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B.1 The Full Model Interpretation of Parameters. In the full
model interpretation, coefficients always have the fixed meaning as full model
parameters. Variable selection then means setting some coefficient estimates
to zero, and these estimates always exist for all predictors, irrespective of
whether they are selected or deselected.

The full model interpretation of parameters is appropriate, for example,
if the full model is viewed as “data generating” and the predictors are hence
causal for the response, or if the full model describes a physical system
where the full set of predictors is needed to capture the system fully. In such
situations it is natural to consider the coefficients in the full model as targets
of estimation, even though “nature” may choose to set some of them to
zero. This view is meaningful for example in tomography applications where
the variables constitute voxels and their coefficients are rates of absorption,
hence variable selection amounts to selection of voxels with high absorption.
The use of the selected voxels is for display and medical diagnosis, and there
is no meaning in interpreting these voxels as constituting a submodel.

If full model parameters are estimated by forcing some of them to zero
and estimating the remainder via least squares, then the result is a type of
shrinkage estimator for the full model parameters. Such estimators are often
referred to as “preliminary test estimators”; see Saleh (2006) for a compre-
hensive treatment and many references. These estimators are also closely
related to more recently studied “hard threshold” and “soft threshold” esti-
mators; for a taste of the extensive literature on these and related estimators
see Tsybakov (2009) and references therein. The “submodel” corresponding
to non-zero parameter estimates is viewed as a computational compression
and a parsimonious statistical summary of the data, but it is viewed neither
as a model in its own right nor as an object of future scientific research.

Inferential problems with the full model view of variable selection are
pointed out by the “Vienna School” in the series of articles referenced in
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Section 1. An insightful illustration is given by Leeb and Pötscher (2005)
with a two-predictor situation where one predictor is protected from selec-
tion and only the covariate is subject to selection. They explicitly describe
the sampling distribution of the coefficient estimate of the protected pre-
dictor, as the covariate is randomly selected/deselected according to tests
that perform consistent or conservative model selection, respectively (ibid.,
p. 29). Their analysis shows (ibid., Figure 2) that the sampling distribu-
tion (1) depends critically on the unknown true coefficient of the covariate
and the sample size, and (2) deviates from the fixed-model sampling distri-
bution with features such as bi-modality or inflated variance. Because the
true covariate slope is not known, it cannot be known either whether the
sample size puts the sampling distribution in this realm of deviation from
classical theory. — Generalizing to arbitrary linear models Pötscher, Leeb
and Schneider prove that sampling distributions cannot be estimated after
model selection and thresholding, not even asymptotically. They show that
asymptotic normality is prone to non-uniformity of convergence especially
near submodels, or should be considered as converging at a speed slower
than root-N to a non-normal distribution. They prove that these effects
are more pronounced under consistent than conservative model selection.
— In the simplified context of what may be called “marginally thresholded”
estimators, Pötscher and Schneider (2010) produce conservative confidence
intervals, and they show that these intervals are wider than conventional
ones as their widths need to account for the bias caused by thresholding.

The criticisms of the “Vienna School” are important and may have far
reaching implications. They indicate that in the framework of full model pa-
rameters the biases incurred by model selection pose problems for statistical
inference. Some of these can be traced to the so-called “omitted variables
bias” (see, for example, Angrist and Pischke 2009, that is, the fact that in
the presence of partial collinearity the omission of covariates creates biases
in the estimates of parameters of primary interest. The term “bias” is of
course justified only in the framework of full model parameters. If we inter-
pret submodel estimates as estimates of submodel parameters rather than
full model parameters (as we do in the article), then there is no bias problem
and this source of defects in sampling distributions disappears.

B.2 “Omitted Variables Bias”. By allowing each β̂j·M to estimate
its own submodel target βj·M rather than the full model parameter βj , we
sidestep the problem of “omitted variables bias” and with it a major driver
of the problems analyzed by Leeb and Pötscher (Section B.1). In the present
framework βj −βj·M is not a bias as these are two different parameters that
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answer two different questions. Just the same, we may consider the difference
between βj and βj·M in the classical case d= p≤n. Compare the following
two definitions:

(0.1) βM , E[β̂M] and βM , (βj)j∈M,

the latter being the coefficients βj from the full model MF subsetted to the
submodel M. While β̂M is an unbiased estimate for βM, it is not generally
for βM. The difference βM − βM is the vectorized “omitted variables bias”.

In general, the definition of βM involves X and all of β, not just βM,
through (3.4) in the article. A little algebra shows that βM = βM if and
only if

(0.2) XT
MXMcβMc

= 0,

where Mc is the full model complement of M. Special cases of (0.2) include:
(1) the column space of XM is orthogonal to that of XMc , and (2) βMc

= 0,
that is, the approximation to µ in MF is no better than in M.

B.3 Proof of Corollary 4.2. We start with the statement of strong
family-wise error control by defining the true null hypotheses and true alter-
natives for the true β = (XTX)−1XTµ, as well as the sets of insignificant
and significant tests for the observed Y:

H0 , { (j,M) | βj·M = 0, j∈M∈M},
H1 , { (j,M) | βj·M 6= 0, j∈M∈M},

Ĥ0 , { (j,M) | |t(0)j·M| ≤ K(X, α), j∈M∈M},

Ĥ1 , { (j,M) | |t(0)j·M| > K(X, α), j∈M∈M}.

where t
(0)
j·M , β̂j·M/(σ̂/‖Xj·M‖) has the parameter set to βj·M=0.

Lemma 0.1. “Strong Family-Wise Error Control” holds for K(X, α):

P[H0 ⊂ Ĥ0] = P[H1 ⊃ Ĥ1] ≥ 1− α.

Proof: Standard; just the same: H0 ⊂ Ĥ0 ⇔ H1 ⊃ Ĥ1 implies the

equality of the two probabilities. Further, using t
(0)
j·M= tj·M ⇔ (j,M)∈H0,

P[H0 ⊂ Ĥ0 ] = P[ max
(j,M)∈H0

|tj·M| ≤ K ]

≥ P[ max
M∈M

max
j∈M

|tj·M| ≤ K ] ≥ 1− α
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by the definition of the PoSI constant K = K(X,M, α, r) ().4.8)

Corollary 4.2. “Strong Post-Selection Error Control” holds for any model
selection procedure M̂ : Rn →M:

P[∀j∈M̂ : |t(0)
j·M̂
| > K(X, α) ⇒ βj·M̂ 6= 0 ] ≥ 1− α.

Proof: Define M̂′ , {(j, M̂) | j ∈ M̂}. The event H1 ⊃ Ĥ1 implies the
event H1 ∩ M̂′ ⊃ Ĥ1 ∩ M̂′, hence, using Lemma 0.1:

1− α ≤ P[H1 ⊃ Ĥ1 ] ≤ P[H1 ∪ M̂′ ⊃ Ĥ1 ∪ M̂′ ].

B.4 Alternative PoSI Guarantees. PoSI and PoSI1 provide inferen-
tial guarantees for two distinct situations: In PoSI all predictors are sub-
jected to selection, and all that are selected are the subject of inference;
in PoSI1 one predictor of interest is forced into all models, and only the
coefficients (plural!) of this predictor are the subject of inference. Invari-
ably, however, there arises the question of an intermediate situation: Can
any guarantee be given when there is a predictor of special interest, but it
is subjected to selection and inference is sought only when it is selected?
In what follows we give guarantees for this situation. Even though it differs
from PoSI1, we can re-use the PoSI1 constant Kj·. For the rest of this section
let j be the index of a fixed and a priori chosen predictor.

Theorem 0.1. For any selection procedure M̂ : Rn →M it holds:

(0.3) P
[
j ∈ M̂ & |tj·M̂| ≤ Kj·

]
≥ P

[
j ∈ M̂

]
− α,

and accordingly we have the following post-selection confidence guarantee:

(0.4) P
[
j ∈ M̂ & βj·M̂ ∈ CIj·M̂(Kj·)

]
≥ P

[
j ∈ M̂

]
− α.
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Proof: In what follows we will use Lemma 4.2 and the definition of Kj·
(4.14):

P
[
j∈M̂(Y)

]
−P

[
j∈M̂(Y) & |tj·M̂(Y)(Y)| ≤ Kj·

]
= P

[
j∈M̂(Y) & |tj·M̂(Y)(Y)| > Kj·

]
≤ P

[
j∈M̂(Y) & max

M∈Mj·
|tj·M(Y)| > Kj·

]
≤ P

[
max

M∈Mj·
|tj·M(Y)| > Kj·

]
≤ α

A deficiency of these inference guarantees is that they are vacuous for
selection probabilities below α, and they have “bite” only if Xj is a “strong”
predictor in the sense that its selection probability P[ j∈M̂ ] is large. If one
chooses α = 0.01, for example, the guarantee says that the probability of
selection and coverage never falls more than 0.01 below the probability of
selection. The theorem can be rewritten in terms of guarantees conditional
on Xj being selected:

Corollary 0.1. For any selection procedure M̂ : Rn→M we have:

P
[
βj·M̂ ∈ CIj·M̂(Kj·)

∣∣∣ j ∈ M̂
]
≥ 1− α

P[ j ∈ M̂]
.

Again, there is “bite” only when the selection probability P[j ∈ M̂] is large.

B.5 PoSI P-Value Adjustment for Model Selection. Statistical
inference for regression coefficients is more often carried out in terms of p-
values than confidence intervals. The usual p-values are for null hypotheses
βj·M = 0, hence the test statistics are

t
(0)
j·M = β̂j·M/(σ̂/‖Xj·M‖), t(0)max = max

M∈M
max
j∈M

|t(0)j·M|.

To define marginal and adjusted p-values we introduce two c.d.f.s:

(0.5) Fj·M(t) = P[ |t(0)j·M| < t ], Fmax(t) = P[t(0)max < t].

The former measures marginal null coverage of a two-sided retention interval
[−t,+t], while the latter measures simultaneous coverage of a retention cube
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[−t,+t]k where k = |{(j,M) | j∈M∈M}| is the number of tests performed,
which can be as many as p 2p−1 in the classical case d = p ≤ n forM=Mall.

Denoting by tobsj·M and tobsmax the observed values of t
(0)
j·M and t

(0)
max, respectively,

the following p-values can be defined:

(1) Marginal: pvalj·M = 1− Fj·M( |tobsj·M| )
(2) Global adjusted: pvalPoSI

j·M = 1− Fmax(tobsmax)

(3) Individual adjusted: pvalPoSI
j·M = 1− Fmax(|tobsj·M|)

Comments:

(1) The marginal p-value ignores the fact that k tests are being performed.
(2) The global adjusted p-value establishes whether at least the strongest

“effect” is statistically significant, and it is therefore an overall test
similar to, but more specific than, the overall F -test. Because the latter
is derived from Scheffé protection, the global adjusted PoSI p-value is
more powerful and still protects against any model selection in the
model universe M.

(3) The individual adjusted p-value adjusts each |tj·M| as if it were a max
statistic, hence results in an over-adjustment for all but tmax. A sharper
method than this “one-step adjustment” would be a simulation-based
“step-down” method. We have not examined this route though we
suspect that the computational expense may be prohibitive and the
gain in statistical efficiency may be small.

The adjusted p-values are recommended because they account universally
for any model selection in the model universe M.
[Note on terminology: “adjustment of a p-value for simultaneity” and “ad-
justment of a predictor for other predictors” are two concepts that share
nothing except the partial homonym.]

B.6 The PoSI Process. An alternative way of looking at the PoSI
problem is in terms of a stochastic process indexed by (j,M) for j∈M. We
mention this view because it is the basis of some software implementations
used to solve simultaneous inference and coverage problems, even though in
this case it does not result in a practicable approach.

In the PoSI problem the obvious process is W = (tj·M)j∈M∈M, which is a
t-process for finite degrees of freedom r in σ̂ and a Gaussian process in the
limit r →∞.

The covariance structure of W exists for r > 2 and is proportional (by a
factor r/(r−2)) to the correlation matrix

(0.6) Σ = (Σj·M; j′·M′), Σj·M; j′·M′ , l̄
T
j·Ml̄j′·M′ .
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The coverage problem (5.4) can be written as P[‖W‖∞ ≤ K] = 1 − α.
Software that computes such coverages (for example, Genz et al. (2010))
allows users to specify a structure such as Σ, intervals such as [−K,+K] for
the components, and degrees of freedom r. In our experiments this approach
worked in the classical case d=p andM=Mall for p≤7, the limiting factor
being the space requirement p 2p−1×p 2p−1 for the matrix Σ. By comparison
the author’s approach works for up to p≈20.

Proposition 5.3 implies that there exist certain necessary orthogonali-
ties in L(X,M). In terms of the correlation structure Σ, orthogonalities in
L(X,M) correspond to zero correlations in Σ. Part 4. of the proposition
states that in the classical case andM=Mall each “row” of Σ has (p−1) 2p−2

zeros out of p 2p−1 entries, amounting to a fraction (p−1)/(2p)→ 0.5, imply-
ing that the overall fraction of zeros in Σ approaches half for increasing p.
Thus Σ, though not sparse, is rich in zeros. It can be much sparser in the
presence of exact orthogonalities among the predictors.
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B.7 Figures.
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Fig 1: The PoSI polytope ΠK=1 (Section 5.4) is tangent to the Scheffé disk
(2-D ball) BK=1 for d = p = 2. The normalized raw predictor vectors are
l̄1·{1} ∼ X1 and l̄2·{2} ∼ X2, and the normalized adjusted versions are l̄1·{1,2}
and l̄2·{1,2}. Shown in gray outline are the two squares (2-D cubes) generated
by the o.n. bases (l̄1·{1}, l̄2·{1,2}) and (l̄2·{2}, l̄1·{1,2}), respectively. The PoSI
polytope is the intersection of the two squares.
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Fig 2: The PoSI constant K(X(p)(a), α = 0.05) for exchangeable designs
X(p) = Ip + aEp×p for a ∈ [0,∞) (Section 6.1). The horizontal axis shows
a/(1 + a), hence the locations 0, 0.5 and 1.0 represent a = 0, 1, ∞, respec-
tively. Surprisingly, the largest K(X(p)(a)) is not attained at a = ∞, the
point of perfect collinearity, at least not for dimensions up to p = 10. The
graph is based on 10,000 random samples in p dimensions for p = 2, ..., 15.
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l 1⋅1

l 2⋅2

l 3⋅3

l 1⋅123=l 2⋅123=l 3⋅123

Fig 3: Exchangeable Designs (Section 6.1): The geometry of the limiting PoSI
polytope ΠK for p = 3 as the design X(p)(a) of equation (6.1) approaches
either of the two collinearities. For a ↑ ∞, the predictor vectors fall into the
1-D subspace span(1), and for a ↓ −1/p they fall into span(1)⊥. With duality
in mind and considering the permutation symmetry of exchangeable designs,
it follows that the limiting polytope is a prismatic polytope with a p-simplex as
its base in span(1)⊥. The figure shows this prism for p = 3. The unit vectors
l̄1·{1} ∼ X1, l̄2·{2} ∼ X2 and l̄3·{3} ∼ X3 form an equilateral triangle. The

plane span(1)⊥ also contains the six once-adjusted vectors l̄j·{j,j′} (j′ 6= j),
while the three fully adjusted vectors l̄j·{1,2,3} collapse to 1/

√
p, turning the

polytope into a prism.
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