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We discuss methodology for multidimensional scaling (MDS) and its implementa-
tion in two software systems, GGvis and XGvis. MDS is a visualization technique for
proximity data, that is, data in the form of N × N dissimilarity matrices. MDS con-
structs maps (“configurations,” “embeddings”) in IRk by interpreting the dissimilari-
ties as distances. Two frequent sources of dissimilarities are high-dimensional data and
graphs. When the dissimilarities are distances between high-dimensional objects, MDS
acts as a (often nonlinear) dimension-reduction technique. When the dissimilarities are
shortest-path distances in a graph, MDS acts as a graph layout technique. MDS has
found recent attention in machine learning motivated by image databases (“Isomap”).
MDS is also of interest in view of the popularity of “kernelizing” approaches inspired
by Support Vector Machines (SVMs; “kernel PCA”).

This article discusses the following general topics: (1) the stability and multiplicity
of MDS solutions; (2) the analysis of structure within and between subsets of objects
with missing value schemes in dissimilarity matrices; (3) gradient descent for optimiz-
ing general MDS loss functions (“Strain” and “Stress”); (4) a unification of classical
(Strain-based) and distance (Stress-based) MDS.

Particular topics include the following: (1) blending of automatic optimization with
interactive displacement of configuration points to assist in the search for global op-
tima; (2) forming groups of objects with interactive brushing to create patterned miss-
ing values in MDS loss functions; (3) optimizing MDS loss functions for large numbers
of objects relative to a small set of anchor points (“external unfolding”); and (4) a non-
metric version of classical MDS.
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We show applications to the mapping of computer usage data, to the dimension
reduction of marketing segmentation data, to the layout of mathematical graphs and
social networks, and finally to the spatial reconstruction of molecules.

Key Words: Dimension reduction; Dissimilarity data; External unfolding; Gradient
descent; Graph layout; Molecular conformation; Multidimensional unfolding; Multi-
variate analysis; Proximity data; Social networks.

1. INTRODUCTION: BASICS OF
MULTIDIMENSIONAL SCALING

In this section we give a short introduction to those types of MDS that are relevant
for this article. Section 2 gives an overview of interactive MDS operations, as they can be
realized in XGvis or GGvis. Section 3 approaches the stability and multiplicity problem of
MDS configurations with algorithm animation, direct manipulation, and perturbation of the
configuration. Section 4 gives details about the loss functions and their parameters for con-
trolling transformations, subsetting, and weighting of dissimilarities. Section 5 describes
diagnostics for MDS. Section 6 is concerned with algorithms and large data problems.
Finally, Section 7 gives a tour of applications with examples of proximity analysis, dimen-
sion reduction, and graph layout in two and higher dimensions. An earlier article by Buja
and Swayne (2002) gives further illustrations of the methodology supported by the present
framework.

1.1 PROXIMITY DATA AND STRESS FUNCTIONS

Proximity data, the input to MDS, consist of dissimilarity information for pairs of
objects. This contrasts with multivariate data that consist of attribute information for in-
dividual objects. If the objects are labeled i = 1, . . . , N , we will assume that proximity
data are given by dissimilarity values Di, j . (If the data are given as similarities, a mono-
tone decreasing transformation will convert them to dissimilarities.) The goal of MDS is to
map the objects i = 1, . . . , N to “configuration” or “embedding” points x1, . . . , xN ∈ IRk

in such a way that the given dissimilarities Di, j are well-approximated by the distances
‖xi − x j‖. The choice of embedding dimension k is arbitrary in principle, but low in prac-
tice: k = 1, 2, 3 are the most frequently used dimensions, for the simple reason that the
points serve as easily visualized representations of the objects.

The dissimilarity matrices of Figure 1 are simple examples with easily recognized
error-free MDS solutions. The left-hand matrix suggests mapping the five objects to an
equispaced linear arrangement; the right-hand matrix suggests mapping the three objects
to a right triangle. The figure shows configurations actually found by MDS. The first con-
figuration can be embedded in k = 1 dimension, while the second needs k = 2 dimensions.
In real data, there are typically many more objects, and the dissimilarities usually contain
error as well as bias with regard to the fitted distances.

The oldest version of MDS, called classical scaling, is due to Torgerson (1952). It
is, however, a later version due to Kruskal (1964a,b) that has become the leading MDS
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Figure 1. Simple examples of dissimilarity matrices and their optimal scaling solutions.

method. Kruskal defined MDS in terms of minimization of a loss function called “Stress,”
which is simply a measure of lack of fit between dissimilarities Di, j and fitted distances
‖xi − x j‖. In the simplest case, Stress is a residual sum of squares:

StressD(x1, . . . , xN ) =




∑

i 6= j=1..N

(
Di, j − ‖xi − x j‖

)2





1/2

, (1.1)

where the outer square root is just a convenience that gives greater spread to small values.
For a given dissimilarity matrix D = (Di, j ), MDS minimizes Stress over all configurations
(x1, . . . , xN )T , thought of as N ×k-dimensional hypervectors of unknown parameters. The
minimization can be carried out by straightforward gradient descent applied to StressD ,
viewed as a function on IRNk .

We note that MDS is blind to asymmetries in the dissimilarity data because

(Di, j − ‖xi − x j‖)
2 + (D j,i − ‖x j − xi‖)

2 = 2 ∙ ((Di, j + D j,i )/2 − ‖xi − x j‖)
2 + C,

where C is an expression that does not depend on ‖xi − x j‖. We therefore assume from
now on that the dissimilarities are symmetrized. The assumption of symmetry will later
be broken in one special case, when one of the two values is permitted to be missing
(Section 4.4).
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1.2 TYPES OF MULTIDIMENSIONAL SCALING

There exist several types of MDS, and they differ mostly in the loss function they use.
Here are two dichotomies that allow us to structure some possibilities:

• Kruskal-Shepard distance scaling versus classical Torgerson–Gower inner-product
scaling: In distance scaling dissimilarities are fitted by distances ‖xi − x j‖ (Sec-
tions 1.1 and 4.1), whereas classical scaling transforms the dissimilarities Di j to a
form that is naturally fitted by inner products 〈xi , x j 〉. The transformation of dissim-
ilarity data Di j to “inner-product data” Bi j satisfies D2

i j = Bii −2Bi j + B j j , thereby
mimicking the corresponding identities for ‖xi − x j‖ and 〈xi , x j 〉 (Section 4.2).

• Metric scaling versus nonmetric scaling: Metric scaling uses the actual values of the
dissimilarities, while nonmetric scaling effectively uses only their ranks (Shepard
1962; Kruskal 1964a). Nonmetric MDS is realized by estimating an optimal mono-
tone transformation f (Di, j ) of the dissimilarities simultaneously with the configu-
ration.

We implemented both distance scaling and classical inner-product scaling, and both met-
ric and nonmetric scaling. In all, four types of MDS are provided by crossing {metric,
nonmetric} with {distance, classical}. The unusual case of nonmetric classical scaling is
described in Section 4.2.

A difference between classical and distance scaling is that inner products rely on an ori-
gin, while distances do not; a set of inner products determines uniquely a set of distances,
but a set of distances determines a set of inner products only modulo change of origin. To
avoid arbitrariness, one constrains classical scaling to mean-centered configurations.

Another difference between classical and distance scaling is that distance scaling re-
quires iterative minimization while classical scaling can be solved with inexpensive eigen-
decompositions. Just the same, we implemented classical scaling with iterative gradient
descent on a loss function called “Strain,” which parallels gradient descent on Stress in
distance scaling. This computational uniformity has advantages because it is straightfor-
ward to introduce weights and missing values in Strain and Stress, which is not possible in
eigendecompositions.

1.3 APPLICATIONS OF MDS

Here is an incomplete list of application areas of MDS:

• MDS was invented for the analysis of proximity data which arise in the following
areas:

– The social sciences: Proximity data take the form of similarity ratings for pairs
of stimuli such as tastes, colors, sounds, people, nations, etc.

– Archaeology: Similarity of two digging sites can be quantified based on the
frequency of shared features in artifacts found in the sites.



448 A. BUJA, D. F. SWAYNE, M. L. LITTMAN, N. DEAN, H. HOFMANN, AND L. CHEN

– Classification problems: In classification with large numbers of classes, pair-
wise misclassification rates produce confusion matrices that can be analyzed as
similarity data. An example would be confusion rates of phonemes in speech
recognition.

• A common use of MDS is for dimension reduction: Given high-dimensional data
y1, . . . , yN ∈ IRK (K large), compute a matrix of pairwise distances dist(yi , y j ) =
Di, j , and use distance scaling to find lower-dimensional x1, . . . , xN ∈ IRk (k � K )
whose pairwise distances reflect the high-dimensional distances Di, j as well as pos-
sible. In this application, distance scaling is a nonlinear competitor of principal com-
ponents, whereas classical scaling is identical to principal components. [For an inter-
pretation of multivariate analysis as distance approximation, see Meulman (1992).]

• In chemistry, MDS can be used for molecular conformation, that is, finding the spa-
tial structure of molecules. This application differs from the above in that (1) ac-
tual distance information is available from experiments or theory, and (2) the only
meaningful embedding dimension is k = 3. Configurations are here called “confor-
mations.” Some references are Crippen and Havel (1978), Havel (1991), Glunt et
al. (1993), and Trosset (1998a). For an example, see Figure 10 (p. 470).

• A fourth use of MDS is for graph layout, an active area at the intersection of discrete
mathematics and network visualization (Di Battista et al. 1999). Pioneers before
their time were Kruskal and Seery (1980). From graphs one obtains dissimilarities
by computing shortest-path lengths for all pairs of vertices. Resulting MDS config-
urations can be used to draw graphs with line segments indicating graph vertices, as
in Figure 9 (p. 469).

We will show examples of data in all four categories.

1.4 RELATED DEVELOPMENTS IN MACHINE LEARNING

In recent years, the machine learning community developed an interest in nonlinear
dimension reduction. The problem of flattening nonlinear manifolds led to localized ap-
proaches to dimension reduction that use small dissimilarities only, the intuition being that
large dissimilarities reflect nonlinear warping in high-dimensional data space and should
not be relied on. The following two approaches achieve such localization by preprocessing
the dissimilarities and relying subsequently on plain classical MDS:

• In Isomap (Tenenbaum et al. 2000) one replaces large dissimilarities with shortest-
path lengths computed from small dissimilarities. Intuitively, one replaces “chordal
distances” with the lengths of shortest paths “within the manifold.” Small dissimi-
larities may be defined as being among K nearest neighbors of either endpoints.

• In kernel PCA (principal components, Schölkopf et al. 1998) one creates inner-
product data Bi j with “kernel tricks” such as Bi j = exp(−D2

i j/(2σ 2)). The point
of this transformation is to create inner-product data Bi j that place two objects i and
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j about equally far from each other (namely, orthogonal to each other) whenever
roughly Di j > 3σ . Localization is achieved by choosing σ small.

In both cases the resulting proximity data are subjected to classical MDS, but in the present
framework it is as easy to apply distance MDS as well as nonmetric versions of either that
achieve better embeddings by estimating an additional transformation of the dissimilarities.

A competing method, Local Linear Embedding (LLE, Roweis and Saul 2000) is con-
ceptually unrelated to MDS. A more recent approach is Local MDS (LMDS, Chen and
Buja 2008) which modifies the stress function by adding penalties that spread out and
flatten manifolds.

1.5 A CLASSICAL EXAMPLE: THE ROTHKOPF MORSE CODE DATA

For illustration we use as our running example the well-known Rothkopf Morse code
data (1957), which are to MDS what Fisher’s Iris data are to discriminant analysis. These
data originated from an experiment in which inexperienced subjects were exposed to pairs
of Morse codes in rapid order, and the subjects had to decide whether the codes in a pair
were identical. The data were summarized in a table of confusion rates.

Confusion rates are similarity measures because two codes that are often confused are
interpreted as “similar” or “close.” For the conversion of similarities to dissimilarities one
could in principle use any monotone decreasing transformation, but we used the following:

D2
i, j = Si,i − 2Si, j + S j, j .

In other words, we interpreted the similarities as inner product data. This yielded all non-
negative values because the confusion matrix (Si, j )i, j is diagonally dominant (most iden-
tical code pairs are correctly judged). Unlike other conversion methods, this one has the
desirable property Di,i = 0. We also symmetrized the data (see Section 1.1).

Applying all four scaling methods in k = 2 dimensions produced the configurations
shown in Figure 2. We decorated the plots with labels and lines to aid interpretation. In
particular, we connected groups of codes of the same length, except for codes of length
four which we broke up into three groups and a singleton (“H”). We observe that, roughly,
the length of the codes increases left to right, and the fraction of dots increases bottom up.
Both of these observations agree with the many published accounts (e.g., Shepard 1962;
Kruskal and Wish 1978, p. 13; Borg and Groenen 1997, p. 59). This interpretation of
the axes was achieved by rotating the configurations (which is permissible due to rotation
invariance of the distances ‖xi −x j‖ and inner products 〈xi , x j 〉). While we easily obtained
interpretable axes with interactive rotations, one usually tries to achieve the same in factor
analysis with automated rotation methods such as Varimax.

The four scaling methods exhibit significant differences. Nonmetric distance scaling
produces probably the most satisfying configuration, with the exception of the placement
of the codes of length 1 (“E” and “T”). Metric scaling suffers from circular bending but it
places “E” and “T” in the most plausible location. The classical scaling methods bend the
configurations in different ways. More problematically, they overlay the codes of length
4 and 5 and invert the placement of the codes of length 1 and 2, both of which seem to
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Figure 2. Rothkopf’s morse code data: four 2D configurations.

be artifacts. In fact they aren’t; classical scaling requires a third dimension to distinguish
between these two pairs of groups. Distance scaling tends to achieve better compromises
in lower dimensions.

2. INTERACTIVE MDS OPERATION

The principal use of MDS configurations is for visualization. Because configurations
are essentially multivariate data, any MDS system calls for a multivariate data visualization
tool. As some of us coauthored the XGobi and GGobi systems for data visualization, it was
natural that we chose these as viewing engines (XGobi: Swayne, Cook, and Buja 1998;
Buja, Cook, and Swayne 1996; GGobi: Swayne, Buja, and Temple Lang 2003; Swayne,
Temple Lang, Buja, and Cook 2002). In effect, X/GGvis are master programs that create
and feed X/GGobi. Figure 3 shows how this presents itself in the case of GGobi: a GGvis
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Figure 3. The major GGvis windows. On the left is the master control panel, on the right is the GGobi window
for the configuration. Below is the GGobi window for an optional Shepard plot.

control panel for MDS (left), a GGobi window for viewing the configuration (center top),
a GGobi control panel (center bottom), and a GGobi window for diagnostics (right). The
basic sequence of MDS interactions is as follows:

• Launch with dissimilarity data (an N × N matrix), multivariate data (an N × d
matrix), or graph data (a list of integer pairs, possibly with weights) to perform,
respectively, proximity analysis, dimension reduction, or graph layout. Provide an
initial configuration, or else a random configuration is generated automatically.

• Select one of the four scaling methods (default: metric distance scaling).

• Choose a configuration dimension (default: 3).

• Initiate optimization (“Run MDS”) and watch the animation of the configuration and
the progression of the Stress or Strain value. When the shape of the configuration
stops changing, slow the optimization down by lowering the stepsize interactively.
Finally, stop the optimization (toggle “Run MDS”). There is no automatic conver-
gence criterion, and optimization does not stop on its own.

• Examine the shape of the optimized configuration: If k = 2, a plain X-Y scatterplot
will do. If k = 3, use 3D rotations, and if k > 3, use the grand tour.

• Interpret the configuration: Assuming informative object labels were provided with
the input data, search the configuration by labeling points. If covariates are available,

http://asa.literatumonline.com/action/showImage?doi=10.1198/106186008X318440&iName=master.img-000.jpg&w=360&h=270
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interpretation can be further aided by linked color or glyph brushing between covari-
ate views and configuration views. As this is only a tentative search for interpretable
structure, one should use transient (as opposed to persistent) brushing.

• Enhance the configuration: After acquiring a degree of familiarity with the config-
uration, use persistent brushing to permanently characterize subsets of interest. En-
hance the configuration further by persistently labeling interesting points. Finally,
enhance the overall perception of shape by connecting selected pairs of nearby points
with lines and coloring the lines.

• Turn optimization back on and leave it continually running. Observe the response to

– experimenting with various transformation parameters,

– subsetting objects,

– subsetting dissimilarities,

– weighting dissimilarities,

– manually moving points and groups of points, and

– perturbing the configuration or restarting from random configurations.

• Stop optimization and perform diagnostics in a separate window that shows among
other things a “Shepard plot” of the transformed dissimilarities and the fitted dis-
tances.

We described elsewhere (Swayne et al. 1998; Cook and Swayne 2007) operations such
as 3D rotations and grand tours, as well as (linked) brushing, labeling, and line editing.
Manually moving points is also part of the viewing engine (X/GGobi), but in conjunction
with MDS optimization it takes on special importance and is therefore described in Sec-
tion 3. MDS parameters as well as weighting and subsetting of dissimilarities affect the
loss function and are therefore specific to MDS. They are the subject of Section 4.

3. ANIMATED OPTIMIZATION AND POINT MANIPULATION

Most software for MDS operates in a batch mode, even though many older programs
have been wrapped in somewhat interactive PC environments. A pioneering system that
is truly interactive is McFarlane and Young’s “ViSta-MDS” (1994) whose development
overlaps with a first version of XGvis (Littman et al. 1992). Although the two systems
were developed independently, they share two important capabilities:

1. Animated Optimization: The configuration points are displayed continuously as they
are subjected to MDS optimization. A series of stills from an animated optimization
is shown in Figure 4. At the same time, the values of the loss function are also shown
in a trace plot (Figure 3).

2. Manual Dragging: Configuration points can be moved interactively with mouse
dragging.
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Figure 4. Snapshots from a MDS animation. The figure shows nine stages of a Stress minimization in three
dimensions. It reconstructed a 5 × 5 square grid from a random configuration. The grid was defined as a graph
with 25 nodes and 40 edges. The distances were computed as the lengths of the minimal paths in the graph (= city
block-, Manhattan-, or L1-distances). These distances are not Euclidean, causing curvature in the configuration.

McFarlane and Young (1994) called this methodology “sensitivity analysis” because mov-
ing points and observing the response of the optimization amounts to checking the stability
of the configuration. ViSta-MDS implements an alternating mode of operation in which
users switch back and forth between animated optimization and manipulation. X/GGvis is
by default in a fluid mode of operation in which the program runs in a never-ending opti-
mization loop, with no stopping criterion whatsoever. The user can drag the configuration
points while the optimization is in progress. The optimizer does not attempt to move the
dragged point, but the other points “feel” the dislocation through the change in the loss
function, and they are therefore slowly pulled because they try to position themselves in
a local minimum configuration with regard to the dragged point. As soon as the dragged
point is let go, it snaps into a position that turns the configuration into a local minimum
of the loss function. The feel for the user is that of pricking and tearing the fabric of the
configuration and thereby exploring deformations of its shape.
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Figure 5. Four local minima found by moving the group {E,T } into different locations.

In addition to moving one point at a time, X/GGvis permits moving groups of points
defined by shared glyphs and colors. This capability can be helpful when it has become
evident that certain points always stay together, as in the Morse code data the points for the
codes of length one (“E” and “T”). The only way to find further local minima is by moving
the points jointly. Indeed, when the Morse code data are mapped into two dimensions
with metric distance scaling and transformed by a third power (which mimics a nonmetric
solution), we found four different locally optimal locations for the codes of length one
(Figure 5). Another two local minimum configurations can be found by moving the codes
of length two.
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More local minima can be found by restarting optimization with a random configu-
ration such as Gaussian random point clouds. In addition, it is possible to examine local
stability by perturbing a configuration with normal random numbers by forming a con-
vex mixture of the present configuration and a random Gaussian configuration. The default
mixing parameter is 100% random, which means a completely new random configura-
tion is generated. A smaller fraction of 20% or so can be used for local stability checks:
if optimization always drives the perturbed configuration back to its previous state, it is
stable under 20% perturbation. Further stability checks will be discussed below. For a dis-
cussion of the problem of local minimum configurations, see Borg and Groenen (1997),
Section 13.4.

4. LOSS FUNCTIONS: STRESS AND STRAIN

As mentioned, we use iterative minimization of loss functions even where eigendecom-
positions could be applied, the reason being that missing and weighted dissimilarities are
handled with difficulty by the latter but trivially by the former. We now describe general
forms of loss functions called Stress in distance MDS and Strain in classical MDS.

4.1 STRESS

Although the simplest form of loss function for distance scaling is a residual sum of
squares as in (1.1), it is customary to report Stress values that are standardized and unit-
free. Stress may therefore take the form

StressD(x1, . . . , xN ) =




∑

i, j

(
Di, j − ‖xi − x j‖

)2

∑
i, j D2

i, j





1/2

. (4.1)

This, however, is not our final form of Stress. A problem with residual sums of squares,
which we gleaned from watching their optimization in real-time, is the effort spent on
getting the size of the configuration right. This effort is entirely unnecessary because we
are interested only in the shape of the configuration. Any two configurations (xi )i and
(t ∙xi )i that differ only by a size factor t are equivalent for practical purposes. It is therefore
desirable to use a form of Stress that has essentially the same minimum configurations as
(4.1) except that it is invariant under scale changes. For the particular case of residual
sums of squares in linear models the solution to the problem is well known: minimizing a
residual sum of squares in a model with intercept is equivalent to maximizing a correlation
up to a scale factor, which is what we are looking for. A general approach to making a
loss function size invariant is by optimizing the size factor explicitly. In other words, a
configuration is judged not by its actual value of the loss function, but by the value of the
loss after scaling the configuration optimally. That is, we replace StressD(x1, ..., xN ) with
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mint StressD(t ∙ x1, . . . , t ∙ xN ):

min
t

StressD(t ∙ x1, . . . , t ∙ xN ) =




 1 −

(∑
i, j Di, j ∙ ‖xi − x j‖

)2

∑
i, j D2

i, j ∙
∑

i, j ‖xi − x j‖2






1/2

. (4.2)

The ratio inside the parentheses can be interpreted statistically as an uncentered squared
correlation and geometrically as the squared cosine between the “vectors” (Di, j )i, j and
(‖xi − x j‖)i, j , and the complete right-hand side is the sine between these two vectors.
The size invariance of this form of Stress gives implementations the freedom to scale the
configurations according to viewers’ convenience.

However, (4.2) is still not the final form we use. Additional features we incorporate
include (1) power transformations of the dissimilarities in metric mode and isotonic trans-
formations in nonmetric mode; (2) Minkowski distances in configuration space; (3) powers
of the distances; (4) weighting of the dissimilarities; and (5) missing and omitted dissimi-
larities.

The final form of Stress as implemented is shown below; details such as the summation
set I and the weights wi, j are discussed in Sections 4.4 and 4.5, respectively.

———————————————————————————————————–

STRESSD(x1, . . . , xN ) =
(

1 − cos2
)1/2

cos2 =

( ∑
(i, j)∈I wi, j ∙ f (Di, j ) ∙ ‖xi − x j‖q

m

)2

(∑
(i, j)∈I wi, j ∙ f (Di, j )2

) (∑
(i, j)∈I wi, j ∙ ‖xi − x j‖2q

m

)

Di, j ∈ IR, > 0, N × N matrix of dissimilarity data

f (Di, j ) =

{
D p

i, j , for metric MDS

s ∙ Isotonic(Di, j ) + (1 − s) ∙ D p
i, j , for nonmetric MDS

0 6 p 6 6, default: p = 1 (no transformation)

0 6 s 6 1, default: s = 1 (fully isotonic transformation)

Isotonic() = monotone increasing transformation
estimated with isotonic regression

x1, . . . , xN ∈ IRk, configuration points; 1 6 k 6 12, default: k = 3

‖xi − x j‖
q
m = (

k∑

ν=1

|xi,ν − x j,ν |
m)q/m, configuration distances, (..)q

1 6 m 6 6, m = 2 : Euclidean (default)
m = 1 : City block

0 6 q 6 6, q = 1 : common Stress (default)
q = 2 : so-called SStress

——————————————————————————————————–
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4.2 STRAIN, METRIC AND NONMETRIC

Classical scaling is based on inner products which, unlike distances, depend on the
origin. Without loss of generality, one can center configurations at the origin,

∑
i xi = 0,

so their inner product matrices have zero marginal means,
∑

k〈xk, x j 〉 =
∑

k〈xi , xk〉 = 0.
It is now easy to derive a transformation of distance data Di j to inner-product data Bi j with
a heuristic:

D2
i, j ≈ ‖xi − x j‖

2 = ‖xi‖
2 + ‖x j‖

2 − 2〈xi , x j 〉.

The reasoning is as follows: If ‖xi − x j‖2 approximates D2
i j , then 〈xi , x j 〉 should approx-

imate
D̃i, j := −D2

i j/2 (4.3)

after removing the marginal means, a process known as “double-centering”:

Bi j = D̃i j − D̃i• − D̃• j + D̃•• , (4.4)

where D̃i•, D̃• j and D̃•• are row, column, and grand means of D̃.
We call “Strain” any loss function that measures the lack of fit between inner products

〈xi , x j 〉 and inner-product data Bi j . A simple form of Strain analogous to the form (4.1) of
Stress is a standardized residual sum of squares:

StrainD(x1, . . . , xN ) =

(∑
i, j ( Bi, j − 〈xi , x j 〉)2

∑
i, j B2

i j

)1/2

.

As with Stress, it is desirable and feasible to create a size-invariant version of Strain by
minimizing over a scale factor which introduces a ratio that can be interpreted as an un-
centered correlation or a cosine:

min
t

StrainD(t ∙ x1, . . . , t ∙ xN ) =




1 −

(∑
i, j Bi, j ∙ 〈xi , x j 〉

)2

∑
i, j B2

i, j ∙
∑

i, j 〈xi , x j 〉2






1/2

. (4.5)

Again, this is not the final form of Strain we use. The most involved addition to Strain is
a nonmetric feature for the estimation of a monotone transformation of the dissimilarities.
Interpreting Strain as a function of the dissimilarities Di j by way of (4.3) and (4.4), the
problem is to transform the values Di, j in such a way that a better Strain is obtained. A
solution was proposed by Trosset (1998b), and we give here an alternative derivation with
simplifications that permit us to fit the nonmetric Strain minimization problem into the
existing framework. Classical nonmetric scaling is nonstandard, but it fills a conceptual gap
by permitting us to cross {metric, nonmetric} with {classical scaling, distance scaling}. The
properties of nonmetric classical scaling are not well-understood, but the implementation
in X/GGvis will hopefully remedy the situation. We start with the following observations:

Lemma: If B is constructed as above with double centering of D̃, any configuration that
minimizes the Strain (4.5) is centered at the origin. If, on the other hand, configurations
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are constrained to be centered at the origin, replacing B with D̃ in (4.5) preserves the
minimizing configurations.

Proof: If A and C are N × N matrices, denote by 〈A, C〉F = trace(AT C) =
∑

i, j Ai, j Ci, j the Frobenius inner product, and by ‖A‖2
F = 〈A, A〉 the squared Frobe-

nius norm. Furthermore, let e = (1, . . . , 1)T ∈ IRN and I be the N × N identity ma-
trix, so that P = I − eeT /N 1/2 is the centering projection. Then the equation Bi, j =
D̃i, j − D̃i•− D̃• j + D̃•• can be re-expressed as B = P D̃ P . Finally, let X be the N ×k con-
figuration matrix whose i th row is xT

i , so that (〈xi , x j 〉)i, j = X X T . The centering condition
∑

i xi = 0 can be re-expressed as P X = X . Using repeatedly 〈P A, C〉F = 〈A, PC〉F one
derives

〈B, X X T 〉F = 〈P D̃ P, X X T 〉F = 〈D̃, P(X X T )P〉F = 〈D̃, (P X)(P X)T 〉F ,

which proves that the numerator in (4.5) does not change when B is replaced with the un-
centered matrix D̃ but X is replaced with the centered matrix P X . As for the denominator
term

∑
i j 〈xi , x j 〉2 = ‖X X T ‖2

F , using 〈P A, (I − P)C〉F = 0 one obtains the decomposi-
tion

‖X X T ‖2
F = ‖P X X T P‖2

F + ‖(I − P)X X T (I − P)‖2
F ,

which proves that the Strain decreases when an uncentered X is replaced with a centered
P X . Lastly, replacing

∑
i j B2

i j = ‖B‖2
F with

∑
i j D̃2

i j = ‖D̃‖2
F in the denominator of

(4.5) changes the value of the criterion but it does not affect the minimum Strain configu-
rations. �

The modification of the Strain (4.5) suggested by the Lemma is therefore:

StrainD(x1, . . . , xN ) =




1 −

(∑
i, j D̃i, j ∙ 〈xi , x j 〉

)2

∑
i, j D̃2

i, j ∙
∑

i, j 〈xi , x j 〉2






1/2

,

under the constraint
∑

i xi = 0. In light of D̃i j = −D2
i j/2 being a descending transfor-

mation of Di j , it is natural for a nonmetric approach to classical scaling to let the Strain
function determine a transformation f (−Di j ). A nonmetric form of Strain is therefore:

StrainD(x1, . . . , xN ) =




1 −

(∑
i, j f (−Di, j ) ∙ 〈xi , x j 〉

)2

∑
i, j f (−Di, j )2 ∙

∑
i, j 〈xi , x j 〉2






1/2

. (4.6)

Similar to nonmetric distance scaling, the monotone ascending transformation f () of −Di j

can be estimated with isotonic regression of the response (〈xi , x j 〉)i j on the predictor
(−Di j )i j .

We have arrived at the nearly final form of Strain. As with Stress, the Strain we actually
use includes power transformations of dissimilarities in metric mode as well as weighting
and omitting of dissimilarities. The final form of Strain as implemented is shown below;
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again, details such as the summation set I and the weights wi, j are discussed in Sections 4.4
and 4.5, respectively.

——————————————————————————————————–

STRAIND(x1, . . . , xN ) =
(

1 − cos2
)1/2

cos2 =

( ∑
(i, j)∈I wi, j ∙ f (−Di, j ) ∙ 〈xi , x j 〉

)2

(∑
(i, j)∈I wi, j ∙ f (−Di, j )2

) (∑
(i, j)∈I wi, j ∙ 〈xi , x j 〉2

)

Di, j ∈ IR, > 0, N × N matrix of dissimilarity data

f (−Di, j ) =

{
−D2p

i, j , for metric MDS

s ∙ Isotonic(−Di, j ) + (1 − s) ∙ (−D2p
i, j ) , for nonmetric MDS

0 6 p 6 6, default: p = 1 (no transformation)

0 6 s 6 1, default: s = 1 (fully isotonic transformation)

Isotonic() = monotone increasing transformation
estimated with isotonic regression

x1, . . . , xN ∈ IRk, configuration points, constrained to
∑

xi = 0

1 6 k 6 12, default: k = 3

〈xi , x j 〉 =
k∑

ν=1

xi,ν ∙ x j,ν , configuration inner products

——————————————————————————————————–

4.3 PARAMETERS OF STRESS AND STRAIN

Stress and Strain have parameters that are easily subjected to interactive user control:

• The most fundamental “parameters” are the discrete choices of metric versus non-
metric and distance versus classical scaling. The default is metric distance scaling.

• Next in importance is the choice of the reduced or configuration dimension k. The
conventional choice is k = 2, but with 3D rotations available it is natural to chose
k = 3 as the default. Recall that for k > 4 viewing is possible with grand tours.

• Both metric and nonmetric scaling permit transformations of the dissimilarities that
are controlled by certain parameters:

– Metric scaling uses a power transformation with a user-controlled exponent p:
D p

i j and −D2p
i j for distance and classical scaling, respectively (default: p = 1).

In our experience powers as high as 4 have proven useful. An interesting power
is 0: it describes objects that are all equally far from each other and hence form
a simplex. This is the “null case” of total indiscrimination.
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– Nonmetric scaling is defined by the use of isotonic regression to nonparamet-
rically estimate a transformation of the dissimilarities. The point of nonmetric
approaches is to use only the ranks of the dissimilarities Di j , not their actual
values. We found it useful to allow convex mixing of the isotonic transforma-
tion with the nonmetric power transformation. The mixing value s = 1 (de-
fault) corresponds to the isotonic transformation (purely nonmetric scaling),
and s = 0 to the pure power transformation (purely metric scaling). Sliding s
across the interval [0, 1] while the MDS optimization is running shows transi-
tions between nonmetric and metric solutions. Moving s temporarily below 1
can help a nonmetric configuration recover when it gets trapped in a degeneracy
[usually clumping of the configuration points in a few locations with near-zero
Stress value and an isotonic transformation that degenerated to a step function;
see Borg and Groenen (1997, Sections 13.2–3)].

• A parameter specific to distance scaling, both metric and nonmetric, is the distance
power q. We introduced this parameter to include so-called SStress, which is ob-
tained for p = q = 2. SStress fits squared distances to squared dissimilarities, and
it is used in the influential MDS software “ALSCAL” by Takane et al. (1977). In our
experience SStress is somewhat less robust than Stress, as the former is even more
strongly influenced by large dissimilarities than Stress.

• There is finally a choice of the distance measure in configuration space for distance
scaling. We use Minkowski (also called Lebesgue) metrics other than Euclidean and
subject the Minkowski parameter m to user manipulation. The default is Euclidean,
m = 2; the city block or L1 metric is the limiting case m → 1.

4.4 SUBSETTING

The loss functions can trivially handle missing values in the dissimilarity matrix: pairs
(i, j) for which Di j is missing are simply dropped from the summations. Through the
deliberate use of missing values one can implement certain extensions of MDS such as
multidimensional unfolding [see Borg and Groenen (1997, chap. 14), in particular their
Figure 14.1]. Missing dissimilarities can be introduced in various ways: They can be NA
coded in the input file, or they can be introduced interactively through user-generated con-
ditions that include thresholding of dissimilarities, random selection with probability α,
and selection based on existing groups marked by colors or glyphs. Here is a symbolic de-
scription of the summation set of both Stress and Strain, followed by a detailed discussion:

I = { (i, j) | i 6= j, Di, j 6= N A, T0 6 Di, j 6 T1, Runif(i, j) < α, Grpg. cond.(i, j) }

Thresholding: Threshold parameters T0 and T1 for the conditions T0 6 Di, j 6 T1 can
be used to check the influence of large and small dissimilarities. We implemented these
operations based on the received wisdom that the global shape of MDS configurations is
mostly determined by the large dissimilarities. This statement is based on a widely cited
study by Graef and Spence (1979) who ran simulations in which they removed in turn the
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largest third and the smallest third of the dissimilarities (T1 = upper tercile and T0 = lower
tercile, respectively). They found devastating effects when removing the largest third, but
benign effects when removing the smallest third. With user-chosen thresholding the degree
to which this behavior holds can be explored for every dataset individually.

Random selection of dissimilarities with a user-selected probability α is another way
to investigate the stability of configurations. By repeatedly triggering this feature while
optimization is continuously running, users obtain a sense of how (un)stable the configu-
ration is under random removal of dissimilarities. In our experience classical scaling does
not respond well to the removal of even a small fraction of distances. Distance scaling is
considerably more robust in this regard.

Group-based selection of dissimilarities constitutes an extremely powerful tool for
MDS. Groups of objects can be defined in input files by color and/or glyph attributes,
or they can be generated interactively with brushing operations on configuration points.
The following are the operations we implemented:

• Subsetting objects: Remove some objects and scale the remaining objects. Removal
is achieved by simply hiding groups. It is a common experience that subsets often
reveal new structure when freed from constraints imposed by the whole dataset. For
example, the circular structure of the digits in the Morse code data becomes fully
visible only when the digits are scaled separately (Buja and Swayne 2002).

• Within-groups scaling: Remove the dissimilarities that cross groups. This option can
be useful not only for finding but also for comparing group-internal structure. We
therefore found this option somewhat more powerful than the previous one. Within-
groups scaling has slightly different behavior in classical and distance scaling: In
classical scaling the groups are linked to each other by a common origin, but oth-
erwise they are scaled independently. In distance scaling the groups can be moved
independently of each other. We note also that nonmetric scaling always introduces a
certain dependence between groups because the isotonic transformation is obtained
for the pooled within-groups dissimilarities, not for each group separately.

• Between-groups scaling: Remove the dissimilarities within the groups. Between-
groups scaling with two groups is called multidimensional unfolding (see, for ex-
ample, Borg and Groenen 1997, chap. 14). The case of only two groups is the most
prone to degeneracies because it removes the most dissimilarities. The more groups
there are, the more dissimilarities are retained and hence stability is gained.

• Anchored scaling: The objects are divided into two subsets, which we call the set
of anchors and the set of floaters. We scale the floaters by only using their dissimi-
larities with regard to the anchors. Therefore, floaters do not affect each other, and
the anchors affect the floaters but not vice versa. The configuration of the anchors is
dealt with in one of two ways:

– Fixed anchors: The anchors have a priori coordinates that determine their con-
figuration. Such coordinates can be entered in an initial position file, or they are
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obtained from previous configurations by manually moving the anchor points
(with mouse dragging).

– Scaled anchors: The anchors have dissimilarities also, hence configurations
for the anchors can be found by subjecting them to regular scaling. Internally
scaling the anchors and externally scaling the floaters with regard to the anchors
can be done in a single optimization (Section 6.2).

In practice we usually start with scaled anchors and later switch to fixed anchors.
Then, while the optimization is running, we drag the anchor points into new locations
to check the sensitivity and reasonableness of the configuration of the floaters.

The anchor metaphor is ours. Anchored scaling is called “external unfolding” in the
literature (Borg and Groenen 1997, Sect. 15.1). Anchored scaling is also reminis-
cent of so-called Tutte scaling in graph drawing; for an application in a multivariate
analysis context, see De Leeuw and Michailidis (2000).

4.5 WEIGHTS

The loss functions are easily adapted to weights. We implemented weights that depend
on two parameters, each for a different task:

wi, j = Dr
i, j ∙

{
w , if color/glyph of i, j is the same
(2 − w) , if color/glyph of i, j is different

−4 6 r 6 +4, r = 0 : ignore dissimilarities (default)
r = −1 : Sammon’s mapping

0 6 w 6 2, w = 1 : ignore groups (default)
w = 2 : within-groups scaling
w = 0 : between-groups scaling

The first factor in the weights can depend on a power r of the dissimilarities. If r > 0, large
dissimilarities are upweighted; if r < 0, large dissimilarities are downweighted. This is a
more gradual form of moving small and large dissimilarities in and out of the loss function
compared to lower and upper thresholding. For metric distance scaling with r = −1,
Sammon’s mapping (1969) is obtained, an independent rediscovery of a variant of MDS.

The second factor in the weights depends on groups: The parameter w permits con-
tinuous up- and downweighting of dissimilarities depending on whether they link objects
in the same or different groups. This is a gradual form of moving between conventional
scaling, within-groups scaling, and between-groups scaling. The latter are our ideas, while
the weight-based gradual version is due to Priebe and Trosset (personal communication).

Weighting is computationally more costly than subsetting. The latter saves time be-
cause some dissimilarities do not need to be looked at, while weights are costly in terms of
memory because they are stored to save power operations in each iteration.
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5. DIAGNOSTICS

A standard diagnostic in MDS is the Shepard plot, that is, a scatterplot of the dissimi-
larities against the fitted distances, usually overlayed with a trace of the isotonic transform.
See, for example, Borg and Groenen (1997, Sects. 3.3 and 4.1) or Cox and Cox (1994,
Sect. 3.2.4). The plot provides a qualitative assessment of the goodness of fit, beyond the
quantitative assessment given by the Stress value.

Diagnostics such as the Shepard plot are of a very different nature from the display
of the configuration. For one thing they may be much more expensive because they may
show

(N
2

)
points for N configuration points. They therefore call for a separate viewing

engine (X/GGobi window) that is not continuously updated but represents a fixed snapshot
at a given time. We found it useful to expand on the diagnostic variables and provide the
following whenever diagnostics are generated:

• the dissimilarities: Di, j ;

• the fitted quantities: di, j = ‖xi − x j‖ for distance scaling and bi, j = 〈xi , x j 〉 for
classical scaling;

• the transformation of the dissimilarities: f (Di, j ) for distance scaling and f (−Di, j )

for classical scaling, which is a power for metric scaling and an isotonic transforma-
tion for nonmetric scaling;

• the residuals: ri, j = f (Di, j ) − di, j ;

• the weights: wi, j , which may be a power of the dissimilarities;

• the row index: i ;

• the column index: j .

Selecting the variables di, j and Di, j yields the Shepard plot for distance scaling, and an
obvious analog for classical scaling. Selecting Di, j and f (Di, j ) yields a plot of the trans-
formation of the dissimilarities. Selecting di, j and f (Di, j ) is possibly even more informa-
tive because the strength of the visible linear correlation is a qualitative measure for the
goodness of fit. An example is shown in Figure 6.

The residuals are provided for users who prefer residual plots over plots of fits. The
weights are occasionally useful for marking up- and downweighted dissimilarities with
colors or glyphs. The row and column indices are useful for those MDS modes in which
dissimilarities have been removed from the Stress or Strain or if some dissimilarities are
otherwise missing. Plotting i versus j provides a graphical view of the missing and removal
pattern of the dissimilarity matrix as it is used in the current loss function.

If the objects are given labels, the labels of the diagnostics window are pairs of object
labels. In Figure 6, for example, an outlying point is labeled “I..,2..- - -”, showing two
Morse codes, “..” for “I” and “..- - -” for “2”, whose dissimilarity is not fitted well.
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Figure 6. Two diagnostic plots for configurations from metric distance scaling of the Morse Code data. Left:
raw data, power p = 1; right: transformed data, power p = 6. An outlier is marked in the right-hand plot: the
pair of codes (I, 2) ∼ ( ∙ ∙ , ∙ ∙ − − − ) have a fitted distance that is vastly larger than the target dissimilarity.

6. COMPUTATIONAL AND SYSTEMS ASPECTS

6.1 OPTIMIZATION AND THE FLUID MODE OF OPERATION

For minimization of Stress and Strain we mostly use Kruskal’s (1964b) gradient de-
scent method. This choice was based on the simplicity with which gradient methods gen-
eralize to loss functions with arbitrary weights and non-Euclidean Minkowski metrics. An
alternative, not currently implemented, would be the popular SMACOF algorithm (Borg
and Groenen 1997, and references therein). For metric scaling, Kruskal’s method is plain
gradient descent on the loss function with regard to the configuration. For nonmetric scal-
ing, Kruskal’s method consists of alternation between gradient descent on the configuration
and estimation of the isotonic transformation. The latter is based on a convex least squares
problem that can be solved with Kruskal’s pool-adjacent-violators algorithm.

An important part of Kruskal’s method is a stepsize strategy. This, however, we do not
use because we submit the stepsize to interactive user control. It is scaled in relation to the
size of the configuration such that, for example, a stepsize of 0.05 means that the gradient
is 5% the size of the configuration, where size of the configuration and the gradient is
measured as the sum of the distances of the N row vectors from their respective mean
vectors in IRk .

As indicated earlier (Section 3), the main reason for not providing an automated stop-
ping criterion is to enable a fluid mode of operation whereby users continously manipulate
parameters and configurations and receive instantaneous feedback from the ongoing op-
timization. Another reason for the absence of a stopping criterion is that nontrivial local
movement in the configuration may be visually apparent even when the descent in the
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loss function has become negligible. User decision based on visual feedback provides a
superior method of stopping that avoids premature as well as wasteful optimization.

6.2 GRADIENT DESCENT ON THE CONFIGURATION AND FORCE GRAPHS

We describe details of the gradient descent step with a fixed transformation. The goal
is to bring conventional MDS and anchored MDS (Section 4.4) into a single computational
framework. The discussion is somewhat arcane but there is reward in the achieved uni-
fication. We first note that minimizing Stress and Strain is equivalent to maximizing the
respective cosine expressions of Sections 4.1 and 4.2. Omitting terms that do not depend
on the configuration, we are to maximize a ratio of the form

Num

Denom
=

∑
(i, j)∈I wi, j ∙ g(Di, j ) ∙ s(xi , x j )
(∑

(i, j)∈I wi, j ∙ s(xi , x j )2
)1/2

, (6.1)

where s(xi , x j ) is a Minkowski distance to the qth power for distance scaling, and the
inner product for classical scaling. All terms are (or are assumed) symmetric in i and j .
The gradient of the ratio with regard to the configuration X = (xi )i=1..N is the collection
of partial gradients with regard to configuration points xi :

∂

∂X

Num

Denom
=

(
∂

∂xi

Num

Denom

)

i=1..N
.

Because we determine the size of gradient steps as a fraction of the size of the configura-
tion, we only need the partial gradients up to a constant factor:

∂

∂xi

Num

Denom
∝

∑

j∈{ j |(i, j)∈I }

wi, j

(
g(Di, j ) −

Num

Denom2
s(xi , x j )

)
∂

∂x

∣
∣
∣
∣
x=xi

s(x, x j ) .

(6.2)
In the derivation of this formula we used symmetry of all terms in i and j and also sym-
metry of the set I : (i, j) ∈ I ⇒ ( j, i) ∈ I . The summation should really extend over
the set { j | (i, j) ∈ I or ( j, i) ∈ I }, but if I is symmetric it is sufficient to sum over the
reduced set { j | (i, j) ∈ I }. Reduced summation lends an intuitive interpretation to partial
gradients: The summand indexed by j is the contribution of x j to the gradient movement
of the point xi . As such, it can be interpreted as the “force” exerted by x j on xi . The re-
duced summation means that under the symmetry assumptions it is sufficient to consider
the force exerted by Di, j on xi only, although strictly speaking both Di, j and D j,i exert
force.

We now carry reduced summation over to certain types of nonsymmetric sets I , and
we start with a simple illustration. Consider the case where the first column is missing:
Di,1 = N A ∀i or, equivalently, I = {(i, j) | 1 6 i 6 N , 2 6 j 6 N }. The missing
first column means that x1 does not contribute to the partial gradient (6.2) of any point
whatsoever, but its own partial gradient has contributions from those points for which D1, j

is not missing. Intuitively, x1 does not exert force but it “feels” force from other points; it
does not “push,” but it is being “pushed.” In other words, x1 is a floater, and its anchors
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are { j | D1, j 6= N A} = { j | 2 6 j 6 N }. This example shows that a suitable N A pattern
in the dissimilarities permits us to implement anchored scaling in addition to conventional
scaling, but reduced summation in combination with general summation sets I is of much
greater generality as the following discussion of the group-based scaling methods of Sec-
tion 4.4 shows:

• Within-groups scaling, illustrated with two groups:

group1 group2

D =

(
Dgrp1,grp1 N A

N A Dgrp2,grp2

)
group1
group2

Group 1 gets scaled internally, and so does group 2. The forces are confined within
the groups. The summation set I is symmetric.

• Between-groups scaling, illustrated with two groups (multidimensional unfolding):

group1 group2

D =

(
N A Dgrp1,grp2

Dgrp2,grp1 N A

)
group1
group2

The two groups exert force on each other, but there is no force within the groups.
The summation set I is again symmetric.

• Anchored scaling with scaled anchors (a form of external unfolding):

anchors floaters

D =

(
Dancr,ancr N A
Dfltr,ancr N A

)
anchors
floaters

Here the summation set I is no longer symmetric. The top left submatrix causes
conventional scaling of the anchors. The bottom left submatrix exerts the push of the
anchors on the floaters. The two blocks of N A’s on the right imply that the columns
for the floaters are absent, that is, the floaters do not push any points.

• Anchored scaling with fixed anchors (another form of external unfolding):

anchors floaters

D =

(
N A N A

Dfltr,ancr N A

)
anchors
floaters

Again the summation set I is not symmetric. The two top blocks of N A’s imply that
the anchors are fixed: they are not being pushed by anyone. The only push is exerted
by the anchors on the floaters through the matrix on the bottom left.

It becomes clear that N A patterns and the corresponding summation sets I form a
language for expressing arbitrarily complex constellations of forces. This idea can be for-
malized in terms of what we may call a “force graph,” defined as the directed graph with
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nodes {1, ..., N } and edges in the summation set

I = {(i, j) | Di, j 6= N A} .

An edge (i, j) stands for “ j pushes i .” Conventional MDS is represented by a complete
graph, where every point pushes every other point. For within-groups scaling the force
graph decomposes into disconnected complete subgraphs (cliques). Between-groups scal-
ing has a complete bidirectional, multipartite graph, that is, the node set is decomposed into
two or more disjoint partitions, and the edge set is the set of edges from any one partition to
any other. Anchored MDS with fixed anchors has a unidirectional complete bipartite graph,
that is, the two partitions have asymmetric roles in that the edges go only from one of the
partitions to the other. In anchored MDS with scaled anchors, the latter form in addition
a clique. One can obviously conceive of more complex force graphs, such as multipartite
graphs with layered anchoring, or graphs with selected force cycles, but this is not the place
to pursue the possibilities in detail.

6.3 MDS ON LARGE NUMBERS OF OBJECTS

MDS is based on N 2 algorithms, a fact that limits its reach for large N . On the hardware
at our disposal, interactive use of X/GGvis is possible up to about N = 1000. Larger N
can be processed also, but the user will leave the optimization to itself for a while. The
largest N we have scaled with X/GGvis was N = 3648, but larger N are feasible with
more patience.

Among the four types of MDS, the nonmetric varieties are not recommended for N
greater than a few hundred because setting up the isotonic regression adds initially a con-
siderable computational burden. Among the two metric varieties, classical scaling is faster
than distance scaling. It is therefore a common strategy to use classical scaling solutions
as initial configurations for distance scaling. It should be kept in mind, however, that our
implementation of classical scaling minimizes Strain, which is more flexible but also more
costly than eigendecompositions that could be used if one assumed no nonmetric option,
no missing dissimilarities, and no weights.

We mentioned in Section 4.5 that weighted MDS is costly. When N is large, one should
abstain from the use of weights for space reasons. Our implementations do not allocate a
weight matrix if the weights are identical to 1.

The reach of MDS extends when a substantial number of terms is trimmed from the
Stress function. Such trimming is most promising in anchored MDS (Section 4.4), which
can be applied if an informative set of anchors can be found. The choice of anchors can be
crucial; in particular, a random choice of anchors often does not work. But we have had
success with the example of size N = 3648 mentioned earlier: satisfying configurations
were found with an anchor set of size 100, which reduced the time needed for a single
gradient step from 100 seconds to 6 seconds.
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Figure 7. Maps of computer commands for two individuals. Left: a member of technical staff who programs
and manipulates data (Stress = 0.29). Right: an administrative assistant who does e-mail and word processing
(Stress = 0.34). The labels show selected operating system commands used by these individuals.

7. EXAMPLES OF MDS APPLICATIONS

We give some data examples that demonstrate the wide applicability of MDS and the
usefulness of X/GGvis.

• Dissimilarity data from computer usage: As part of a project on intrusion detection
at AT&T Labs (Theus and Schonlau 1998), users were characterized by their logs
of Unix©R operating system commands that they typed during a number of work
days. (UNIX is a registered trademark of The Open Group.) From each log, pairs
of commands were characterized by a dissimilarity value that measured how far
spaced the commands were on average (e.g., there might be 3.2 other commands
between the commands “spell” and “eqn” on average). Each dissimilarity matrix
was considered as the signature of a user. MDS was used to create 2D maps of the
commands for a particular user. Examples from two users are shown in Figure 7.
One user was a member of technical staff, the other an administrative assistant. The
maps differ in characteristic ways, and they have very intuitive meanings in terms of
general activities such as start up at the beginning of the day, followed by clusters of
programming and data analysis activities by the member of technical staff, and by
clusters of e-mailing and word processing by the administrative assistant.

• Dimension reduction: From a multivariate dataset with eight demographic and tele-
phone usage variables for 1926 households we computed a Euclidean distance ma-
trix after standardizing the variables. Distance MDS was used to reduce the dimen-
sion from eight to two by creating a 2D configuration. Figure 8 shows the result, side
by side with a 2D principal component projection (equivalent to classical MDS in
this case). While distance scaling squeezes 20% more variance into two dimensions
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Figure 8. Marketing segmentation data. Left: MDS reduction to 2D; right: largest two principal components.
The glyphs represent four market segments constructed with k-means clustering using four means.

than PCA, its map shows rounding on the periphery that may be artifactual. On the
other hand, MDS seems to be better than PCA at spreading out four market segments
(marked by glyphs) that were found with k-means. This example indicates that com-
parison of methods on the same dataset may be useful for detecting trade-offs.

• Social networks of phone callers: The development of XGvis was originally moti-
vated by the problem of laying out graphs and in particular social networks such as
telephone call graphs in more than two dimensions and using XGobi as a display de-
vice (Littman et al. 1992). In order to lay out a graph with MDS, one enters it as a list
of object pairs and the software computes a dissimilarity matrix as a “shortest-path
metric” (the smallest number of steps from one vertex to another within the graph).
All configurations are then shown with line segments between points that are con-
nected by an edge. Figure 9 shows an example of a call graph with 110 nodes laid

Figure 9. A telephone call graph, laid out in 2D. Left: classical scaling (Stress = 0.34); right: distance scaling
(Stress = 0.23). The nodes represent telephone numbers, the edges represent the existence of a call between two
telephone numbers in a given time period.
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Figure 10. Nanotube embedding. One of Asimov’s graphs for a nanotube is rendered with MDS in 3D
(Stress=0.06). The nodes represent carbon atoms, the lines represent chemical bonds. The right hand frame
shows the cap of the tube only. The highlighted points show some of the pentagons that are necessary for forming
the cap.

out in 2D by both classical and distance scaling. It is obvious that distance scaling
succeeds in spreading out the vertices while classical scaling collapses some due to
the integer nature of the dissimilarities.

• Molecular Conformation: This is the task of embedding molecules in 3D based on
partial information about the chemical bonds. We give an example that amounts to a
graph layout: D. Asimov (1998) devised a method for describing all possible capped
nanotubes. His construction produces graphs with carbon atoms as nodes and bonds
as edges. We show the graph layout generated with distance scaling of one such
nanotube in Figure 10. Although the shortest-path metric of this molecular graph
is far from Euclidean, the embedding reflects the intrinsic curvature quite well and
certainly makes an excellent start for a more specialized chemical bond optimizer.

SOFTWARE AVAILABILITY

The XGvis and GGvis systems can be freely downloaded from:

www.research.att.com/areas/stat/xgobi/
www.ggobi.org

GGvis is more recent and programmable from other languages such as R, Perl, and Python.
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