Ω1=2/= I[MΩ1=2 �2 log.p/− log{log.p/}+qα],

Φα.I/= I[MI �2 log.p/− log{log.p/}+qα],

where qα is the .1 −α/-quantile of the type I extreme value distribution with the cumulative
distribution function

exp
{

− 1√
π

exp
(

− x

2

)}
,

i.e.

qα =− log.π/−2 log{log.1−α/−1}:

The null hypothesis H0 is rejected if and only if Φα.·/ = 1. Although the asymptotic null dis-
tribution of the test statistics MΩ, MI and MΩ1=2 are the same, the power of the tests Φα.Ω/,
Φα.Ω1=2/ and Φα.I/ are quite different. We show in section 1 in the on-line supplementary
material that the power of Φα.Ω/ uniformly dominates those of Φα.Ω1=2/ and Φα.I/ when
testing against sparse alternatives, and the results are briefly summarized in Section 3.2.3.

3.2. Asymptotic properties of Φα(Ω) and Φα(Ω̂)
In this section, the asymptotic power of MΩ is analysed and the test Φα.Ω/ is shown to be
minimax rate optimal. In practice, Ω is unknown and the test statistic MΩ̂ should be used
instead of MΩ. Define the set of kp-sparse vectors by

S.kp/=
{

δ :
p∑

j=1
I.δj �=0/=kp

}
:

Throughout the section, we analyse the power of MΩ and MΩ̂ under the alternative

H1 : δ ∈S.kp/ with kp =pr, 0� r< 1, and the non-zero locations are randomly uniformly
drawn from {1, : : : , p}:

Under H1, we let .X−μ1, Y−μ2/ be independent with the non-zero locations of δ. As discussed
in Section 1, the condition on the non-zero co-ordinates in H1 is mild. Similar conditions have
been imposed in Hall and Jin (2008, 2010) and Arias-Castro et al. (2011). We show that, under
certain sparsity assumptions on Ω, MΩ̂ performs as well as MΩ asymptotically. For the following
sections, we assume that n1 	n2 and write n=n1n2=.n1 +n2/.

3.2.1. Asymptotic power and optimality of Φα(Ω)
The asymptotic power of Φα.Ω/ is analysed under certain conditions on the separation between
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μ1 and μ2. Furthermore, a lower bound is derived to show that this condition is minimax rate
optimal to distinguish H1 and H0 with probability tending to 1.

Theorem 2. Suppose that condition 1 holds. Under the alternative H1 with r < 1
4 , if

maxi|δi=σ
1=2
i,i |�√{2β log.p/=n} with β � 1= mini.σi,iωi,i/ + " for some constant " > 0, then

as p→∞
PH1{Φα.Ω/=1}→1:

We shall show that the condition maxi |δi=σ
1=2
i,i |�√{2β log.p/=n} is minimax rate optimal

for testing against sparse alternatives. First we introduce some conditions.

Condition 4.
(a) kp =pr for some r< 1

2 and Ω=Σ−1 is sp sparse with sp =O{.p=k2
p/γ} for some 0<γ <1,

or
(b) kp =pr for some r< 1

4 .

Condition 5. ‖Ω‖L1 �M for some constant M> 0.

Define the class of α-level tests by

Tα ={Φα : PH0.Φα =1/�α}:

The following theorem shows that the condition maxi |δi=σ
1=2
i,i |�√{2β log.p/=n} is minimax

rate optimal.

Theorem 3. Assume that conditions 4(a) (or 4(b)) and 5 hold. Let α, ν >0 and α+ν <1. Then
there is a positive constant c such that, for all sufficiently large n and p,

inf
δ∈S.kp/∩{|δ|∞�c

√{log.p/=n}}
sup

Φα∈Tα

P.Φα =1/�1−ν:

Theorem 3 shows that, if c is sufficiently small, then any α-level test is unable to reject the null
hypothesis correctly uniformly over δ∈S.kp/∩{|δ|∞ �c

√{log.p/=n}} with probability tending
to 1. So the order of the lower bound maxi |δi=σ

1=2
i,i |�√{2β log.p/=n} cannot be improved.

3.2.2. Asymptotic properties and optimality of Φα(Ω̂)
We now analyse the properties of MΩ̂ and the corresponding test including the limiting null
distribution and the asymptotic power. We shall assume that the estimator Ω̂= .ω̂i,j/ has at
least a logarithmic rate of convergence

‖Ω̂−Ω‖L1 =oP

{
1

log.p/

}
,

max
1�i�p

|ω̂i,i −ωi,i|=oP

{
1

log.p/

}
:

.8/

This is a rather weak requirement on Ω̂ and, as will be shown later, can be easily satisfied by
the CLIME estimator or the inverse of the adaptive thresholding estimator for a wide range
of covariance or precision matrices. We shall show that under condition (8) MΩ̂ has the same
limiting null distribution as MΩ. Define the corresponding test Φα.Ω̂/ by

Φα.Ω̂/= I[MΩ̂ �2 log.p/− log{log.p/}+qα]:

The following theorem shows that MΩ̂ and MΩ have the same asymptotic distribution and
power under condition (8), and so the test Φα.Ω̂/ is also minimax rate optimal.

Theorem 4. Suppose that Ω̂ satisfies condition (8) and conditions 1 and 3 hold.
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(a) Then under the null hypothesis H0, for any x∈R,

PH0 [MΩ̂ −2 log.p/+ log{log.p/}�x]→ exp
{

− 1√
π

exp
(

− x

2

)}
, as n, p→∞:

(b) Under the alternative hypothesis H1 with r< 1
6 , we have, as n, p→∞,

PH1{Φα.Ω̂/=1}
PH1{Φα.Ω/=1} →1:

Furthermore, if maxi |δi=σ
1=2
i,i |�√{2β log.p/=n} with β � 1= mini.σi,iωi,i/ + " for some

constant "> 0, then

PH1{Φα.Ω̂/=1}→1, as n, p→∞:

As mentioned earlier, condition (8) is quite weak and is satisfied by the CLIME estimator or
the inverse of the adaptive thresholding estimator for a wide range of precision or covariance
matrices. It is helpful to give a few examples of collections of precision or covariance matrices
for which condition (8) holds.

We first consider the following class of precision matrices that satisfy an lq-ball constraint for
each row or column. Let 0�q< 1 and define

Uq.sp,1, Mp/=
{
Ω�0 :‖Ω‖L1 �Mp, max

1�j�p

p∑
i=1

|ωi,j|q � sp,1

}
: .9/

The class Uq.sp,1, Mp/ covers a range of precision matrices as the parameters q, sp,1 and Mp

vary. Using the techniques in Cai et al. (2011), proposition 1 below shows that condition (8)
holds for the CLIME estimator if Ω∈Uq.sp, Mp/ with

sp,1 =o

{
n.1−q/=2

M
1−q
p log.p/.3−q/=2

}
: .10/

We now turn to the covariance matrices. Consider a large class of covariance matrices defined
by, for 0�q< 1,

UÅ
q .sp,2, Mp/=

{
Σ :Σ�0, ‖Σ−1‖L1 �Mp, max

i

p∑
j=1

.σi,iσj,j/.1−q/=2|σi,j|q � sp,2

}
: .11/

Matrices in UÅ
q .sp,2/ satisfy a weighted lq-ball constraint for each row or column. Let Ω̂= .Σ̂

Å
/−1,

where Σ̂
Å

is the adaptive thresholding estimator that was defined in Section 2.2. Then proposition
1 below shows that condition (8) is satisfied by Ω̂ if Σ∈UÅ

q .sp,2, Mp/ with

sp,2 =o

{
n.1−q/=2

M2
p log.p/.3−q/=2

}
: .12/

Besides the class of covariance matrices UÅ
q .sp,2, Mp/ that is given in expression (11), condition

(8) is also satisfied by the inverse of the adaptive thresholding estimator Ω̂= .Σ̂
Å
/−1 over the

class of bandable covariance matrices defined by

Fα.M1, M2/=
{
Σ :Σ�0, ‖Σ−1‖L1 �M1, max

j

∑
i:|i−j|>k

|σi,j|�M2k−α, for k �1
}
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where α> 0, M1 > 0 and M2 > 0. This class of covariance matrices arises naturally in time series
analysis. See Cai et al. (2010) and Cai and Zhou (2012).

Proposition 1. Suppose that log.p/ = o.n1=3/ and condition 1 holds. Then the CLIME esti-
mator for Ω∈Uq.sp,1, Mp/ with expression (10) satisfies condition (8). Similarly, the inverse of
the adaptive thresholding estimator of Σ∈UÅ

q .sp,2, Mp/ with equation (12) or Σ∈Fα.M1, M2/

with log.p/=o.nα=.4+3α// satisfies condition (8).

We should note that the conditions (8), (10) and (12) are technical conditions and they can be
further weakened. For example, the following result holds without imposing a sparsity condition
on Ω.

Theorem 5. Let Ω̂ be the CLIME estimator. Suppose that conditions 1 and 3 hold and
mini ωi,i � c for some c> 0. If ‖Ω‖L1 �Mp and

M2
p =o{√

n= log.p/3=2}; .13/

then

PH0{Φα.Ω̂/=1}�α+o.1/, as n, p→∞:

Furthermore, if maxi |δi=σ
1=2
i,i |�√{2β log.p/=n} with β �1= mini.σi,iωi,i/+" for some con-

stant "> 0, then

PH1{Φα.Ω̂/=1}→1, as n, p→∞:

3.2.3. Power comparison of the oracle tests
The tests Φα.Ω/ and Φα.Ω̂/ are shown in Sections 3.2.1 and 3.2.2 to be minimax rate optimal
for testing against sparse alternatives. Under some additional regularity conditions, it can be
shown that the test Φα.Ω/ is uniformly at least as powerful as both Φα.Ω1=2/ and Φα.I/, and the
results are stated in proposition 1 in the on-line supplementary material. Furthermore, we show
that, for a class of alternatives, the test Φα.Ω/ is strictly more powerful than both Φα.Ω1=2/

and Φα.I/. For further details, see propositions 2 and 3 in the on-line supplementary material.
However, we should also note that the relative performance of the three oracle tests Φα.Ω/,
Φα.Ω1=2/ and Φα.I/ is not clear in the non-sparse case. It is possible, for example, when kp =pr

for some r> 1
2 , that Φα.Ω/ might be outperformed by Φα.Ω1=2/ or Φα.I/.

4. Extension to non-Gaussian distributions

We have so far focused on the Gaussian setting and studied the asymptotic null distributions
and power of the tests. In this section, the results for the tests Φα.Ω/ and Φα.Ω̂/ are extended
to non-Gaussian distributions.

We require some moment conditions on the distributions of X and Y. Let X and Y be two
p-dimensional random vectors satisfying

X =μ1 +U1 and Y =μ2 +U2,

where U1 and U2 are independent and identically distributed random vectors with mean 0
and covariance matrix Σ= .σi,j/p×p. Let Vj =ΩUj =: .V1j, : : : , Vpj/′ for j =1, 2. The moment
conditions are divided into two cases: the sub-Gaussian-type tails and polynomial-type tails.

Condition 6 (sub-Gaussian-type tails). Suppose that log.p/=o.n1=4/. There exist some con-
stants η > 0 and K> 0 such that
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E{exp.ηV 2
i1=ωi,i/}�K and E{exp.ηV 2

i2=ωi,i/}�K for 1� i�p:

Condition 7 (polynomial-type tails). Suppose that for some constants γ0, c1 > 0, p � c1nγ0 ,
and for some constants "> 0 and K> 0

E|Vi1=ω
1=2
i,i |2γ0+2+" �K and E|Vi2=ω

1=2
i,i |2γ0+2+" �K for 1� i�p:

Theorem 6. Suppose that conditions 1, 3 and 6 (or 7) hold. Then under the null hypothesis
H0, for any x∈R,

PH0 [MΩ −2 log.p/+ log{log.p/}�x]→ exp
{

− 1√
π

exp
(

− x

2

)}
, as n, p→∞:

Theorem 6 shows that Φα.Ω/ is still an asymptotically α-level test when the distribution is
non-Gaussian. When Ω is unknown, as in the Gaussian case, the CLIME estimator Ω̂ in Cai
et al. (2011) or the inverse of adaptive thresholding estimator .Σ̂

Å
/−1 can be used. The following

theorem shows that the test Φα.Ω̂/ shares the same optimality as Φα.Ω/ in the non-Gaussian
setting.

Theorem 7. Suppose that conditions 1, 3, 6 (or 7) and (8) hold.

(a) Under the null hypothesis H0, for any x∈R,

PH0 [MΩ̂ −2 log.p/+ log{log.p/}�x]→ exp
{

− 1√
π

exp
(

− x

2

)}
, as n, p→∞:

(b) Under hypothesis H1 and the conditions of theorem 2, we have

PH1{Φα.Ω̂/=1}→1, as n, p→∞:

5. Simulation study

In this section, we consider the numerical performance of the proposed test Φα.Ω̂/ and compare
it with several other tests, including the tests based on the sum-of-squares type statistics in Bai
and Saranadasa (1996), Srivastava and Du (2008) and Chen and Qin (2010) and the commonly
used Hotelling’s T 2-test. These tests are denoted respectively by BS, SD, CQ and T 2 respectively
in the rest of this section.

The test Φα.Ω̂/ is easy to implement. A range of covariance structures are considered in the
simulation study, including the settings where the covariance matrix Σ is sparse, the precision
matrix Ω is sparse, and both Σ and Ω are non-sparse. In the case when Ω is known to be
sparse, the CLIME estimator in Cai et al. (2011) is used to estimate it, whereas the inverse
of the adaptive thresholding estimator in Cai and Liu (2011) is used to estimate Ω when such
information is not available. The simulation results show that the test Φα.Ω̂/ significantly and
uniformly outperforms the other four tests when either Σ or Ω is sparse, and the test Φα.Ω̂/

still outperforms the other four tests even when both Σ and Ω are non-sparse.
Without loss of generality, we shall always take μ2 = 0 in the simulations. Under the null

hypothesis, μ1 =μ2 =0, whereas, under the alternative hypothesis, we take μ1 = .μ11, : : : , μ1p/′
to have m non-zero entries with the support S = {l1, : : : , lm : l1 < l2 <: : :< lm} uniformly and
randomly drawn from {1, : : : , p}. Two values of m are considered: m=
0:05p� and m=
√p�.
Here 
x� denote the largest integer that is no greater than x. For each of these two values of m,
and for any lj ∈S, two settings of the magnitude of μ1,lj are considered: μ1,lj =±√{log.p/=n}
with equal probability and μ1,lj has magnitude randomly uniformly drawn from the interval
[−√{8 log.p/=n},

√
8 log.p/=n]. We take μ1,k =0 for k ∈Sc.
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The specific models for the covariance structure are given as follows. Let D = .di,j/ be a
diagonal matrix with diagonal elements di,i =Unif.1, 3/ for i=1, : : : , p. Denote by λmin.A/ the
minimum eigenvalue of a symmetric matrix A. The following three models where the precision
matrix Ω is sparse are considered.

(a) Model 1 (block diagonalΩ):Σ= .σi,j/ where σi,i =1, σi,j =0:8 for 2.k−1/+1� i �=j �2k,
where k =1, : : : , [p=2] and σi,j =0 otherwise.

(b) Model 2 (‘bandable’ Σ): Σ= .σi,j/ where σi,j =0:6|i−j| for 1� i, j �p.
(c) Model 3 (banded Ω): Ω= .ωi,j/ where ωi,i =2 for i=1, : : : , p, ωi,i+1 =0:8 for i=1, : : : , p−

1, ωi,i+2 = 0:4 for i = 1, : : : , p − 2, ωi,i+3 = 0:4 for i = 1, : : : , p − 3, ωi,i+4 = 0:2 for i =
1, : : : , p−4, ωi,j =ωj,i for i, j =1, : : : , p and ωi,j =0 otherwise.

We also consider two models where the covariance matrix Σ is sparse.

(d) Model 4 (sparse Σ): Ω= .ωi,j/ where ωi,j =0:6|i−j| for 1� i, j �p. Σ=D1=2Ω−1D1=2.
(e) Model 5 (sparse Σ): Ω1=2 = .ai,j/ where ai,i = 1, ai,j = 0:8 for 2.k − 1/ + 1 � i �= j � 2k,

where k =1, : : : , [p=2], and ai,j =0 otherwise. Ω=D1=2Ω1=2Ω1=2D1=2 and Σ=Ω−1.

In addition, three models where neither Σ nor Ω is sparse are considered. In model 6, Σ is a
sparse matrix plus a perturbation of a non-sparse matrix E. The entries of Σ in model 7 decay
as a function of the lag |i− j|, which arises naturally in time series analysis. Model 8 considers a
non-sparse rank 3 perturbation to a sparse matrix which leads to a non-sparse covariance matrix
Σ. The simulation results show that the proposed test Φα.Ω̂/ still significantly outperforms the
other four tests under these non-sparse models.

(f) Model 6 (non-sparse case): ΣÅ = .σÅ
i,j/ where σÅ

i,i = 1, σÅ
i,j = 0:8 for 2.k − 1/ + 1 � i �=

j �2k, where k =1, : : : , [p=2], and σÅ
i,j =0 otherwise. Σ=D1=2ΣÅD1=2 +E + δI with δ =

|λmin.D1=2ΣÅD1=2 + E/| + 0:05, where E is a symmetric matrix with the support of the
off-diagonal entries chosen independently according to the Bernoulli(0.3) distribution
with the values of the non-zero entries drawn randomly from Unif(−0.2,0.2).

(g) Model 7 (non-sparse case): ΣÅ = .σÅ
i,j/ where σÅ

i,i = 1 and σÅ
i,j = |i − j|−5=2 for i �= j.

Σ=D1=2ΣÅD1=2.
(h) Model 8 (non-sparse case): Σ=D1=2.F+u1u′

1 +u2u′
2 +u3u′

3/D1=2, where F= .fi,j/ is a p×
p matrix with fi,i =1, fi,i+1 =fi+1,i =0:5 and fi,j =0 otherwise, and ui are orthonormal
vectors for i=1, 2, 3.

Under each model, two independent random samples {Xk} and {Yl} are generated with the
same sample size n = 100 from two multivariate normal distributions with means μ1 and μ2
respectively and a common covariance matrix Σ. The dimension p takes values p=50, 100, 200.
The power and level of significance are calculated from 1000 replications.

The numerical results on the proposed test Φα.Ω̂/ and test BS, SD, CQ and T 2 under models
1–5 are summarized in Tables 1 and 2. Table 1 compares the empirical sizes of the tests. It
can be seen that the estimated sizes are reasonably close to the nominal level 0.05 for all the
tests. Table 2, which compares the powers, shows that the new test Φα.Ω̂/, based on either the
CLIME estimator of sparse Ω or the inverse of the adaptive thresholding estimator of sparse Σ,
uniformly and significantly outperforms the other four tests over all dimensions ranging from
50 to 200. The powers of these tests are significantly lower than that of Φα.Ω̂/. These numerical
results confirm the theoretical analysis that was given in the last section.

Table 3 summarizes the sizes and powers for the non-sparse cases. We report here only the
cases when the magnitudes of the signals vary under the alternative. The performance of the
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Table 3. Empirical sizes and powers for models 6–8 with αD0.05 and nD100, based on 1000 replications

Test Results for the following models and values of p:

Model 6 Model 7 Model 8

p=50 p=100 p=200 p=50 p=100 p=200 p=50 p=100 p=200

Size
T 2 0.05 0.05 — 0.05 0.05 — 0.04 0.04 —
BS 0.07 0.07 0.05 0.07 0.06 0.05 0.06 0.06 0.06
SD 0.08 0.05 0.05 0.08 0.06 0.05 0.05 0.05 0.06
CQ 0.07 0.07 0.05 0.07 0.06 0.06 0.06 0.06 0.06
Φα.Ω̂/ 0.05 0.05 0.05 0.02 0.02 0.03 0.03 0.02 0.03

Power when m=0.05p

T 2 0.14 0.37 — 0.17 0.43 — 0.31 0.40 —
BS 0.10 0.22 0.24 0.09 0.12 0.20 0.07 0.10 0.16
SD 0.10 0.21 0.26 0.09 0.13 0.20 0.07 0.09 0.16
CQ 0.10 0.22 0.23 0.09 0.12 0.20 0.07 0.11 0.16
Φα.Ω̂/ 0.16 0.40 0.46 0.14 0.41 0.80 0.20 0.50 0.84

Power when m=√
p

T 2 0.47 0.23 — 0.49 0.59 — 0.53 1.00 —
BS 0.17 0.13 0.46 0.16 0.18 0.20 0.11 0.15 0.16
SD 0.14 0.14 0.57 0.16 0.17 0.20 0.12 0.14 0.16
CQ 0.16 0.13 0.46 0.15 0.18 0.20 0.11 0.14 0.16
Φα.Ω̂/ 0.24 0.26 0.77 0.37 0.57 0.53 0.38 0.73 0.85

tests is similar to that in the case of fixed magnitude. It can be seen from Table 3 that the
sizes of the sum-of-squares type tests tend to be larger than the nominal level 0.05 whereas
the sizes of the new test Φα.Ω̂/ are smaller than the nominal level. Thus, the new test has
smaller type I error probability than those of the sum-of-squares type tests. For the models
where both Σ and Ω are non-sparse, the power of the proposed test Φα.Ω̂/ is not as high
as in the sparse cases. However, similar phenomena are observed in Table 3 when comparing
the powers with the other tests. The tests based on the sum-of-squares test statistics are not
powerful against the sparse alternatives, and they are still significantly outperformed by the new
test Φα.Ω̂/.

More extensive simulations were carried out in the non-sparse settings as well as for non-
Gaussian distributions. We also compare the proposed test with the tests based on some other
estimators of the precision matrices. In particular, we consider non-sparse covariance structures
by adding to the covariance or precision matrices in models 1–5 a perturbation of a non-
sparse matrix E, where E is a symmetric matrix with 30% random non-zero entries drawn from
Unif.−0:2, 0:2/. Furthermore, simulations for five additional non-sparse covariance models are
carried out. The comparisons are consistent with the cases that are reported here. For brevity,
these simulation results are given in the on-line supplementary material.

In summary, the numerical results show that the proposed test Φα.Ω̂/ is significantly and
uniformly more powerful than the other four tests in the settings where either Σ or Ω is sparse.
When both Σ and Ω are non-sparse, the test Φα.Ω̂/ still outperforms the sum-of-squares type
tests. On the basis of these numerical results, we recommend using the test Φα.Ω̂/ with the
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CLIME estimator of Ω when Ω is known to be sparse and using Φα.Ω̂/ with the inverse of the
adaptive thresholding estimator of Σ when such information is not available.

6. Discussion

In the present paper it is assumed that the two populations have the same covariance
matrix. More generally, suppose that we observe Xk ∼IID Np.μ1,Σ1/, k = 1, : : : , n1, and
Yk ∼IID Np.μ2,Σ2/, k =1, : : : , n2, and we wish to test H0 :μ1 =μ2 versus H1 :μ1 �=μ2. To apply
the procedure proposed in this paper, one needs first to test H0 :Σ1 =Σ2 versus H1 :Σ1 �=Σ2.
For this, for example, the test that is introduced in Cai et al. (2013) can be used. If the null
hypothesis H0 : Σ1 =Σ2 is rejected, the test proposed in this paper is not directly applicable.
However, a modified version of the procedure can still be used. Note that the covariance matrix
of X̄ − Ȳ is Σ1=n1 +Σ2=n2. To apply the test procedure in Section 2, one needs to estimate
{Σ1 + .n1=n2/Σ2}−1. When both Σ1 and Σ2 are sparse, the inverse can be estimated well
by {Σ̂1,thr + .n1=n2/Σ̂2,thr}−1 by using the adaptive thresholding estimators Σ̂1,thr and Σ̂2,thr
that were introduced in Cai and Liu (2011). Similarly, when both Σ1 and Σ2 are bandable,
{Σ1 + .n1=n2/Σ2}−1 can also be estimated well. A more interesting problem is the estimation
of {Σ1 + .n1=n2/Σ2}−1 when the precision matrices Ω1 and Ω2 are sparse.

Besides testing the means and covariance matrices of two populations, another interesting
and related problem is the testing of the equality of two distributions based on the two samples,
i.e. we wish to test H0 : P1 = P2 versus H1 : P1 �= P2, where Pi is the distribution of Np.μi,Σi/,
i=1, 2. We shall report the details of the results elsewhere in the future as a significant amount
of additional work is still needed.

The asymptotic properties in Section 3.2 rely on the assumption that the locations of the
non-zero entries of μ1 −μ2 are uniformly drawn from {1, : : : , p}. When this assumption does
not hold, the asymptotic power results may fail. A simple solution is first to apply a random
permutation to the co-ordinates of μ1 −μ2 (and correspondingly to the co-ordinates of X̄ −
Ȳ) so that the non-zero locations are uniformly drawn from {1, : : : , p}, and apply the testing
procedures to the permuted data and the results given in Section 3.2 then hold.

It is well known that the convergence rate in distribution of the extreme-value-type statistics
is slow. There are several possible ways to improve the rate of convergence. See, for example,
Hall (1991), Liu et al. (2008) and Birnbaum and Nadler (2012). It is interesting to investigate
whether these methods can be applied to improve the convergence rate of our test statistic. We
leave this to future work.
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Appendix A: Proof of main results

We prove the main results in this section. The proofs of some of the main theorems rely on a few additional
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technical lemmas. These technical results are collected in Appendix A.1 and they are proved in the on-line
supplementary material.

A.1. Technical lemmas

Lemma 1 (Bonferroni inequality). Let A=∪p
t=1 At . For any k< [p=2], we have

2k∑
t=1

.−1/t−1Et �P.A/�
2k−1∑
t=1

.−1/t−1Et ,

where Et =Σ1�i1<:::<it�p P.Ai1 ∩: : :∩Ait /:

Lemma 2 (Berman, 1962). If X and Y have a bivariate normal distribution with expectation 0, unit
variance and correlation coefficient ρ, then

lim
c→∞

P.X>c, Y>c/

{2π.1−ρ/1=2c2}−1 exp{−c2=.1+ρ/}.1+ρ/1=2
=1,

uniformly for all ρ such that |ρ|� δ, for any δ, 0 < δ < 1.

Lemma 3. Suppose that condition 1 holds and Σ has all diagonal elements equal to 1. Then for pr-sparse
δ, with r< 1

4 and non-zero locations l1, : : : , lm, m=pr, randomly and uniformly drawn from {1, : : : , p},
we have, for any 2r<a< 1−2r, as p→∞,

P

{
max
i∈H

∣∣∣∣ .Ωδ/i√
ωi, i

− δi

√
ωi, i

∣∣∣∣=O.pr−a=2/ max
i∈H

|δi|
}

→1, .14/

and

P{max
i∈H

|.Ω1=2δ/i −ai, iδi|=O.pr−a=2/ max
i∈H

|δi|}→1, .15/

where Ω1=2 =: .ai,j/ and H is the support of δ.

Lemma 4. Let Yi ∼N.μi, 1/ be independent for i=1, : : : , n. Let an =o{log.n/−1=2}. Then

sup
x∈R

max
1�k�n

|P. max
1�i�k

Yi �x+an/−P. max
1�i�k

Yi �x/|=o.1/ .16/

uniformly in the means μi, 1� i�n. If Yi is replaced by |Yi|, then condition (16) still holds.

Lemma 5 (Baraud, 2002). Let F be some subset of l2.J/. Let μρ be some probability measure on Fρ =
{θ ∈F , ‖θ‖�ρ} and let Pμρ = ∫

Pθ dμρ.θ/. Assuming that Pμρ is absolutely continuous with respect to
P0, we define Lμρ.y/=dPμρ.y/=dP0. For all α>0, ν ∈ [0, 1−α], if E0{L2

μρÅ .Y/}�1+4.1−α−ν/2, then

∀ρ�ρÅ, inf
Φα

sup
θ∈Fρ

Pθ.Φα =0/�ν:

A.2. Proof of theorem 1
Because we standardize the test statistic first, we shall let .Z1, : : : , Zp/′ be a zero-mean multivariate normal
random vector with covariance matrix Ω = .ωi,j/1�i, j�p and diagonal ωi, i = 1 for 1 � i � p. To prove
theorem 1, it suffices to prove the following lemma.

Lemma 6. Suppose that max1�i�=j�p |ωi,j|� r< 1 and maxj Σp
i=1 ω2

i,j �C0. Then for any x∈R as p→∞

P

[
max

1�i�p
Z2

i −2 log.p/+ log{log.p/}�x

]
→ exp

{
− 1√

π
exp

(
− x

2

)}
, .17/

P

(
max

1�i�p
Zi �

√
[2 log.p/− log{log.p/}+x]

)
→ exp

{
− 1

2
√

π
exp

(
− x

2

)}
: .18/
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Proof. We need only to prove expression (17) because the proof of expression (18) is similar. Set xp =
2 log.p/− log{log.p/}+x. By lemma 1, we have, for any fixed k � [p=2],

2k∑
t=1

.−1/t−1Et �P

(
max

1�i�p
|Zi|�√

xp

)
�

2k−1∑
t=1

.−1/t−1Et , .19/

where Et = Σ1�i1<:::<it�p P.|Zi1 | �
√

xp, : : : , |Zit | �
√

xp/ =: Σ1�i1<:::<it�p Pi1,:::, it : Define I = {1 � i1 <: : :<
it �p : max1�k<l�t |cov.Zik , Zil /|�p−γ}, where γ >0 is a sufficiently small number to be specified later. For
2�d � t −1, define

Id ={1� i1 <: : :< it �p : card.S/=d, where S is the largest subset of{i1, : : : , it} such that
∀ik �= il ∈S, |cov.Zik , Zil /|<p−γ}:

For d = 1, define I1 = {1 � i1 <: : :< it � p : |cov.Zik , Zil /| � p−γ for every 1 � k < l � t}. So we have I =
∪t−1

d=1 Id . Let card(Id) denote the total number of the vectors .i1, : : : , it/ in Id . We can show that card(Id)�
Cpd+2γt . In fact, the total number of the subsets of {i1, : : : , it} with cardinality d is Cd

p. For a fixed subset
S with cardinality d, the number of i such that |cov.Zi, Zj/|�p−γ for some j ∈S is no more than Cdp2γ .
This implies that card(Id/�Cpd+2γt . Define Ic ={1 � i1 <: : : < it �p} \I. Then the number of elements
in the sum Σ.i1,:::, it /∈Ic Pi1,:::, it is Ct

p −O.Σt−1
d=1 pd+2γt /=Ct

p −O.pt−1+2γt /={1+o.1/}Ct
p.

To prove lemma 6, it suffices to show that

Pi1,:::, it ={1+o.1/}π−t=2p−t exp
(

− tx

2

)
.20/

uniformly in .i1, : : : , it/∈Ic and, for 1�d � t −1,∑
.i1,:::, it /∈Id

Pi1,:::, it →0: .21/

Putting expressions (19)–(21) together, we obtain that

{1+o.1/}S2k �P. max
1�i�p

|Zi|�√
xp/�{1+o.1/}S2k−1, .22/

where

Sk =
k∑

t=1
.−1/t−1 1

t!
π−t=2exp

(
− tx

2

)
:

Note that

lim
k→∞

Sk =1− exp
{

− 1√
π

exp
(

− x

2

)}
:

By letting p→∞ first and then k →∞ in condition (13), we prove lemma 6.
We now prove equation (20). Let z = .zi1 , : : : , zit /

′ and |z|min =min1�j�t |zij |. Write

Pi1,:::, it =
1

.2π/t=2 det.Ωt /1=2

∫
|z|min�√

xp

exp
(

−1
2

z′Ω−1
t z

)
dz,

where Ωt is the covariance matrix of Z = .Zi1 , : : : , Zit /
′, and Ωt = .akl/t×t , where akl = cov.Zik , Zil /. Since

i1, : : : , it ∈Ic, ak,k =1 and |akl|<p−γ for k �= l. Write

∫
|z|min�√

xp

exp
(

−1
2

z′Ω−1
t z

)
dz =

∫
|z|min�√

xp ,‖z‖2>log.p/2

exp
(

−1
2

z′Ω−1
t z

)
dz

+
∫

|z|min�√
xp , ||z||2�log.p/2

exp
(

− 1
2

z′Ω−1
t z

)
dz: .23/

Then ∫
|z|min�√

xp ,‖z‖2>log.p/2

exp
(

−1
2

z′Ω−1
t z

)
dz �C exp

{
− log.p/2

2t

}
�Cp−2t , .24/
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uniformly in .i1, : : : , it/∈Ic. For the second part of the sum in equation (23), note that

‖Ω−1
t − I‖2 �‖Ω−1

t ‖2‖Ωt − I‖2 �Cp−γ : .25/

Let A={|z|min �√
xp, ‖z‖2 � log.p/2}. It follows that∫

A

exp.− 1
2 z′Ω−1

t z/dz =
∫

A

exp.− 1
2 z′.Ω−1

t − I/z − 1
2 ‖z‖2/dz

= [1+O{p−γ log.p/2}]
∫

A

exp.− 1
2 ‖z‖2/dz

= [1+O{p−γ log.p/2}]
∫

|z|min�√
xp

exp.− 1
2 ‖z‖2/dz +Cp−2t , .26/

uniformly in .i1, : : : , it/∈Ic. This, together with expressions (23) and (24), implies result (20).
It remains to prove expression (21). For S ⊂Id with d � 1, without loss of generality, we can assume

that S ={it−d+1, : : : , it}. By the definition of S and Id , for any k ∈{i1, : : : , it−d}, there is at least one l ∈S
such that |cov.Zk, Zl/|�p−γ . We divide Id into two parts:

Id,1 ={1� i1 <: : :< it �p : there exists a k ∈{i1, : : : , it−d} such that, for some l1, l2 ∈S with l1 �= l2,
|cov.Zk, Zl1 /|�p−γ and |cov.Zk, Zl2 /|�p−γ}

and Id,2 =Id \Id,1. Clearly, I1,1 =∅ and I1,2 =I1. Moreover, we can show that card(Id,1/�Cpd−1+2γt . For
any .i1, : : : , it/∈Id,1,

P.|Zi1 |�
√

xp, : : : , |Zit |�
√

xp/�P.|Zit−d+1 |�
√

xp, : : : , |Zit |�
√

xp/=O.p−d/:

Hence, by letting γ be sufficiently small,∑
Id, 1

Pi1,:::, it �Cp−1+2γt =o.1/: .27/

For any .i1, : : : , it/∈Id,2, without loss of generality, we assume that |cov.Zi1 , Zit−d+1 /|�p−γ . Note that

P.|Zi1 |�
√

xp, : : : , |Zit |�
√

xp/�P.|Zi1 |�
√

xp, |Zit−d+1 |�
√

xp, : : : , |Zit |�
√

xp/:

Let Ul be the covariance matrix of .Zi1 , Zit−d+1 , : : : , Zit /. We can show that ‖Ul − Ūl‖2 = O.p−γ/, where
Ūl = diag.D, Id−1/ and D is the covariance matrix of Zi1 and Zit−d+1 . Using arguments similar to those in
expressions (23)–(26), we can obtain

P.|Zi1 |�
√

xp, |Zit−d+1 |�
√

xp, : : : , |Zit |�
√

xp/

�{1+o.1/}P.|Zi1 |�
√

xp, |Zit−d+1 |�
√

xp/O.p−d+1/�Cp−2=.1+r/ O.p−d+1/,

where the last inequality follows from lemma 2 and the assumption max1�i�=j�p |ωi,j| � r < 1. Thus, by
letting γ be sufficiently small, ∑

Id,2

Pi1,:::, it �Cpd+2γt−d+1−2=.1+r/ =o.1/: .28/

Combining expressions (27) and (28), we prove expression (21). The proof of lemma 6 is then complete.

A.3. Proof of theorem 2
It suffices to prove P [max1�i�p |.Ωδ/i=

√
ωi, i|�√{.2+ "=2/ log.p/=n}] → 1: By lemma 3 and the condi-

tion maxi |δi=σ
1=2
i, i |�√{2β log.p/=n} with β �1= mini.σi, iωi, i/+ " for some constant "> 0, we can obtain

max1�i�p |.Ωδ/i=
√

ωi, i|�√{.2+ "=2/ log.p/=n} with probability tending to 1. So theorem 2 follows.

A.4. Proof of theorem 3
First we assume that kp =o.pr/ for some r< 1

4 , and we can obtain a similar argument if kp =O.pr/ for some
r< 1

2 andΩ=Σ−1 is sp sparse with sp =O{.p=k2
p/γ} for some 0<γ <1. Let Ms,p denote the set of all subsets

of {1, : : : , p} with cardinality kp. Let m̂ be a random set of {1, : : : , p}, which is uniformly distributed on M.
Let ωj , 1�j �p, be independent identically distributed variables with P.ωj =1/=P.ωj =−1/= 1

2 . We con-
struct a class of δ=μ1 −μ2 by letting μ1 =0 and δ=−μ2 satisfy δ= .δ1, : : : , δp/′ with δj = .ρ=

√
kp/ωj1j∈m̂,
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where ρ= c
√{kp log.p/=n} and c > 0 is sufficiently small that will be specified later. Clearly, |δ|2 =ρ. Let

μρ be the distribution of δ. Note that μρ is a probability measure on {δ ∈Skp : |δ|=ρ}. We now calculate
the likelihood ratio

Lμρ = dPμρ

dP0
.{Xn, Yn}/:

It is easy to see that Lμρ =Em̂,ω[exp{−Z′δ
√

n− .n=2/δ′Ωδ}], where Z is a multivariate normal vector with
mean 0 and cov.Z/=Ω, and is independent with m̂ and Ω. For any fixed m̂=m, let δi

m, 1� i�2kp , be all
the possible values of δ, i.e. P.δ =δi

m|m̂=m/=2−kp : Thus

Em̂,ω

{
exp

(
−Z′δ

√
n− n

2
δ′Ωδ

)}
= 1(

p
kp

) 1
2kp

∑
m∈M

2kp∑
i=1

exp
{
−Z′δ.i/

.m/

√
n− n

2
δ.i/′

.m/Ωδ.i/
.m/

}
:

It follows that

E.L2
μρ

/=E

[
1(
p
kp

) 1
2kp

∑
m∈M

2kp∑
i=1

exp
{

−Z′δ.i/
.m/ −

n

2
δ.i/′

.m/Ωδ.i/
.m/

}]2

= 1(
p
kp

)2

1
22kp

E

[ ∑
m,m′∈M

2kp∑
i,j=1

exp
{
−Z′.δ.i/

.m/ +δ
.j/

.m′//
√

n− n

2
.δ.i/′

.m/Ωδ.i/
.m/ +δ

.j/′

.m′/Ωδ
.j/

.m′//

}]

= 1(
p
kp

)2

1
22kp

∑
m,m′∈M

2kp∑
i,j=1

[
exp

{
− n

2
.δ.i/′

.m/Ωδ.i/
.m/ +δ

.j/′

.m′/Ωδ
.j/

.m′//

}
exp

{
n

2
.δ.i/′

.m/ +δ
.j/′
.m′//Ω.δ.i/

.m/ +δ
.j/

.m′//

}]

= 1(
p
kp

)2

1
22kp

∑
m,m′∈M

2kp∑
i, j=1

exp.nδ.i/′
.m/Ωδ

.j/

.m′//= 1(
p
kp

)2

1
22kp

∑
m,m′∈M

2kp∑
i,j=1

exp
(

nρ2

kp

∑
k∈m, l∈m′

ak, lω
.i/
k ω

.j/
l

)
,

where .ρ=
√

kp/.ω.i/
k Ik∈m/ :=δ.i/

.m/ and Ω= .akl/p×p. Thus

E.L2
μρ

/= 1(
p
kp

)2

1
22kp

∑
m,m′∈M

2kp

kp∏
k, l=1

{
exp

(
nρ2

kp

akl

)
+ exp

(
−nρ2

kp

akl

)}

= 1(
p
kp

)2

∑
m,m′∈M

∏
k∈m, l∈m′

cosh
(

nρ2

kp

akl

)
� 1(

p
kp

)2

∑
m,m′∈M

∏
k∈m, l∈m′

exp
(

nρ2

kp

|akl|
)

:

For every m, let B :=Bm ={l : |ak, l|�M=d, k ∈m}, where d = .p=k2
p/1−γ and γ is sufficiently small. For every

k, the number of l such that |akl|�M=d is at most d. Hence

E.L2
μρ

/� 1(
p
kp

)2

∑
m∈M

kp∑
j=0

I.|m′ ∩B|= j/exp
( ∑

k∈m, l∈m′

nρ2

kp

|akl|
)

= 1(
p
kp

)2

∑
m∈M

kp∑
j=0

I.|m′ ∩B|= j/exp
( ∑

k∈m, l∈m′∩B

nρ2

kp

|akl|+
∑

k∈m, l∈m′∩Bc

nρ2

kp

|akl|
)

� 1(
p
kp

)2

∑
m∈M

kp∑
j=0

(
kpd
j

)(
p−kp

kp − j

)
exp

{
Mnρ2

kp

j + Mk2
p log.p/

d

}

� 1(
p
kp

)2

kp∑
j=0

(
kpd
j

)(
p−kp

kp − j

)
exp

{
Mnρ2

kp

j + Mk2
p log.p/

d

}

�{1+o.1/}
kp∑

j=0

(
kp

j

) .dkp/j

pj
exp

{
Mnρ2

kp

j + Mk2
p log.p/

d

}
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={1+o.1/}
(

1+ dkpt

p

)kp

exp
{

Mk2
p log.p/

d

}
,

where t = exp.Mnρ2=kp/=pMc2
. It follows that

E.L2
μρ

/�{1+o.1/}exp
{

kp log
(

1+ dkpt

p

)
+ Mk2

p log.p/

d

}

�{1+o.1/}exp
{

kp

dkpt

p
+ Mk2

p log.p/

d

}
�1+4.1−α−ν/2

by letting c be sufficiently small. If kp =O.pr/ for some r< 1
2 and Ω=Σ−1 is sp sparse with sp =O{.p=k2

p/γ}
for some 0 <γ < 1, we let B :=Bm ={l : ak, l �=0, k ∈m}. Then we can similarly obtain

E.L2
μρ

/� 1(
p
kp

)2

∑
m∈M

kp∑
j=0

I.|m′ ∩B|= j/exp
( ∑

k∈m, l∈m′

nρ2

kp

|akl|
)

� 1(
p
kp

)2

∑
m∈M

kp∑
j=0

I.|m′ ∩B|= j/exp
(

Mnρ2

kp

j

)
�{1+o.1/}

(
1+ spkpt

p

)kp

:

So we can still obtain E.L2
μρ

/�1+4.1−α−ν/2 by letting c be sufficiently small. Theorem 3 now follows
from lemma 5.

A.5. Proof of theorem 4
We only prove part (b) of theorem 4 in this section; part (a) follows from the proof of part (b) directly.
Without loss of generality, we assume that σi, i = 1 for 1 � i � p. Define the event A = {max1�i�p |δi| �
8
√{log.p/=n}}. By conditions in theorem 4, we have

max
1�i�p

|ω̂.0/
i, i −ωi, i|=oP{1= log.p/}:

Hence, as in the proof of proposition 1, part (i), in the on-line supplementary material, it is easy to
show that P.MΩ̂ ∈ Rα, Ac/ = P.Ac/ + o.1/ and P.MΩ ∈ Rα, Ac/ = P.Ac/ + o.1/: Note that Ω̂.X̄ − Ȳ/ =
.Ω̂−Ω/.X̄ − Ȳ −δ/+ .Ω̂−Ω/δ +Ω.X̄ − Ȳ/: On A, we have

|.Ω̂−Ω/.X̄ − Ȳ −δ/+ .Ω̂−Ω/δ|∞ =oP

[
1√{n log.p/}

]
:

To prove theorem 4, it suffices to show that

P. max
1�i�p

|Zo
i |�

√
xp +an, A/=P. max

1�i�p
|Zo

i |�
√

xp, A/+o.1/, .29/

for any an =o{log.p/−1=2}, where Zo
i = .ΩZ/i=

√
ωi, i is defined in the proof of proposition 1, part (i), in the

on-line supplementary material. From the proof of proposition 1, part (i), let H = supp.δ/={l1, : : : , lpr };
then we can obtain

P. max
1�i�p

|Zo
i |�

√
xp +an, A/=αP.A/+ .1−α/P.max

i∈H
|Yi|�√

xp +an, A/+o.1/,

P. max
1�i�p

|Zo
i |�

√
xp, A/=αP.A/+ .1−α/P.max

i∈H
|Yi|�√

xp, A/+o.1/,

where, given δ, Yi, i∈H , are independent normal random variables with unit variance. This, together with
lemma 4, implies equation (29).

A.6. Proof of theorem 6
Let .V1, : : : , Vp/′ be a zero-mean random vector with covariance matrix Ω= .ωi,j/ and diagonal ωi, i = 1
for 1 � i � p satisfying moment conditions 6 or 7. Let V̂ li = Vli I.|Vli| � τn/ for l = 1, : : : , n, where τn =
2η−1=2√log.p+n/ if condition 6 holds and τn =√

n= log.p/8 if condition 7 holds. Let Wi =Σn
l=1 Vli=

√
n and

Ŵ i =Σn
l=1 V̂ li=

√
n. Then

P

{
max

1�i�p
|Wi − Ŵ i|� 1

log.p/

}
�P. max

1�i�p
max

1�l�n
|Vli|� τn/�np max

1�i�p
P.|V1i|� τn/=O.p−1 +n−"=8/: .30/
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Note that

| max
1�i�p

W2
i − max

1�i�p
Ŵ

2
i |�2 max

1�i�p
|Wi| max

1�i�p
|Wi − Ŵ i|+ max

1�i�p
|Wi − Ŵ i|2: .31/

By expressions (30) and (31), it is enough to prove that, for any x∈R, as p→∞
P [ max

1�i�p
Ŵ

2
i −2 log.p/+ log{log.p/}�x]→ exp

{
− 1√

π
exp

(
− x

2

)}
:

It follows from lemma 1 that, for any fixed k � [p=2],

2k∑
t=1

.−1/t−1 ∑
1�i1<:::<it�p

P.|Ŵ i1 |�xp, : : : , |Wit |�xp/�P. max
1�i�p

|Ŵ i|�xp/

�
2k−1∑
t=1

.−1/t−1 ∑
1�i1<:::<it�p

P.|Ŵ i1 |�xp, : : : , |Wit |�xp/: .32/

Define |Ŵ|min =min1�l�t |Ŵ il |. Then, by theorem 1 in Zaı̈tsev (1987), we have

P.|Ŵ|min �xp/�P{|Z|min �xp − "n log.p/−1=2}+ c1d
5=2 exp

{
− n1=2"n

c2d3τn log.p/1=2

}
, .33/

where c1 >0 and c2 >0 are absolute constants, "n →0 which will be specified later and Z= .Zi1 , : : : , Zit /
′ is a

t-dimensional normal vector as defined in theorem 1. Because log.p/=o.n1=4/, we can let "→0 sufficiently
slowly such that

c1d
5=2 exp

{
− n1=2"n

c2d3τn log.p/1=2

}
=O.p−M/ .34/

for any large M> 0. It follows from expressions (32), (33) and (34) that

P. max
1�i�p

|Ŵ i|�xp/�
2k−1∑
t=1

.−1/t−1 ∑
1�i1<:::<it�p

P{|Z|min �xp − "nlog.p/−1=2}+o.1/: .35/

Similarly, using theorem 1 in Zaı̈tsev (1987) again, we can obtain

P. max
1�i�p

|Ŵ i|�xp/�
2k∑

t=1
.−1/t−1 ∑

1�i1<:::<it�p

P{|Z|min �xp − "n log.p/−1=2}−o.1/: .36/

So, by expressions (35) and (36) and the proof of theorem 1, the theorem is proved.

A.7. Proof of theorem 7

(a) Part (a) follows from the proof of theorem 4.
(b) Note that Ω̂.X̄ − Ȳ/= .Ω̂−Ω/.X̄ − Ȳ −δ/+ .Ω̂−Ω/δ +Ω.X̄ − Ȳ/: It suffices to prove that

P [ max
1�i�p

|.Ω̂δ/i

√
n=

√
ωi, i +Ω.X̄ − Ȳ −δ/i

√
n=

√
ωi, i|�√{ρ log.p/}]→1

for some ρ> 2. For this, we need only to show that

P [ max
1�i�p

|.Ω̂δ/i=
√

ωi, i|�√{.2+ "=4/ log.p/=n}]→1:

Note that
max

1�i�p
|.Ω̂δ/i=

√
ωi, i|� max

1�i�p
|.Ωδ/i=

√
ωi, i|+oP .1/ max

1�i�p
|δi|�{1+oP .1/} max

1�i�p
|.Ωδ/i=

√
ωi, i|:

By the condition maxi |δi=σ
1=2
i, i |�√{2β log.p/=n} with β � 1= mini.σi, iωi, i/ + " for some constant

" > 0, we can obtain max1�i�p |.Ωδ/i=
√

ωi, i|�√{.2+ "=2/ log.p/=n} with probability tending to
1. This proves part (b).
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