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This supplementary material contains two parts: Section 1 has technical material
relating to reference distributions, and section 2 has more examples.

1. Reference Distributions, Null Datasets and Null Plots

An issue in simulation-based statistical inference is that simulation requires a sin-
gle distribution to sample from, whereas null hypotheses H0 of interest are always
composite and hence cannot be simulated directly. The problem of composite null
hypotheses is also called the problem of nuisance parameters. Examples of nuisance
parameters are the following: In EDA, when the null hypothesis is independence of
variables in a multivariate dataset, the nuisance parameters consist of the marginal
distributions of the variables; in MD of normal linear models, the nuisance parame-
ters consist of all model parameters, that is, the coefficients and the error variance.

The need to reduce composite null hypotheses to single distributions has resulted
in at least three broad approaches that produce so-called “reference distributions”
that can be used to sample “null datasets”: (1) conditional sampling given a minimal
sufficient statistic under H0 to remove the nuisance parameters, (2) parametric
bootstrap sampling based on plug-in estimation of the nuisance parameters under
H0, and (3) posterior predictive sampling based on drawing nuisance parameters
from a posterior underH0. The three approaches vary in their ranges of applicability
and in their underlying inferential philosophies, the first two being frequentist, the
third Bayesian. While the first approach, “null conditional sampling”, is the most
limited, it provides an exact theory for the most commonly useful visual testing
situations. For models of absent association in EDA, the theory justifies the well-
known permutation null distributions, while for normal linear models in MD it
justifies the lesser known residual rotation distributions (Langsrud 2005). — In
what follows we give a discussion of the three principles for reducing composite null
hypotheses to single reference distributions.

• Conditioning on a minimal sufficient statistic: If there exists a mini-
mal sufficient statistic under the null hypothesis, conditioning on this statistic
produces a conditional distribution on the datasets that is free of the nuisance
parameters of H0. If we denote the minimal sufficient statistic by S(y), we can
write the reference distribution of the dataset as L(y|S(y) = s). Datasets y∗
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sampled from this reference distribution share s and hence all parameter esti-
mates with y. They are, intuitively speaking, “look-alikes” of y if the model
is correct. Any systematic difference seen between the observed dataset y and
simulated datasets y∗ indicates a discovery in EDA and a model violation
in MD.

Minimal sufficient statistics do not universally exist, of course, but they do
for some of the most pervasive basic models used in statistical practice, two of
which are (1) independence models for multivariate data and (2) linear models
with normal errors and fixed effects predictors. We may associate the two with
the simplest cases of EDA and MD, respectively, in that (1) independence
often provides the simplest and most useful baseline for graphical EDA, and
(2) linear models are the area for which graphical MD are most developed.
Conditioning on a minimal sufficient statistic in multivariate independence
models results in well-known permutation distributions (Good, 2005; Pesarin,
2001), whereas in linear models it results in lesser-known residual rotation
distributions (so named after “Rotation Tests”, Langsrud (2005)).

Because of its usefulness, we mention separately the simple non-parametric
i.i.d. model, which provides baselines for the total absence of predictive in-
formation from fixed-effects predictors and of time series structure. We did
not mention this case in the main article but we list it here as case “(0)”.
The model simply states that the components yi of y = (yi)i=1...N are i.i.d.
This can serve as baseline of absent structure in the presence of fixed-effects
covariates, for example space or time, which are not interpreted as random.
For the reason that fixed-effects covariates are not random, the i.i.d. model
is not a special case of independence models: the absence of predictive power
in fixed-effects covariates for a response y does not fall under the notion of
stochastic independence between two random variables, and neither does the
absence of spatial or time-series structure in observations y. — The attrac-
tive aspect of i.i.d. models is a certain generality in that the responses yi can
be of any modelling type: yi can be quantitative with interval scale or ratio
scale, categorical with binary or multi-class labels, or multivariate composites
thereof of any kind. These responses are usually modelled with various expo-
nential models whose parameters are assumed to be functions of predictors as
in generalized linear models. Alternatively, when the yi are categorical, they
can be subjected to classification algorithms based on predictors. To make the
model non-parametric, we will not assume any particular stochastic model at
all and allow any marginal distribution for the given modelling type. The
non-parametric i.i.d. model is of interest when y is a response vector but the
fixed effects predictors have questionable predictive or classification power.
Equally, the i.i.d. model is of interest when y is a uni- or multivariate time
series with N time points, but the presence of trends and auto-correlation is
questionable. And finally, it is of interest when y is a set of spatial observations
but the presence of spatial trends and auto-correlation is questionable. In all
these cases the null model of i.i.d. components yi with unspecified marginal
distribution asserts that there is no structure relating to the predictors or to
time at all. It calls for the simplest of all reference distributions: a random
permutation of the components of y.
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(0) The non-parametric i.i.d. model has as a minimal sufficient statistic
the empirical distribution (if multivariate or categorical) or equivalently
the order statistics (if univariate) of the components yi. This is so be-
cause we leave the marginal distribution unspecified. (Under exponential
model assumptions further reductions of sufficiency would result.) Due
to permutation invariance of the cases under the model, the conditional
distribution given the minimal sufficient statistic is the uniform distribu-
tion on the permutations of the components of y, which we may represent
as y∗ = y(π) = (yπ(i))i=1...N . Operationally, sampling from this distri-
bution means randomly permuting the components of y while leaving
covariates/time/space unchanged.

(1) Independence models assume that y consists of two or more random
variables or blocks of random variables that are stochastically indepen-
dent. We may use the notation y = (y1, ...,yp) to indicate the division of
the multivariate dataset into p variables or blocks of variables. Under the
assumption that y1, ...,yp are independent, a minimal sufficient statistic
S(y) is the collection of empirical distributions of each yj (or the order
statistics of yj when yj is univariate). The conditional distribution of y
given S(y) can be represented as y∗ = (y(π1)

1 , ...,y(πp)
p ), where π1, ..., πp

are permutations of the case indices 1, 2, ..., N drawn independently from
the uniform distribution on the permutations. Operationally, sampling
from the conditional distribution given S(y) means randomly and inde-
pendently permuting the N entries of each yj .

(2) Linear models with normal errors have a minimal sufficient statistic
consisting of the coefficient estimates β̂ and the RSS or, equivalently and
more tellingly, S(y) = (ŷ, ‖r‖) which is the vector of fitted values and the
length of the residual vector. This form of the sufficient statistic shows
that, because ŷ is held fixed, under the conditional distribution there
is variation only in residual space, and, because ‖r‖ is also held fixed,
the variation is confined to a sphere of radius ‖r‖. Furthermore, rotation
invariance of the normal error vector implies that the conditional distri-
bution given S(y) is uniform on this sphere in residual space. Intuitively,
the sampled residual vectors r∗ are random rotations of r. Operationally,
sampling from the conditional distribution given S(y) can be achieved
by regressing a vector of N i.i.d. normal variates onto the predictors, ex-
tracting the residual vector and rescaling it so its squared length matches
the observed RSS. The resulting r∗ yields y∗ = ŷ + r∗, but in diagnos-
tics it is r∗ that is used for null comparison with the observed residual
vector r.

The conditional distribution given a minimal sufficient statistic, is possibly the
most elegant and theoretically best justified reference distribution. It covers
probably a majority of practical applications that need only basic models, but
applications in need of complex models may be out of reach because reduction
with minimal sufficient statistics may not be possible.

• Parametric bootstrap sampling: In complex models pθ(y) that do not
permit minimal sufficient statistics, frequentists may resort to the expedient of
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first estimating the nuisance or model parameters and then sampling datasets
from the model as if the estimates were the true parameter values: y∗ ∼ pθ̂(·).
This approach is usually used for statistical inference based on confidence
intervals when analytic calculations are unavailable and the non-parametric
bootstrap is inapplicable. The present use for diagnostics, however, is different:
Our interest is in whether the observed dataset y literally “looks” anything
like datasets y∗ generated from the model, and we achieve this by comparing
plots of y with plots of multiple draws y∗.

Parametric bootstrap is of course available for linear models, and it consists
of sampling normal errors from N(0, σ̂2) and adding them to ŷ. The difference
from conditional sampling given the minimal sufficient statistic is that normal
errors do not fall in residual space and are not exactly normed to the observed
residual norm. The visual difference between the two reference distributions
in linear models is often minimal.

The conceptual differences between parametric bootstrap sampling and con-
ditional sampling given a minimal sufficient statistic are important, however:
The latter derives from an exact finite sample theory but is not universally
applicable, whereas the former is only an approximate method that is more
universally applicable.

• Posterior predictive sampling consists of sampling parameter values θ∗

from the posterior distribution given the dataset y and a prior p(θ), and
generating reference datasets y∗ sampled from pθ∗(y) (Gelman, 2004). A pe-
culiar feature of posterior predictive sampling is that the reference datasets
incorporate two types of uncertainty all at once: sampling uncertainty about
the data given a value of the parameter (like parametric bootstrap), and also
uncertainty about the parameter value itself. This second aspect is really part
of statistical inference about the parameter, but it is blended into this type
of Bayesian approach to MD. A potential advantage is that if there are qual-
itative discontinuities in pθ(y) as a function of θ in the range of likely values
given y, posterior predictive sampling may bring it to the fore (for example,
flipping back and forth between one and two fitted components in a mixture
model). Frequentists may need a two-stage parametric bootstrap approach to
attain the same insights (Buja (2004), section 4). Then again, such insights
are not MD per se but empirical investigations of model properties near the
likely values of the parameters. Model diagnostics in the narrow sense pursued
in this article try to answer the question whether the observed dataset looks
anything like datasets that could be generated by the model.

The above focus on null distributions may strike some readers as lacking in
statistical depth because of the absence of any consideration of statistical power.
This criticism is correct in substance but unjustified just the same. With visual
methods for EDA and MD in mind, we needed to focus on providing practical
guidance to reference distributions for datasets as opposed to test statistics. As
for statistical power, we take it as axiomatic that visual methods are always too
powerful, as our personal experience of data analysis and the teaching experience
to novices attests. The problem we are addressing is not one of optimizing power
but of limiting Type I error that derives from “magical thinking” (Diaconis, 1983)
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and the natural human tendency to over-interpret random visual stimuli. All this
is not to deny that there is a place to discuss and compare different types of visual
methods for data analysis and to generate recommendations for good practice and
state-of-the-art in graphical methods.

2. More Examples

Here are several additional examples illustrating the lineup protocol. Readers could
read this section linearly, like in the examples section of the paper, and test their
witness skills.

• Pima Indian Diabetes Data: This data was originally compiled by the Na-
tional Institute of Diabetes and Digestive and Kidney Diseases, brought to
the public’s attention in Smith et al. (1988), and is available from Asuncion
and Newman (2007). These are measurements collected on females older than
21 of Pima Indian heritage, with the intention of studying the relationship
between various variables and diabetes incidence. Here we examine the rela-
tionship between two of the variables: Blood pressure and Insulin. Figure 1
shows a plot of the real data among 19 decoys. Which is the plot of the real
data? What is the likely reason?

• Boston Housing Data: This is the same dataset as in the fourth example in
the paper, but here we show a plot of the residuals against fits (figure 2) and
a normal quantile plot (figure 3). The model violations are so egregious that
the question is not which plot shows the real data, but what the violations
are, and to this end it may actually be useful to visually compare with “clean”
residual plots. — Normal quantile plots are often drawn with “null bands”, but
a problem with such bands is that significant model violations often cannot
be described by vertical deviation but by patterns of local meandering, a
consequence of the monotonicity of the plot. For the detection of such features
it is indeed preferable to show separate null plots as opposed to a single null
band.

• Soil Composition and Corn Yield: The data was drawn from part of a pri-
vately owned farm in southeastern Boone County, Iowa (Colvin et al., 1997).
Measurements were recorded for 215 locations within the field: corn yield at
harvest on October 6, 1997, and soil samples taken after harvest. Here we are
interested in the relationship between corn yield and boron. Comparison plots
were generated by permutation. Which is the plot of the real data? Why do
you think so?
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Figure 1. Pima Indians Diabetes Data, Blood Pressure versus Insulin. Missing values
were coded as 10% to the left and below the range of the variable, respectively.

Article submitted to Royal Society



Statistical Inference for Graphics 7

Figure 2. Boston Housing Data: Residuals versus fitted.
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Figure 3. Boston Housing data: Normal quantile plots of the residuals.
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Figure 4. Boron concentration and corn yield.
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Here are the solutions and explanations:

• Pima Indian Diabetes Data (figure 1): The only difference between real and
null is in the missing value pattern. This observation hints at the relatively
greater difficulty in obtaining insulin measurements compared to blood pres-
sure measurements. Hence blood pressure is often measured and insulin is
not, but never the reverse: whenever blood pressure is missing, insulin is also
missing.

Solution:Therealdataareshowninplot11.

• Boston Housing Data: The residual plot (figure 2) reveals at least two viola-
tions: (1) the descending line of points from the top to the right caused by the
maximum values which really correspond to censoring at $50,000; (2) convex
overall curvature. (We hesitate to call the right bottom point an outlier in
view of the fact that the null plots show occasional residuals as low as this
point.) — The normal quantile plot (figure 3) reveals a right-skew residual
distribution: negative residuals bend upward from the line, and so do positive
residuals. Three extreme points on the upper end and four on the lower end
may seem exceptional compared to the overall trend of the residual distri-
bution, but then this distribution is so clearly non-normal that its sampling
properties cannot be inferred from null plots that have the normal distribution
as a baseline.

Solution:Therealdatainbothlineupsareshowninplot20.

• Soil composition and corn yield (figure 4): Both variables, boron and corn
yield have skewed distributions. The data suggests there might be an inter-
esting relationship: as boron concentration increases corn yield becomes more
consistently good. This leads to the “sharp” edge to the point cloud running
from lower left to upper right. The skewed marginal distributions can con-
tribute to the sharp edge in the data, but it might also indicate a relationship
between the two variables. There is also a noticeable outlier in the data, a
point which has very low yield in comparison to all the other observations for
high boron. This might be a mistake in the data.

Solution:Therealdatainbothlineupsareshowninplot5.
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