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The problem of loss adaptation is investigated: given a fixed parameter, the goal is to construct an

estimator that adapts to the loss function in the sense that the estimator is optimal both globally and

locally at every point. Given the class of estimator sequences that achieve the minimax rate, over a

fixed Besov space, for estimating the entire function a lower bound is given on the performance for

estimating the function at each point. This bound is larger by a logarithmic factor than the usual

minimax rate for estimation at a point when the global and local minimax rates of convergence differ.

A lower bound for the maximum global risk is given for estimators that achieve optimal minimax

rates of convergence at every point. An inequality concerning estimation in a two-parameter statistical

problem plays a key role in the proof. It can be considered as a generalization of an inequality due to

Brown and Low. This may be of independent interest. A particular wavelet estimator is constructed

which is globally optimal and which attains the lower bound for the local risk provided by our

inequality.
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1. Introduction

There are two major formulations for the problem of estimating a function based on noisy

data. One common approach is to fix attention on each point and use squared error loss to

measure the accuracy of an estimate. Another approach based on integrated squared error

loss gives a more global measure of accuracy.

In both the local and global approaches theory has been developed for the construction of

minimax estimators over a given function space; see, for example, Pinsker (1980),

Ibragimov and Hasminski (1984), Donoho and Liu (1991) and the references in Efromovich

(1999).

Local and global theory have also focused on the construction of estimators which are

simultaneously asymptotically (near) minimax over a collection of parameter spaces. Such

estimators are called adaptive and, for a given loss function, are ‘optimal’ over a range of

parameter spaces.

When attention is focused on adaptive estimation there are some striking differences
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between local and global theories. Under integrated squared error loss there are many

situations where rate adaptive estimators can be constructed. In particular, Efromovich and

Pinsker (1984) constructed fully adaptive estimators over a range of Sobolev spaces. Recent

results focus on more general Besov spaces; see, for example, Donoho and Johnstone

(1995), Cai (1999) and Härdle et al. (1998).

When attention is focused on estimating a function at a given point, rate-optimal adaptive

procedures typically do not exist. A penalty, usually a logarithmic factor, must be paid for

not knowing the smoothness. Important work in this area began with Lepski (1990) where

attention focused on a collection of Lipschitz classes; see also Brown and Low (1996b) and

Efromovich and Low (1994). Connections between local and global parameter space

adaptation can be found in Cai (1999) and Efromovich (2002).

As just mentioned, for estimating a function at a point the payment of a logarithmic

penalty can be viewed as a necessary price for adapting over different parameter spaces.

Here we consider a complementary question: whether, given a fixed parameter space, we

can construct an estimator that adapts to the loss function in the sense that the estimator is

optimal both locally and globally. Specifically, for a given Besov space, we investigate

whether an estimator can be constructed which is both minimax rate-optimal at each point

under r th power loss (1 < r , 1) and also minimax rate-optimal under integrated rth

power loss.

To date, adaptation has mainly focused on different smoothness classes, although some

recent nonparametric function estimation literature can also be viewed as falling within the

area of loss adaptation. For example, Bickel and Ritov (2003) have studied nonparametric

density estimators whose integrals provide efficient estimators of the corresponding

functionals; Efromovich (2004) describes an estimator for censored data that achieves a

similar multi-purpose goal. Cai (2002) is another example where a minimax rate estimator

of the unknown nonparametric regression function is given such that the derivatives of this

estimator attain the minimax rate for estimation of the derivatives of the function. These

problems can all be viewed as one of finding a single estimator of the unknown function

which are optimal for a variety of loss functions.

In the present setting we consider the class of estimator sequences that achieve the

minimax rate, over a fixed Besov space, for estimating the entire function and establish a

lower bound on the ratewise performance of any such sequence for estimation of the

function at each point. This bound is larger by a logarithmic factor than the usual

minimax rate for estimation at a point when the global minimax rate of convergence is

faster than the local minimax rate of convergence. Hence, no estimator sequence can

simultaneously have minimax rate both globally and at each point when the global and

local minimax rates of convergence differ. We should emphasize that the loss of the

logarithmic factor is not caused by trying to be adaptive over several function classes. We

have a fixed function class but more than one loss function. We also consider estimators

that achieve optimal minimax rates of convergence at every point and give a lower bound

for the maximum global risk.

We then study a modification of the wavelet estimator of Delyon and Juditsky (1996).

We show that this estimator attains the optimal global rate and also attains the rate given

by that our lower bound for estimation locally at each point. This shows that our lower
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bound is sharp. These main results are stated in Sections 2–4; their proofs are completed

in Section 8. An inequality concerning estimation in a two-parameter statistical problem

plays a key role in our proof. An alternative proof can also be based on the two-point

testing techniques used in Lepski (1990) and Tsybakov (1998). The inequality used in the

present paper and presented in Section 6 can be considered as an ‘r-norm generalization

of an inequality in Brown and Low (1996b). A generalization of the Hammersley–

Chapman–Robbins inequality can also be deduced from our basic result. This

generalization may be of independent interest and is included as an additional proposition

in this section.

Our basic inequality also has some consequences relating to the possibility of

superefficient parametric estimation under ‘r loss. These are described in Section 7.

2. Trade-offs between global and pointwise risks

Consider the white noise model in which we observe Gaussian processes Yn(t) governed by

dYn(t) ¼ f (t)dt þ n�1=2 dW (t), 0 < t < 1, (1)

where W (t) is a standard Brownian motion and f is an unknown function of interest. This

canonical white noise model is asymptotically equivalent to the conventional formulation of

nonparametric regression; see Brown and Low (1996a) and Brown et al. (2002). There is also

a slightly less direct equivalence to nonparametric density estimation; see Nussbaum (1996),

Klemelä and Nussbaum (1999), and Brown et al. (2004).

The accuracy of an estimate f̂f n of f is measured both under the global Lr risk

R( f̂f , f ) � E f k f̂f n � f kr
r ¼ E f

ð1

0

j f̂f n(t) � f (t)jr dt, (2)

as well as under the pointwise ‘r risk,

R( f̂f , f ; x) � E f j f̂f n(x) � f (x)jr, (3)

for all x 2 (0, 1).

The benchmarks for the performance of an estimator f̂f n over a function class F are the

minimax risks under the respective error measures. The global minimax Lr risk is

Rg(F , n) ¼ inf
f̂f n

sup
F

Ek f̂f n � f kr
r,

and the local minimax ‘r risk at a point x is

Rl(F , x, n) ¼ inf
f̂f n

sup
F

Ej f̂f n(x) � f (x)jr:

We investigate the possibility of having a loss adaptive estimator. We want an estimator

which at every point attains the minimax pointwise rate while also attaining the minimax

global rate.

We use Besov balls as examples of the function class F . Besov spaces occur naturally in
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many areas of analysis. They include many traditional smoothness spaces such as Hölder

and Sobolev spaces, as well as function spaces of significant spatial inhomogeneity such as

the bump algebra and the bounded variation. Full details of Besov spaces are given, for

example, in DeVore and Popov (1988).

A Besov space BÆ
p,q has three parameters: Æ measures the degree of smoothness, and p

and q specify the type of norm used to measure the smoothness. For f 2 Lp[0, 1] and

h . 0, denote the Kth difference by ˜(K)
h f (t) ¼

PK
k¼0(�1)k f (t þ kh). The modulus of

smoothness of order K of f is øK, p( f , h) ¼ k˜(K)
h f kL p[0,1�Kh]. The Besov norm of index

(Æ, p, q) is defined for K . Æ by

k f kBÆ
p,q

¼ k f k p þ
ð1

0

[h�ÆøK, p( f , h)]q
dh

h

� �1=q

, for q , 1,

k f k p þ kh�ÆøK, p( f , h)k1, for q ¼ 1:

8><
>: (4)

The Besov class BÆ
p,q(M) is a ball of radius M under the Besov norm k � kBÆ

p,q
:

BÆ
p,q(M) ¼ f f : k f kBÆ

p,q
< Mg:

The estimation problems over the Besov class BÆ
p,q(M) under the local risk (3) and the

global risk (2) have important distinctions. Write � ¼ Æ� 1=p. We will assume Æ . 1=p so

� . 0. It is shown in Cai (2003) that the minimax convergence rate over BÆ
p,q(M) under the

local risk (3) is nl(Æ, p,r), where l(Æ, p, r) ¼ r�=(1 þ 2�). The minimax rate under the global

Lr risk for 1 < r , 1 is AÆ, p,r(n), where

AÆ, p,r(n) ¼

nrÆ=(1þ2Æ) when r , p(1 þ 2Æ),

n

log n

� �(1þr�)=(1þ2�)

(log n)�(r=2� p=q)þ, when r ¼ p(1 þ 2Æ),

n

log n

� �(1þr�)=(1þ2�)

when r . p(1 þ 2Æ);

8>>>>>>><
>>>>>>>:

(5)

see Donoho et al. (1995, 1996) and Delyon and Juditsky (1996). It will be convenient to

denote the exponent of the algebraic term in the rate of convergence by g(Æ, p, r). So

g(Æ, p, r) ¼

rÆ

1 þ 2Æ
, when r , p(1 þ 2Æ),

1 þ r�

1 þ 2�
, when r > p(1 þ 2Æ):

8>><
>>: (6)

Note that g(Æ, p, r) ¼ l(Æ, p, r) when p ¼ 1 and g(Æ, p, r) . l(Æ, p, r) when p , 1.

Therefore the local rate is the same as the global rate for p ¼ 1 and is always slower than

the global rate for p , 1.

Theorem 1 below states that, when the global and local minimax rates are different, any

estimator attaining the minimax rate at any fixed function f0 under the global risk (2) must

be suboptimal in terms of the maximum pointwise risk at ‘most’ points in (0, 1); the

minimum penalty is a logarithmic factor.
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Theorem 1. Suppose f̂f n is an estimator based on (1) satisfying

lim
n!1

AÆ, p,r(n) � Ek f̂f n � f0kr
r ¼ K , 1 (7)

at some f 0 2 BÆ
p,q(M9) with p , 1 and M9 , M. Then, for any measurable set � � (0, 1)

with the Lebesgue measure m(�) . 0 and any 0 , E , m(�), there exists a subset �0 � �
with m(�0) > m(�) � E such that

lim
n!1

n

log n

� � l(Æ, p,r)

inf
x2�0

sup
f2BÆ

p,q(M)

Ej f̂f n(x) � f (x)jr . 0: (8)

In particular, for any E . 0, there exists a subset �0 � (0, 1) with the Lebesgue measure

m(�0) > 1 � E such that

lim
n!1

n

log n

� � l(Æ, p,r)

inf
x2�0

sup
f 2BÆ

p,q(M)

Ej f̂f n(x) � f (x)jr . 0: (9)

One of the main tools for the proof of Theorem 1 is a general constrained risk inequality

which may be of independent interest. This risk inequality can be used to derive a

generalized version of the Hammersley–Chapman–Robbins inequality as well as results

relating to the possibility of superefficient parametric estimation under ‘r loss. The

constrained risk inequality and these applications are given in Sections 6 and 7. The proof of

Theorem 1 using the constrained risk inequality will be postponed to Section 8. Alternatively,

Theorem 1 can also be proved using the testing arguments given in Lepski (1990) and

Tsybakov (1998).

A direct consequence of Theorem 1 is that if an estimator f̂f n attains the global minimax

rate of convergence at some f , then the set of points at which the estimator f̂f n attains the

local minimax rate of convergence has measure 0.

Corollary 1. Suppose f̂f n is an estimator satisfying (7). Let p , 1 and let ¸ be the set of

points at which f̂f n attains the pointwise minimax rate of convergence, that is,

¸ ¼ x : lim
n!1

nl(Æ, p,r) sup
f 2BÆ

p,q(M)

Ej f̂f n(x) � f (x)jr , 1
( )

:

Then the set ¸ has Lebesgue measure 0.

Therefore it is impossible for any estimator to simultaneously attain the global minimax rate

of convergence and the local minimax rate at every point when the global and local minimax

rates are different.

Remark. It can be seen from the proof of Theorem 1 that the conclusions of Theorem 1 and

Corollary 1 remain valid if condition (7) is replaced by
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lim
n!1

nr � Ek f̂f n � f 0kr
r , 1

for any r . l(Æ, p, r).

3. A rate-optimal wavelet estimator

Theorem 1 shows that the minimum penalty for a global rate-optimal estimator is a

logarithmic factor in terms of the maximum pointwise risk over BÆ
p,q(M). This lower bound

can in fact be attained. Delyon and Juditsky (1996) propose a wavelet estimator and show the

optimality of the estimator for density estimation and nonparametric regression over BÆ
p,q(M)

under the Sobolev norm loss. In the following we use a slightly modified version of the

wavelet estimator given in Delyon and Juditsky (1996) for the white noise model (1) and

show that the estimator attains the optimal global rate and the local rate of (n=log n) l(Æ, p,r) at

every point x 2 (0, 1). In this sense, the lower bound given in Theorem 1 is sharp.

Let the functions � and ł be a pair of compactly supported father and mother wavelets

with
Ð
� ¼ 1. We call a wavelet ł K-regular if ł has K vanishing moments and K

continuous derivatives. Let � j,k(t) ¼ 2 j=2�(2 j t � k) and ł j,k(t) ¼ 2 j=2ł(2 j t � k). These

functions, with appropriate treatments at the boundaries, form an orthonormal basis. For

simplicity in exposition, we work with periodized wavelet bases on [0, 1], letting

� p
jk(t) ¼

X
l2Z

� jk(t � l), ł p
jk(t) ¼

X
l2Z

ł jk(t � l), for t 2 [0, 1]:

Then the collection f� p
j0 k

, k ¼ 1, . . . , 2 j0 ; ł p
jk , j > j0 > 0, k ¼ 1, . . . , 2 jg is an orthonormal

basis of L2[0, 1], provided the primary resolution level j0 is large enough to ensure that the

support of the scaling functions and wavelets at level j0 is not the whole of [0, 1]. The

superscript p will be suppressed from the notation for convenience. See Cohen et al. (1993),

Daubechies (1994) and Meyer (1991) for other boundary-corrected wavelet bases on the unit

interval [0, 1]. For wavelets on the line, see Daubechies (1992) and Meyer (1992).

For any l > j0, a function f can be expanded into a wavelet series

f (t) ¼
X2 l

k¼1

� lk� l,k(t) þ
X1
j¼ l

X2 j

k¼1

Ł jkł j,k(t), (10)

where � l,k ¼
Ð 1

0
f (t)� l,k(t) dt and Ł j,k ¼

Ð 1

0
f (t)ł j,k(t) dt.

For the white noise model (1), let ~yyj,k ¼
Ð
� j,k(t) dYn(t), yj,k ¼

Ð
ł j,k(t) dYn(t),

~zz j,k ¼
Ð
� j,k(t) dW (t) and z j,k ¼

Ð
ł j,k(t) dW (t). The white noise model (1) is then

equivalent to a sequence model in which one observes an empirical wavelet coefficient

sequence:

~yyl,k ¼ � l,k þ n�1=2~zzl,k , k ¼ 1, 2, . . . , 2 l, (11)

yj,k ¼ Ł j,k þ n�1=2z j,k , k ¼ 1, 2, . . . , 2 j, j > l, (12)

where l > j0 and ~zzl,k and z j,k are independently and identically distributed as N (0, 1).
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Let J0 and J be integers satisfying n(1þ2Æ) < 2J0 , 2n(1þ2Æ) and n < 2J , 2n,

respectively. For j > J0 þ 1, let

º j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rn�1 log(2 j�J0 )

p
(13)

and let �º(y) ¼ sgn(y)(jyj � º)þ be the soft threshold function. We define the following

wavelet estimator:

�̂�J0,k ¼ ~yyJ0,k and Ł̂Ł j,k ¼
�º j

(yj,k), if J0 < j , J ,

0, if j > J :

�
(14)

The estimator of f is given by

f̂f n(t) ¼
X2 J0

k¼1

�̂�J0,k�J0,k(t) þ
XJ�1

j¼J0

X2 j

k¼1

Ł̂Ł j,kł j,k(t): (15)

The estimator given in (15) differs from the wavelet estimator in Delyon and Juditsky (1996)

in the choice of upper and lower resolution levels J0 and J as well as in the choice of the

threshold º j.

Over the Besov class BÆ
p,q(M), the wavelet estimator f̂f n is rate-optimal under the global

Lr risk and at the same time is within a logarithmic factor of the minimax risk under the

pointwise ‘r risk at every point in (0, 1).

Theorem 2. Let f̂f n be the wavelet estimator given in (15). Let BÆ
p,q(M) be a Besov class with

Æ� 1=p . 0, 0 , q < 1, and M . 0. Suppose the wavelet ł is K-regular with K . Æ.
Then f̂f is rate-optimal over the Besov class BÆ

p,q(M) under the global Lr risk (2) and is

within a logarithmic factor of the minimax risk under the local risk (3) for any 1 < r , 1.

That is,

lim
n!1

AÆ, p,r(n) sup
f 2BÆ

p,q(M)

Ek f̂f n � f kr
r , 1 (16)

and

lim
n!1

n

log n

� � l(Æ, p,r)

sup
f 2BÆ

p,q(M)

E f j f̂f n(x) � f (x)jr , 1, (17)

for every x 2 (0, 1).

The proof of Theorem 2 is given in Section 8.

Remark. The estimator f̂f n given in (15) depends on the loss function. It can be modified

slightly so that a single estimator f̂f �n satisfies (16) and (17) simultaneously for a range of loss

functions. Let r� . 1 be fixed and, for j > J0 þ 1, set º�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�n�1 log(2 j�J0 )

p
. Let the

estimator f̂f �n be defined as in (15) with º j replaced by º�j . Then the estimator f̂f �n satisfies

(16) and (17) for all 1 < r < r�.
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4. Local rate-optimal estimators

In the previous section, we considered the local performance of a global rate-optimal

estimator. We now consider the global performance of an estimator which is rate-optimal at

every point under the local risk (3).

Theorem 3. Suppose f̂f n is an estimator based on (1). Let

� ¼ x : lim
n!1

nl(Æ, p,r) sup
f 2BÆ

p,q(M)

Ej f̂f n(x) � f (x)jr , 1
( )

: (18)

If the Lebesgue measure m(�) . 0, then for any f with k f kBÆ
p,q

, M and any r . l(Æ, p, r),

lim
n!1

nr � Ek f̂f n � f kr
r ¼ 1: (19)

It follows from Theorem 3 that, when the global and local minimax rates are different (i.e.

p , 1), if an estimator is minimax rate-optimal at every point under the local risk (3), then

it cannot attain the global minimax rate at any f in the interior of the parameter space

BÆ
p,q(M), and consequently the maximum global risk of the estimator over BÆ

p,q(M) must be

suboptimal. Moreover, it follows from Theorem 3 the penalty on the maximum global risk for

being local rate-optimal at every point is a power of n.

5. The case of p ¼ 1
For a Besov class BÆ

p,q(M), when p ¼ 1, g(Æ, p, r) ¼ l(Æ, p, r) and the global and local

minimax rates coincide. In this case the optimal global rate and the optimal local rate at

every point in (0, 1) can be attained simultaneously. For the class of analytic functions,

Efromovich (1999) showed that the global minimax rate under the mean integrated squared

error, is the same as the local minimax rate under the mean squared error, and in this case

a single estimator can attain simultaneously the global minimax rate and the local minimax

rate at every point in (0, 1).

Over a Besov class BÆ
1,q(M), it is not difficult to construct a wavelet estimator which is

both global rate-optimal and local rate-optimal at every point in (0, 1). Using the same

notation as in the previous section, let J0 be an integer satisfying n(1þ2Æ) < 2J0 , 2n(1þ2Æ)

and let the estimator of f be a projection (truncation) estimator,

f̂f n(t) ¼
X2 J0

k¼1

~yyJ0,k�J0 k(t): (20)

Then it is straightforward to verify that this wavelet estimator f̂f n is simultaneously rate-

optimal under the global risk and the local risk at every point.

Furthermore, for any estimator f̂f n that is both global rate-optimal and local rate-optimal
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at every point, the estimator must attain the same global rate at every function f in the

interior of BÆ
1,q(M), that is,

0 , lim
n!1

nrÆ=(1þ2Æ)Ek f̂f n � f kr
r < lim

n!1
nrÆ=(1þ2Æ)Ek f̂f n � f kr

r , 1,

for all f with k f kBÆ
1,q

, M .

6. A general constrained risk inequality

Throughout this section, we let 1 < r , 1 and let w satisfy

1

r
þ 1

w
¼ 1:

Let X be a (vector-valued) random variable having distribution PŁ with density fŁ with

respect to a measure º. The parameter Ł takes two possible values, Ł1 or Ł2. We wish to

estimate Ł based on X . Suppose the parameters Łi ¼ (Łi,1, . . . , Łi,K ) 2 RK (i ¼ 1, 2). For

any estimator � based on X , its ‘r risk is defined by

Rr(�, ª) ¼ Ek�(X ) � ªkr
‘ r ¼

ð XK
k¼1

j�k(x) � ªk jr fª(x)º(dx):

Denote by s(x) ¼ fŁ2
(x)= fŁ1

(x) the ratio of the two density functions. (s(x) ¼ 1 for some x

is possible, with the obvious interpretation s(x) fŁ1
(x) ¼ fŁ2

(x).) Write

˜r ¼ kŁ2 � Ł1k‘ r ¼
XK
k¼1

jŁ2,k � Ł1,k jr
 !1=r

: (21)

For 1 < w , 1, let

Iw ¼ Iw(Ł1, Ł2) ¼ (EŁ1
(sw(X )))1=w, (22)

and let I1 ¼ I1(Ł1, Ł2) ¼ ksk1 where the supremum norm is taken with respect to PŁ1
.

When Iw , 1 the following result gives a lower bound for the bias at Ł2 and, in

particular, the risk R(�, Ł2) given an upper bound on the risk at Ł1.

Theorem 4. Suppose Rr(�, Ł1) < Err and ˜r . Er Iw. Then

kEŁ2
�(X ) � Ł2k‘ r > ˜r � Er Iw (23)

and, in particular,

Rr(�, Ł2) > (˜r � Er Iw)r: (24)

Hence,

Rr(�, Ł2) > ˜r
r 1 � rEr Iw

˜r

� �
: (25)
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Proof. The triangle inequality yields

kEŁ2
�(X ) � Ł2k‘ r > kŁ2 � Ł1k‘ r � kEŁ2

�(X ) � Ł1k‘ r :
It then follows from Hölder’s inequality that

jEŁ2
�k(X ) � Ł1,k j < (EŁ1

j�k(X ) � Ł1,k jr)1=r(EŁ1
sw(X ))1=w < (EŁ1

j�k(X ) � Ł1,k jr)1=r I w,

and so

kEŁ2
�(X ) � Ł1k‘ r < (EŁ1

k�(X ) � Ł1kr
‘ r )

1=r � Iw < Er Iw:

Therefore,

kEŁ2
�(X ) � Ł2k‘ r > ˜r � Er Iw:

The inequality in (25) follows from Jensen’s inequality and the following elementary

inequality:

(1 � x)r > 1 � rx, for 0 < x < 1 and r > 1:

h

The following result shows that the risk lower bound (24) in Theorem 4 is sharp.

Proposition 1. Fix ˜ . 0, B . 1 and 0 , E , ˜B�1=r. Let fŁ be the uniform distribution on

(0, 1) when Ł ¼ 0 and the uniform distribution on (0, B�1) when Ł ¼ ˜. Then

min
� :Rr(0,�)<E

R(�, ˜) ¼ (˜� EIw)r: (26)

Hence, the bound (24) is attained.

Proof. Following Brown and Low (1996b), it is easy to see that Iw ¼ B1=r. Let the estimator

�� of Ł be

��(x) ¼ 0, if B�1 < x < 1,

EB1=r, if 0 , x < B�1:

�

Then it is easy to verify that Rr(�, 0) ¼ Er and Rr(�, ˜) ¼ (˜� EIw)r. In view of Theorem 4,

this proves (26). h

Theorem 4 shows that estimators with ‘small’ risk at Ł1 must have ‘large’ bias at Ł2

when Iw , 1. In many common problems of interest, including Gaussian models, Iw , 1
for 1 < w , 1. However, in the case of mean absolute error, in most problems of interest

I1 ¼ 1. Then it is easy to construct estimators which have arbitrarily small risk for Ł1 and

zero bias at Ł2. When I1 ¼ 1 it is useful to focus on a subset where the likelihood ratio

s(x) is bounded under PŁ1
and the measure of this subset is positive under PŁ2

. The

following result then gives a lower bound on the mean absolute error at Ł2 for all

estimators with ‘small’ mean absolute error at Ł1.

Proposition 2. Suppose R1(�, Ł1) < E1 and that there exists a measurable set ¸0 such that

T.T. Cai, M.G. Low and L.H. Zhao10



PŁ2
(¸0) > r . 0 and ks(x) I(x 2 ¸0)k1 < I0

1 , 1, where the supremum norm is taken

with respect to PŁ1
. Suppose ˜1 . E1 I

0
1=r. Then

R1(�, Ł2) > r˜1 1 � E1 I
0
1

r˜1

� �
: (27)

Proof. The inequality in (27) follows from Jensen’s inequality and the triangle inequality

R1(�, Ł2) > EŁ2
fk�(X ) � Ł2k‘1 I(X 2 ¸0)g > rkŁ2 � Ł1k‘1 � E1 I

0
1:

h

6.1. Discussion

The Hammersley–Chapman–Robbins inequality gives a lower bound for the variance of

unbiased estimators. This is a classical inequality in mathematical statistics; see

Hammersley (1950), Chapman and Robbins (1951) and Lehmann (1983). The constrained

inequality given in Theorem 4 yields a generalization for other loss functions.

Proposition 3. Suppose � is an estimator of Ł which is unbiased at Ł ¼ Ł1 and Ł ¼ Ł2. Then,

for r . 1,

EŁ1
j�� Ł1jr > sup

c2R

jŁ2 � Ł1jr
(EŁ1

j fŁ2
(X )= fŁ1

(X ) � cjw)r=w
: (28)

When r ¼ 2, the left-hand side is varŁ1
(�) and the right-hand side is maximized at c ¼ 1 and

inequality (28) becomes the Hammersley–Chapman–Robbins inequality.

The constrained inequalities given in Theorem 4 are useful for providing lower bounds in

nonparametric function estimation problems such as those given in Section 2. See also Cai

Besides the applications in nonparametric estimation problems, the constrained risk

inequality given in Theorem 4 is also useful for more standard parametric problems such as

estimating a bounded normal mean. In the next section we consider super efficiency in the

classical normal location–scale model.

7. Superefficiency in the normal location–scale model

Let X 1, X2, . . . , X n be a random sample from N (�, �) with both the mean � and the

variance � unknown. Write ø ¼ (�, �). We wish to estimate Ł � T (ø) ¼ T (�, �), where T

is a continuously differentiable function. Then the minimax rate of convergence for

estimating Ł under ‘r loss is nr=2.

Theorem 5. Suppose An ! 1, and n=log An ! 1. Let ø1 ¼ (�1, �1) and Ł1 ¼ T (ø1).

Suppose @T (ø1)=@� and @T (ø1)=@� are not both zero. If

and Low (2006) for an application to estimating a nonlinear functional.
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lim
n!1

nr=2AnEø1
j�� Ł1jr , 1

and the parameter set � contains an ellipsoid centred at ø1,

B(ø1, bn) ¼ fø ¼ (�, �) : j�� �1j2 þ ��1
1 j�� �1j2 < b2

ng

with b2
n ¼ r(log An)=n, then

lim
n!1

n

log An

� �r=2

sup
ø2�

Eøj�� Łjr . 0: (29)

Proof. Denote the sample mean by Y1 ¼ X and the sum of squares by Y2 ¼
P

(X i � X )2.

Then the statistics (Y1, Y2) are sufficient and have joint density

f (y1, y2) ¼ n1=2

� n=2�1=22n=2ˆ((n� 1)=2)
e�n=(2�)( y1��)2

y
(n�1)=2�1
2 e� y2=(2�):

We first consider the case r . 1. Assume that @T (ø1)=@� 6¼ 0. Let �2 ¼ �1 and

�2 ¼ (1 � ((log An)=wn)1=2)�1. Then ø2 ¼ (�2, �2) 2 �. Standard calculations show that

I ww(ø1, ø2) ¼
ðð

f wø2
(y1, y2)

f w�1
ø1

(y1, y2)
dy1 dy2 ¼ w

�2

�1

� �w�1

� (w� 1)
�2

�1

� �w
" #�n=2

! e(w�1)log An ¼ Aw=r
n :

Therefore, for sufficiently large n,

Iw(ø1, ø2) < 2A1=r
n :

Using the Taylor expansion, one obtains

T (ø2) ¼ T (ø1) þ @T

@�
(ø1) (�2 � �1) þ o(j�2 � �1j):

So, when n is sufficiently large,

˜r ¼ jT (ø2) � T (ø1)j > c1

n

log An

� ��1=2

,

where the constant c1 ¼ w�1=2�1j@T (ø1)=@�j . 0.

By assumption, there exists a constant c2 . 0 such that for sufficiently large n,

Er ¼ (Eø1
j�� Łjr)1=r < c2n

�1=2A�1=r
n :

It now follows from (24) that

R(�, Ł2) > cr1
n

log An

� ��r=2

1 � rc2n
�1=2A�1=r

n 2A1=r
n

c1n�1=2(log An)1=2

" #
:

The second term inside the bracket tends to zero. Therefore,
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lim
n!1

n

log An

� �r=2

Eø1
j�� Łjr . cr1 . 0:

Now consider the case of r ¼ 1. Again assume that @T (ø1)=@� 6¼ 0. Let

ø2 ¼ (�2, �2) � �1, 1 � log An

n

� �1=2
 !

�1

 !
:

Then, exactly as before, when n is sufficiently large,

˜1 ¼ jT (ø2) � T (ø1)j > c3

n

log An

� ��1=2

for some constant c3 . 0. Note that

s(y1, y2) ¼ fø2
(y1, y2)

fø1
(y1, y2)

¼ �2

�1

� ��n=2

exp � n

2

1

�2

� 1

�1

� �
(y1 � �)2

� �
exp � 1

�2

� 1

�1

� �
y2

2

� �

< exp � n

2
(log �2 � log �1) � n

2�1

�1

�2

� 1

� �
(y1 � �)2

� �
:

Now suppose (y1 � �1)2 > �1, then

s(y1, y2) < e�[log �2�log �1þ�1=�2�1] n=2 < e�(log An)=4(1 þ o(1)) ! 0:

Let ¸0 ¼ f(y1, y2) : (y1 � �1)2 > �1g. Then

Pø2
(¸0) ¼ Pø2

(jy1 � �1j > �1=2
1 ) ¼ 2�(�(�1=�2)1=2) ! 2�(�1) ¼ 0:3174:

So, when n is sufficiently large,

sup[s(y1, y2) � I((y1, y2) 2 ¸0)] < 1 and Pø2
(¸0) > 0:3:

Now applying inequality (27) with r ¼ 0:3 and I0
1 ¼ 1, we have

R(�, Ł2) > rc3

n

log An

� ��1=2

1 � c2n
�1=2A�1

n

rc3n�1=2(log An)1=2

� �
:

Again, the second term inside the brackets tends to zero. So (29) holds.

The case of @T (ø1)=@� ¼ 0 and @T (ø1)=@� 6¼ 0 are similar for both r . 1 and r ¼ 1. It

is in fact slightly simpler. We omit the proof here. h

Remarks. (i) It suffices to assume that there exists a non-zero directional derivative of T at

ø1 ¼ (�1, �1).

(ii) The result (29) holds if, for r . 1, (�1 þ ((r � 1)n�1 log An)
1=2, �1) and

(�1, (1 � (w�1n�1 log An)1=2)�1) are in �, and for r ¼ 1, (�1 þ (n�1 log An)
1=2, �1) and

(�1, (1 � (n�1 log An)1=2)�1) are in �.

(iii) The result can be naturally extended to the case where X i has a multivariate normal

distribution.
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8. Proof of Theorems 1, 2 and 3

Proof of Theorem 1. We will use the constrained risk inequality given in Theorem 4 to prove

Theorem 1.

Suppose that

lim
n!1

AÆ, p,r(n)E

ð1

0

j f̂f n(t) � f0(t)jr dt ¼ K , 1:

By Fubini’s theorem,

E

ð1

0

j f̂f n(t) � f0(t)jr dt ¼
ð1

0

Ej f̂f n(t) � f 0(t)jr dt:

So, for sufficiently large n, say n > 2k1,ð1

0

Ej f̂f n(t) � f 0(t)jr dt < 2KA�1
Æ, p,r(n): (30)

Let 0 , ª , 1
2
[g(Æ, p, r) � l(Æ, p, r)] and write

Sn ¼ fx : Ej f̂f n(x) � f0(x)jr > n� l(Æ, p,r)n�ªg:

Then equation (30) yields that

2KA�1
Æ, p,r(n) >

ð1

0

Ej f̂f n(t) � f 0(t)jr dt

>

ð
Sn

Ej f̂f n(t) � f 0(t)jr dt

> n� l(Æ, p,r)n�ª � m(Sn):

Since l(Æ, p, r) þ ª� g(Æ, p, r) , �ª, the Lebesgue measure of Sn, m(Sn), satisfies

m(Sn) < 2Knl(Æ, p,r)þªA�1
Æ, p,r(n) < n�ª

for all sufficiently large n, say n > 2k2. Let nk ¼ 2k and let k0 be the smallest integer

satisfying 2�ªk0 < (1 � 2�ª)E. Let k� ¼ maxfk0, k1, k2g and set

S ¼
[1
k¼k�

Snk
and �0 ¼ � \ Sc:

It is easy to see that m(S) <
P1

k¼k�m(Snk
) <

P1
k¼k0

2�ªk0 < E. Hence,

m(�0) > m(�) � m(S) > m(�) � E:

Note that for all x 2 �0,

Ej f̂f n k
(x) � f0(x)jr , n

� l(Æ, p,r)
k n

�ª
k , for all k > k�: (31)
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We now show, using the constrained risk inequality, that for any fixed x 2 �0 there exists

f 1 2 BÆ
p,q(M) such that for k . k�,

Ej f̂f nk
(x) � f 1(x)jr > C

log nk

nk

� � l(Æ, p,r)

for some constant C . 0 not depending on x. We give only the proof for r . 1. The case of

r ¼ 1 is similar.

Let g be a compactly supported function satisfying the following conditions:

g(0) . 0, kgk2
2 . 0, g 2 BÆ

p,q(M � M9):

Such a function can be easily constructed either directly or by using wavelets. Write

b ¼ 2(1 � 1=r)kgk�2
2 and let

ªnk
¼ nk

bª log nk

� ��=(1þ2�)

and �nk
¼ nk

bª log nk

� �1=(1þ2�)

:

Then

ª2
nk
�nk

¼ nk

bªlog nk

and ª�1
nk
��nk

¼ 1:

Let

f 1(x) ¼ ª�1
nk
g(�nk

(t � x)) þ f 0(x): (32)

It is straightforward to check that f 1 2 BÆ
p,q(M).

Write Pn
0 and Pn

1 for the probability measure associated with the process (1) with f ¼ f 0

and f ¼ f1, respectively. Then a sufficient statistic for the family of measures fPn
0 , Pn

1g is

given by Tn ¼ log(dPn
1=dPn

0 ) with

Tn �
N (�rn=2, rn), under Pn

0 ,

N (rn=2, rn), under Pn
1 ,

�

where

rn ¼ nk f 1 � f 0k2
2 ¼ nª�2

n ��1
n kgk2

2 ¼ 2 1 � 1

r

� �
ª log n:

Write �n ¼ f n(x), Ł0 ¼ f 0(x) and Ł1 ¼ f 1(x). Then (31) can be rewritten as

EŁ0
j�nk

� Ł0jr < n
� l(Æ, p,r)
k n

�ª
k :

Since Tn is sufficient for fPn
0 , Pn

1g we may apply Theorem 4(i) along the subsequence fnkg.

Let w satisfy 1=r þ 1=w ¼ 1. Noting that (r � 1)(w� 1) ¼ 1, we have

Iw(Ł0, Ł1) ¼ ern k
�(w�1)=2 ¼ e2(1�1=r)ª(log nk )(w�1)=2 ¼ n

ª=r
k :

It follows from Theorem 4(i), after some algebra, that for k > k�,
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EŁ1
j�nk

� Ł1jr >
g(0)

ªnk

� �r

1 � rn
��=(1þ2�)
k n

�ª=r
k � nª=rk � (g(0))�1ªnk

� �

¼ (bªg(0)) l(Æ, p,r) log nk

nk

� � l(Æ, p,r)

(1 þ o(1)):

Hence, for k > k�,

sup
f 2BÆ

p,q(M)

Ej f nk
(x) � f (x)jr > (bªg(0)) l(Æ, p,r) log nk

nk

� � l(Æ, p,r)

:

h

Proof of Theorem 2. The global optimality of the estimator (15) can be shown using the

same proof as given in Delyon and Juditsky (1996). In fact the proof can be slightly simpler

in the white noise model. We will prove the near-optimality (17) under the pointwise risk.

We need the following risk bound which can be derived from the general ‘r oracle

inequality given in Cai (2003: Theorem 7).

Lemma 1. Let y � N (Ł, � 2) and let Ł̂Ł ¼ �º� (y) ¼ sgn(y)(jyj � º� )þ be a soft threshold

estimator of Ł with º > 1. Then, for any 1 < r , 1,

EjŁ̂Ł� Łjr < min(jŁjr, 2rºr� r) þ C(r)ºre�º2=2� r, (33)

where C(r) . 0 is a constant depending on r only.

We now recall the Minkowski inequality. Let X i be random variables, i ¼ 1, . . . , n.

Then, for 1 < r , 1,

E

				Xn
i¼1

X i

				
r

<
Xn
i¼1

(EjX ijr)1=r

 !r

: (34)

Applying the Minkowski inequality (34), we have

Ej f̂f n(x) � f (x)jr ¼ E

				X2
J0

k¼1

(�̂�J0 k � �J0 k)�J0 k(x) þ
X1
j¼J0

X2 j

k¼1

(Ł̂Ł jk � Ł jk)ł jk(x)

				
r

<
X2 J0

k¼1

j�J0 k(x)j(Ej�̂�J0 k � �J0 k jr)1=r þ
X2 J0

k¼1

jłJ0 k(x)j(EjŁ̂ŁJ0 k � ŁJ0 k jr)1=r

"

þ
XJ�1

j¼J0þ1

X2 j

k¼1

jł jk(x)j(EjŁ̂Ł jk � Ł jk jr)1=r þ
X1
j¼J

X2 j

k¼1

jŁ jkł jk(x)j
#r

� (T1 þ T2 þ T3 þ T4)r:

It is easy to see that both T1 and T2 are small:
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T1 ¼ O(n�Æ=(1þ2Æ)) and T2 ¼ O(n�Æ=(1þ2Æ)): (35)

Write Aj(x) ¼ fk : ł j,k(x) 6¼ 0g. Then card(Aj(x)) < L, where L is the support length of ł.

For all f 2 BÆ
p,q(M),

jŁ j,k j < C2� j(Æþ1=2�1= p) (36)

for all ( j, k), where C is a constant. It is then easy to verify that T4 is also small:

T4 ¼ O(n��): (37)

We now consider the term T3. With � ¼ n�1=2 and º ¼ (r log(2 j�J0 ))1=2, the oracle inequality

(33) and the bound on the coefficient (36) yield that for J0 , j , J,

EjŁ̂Ł jk � Ł jk jr < C min(2� jr(Æþ1=2�1= p), ( j� J0)r=2n�r=2) þ C ( j� J0)r=22�r( j�J0)=2n�r=2:

(38)

Let J2 be an integer satisfying

n

log n

� �1=(1þ2�)

< 2J2 , 2
n

log n

� �1=(1þ2�)

:

Applying (38) together with the elementary inequality (aþ b)1=r < a1=r þ b1=r for a, b > 0,

we have

T3 <
XJ�1

j¼J0þ1

X
k2A j(x)

2 j=2kłk1(EjŁ̂Ł jk � Ł jk jr)1=r

< C
XJ�1

j¼J0þ1

2 j=2 min(2� j(Æþ1=2�1= p), ( j� J0)1=2n�1=2) þ C
XJ�1

j¼J0þ1

2 j=2( j� J0)1=22�( j�J0)=2n�1=2

< C
XJ2�1

j¼J0þ1

2 j=2 j1=2n�1=2 þ C
XJ�1

j¼J2

2 j=22� j(Æþ1=2�1= p) þ C(log n)3=2n�Æ=(1þ2Æ)

< C
n

log n

� ���=(1þ2�)

(1 þ o(1)): (39)

Combining (35), (37), (39), we have

Ej f̂f n(x) � f (x)jr < C
n

log n

� ��r�=(1þ2�)

(1 þ o(1)):

h

Proof of Theorem 3. Suppose, for some r . l(Æ, p, r) and some f with k f kBÆ
p,q

, M , that

lim
n!1

nr � Ek f n � f kr
r , 1:

Then there exists a subsequence ni such that
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lim
i!1

n
r
i � Ek f̂f ni � f kr

r , 1:

It then follows from the same proof as that of Theorem 1 with AÆ, p,r(n) replaced by nr and n

replaced by ni that there exists a subset �0 � � � (0, 1) with the Lebesgue measure

m(�0) . 0 such that for all x 2 �0,

lim
i!1

ni

log ni

� � l(Æ, p,r)

sup
f 2BÆ

p,q(M)

Ej f̂f ni(x) � f (x)jr . 0:

This contradicts the assumption that

lim
n!1

nl(Æ, p,r) sup
f 2BÆ

p,q(M)

Ej f̂f n(x) � f (x)jr , 1

for every fixed x 2 �. h
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