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Abstract: We discuss the application of interactive visualization techniques to multidi-
mensional scaling (MDS). MDS in its conventional batch implementations is prone to un-
certainties with regard to (a) local minima in the underlying optimization, (b) sensitivity to
the choice of the optimization criterion, (c) artifacts in point configurations, and (d) local
inadequacy of the point configurations.

These uncertainties will be addressed by the following interactive techniques: (a) al-
gorithm animation, random restarts, and manual editing of configurations, (b) interactive
control over parameters that determine the criterion and its minimization, (c) diagnostics
for pinning down artifactual point configurations, and (d) restricting MDS to subsets of
objects and subsets of pairs of objects.

A system, called “XGvis”, which implements these techniques, is freely available
with the “XGobi" distribution. XGobi is a multivariate data visualization system that is
used here for visualizing point configurations.
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1. Introduction

We describe methodology for multidimensional scaling based on inter-
active data visualization. This methodology was enabled by software in which
MDS is integrated in a multivariate data visualization system. The software,
called “XGvis”, is described in a companion paper (Buja, Swayne, Littman,
Dean and Hofmann 2001), that lays out the implemented functionality in some
detail; in the current paper we focus on the use of this functionality in the anal-
ysis of proximity data. We therefore do not dwell on the mechanics of creating
certain plots; instead we deal with problems that arise in the practice of prox-
imity analysis: issues relating to the problem of multiple local minima in MDS
optimization, to the detection and interpretation of artifacts, and to the exami-
nation of local structure.

The paper is organized as follows: Section 2 introduces the famous Roth-
kopf (1957) Morse code data and gives a detailed analysis that illustrates the
reach of data visualization and direct manipulation through graphical interac-
tion. Section 3 discusses the advantages of visual stopping of MDS optimiza-
tion. Section 4 illustrates the problem of multiple local minima and shows ways
to diagnose its nature and severity. Section 5 explains the fundamental problem
of indifferentiation, that is, the tendency of proximity data to assign too similar
distances to too many pairs of objects. Sections 6 and 7 demonstrate two ways
of uncovering local structure: within-groups MDS, and MDS with truncated or
down-weighted dissimilarities. The final Section 8 introduces a novel use of
non-Euclidean Minkowski metrics for the rotation of configurations.

Multidimensional scaling is the subject of several books, among them
a recent one by Borg and Groenen (1997) and an older one by Kruskal and
Wish (1978). The latter is concise and gives sufficient background for this ar-
ticle. For the advanced reader there exist overview articles by, for example,
Carroll and Arabie (1980, 1998) and Carroll and Green (1997). The collection
edited by Davies and Coxon (1982) contains some of the seminal articles in the
field, including Kruskal’s (1964a,1964b), and so does the overview by Green,
Carmone, and Smith (1989). An older book chapter we found still useful is
Greenacre and Underhill (1982). Many books on multivariate analysis include
chapters on multidimensional scaling, such as Gnanadesikan (1997) and Se-
ber (1984).

2. The Rothkopf Morse Code Data

To illustrate the techniques described in this paper, we use the classic
Rothkopf (1957) Morse code data as our running example. While these data
may seem stale to those who are familiar with some of the MDS literature,
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there is merit in using a well-known dataset exactly because of the fact that so
many prior analyses have appeared in print. This fact offers comparisons and it
avoids distractions from the main point of the paper, which is methodology.

The Rothkopf Morse code data originated in an experiment where pairs
of Morse codes were shown to subjects who had to decide whether the two
codes in a pair were identical. The resulting data were summarized in a table of
confusion rates.

To apply MDS, we first symmetrized the data (s; ;) in the simplest pos-
sible way: s;; — s;; + s;; (see Arabie and Soli (1982) for a discussion of
alternative symmetrization formulae). We then converted the symmetrized data
to dissimilarities (d; ;) using the formula

2 q .
df'j =8t 855 — Q.Sw' .

In principle any monotone descending transformation could be used for con-
version, but we approached the confusion rates using an inner product model,
83,5 =< X;,X; >, which suggests the above conversion formula by mimicking
the identity ||x; — Xj[|2 = |]xi||2 + |]Xj“2 — 2 < X3, X5 >

Some properties of the resulting dissimilarities are the following:

(1) For the Morse code data, all dissimilarities are well-defined because of
8ii+ 85,5 — 2855 = 0, which follows from the diagonal dominance of
the symmetrized confusion matrix S. (Nonnegativity is not guaranteed by
the formula, however. Even the Morse code data have a close call: before
symmetrization there exists an off-diagonal value that is larger than the
smallest diagonal value.)

(2) The similarities of codes with themselves (s, ;) are not ignored.
(3) Dissimilarities of codes with themselves are zero: d;; = 0.

(4) Classical MDS of the dissimilarities d; ; amounts to an eigenanalysis of a
doubly-centered version of the symmetrized matrix S.

After subjecting the resulting dissimilarity matrix to nonmetric Kruskal-
Shepard scaling using Kruskal’s stress formula 1 in two, three and four dimen-
sions, we obtained the configurations shown in Figure 1. We interactively dec-
orated the configurations with labels and lines to aid interpretation [one of the
benefits of a visualization system; Swayne, Cook, and Buja (1998)]. In particu-
lar, we connected groups of codes of the same length, except for codes of length
four which we broke up into three groups and a singleton. In the 2-D solution,
one observes that the code length increases left to right, and (with the exception
of the codes of length one) the fraction of dots increases from the bottom up,
in agreement with published accounts, for example, in Shepard (1962, 1963),
Kruskal and Wish (1978, p. 13), and Borg and Groenen (1997, p. 59). The 2-D
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plot is of course rotation invariant, and it has been rotated to align code length
with the horizontal axis and fraction of dots with the vertical axis. Expressions
such as “left to right” and “bottom up™ have to be interpreted accordingly with
regard to a desirable rotation.

As a first application of visualization methodology to MDS, we examine
the 3-D and 4-D solutions. The methods we use are 3-D rotations and their gen-
eralizations to higher dimensions, grand tours and manual tours [implemented
in XGobi: Swayne et al. (1998); Cook and Buja (1997); Buja, Cook, and
Swayne (1996)]. Making the usual caveats that the insights gained by viewing
dynamic rotations and tours cannot be captured in a series of still pictures, we
report what we were able to see:

(1) The 3-D solution is only seemingly more complex than the 2-D solution.
Roughly speaking, the 3-D solution is the 2-D solution wrapped around
the surface of an approximate sphere, with the difference that the codes
of length one, “E” and “T”, are further removed from the codes of length
two and higher. This is the main insight: the 2-D solution has the defect
that it has no good place for the codes of length one. The true distinctness
of the shortest codes cannot be properly reflected in 2-D, but it can in 3-
D. Thus, the additional dimension did not reveal a new dimension in the
usual sense; it revealed an odd subset that should be separated from the
rest by a dummy variable. Below we will also show that the pair {E,T}
is extremely influential in the following sense: it inhibits an additional
dimension inherent in the longer codes.

(2) The 4-D solution, when viewed in a grand tour, reveals a rigidity of the
codes of length three, four, and five in their positions relative to each
other. They form three roughly parallel sheets with low and high fractions
of dots aligned across the sheets. The codes of length two form a line that
tries to align itself with the longer siblings, but it seems to suffer from a
strong attraction by the codes of length one.

This last finding suggests a simple diagnostic: remove the codes of lengths one
and two, and analyze the longer codes separately. The result is in Figure 2
where we show two views of a nonmetric 3-D solution. The configuration was
interactively rotated for optimal interpretation. The views share the vertical axis
in 3-space, while the horizontal axes are orthogonal to each other. Here are the
findings:

(3) The left view shows the layers of codes of constant length, as well as
the matching trends from low to high fractions of dots within the layers.
We note that the layers lean to the left, suggesting that code length and
[fraction of dots are slightly confounded. If the axis for code length is
horizontal from left to right, then the axis for fraction of dots runs roughly
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from south-southeast to north-northwest. There is some intuitive meaning
in this type of confounding according to physical duration of a code: long
codes that have many dots are more often confused with shorter codes
that have many dashes, than vice versa; for example, “5 = -----" and “O =
———""are more often confused than “S =---"and “0 = ————— ”. One
could therefore interpret the horizontal axis as physical duration and the
strictly vertical axis as fraction of dashes. As a consequence, the duration
of “5 = - would be about the same as that of “J = - ———""because they
have about the same horizontal position.

(4) The right view of Figure 2 can be interpreted as follows: the codes fall into
two subsets, one corresponding to the arc that runs from the left side to the
top, the other subset to the arc that runs from the right side to the bottom.
The two arcs differ in one aspect: codes in the upper left all start with a
dot, the codes in the lower right all start with a dash. Therefore, the direc-
tion from the bottom right to the top left corresponds to a dimension that
reflects the exposed initial position of the codes: initial dots and dashes
correspond to a separate dimension. The fact that this dimension runs
in the descending diagonal direction shows that it is slightly confounded
both with fraction of dots (an initial dot contributes to the fraction of dots)
and duration (an initial dot contributes to a shorter physical duration).

In summary, we have found four dimensions in the Morse code dissim-
ilarities: (a) code length, (b) fraction of dots, (c) a dummy for the codes of
length one, and (d) a dummy for initial exposure position for the long codes.
A methodological message from this exercise is that dimensions can be local.
Insisting on global dimensions for all objects may obscure the presence of local
dimensions in meaningful subsets.

To close this section, we consider a still smaller subset: the codes of
length five, representing the digits *0”,....”9”. These codes have an obvious
circular structure:

=R AR B T R U O
I

This structure is reflected in a loop-shaped arrangement of MDS configurations,
as shown in Figure 3. Of the two configurations in the figure, the metric version
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appears cleaner than the nonmetric version. This result should not be a surprise
as the isotonic transformation of nonmetric scaling becomes tenuous to estimate
for small numbers of objects. [For an approach to the Morse code digits that
imposes circularity as a model, see Hubert, Arabie, and Meulman (1997).]

3. Visual Checks of Convergence of Optimization

We start by way of illustration: Figure 4 shows a sequence of snapshots
of an animation starting with a random configuration and ending with a locally
converged nonmetric MDS configuration in £ = 2 dimensions for the Morse
code dissimilarities.

Animation of stress minimization gives users a way to check convergence
of the configuration. The stress function alone is sometimes not a good numer-
ical indicator of convergence because the stress can be quite flat near a local
minimum. Numerical stopping criteria, as used in KYST-2 (Kruskal, Young,
and Seery 1978), for example, may kick in when gradient steps may still be
visually noticeable. In such situations it is highly desirable to have the ability
to check convergence visually and stop the algorithm interactively.

It is difficult to demonstrate the benefits of visual convergence checks in
print because the motions near a local minimum tend to be small and difficult
to convey by comparing two static plots, yet trivial to pick up by eye. We
therefore omit further illustrations and close this brief section with a general
remark: Human vision is extremely acute at detecting motion throughout the
field of vision, including the periphery. As a consequence, there is no need for
a user to focus on any particular area of a dynamic plot: motion can be picked
up literally out of the corner of the eye. Motion detection is therefore quite
robust to the unpredictability of users’ eye motions.

4. Local Minima

Most versions of MDS have trivially multiple minimum configurations
because of symmetries in the stress function. Stress functions are invariant un-
der rotations when the metric in configuration space is Euclidean; and they are
invariant under reflections on the axes when the metric is general Minkowski,
which includes Euclidean and city block metrics. Therefore, in discussions of
local minima in MDS it is always implicit that two configurations are “differ-
ent” only if they are not images of each other under transformations that leave
the stress function invariant. To facilitate such comparisons, one would really
need configuration matching with the Procrustes method. Matching of con-
figurations is sometimes difficult in three and higher dimensions, but in two
dimensions it can usually be done visually.
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Examples of truly different local minima are shown in Figure 5, where
the Morse code dissimilarities are scaled into two dimensions. The six locally
minimal configurations are sorted in ascending order of stress. The first two
differ mostly only in a local inversion of the placement of the two shortest
codes in the bottom left, “E = - and “T = —". The third configuration places
the shortest codes at the top, which implies a slight deformation of the rest of the
configuration when compared to the first two plots. The fourth configuration is
very similar to the first two, but this time the shortest codes are placed in the top
left. The fifth configuration is more conspicuously different from the preceding
ones in that the codes of length two together with those of length one are trapped
at the top; the code “*S = - - . forms a barrier that is impenetrable for the shorter
codes. The sixth and last configuration is the most deformed in that both the
codes of length one and two are trapped to the right of the digits.

In all six configurations of Figure 5 the codes of length three, four, and
five attempt to reflect the dimensions of code length and fraction of dots. In
fact, we were never able to achieve stronger rearrangements of the longer codes
than those seen in Figure 5. We have therefore another indication that in 2-D
the placement of the short codes of length 1 and 2 is problematic, whereas the
placement of the long codes of length 3, 4, and 5 is quite robust.

In Figure 5 we showed only nonmetric solutions. It is known that dif-
ferent varieties of MDS suffer from local minima to differing degrees: Clas-
sical MDS produces essentially unique configurations because it is solved by
an eigendecomposition; comparing between metric and nonmetric Kruskal-
Shepard MDS, the former is sometimes thought to be less prone to multiple
local minima, but this is not so. Metric MDS is less prone to degeneracies than
nonmetric MDS, but metric MDS can actually be more prone to local minima
than nonmetric MDS. This problem is particularly severe when the raw dissim-
ilarities require a strongly nonlinear transformation to achieve a good fit, which
is in fact the case for the Morse code dissimilarities. To give an idea of the
extent of the problem, we show in Figure 6 two local minimum configurations.
Although we were not able to upset the basic structure of the long Morse codes
with nonmetric MDS, we could easily do so with metric MDS. Local barriers
abounded, and almost any point could get trapped in implausible places. To
force MDS to behave more reasonably, one needs a strongly nonlinear trans-
formation of the dissimilarities. Nonmetric MDS will find such a transforma-
tion, but our interactive experiments showed that metric MDS applied to a third
power of the dissimilarities will do almost as well. This point will be illustrated
in Section 5 where we also give a reason for the problem of multiple minima
as it manifests itself in the application of metric MDS to the raw Morse code
dissimilarities.

In practice local minima are easily diagnosed if the software used offers



A. Buja and D.F. Swayne

18

(*28ed 1x2u U0 panunuod ¢ 2m31L]) 'SIN[EA SSANS A} AIB SIWRY I MO[eq

SI2qUIMU Y ], “(J-7 Ul BIEP 2P0 310 3 JO SuI[eds SLNIuron 10§ UOTIRZIUITUIUL §S3NS 211 JO UoONEWUe Ue woJ] sioysdeag p amIry

1€9¢°0

ILLED [S8E°0 20680

656£0




19

Visualization Methodology

PLBIO

§50T°0

‘SIN[EA SSaNS ) 2B SIUIRI} ] MO[q SIAQUINU AL,
*(1-Z U1 B1Ep 3p0d 3SIOR 2171 Jo Sul[e0s JLNauIuoU J0] UOTEZIWITUND S$20S 21 JO Uonew e ue woly sioysdeus (penunuod) y aman]

9vITO

i

h2%




A. Buja and D.F. Swayne

20

(*98ed 1xau vo penunuod ¢ am31y) -Jurely yoea mojaq sreadde anfea ssans UL, "BIEP PO ITIOP Y1 JOJ SUOISUILIP
oM Ut suonemyuoo pagiaAuod 3anp smoys 28y AN, UONIUNY SSANS SN IMIwuou 3y Jo ewun [edo] aidumpy ¢ a2m3ig

S961°0 PLBLO TL8T'0




21

Visualization Methodology

“2Uredj yoea Mmojaq sreadde anfea ssams 91 ], "BIEP 2POD ISIOPA 2Y) JOJ SUOISUIWIP OM] U1
suoneandyuod padioauod 320)) smoys 2Indy 2y "UONOUN] SSANS SN 2LIawuou 1) Jo BN [220] 2[dumy (penunuod) ¢ amdid

9tT’0

SL610

~—=0

=0

)




A. Buja and D.F. Swayne

22

‘2I3Y LMOYS O] ) JO AT TR I2MO] 1 S5a0S
950U UONN[OS B SMOYS [ 21NF1 JO JWEL) PUOIIS S ‘WNLWITUI INJOSGE UB 5T YITYM JO U0 'BIep JPOI ISIO| S J0J SUOISUIWTD
OM] Ul SUONEMIYUoDd PaBIaAuod Om) smoys amBy 2L "UONOUN] SSONS SN M A JO ewiun [ed0] sdompy ‘9 amSi]

798T0




Visualization Methodology 23

a few basic techniques. The three techniques we found most helpful are the
following:

(1) Repeated stress minimization starting from random configurations: The
metric solutions shown in Figure 6 were created in this way. An early
recommendation for restarts from random configurations was made by
Arabie (1973), who criticized published simulations for their dependence
on particular starting configurations, usually the classical MDS solution.
If conventional optimizers such as gradient descent are used, a number of
solutions obtained from random restarts should be checked.

(2) Stress minimization starting from systematically constructed configura-
tions: The most popular systematic starting configuration is the classical
MBDS solution (also available in our system), but sole reliance on it should
be discouraged. An example of a different kind of systematic starting
configuration based on prior insight is the following: for the Morse code
dissimilarities, we form a starting configuration in 2-D by plotting the
number of dots against code length. That is, we start from a configuration
that is a perfect representation of the two major dimensions approximately
recovered by MDS. The solutions are shown in the first frame of Figure
5 (nonmetric) and in the top right frame of Figure 7 (metric). It is no
surprise that their stress values are the lowest we could find among local
minima.

(3) Extensive experimentation is possible if the software at hand permits in-
teractive editing of configurations. Users can then modify solutions by
moving points or groups of points into suspected locations of local sta-
bility and rerun the optimizer to check the guess. This strategy is indeed
how we generated the local minima in all except the first frame of Figure
5. In the first four frames we dragged the codes of length 1 into various
positions while continuing to run the optimizer; in the fifth and the sixth
frame we dragged the codes of length 1 and 2 to the top and to the right,
respectively.

All three approaches are implemented in the XGvis/XGobi software: random
restarting with a mouse click, importing precomputed configurations from files,
and manually dragging points and groups of points. Point dragging was simul-
taneously and independently implemented by McFarlane and Young (1994) in
their ViSta-MDS software. In the XGobi software, dragging points and groups
of points is possible in rotated and toured views as well: dragging on the screen
is translated into motion parallel to the projection plane in data space. Projec-
tion planes are implicit in all data rotations and tours.
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5. The Problem of Indifferentiation

The problem of indifferentiation arises when dissimilarity data cluster
around a positive constant. Such clustering is easily diagnosed with a histogram
of the dissimilarities, an example of which is shown in the histogram of the
raw Morse code dissimilarities in the top right frame of Figure 7. Data of this
type approximate an extreme case in which the dissimilarities are all identical:
d;; = c¢¥i # j, where ¢ > 0. This situation is illustrated by the histogram in
the top left frame of Figure 7.

5.1 Constant Dissimilarities as the Extreme of Indifferentiation

Constant dissimilarities are a form of null data in which every object is
equally dissimilar to every other object — hence our term “indifferentiation”.
The tighter a histogram of dissimilarities clusters around a nonzero value, the
more the data suffer from indifferentiation.

Constant dissimilarities call for a configuration that is a regular simplex
in (N — 1)-dimensional space. A simplex re-creates constant dissimilarities
exactly, with zero stress. When one flattens the (N — 1)-D simplex with MDS
into lower dimensions, the stress increases as the dimension decreases (follow-
ing the intuitions behind Shepard’s (1962) approach to MDS).

Whatever the configuration, though, the stress for constant dissimilarities
is invariant under permutation of the objects:

Stressp(Xy,..,Xy) = Stressp(Xg(y), .., Xr(N))

As a consequence, permutation of the labels of a minimum configuration yields
another minimum configuration: There may exist as many as N! different min-
imum configurations (actually: equivalence classes of solutions, modulo trans-
formations that leave Stressp invariant, such as rotations under the Euclidean
metric and axis reflections under general Minkowski metrics). Permutation
symmetry under indifferentiation lends itself as an explanation for the abun-
dance of multiple local minima in the application of metric MDS to data sets
that exhibit approximate indifferentiation, such as the raw Morse code dissimi-
larities.

5.2 Power Transformations for the Analysis of Indifferentiation

Approximate indifferentiation does not necessarily mean that the dissim-
ilarities are uninformative. We know, for example, from the application of non-
metric MDS that the Morse code dissimilarities are indeed highly structured and
hence informative after the application of a monotone transformation. To make



Visualization Methodology

25

O ---

p=0.0, stress=0.39

p=1.0, stress=0.2836

p=3.2, stress=0.2095

Figure 7. Metric MDS solutions of the Morse code dissimilarities after power transformations
d? ;. Below the configurations are histograms of the transformed dissimilarities df ;. and the

powers p and the stress values.



26 A. Buja and D.F. Swayne

p=1.0, dim=2 p=0.0, dim=2

p=0.0, dim=3

Figure 8. An example of the effects of complete indifferentiation on metric MDS. The raw
dissimilarities describe a 5x5 grid as reflected in the 2-D configuration in the top left frame.
When subjected to the power zero, the dissimilarities become constants. The results are the 2-D
configuration in the top right frame and the 3-D configuration in the bottom frame.
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metric MDS more competitive with nonmetric MDS, we implemented power
transformations in XGvis. Their exponent is controlled by a slider widget that
permits users to change the exponent interactively with the mouse. Our typical
mode of operation is to drag the slider and therefore change the exponent while
running the stress minimizer at the same time. We then get to see the immediate
effect of changes in the exponent on the stress value and the configuration. The
two main purposes of user-controlled power transformations are the following:

(1) Exploring the effect of transforming the dissimilarities to indifferentia-
tion, by lowering the exponent to zero while running the stress optimizer.
This operation indicates how close the raw dissimilarities are to indiffer-
entiation. An example is shown in the left frame of Figure 7. Comparison
of the two top frames of Figure 7 shows that the two are indeed quite
close: the rounding of the configuration in the right frame approximates
the circular configuration in the left frame.

(2) Searching for the lowest stress value by sliding up and down the scale
of exponents. This is how we found that the exponent p = 3.2 is ap-
proximately optimal. In the bottom frame of Figure 7 we notice that the
histogram of the transformed dissimilarities is flat, in particular, it is not
clustered around a positive constant, and the configuration is very similar
to the nonmetric configurations in the left and the center frame of Figure
3.

5.3 The Structure of Null Configurations

Minimum configurations of constant dissimilarity data are highly struc-
tured. For a first impression, see the left frame of Figure 7 and the center and
right frame of Figure 8. Knowledge of this “null structure” is of considerable
importance for the practice of MDS because this is structure in the output of
MDS that indicates the absence of real structure in the input data, an example
of the unlikely case of “‘garbage in, structure out”. For real structure to be com-
pletely absent is rare, but it is often weak, which puts such data in the vicinity
of indiscrimination with approximate null structure in the configurations. This
observation is the methodologically important point: null structure appears to
a variable degree, and it must be recognized as such to avoid overinterpretation
of the data.

We first describe the null structure of MDS solutions for the case of per-
fectly constant dissimilarities as seen in computer experiments:

(1) Intwo dimensions, a minimum configuration often arranges the points on
a set of concentric circles, as in the top left frame of Figure 7 and the top
right frame of Figure 8. This fact has been widely noted and described
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Figure 9. (continued) Null analysis in 2-D: All configurations are of size 750. Two configurations obtained from uniformly random

dissimilarities; left: metric; right: nonmetric.
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by, for example, de Leeuw and Stoop (1984, p. 397). The concentric
circles, however, are somewhat inessential to a null configuration in 2-D.
In light of theoretical results described below, the essential aspect of a null
configuration is that it shows a point density that fills a circular disk with
sharp boundary; the density is circularly symmetric with lowest density
in the center and increasing density towards the boundary.

(2) In 3-D and higher dimensions, a minimum configuration arranges the
points so as to approximate a uniform distribution on a sphere. This re-
sult is harder to illustrate in the printed medium, but the bottom frame of
Figure 8 gives an impression of this effect for data that describe a 5 x 5
grid in their raw form, after having been made constant with a zero-th
power transformation. In an interactive data visualization system such
as XGvis/XGobi, one uses data rotations and sections to verify that the
configurations are indeed spherically symmetric and hollow in the center
(Furnas and Buja 1994; a data section is a “slice” or subset of data points
selected with a narrow rectangle in a data projection).

These types of dimension-dependent null structure have a mathematical basis
described in Buja, Logan, Reeds, and Shepp (1994), under an idealization in
which the number of objects N — oo. The analysis suggests the following:

(1) In two dimensions the minimum configurations approximate a circularly
symmetric distribution on a disk with a density that increases radially
from the center to the periphery of the disk. The top left of Figure 9
shows the theoretical density as a function of radius.

(2) The same analysis suggests that in 3-D and higher dimensions the mini-
mum configurations approximate a uniform distribution on a sphere.

5.4 Noisy Dissimilarities and Indifferentiation

The problem of indifferentiation arises not only when dissimilarities ac-
crue around a positive value. The same effect occurs when the dissimilari-
ties are noisy. The reason is essentially that for sufficiently large /N, noise
washes out and only its expected value is of relevance. In short: if dissim-
ilarities {d; j}i<; are independently and identically distributed, then they are
asymptotically equivalent to constant dissimilarities d; ; = E(d), that is, to in-
discrimination. This observation holds more so for nonmetric than metric MDS
because the isotonic regression in nonmetric MDS smooths random d; ; very
nearly to a constant.

An illustration of these facts is shown in Figure 9: The top right shows
a null solution for perfectly constant dissimilarities; the bottom row shows a
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metric and a nonmetric solution for uniform random dissimilarities. The non-
metric solution matches the null configuration, while the metric solution is a
fuzzy version thereof. This comparison indicates that metric MDS has greater
problems with noise than nonmetric MDS because the latter has a certain ability
to average out noise.

5.5 Null Structure in Empirical Configurations

In light of these facts, it is now possible to interpret the 2-D metric con-
figuration of the raw Morse code dissimilarities shown in the top right frame of
Figure 7: The circular shape is in all likelihood a consequence of a fair amount
of indifferentiation in the raw dissimilarities. The histogram of the dissimilar-
ities below the plot confirms this impression with the values accruing near the
maximum value.

A similar diagnosis is possible for Figure 4, the leftmost frame in the
second row: there, the initial configuration is random and its pairwise distances
largely uncorrelated with the dissimilarities; hence the isotonic regression maps
the latter very nearly to a constant, which generates an approximate null con-
figuration as a transition phase of the optimization. This result is probably a
general fact for MDS minimizations that start from a random configuration.
Because of slight deviations from the perfect null situation, gradient descent
still finds its way to a true local minimum. This observation is just a diagnosis,
not a criticism of random starts.

A general conclusion from these considerations is that the following
properties of local minimum configurations are usually artifacts:

(1) in 2-D: circular disk shape with a sharp edge and low density in the center;
(2) in 3-D and higher: sphericity and holes in the center.

These features should not be interpreted as properties of the data, but as hinting
at a degree of indifferentiation, possibly stemming from noise.

5.6 Horseshoes

We suspect that the well-known “horseshoe effect” (Kendall 1970) de-
rives from the null structure just described. Some empirical evidence can be
found in Figure 10: The dissimilarities in these plots were generated from 50
perfectly ordered equispaced points on a line, as in the leftmost frames of Fig-
ure 10. These dissimilarities were subjected to several power transformations
with exponents starting at p = 1.0 and ending at p = 0.0. In 2-D, the inter-
mediate exponents exhibit very clear horseshoe shapes. They turn scraggly for
exponents near zero, so as to approximate a 2-D null configuration. In 3-D,
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there are more possibilities for a curve to bend; hence the shape i1s no longer
so simple that it could be described as a horseshoe. However, data that have
intrinsic 2-D structure such as the 5x 5 grid of Figure 8 will be bent in a simple
way because they must approach a sphere in the limit, as in the bottom frame
of the figure.

The horseshoe effect in metric and nonmetric MDS of the Kruskal-
Shepard variety should not be confused with the horseshoe effect in multivariate
methods that are based on eigendecompositions, such as correspondence anal-
ysis and nonlinear principal component analysis. In these methods the horse-
shoes have a much simpler explanation: they arise in the same way as certain
systems of orthogonal polynomials arise as solutions of spectral decomposi-
tions of certain linear operators. Horseshoes are here just an expression of the
fact that the two dominant eigenfunctions are linear and quadratic. In noisy data
this situation translates to two dominant eigensolutions, one which is ascending
and one which is broken into two pieces, one piece descending and the other
ascending. We leave things intentionally vague as they are the topic of another
literature (see for example Buja 1990; Donnell, Buja, and Stuetzle 1994, and
the references therein). We only note that the mathematics of null configura-
tions in MDS (idealized for N — oc) is very different: it requires the solution
of a variational problem that has no relation to eigendecompositions. A closer
relative is potential theory because of the similarity in the roles of dimensions
one and two versus three and higher, but the variational problem can not be
reduced to potential theory either.

6. Localization with Groups

By “localization™ we mean the examination of structure contained in rel-
atively small dissimilarities. Localization is a difficult problem because of the
following received wisdom about MDS:

The global shape of MDS configurations is determined by the large
dissimilarities; consequently, small distances should be interpreted
with caution: they may not reflect small dissimilarities.

These statements are based on a study by Graef and Spence (1979) who ran sim-
ulations in which they removed, respectively, the largest third and the smallest
third of the dissimilarities. Those authors found devastating effects when re-
moving the largest third, but relatively benign effects when removing the small-
est third. We will qualify these conclusions in the next section.

A refinement of the received wisdom is the following: if the points re-
presenting the Morse codes “T” and “E” lie close together, it does not follow
that they are perceptually similar, that is, often confused. It may much rather
mean that there exists a large set of codes from which they are both roughly
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equally dissimilar. Shared patterns in large dissimilarities are vastly more pow-
erful contributors to the stress function than is the single dissimilarity between
the codes “T” and “E". Thus, it would be of interest to diagnose whether “T”
and “E” are indeed close.

To answer these and similar questions, one may want to use some form
of localized MDS. One proposal is as follows: Assume the objects have been
partitioned into disjoint groups, where the groups have presumably been chosen
to be homogeneous in some sense, as in the Morse code data the groups of
codes of the same length. Then perform MDS with a stress function that has
a reduced set of dissimilarities, namely, those for pairs of objects in the same
group; omitted are the terms in the stress function that contain dissimilarities for
objects in different groups. We have dubbed this method “within-groups MDS™.
The resulting locally minimal configurations have the following properties:

(1) The relative positions of points in the same group are meaningful because
they are constrained by the within-group dissimilarities.

(2) The relative positions of the group configurations are nor meaningful be-
cause they are unconstrained because of the removal of the between-
groups dissimilarities. Similarly, orientations of groups configurations
are not meaningful. Users of XGvis can experience this lack of constraint
by dragging the groups interactively. [There exists one overall constraint,
though: we always center the overall configuration at the origin and we
always normalize the overall configuration size. This constraint does not
seem Lo pose problems for users.]

(3) In metric MDS the relative sizes of the groups are meaningful and can be
compared because the within-group configuration distances approximate
dissimilarities that exist on the same scale. In nonmetric MDS it is not
clear how to handle the isotonic transformation: in XGvis we estimate one
shared transformation across groups, which again puts the transformed
dissimilarities on a shared scale so that group sizes can be compared. The
alternative of estimating a separate isotonic transformation in each group
would decouple the group sizes, but this version is problematic because
groups are often small and degenerate transformations become likely.

XGvis uses groups defined by colors and glyphs. The groups can be precom-
puted and entered in color and glyph files, or they can be continually redefined
with brushing operations in the XGvis window or in auxiliary linked XGobi
windows.

Figure 11 shows within-groups configurations for the Morse code dis-
similarities partitioned into groups of constant code length. We rearranged and
rotated the groups by dragging them interactively to new locations and orien-
tations to facilitate comparisons. One recognizes that the shortest codes, “E”
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and “T", are relatively far apart from each other, farther than previous figures
would have made us believe. In the circular structure of the codes of length five
adjacent codes are clearly closer to each other than “E” and “T", which seems
intuitive: we would expect for example “—— - -." and *——— . .” to be more
often confused with each other than " and “-".

7. Localization by Truncation and Weighting

Within-groups MDS is a powerful way of exploring local structure. Yet
there is another method of localization that is often proposed for MDS: drop-
ping the large dissimilarities from the stress function and approximating only
the small dissimilarities with configuration distances. The intuition behind this
idea is that small dissimilarities reflect local properties, and that by building
configurations from local information one obtains more faithful global config-
urations. This proposal is generally a great disappointment, which is not too
surprising in light of Graef and Spence’s (1979) work quoted earlier. Mini-
mization of stress without the large dissimilarities does often not converge to
meaningful global configurations. The approach fails mathematical intuitions
trained on differential equations, where infinitesimal information is success-
fully integrated up to global solutions. Attempts at integrating local to global
structure are often not successful in MDS.

Just the same, it is of interest to know whether removal of large dissim-
ilarities actually fails MDS for a particular dataset. In XGvis we implemented
two mechanisms for assessing the influence of large and small dissimilarities:

(1) Truncation to drop large (or small) dissimilarities from the stress function.
Both truncation thresholds can be interactively controlled.

(2) Weighting to smoothly change the influence of small and large dissimilari-
ties. The weights we provide are powers of the dissimilarities: w; ; = d:?! 3¢
For g < 0 large dissimilarities are down-weighted; for g > 0 they are up-
weighted. (The default is identical weights: ¢ = 0.) The exponent g can
be interactively controlled.

In our experience, both truncation and weighting have a data-dependent range in
which they produce useful alternative configurations. Outside this range, MDS
minimization tends to disintegrate. Figure 12 shows configurations obtained
by truncating successively larger numbers of largest dissimilarities. For each
configuration, stress minimization was started from the previous configuration.
This minimization scheme masks the full scale of instability that would be ap-
parent if one started each minimization from a random configuration. With the
stability-favoring scheme, almost half the largest dissimilarities can be removed
and the configurations are still meaningful. The Graef and Spence (1979) re-
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sult should therefore be taken with a grain of salt: the fraction of dissimilarities
that can be removed depends very much on the data and on the type of starting
configurations used.

The interpretation of local features even in seemingly meaningful con-
figurations requires caution, though, because of potential decoupling of distant
objects. In the bottom row of Figure 12, for example, all dissimilarities be-
tween the codes {“E”, “T"} and the rest had been truncated, and the placement
of these codes is inherited from the last configuration in which a constraint to
the rest existed.

The detection of decoupling is therefore a necessity. In XGvis there ex-
ist two different approaches to the problem: (a) instant local feedback can be
obtained by interactively dragging a point of interest while stress minimization
is in progress; if the point is constrained, it will instantly snap back into its po-
sition on release. (b) A global overview of the constraints can be obtained in a
scatterplot of the indices ¢ and j for which the dissimilarity d; ; is present in the
current stress function; such a plot is accessible in a diagnostics window that
shows the included dissimilarities d; ;, their fitted distances, and their indices 1
and j.

We end this section by noting that the problem of decoupling does not
arise with power-weighting of dissimilarities: large dissimilarities are only down-
weighted, but they never disappear from the stress function.

8. The Use of Minkowski Distances for Rotation of Configurations

General Minkowski (or Lebesgue) distances on configuration space are
sometimes used as alternatives to Euclidean distances. This family of metrics
is parametrized by a parameter rn which ranges between | and oo, both limits
included. For i = 2 one obtains the Euclidean metric as a special case. Of
particular importance are the two extremes of the Minkowski family: for m =
1 the Ly (or city block or Manhattan) metric, and for m = oo the L (or
maximum) metric. Greater plausibility of L or L., over the Ly metric has
been argued (Arabie 1991). MDS with these metrics is not properly solved by
gradient descent because the corresponding minimization problem is more akin
to a sorting problem than a smooth optimization problem (Hubert, Arabie, and
Meulman 2001). Just the same, we incorporated the L, metric in XGvis as a
limiting case when m decreases smoothly to 1. Just like the power exponent
p in Section 5.2, the Minkowski parameter rn is controlled by a slider widget
that permits users to change m interactively with the mouse. The mathematical
limit limy,,;; min Stress can therefore be approximated by a process in which
a user slowly lowers m to 1 on the slider while gradient descent is running.
This process is a variant of the Amold-Kruskal strategy which uses a ladder of
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m=2.0+ m=6.0

Figure 13. Minkowski metrics fitted to the Morse code dissimilarities. The Minkowski param-
¢ters are shown below the configurations. The stress values are 0.1984 (m = 1.0), 0.1872
(m = 2.0), 0.1842 (m = 6.0).

discrete values for m to successively approximate the L or Lo, metrics. Arabie
(1991) gives empirical evidence that the strategy works well in 3-D and higher
dimensions but often fails in 2-D. If this empirical finding of a discrepancy
between 2-D and higher dimensions has a theoretical basis, one may wonder
with Arabie (1991, p. 578) whether there exists a connection with our analysis
of indifferentiation in Section 5.

In our experiments with interactive MDS, our interest in Minkowski met-
rics arose not from psychometric considerations but from the practical discov-
ery that these metrics can be used for rotation of configurations for interpre-
tation, similar to factor rotation in factor analysis. A standard method for ro-
tating MDS configurations is principal component analysis, but non-Euclidean
Minkowski metrics can be used for the same purpose because they break the ro-
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tation invariance of the stress function: Form # 2, optimal configurations must
align themselves in particular ways with the coordinate axes (modulo reflec-
tions on them). This alignment often leads to interpretable axes. For example,
if there exist certain axial (near-)symmetries in a configuration, non-Euclidean
metrics may force the axes of symmetry to line up with the coordinate axes. To
find these special alignments, the following simple recipe can be used:

Temporarily raise or lower the Minkowski parameter m above or
below 2, respectively, and return to m = 2 while running the stress
minimizer all the while.

One therefore approximates the mathematical limits lim,, > min Stress and
lim, 12 min Stress with interactive manipulation of m. The two processes
should produce the same configurations up to rotation (unless the configura-
tions get trapped in substantially different local minima, which can be avoided
by moving rn not far above or below 2). The result in either case is a rotated
version of the original Ly configuration. Typically, for configurations in 2-D,
the major difference between solutions based on Ly, ~2 and L, is a 45 degree
rotation.

Figure 13 illustrates this use of Minkowski metrics with an application
to the Morse code dissimilarities in 2-D: the top right and bottom left frames
show the Euclidean solution in two orientations, the top right frame obtained by
approaching m = 2 from m = 1, the bottom left frame by approaching m = 2
from m = 6 (the highest implemented value in XGvis). Clearly the latter frame
has the more desirable solution because it roughly aligns the horizontal and
vertical axes with the dimensions code length and fraction of dots.

9. Conclusions

The intention of this paper was to describe a rich methodology for visual-
izing, diagnosing, and manipulating MDS configurations. The list of techniques
introduced here is by no means complete and other ideas should be tried, but we
hope to have shown that MDS has much to gain from contemporary interactive
data visualization.

The XGvis/XGobi software, in which this methodology can be realized,
is freely available from the following web site:

http://www.research.att.com/areas/stat/xgobi/
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