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Abstract. We develop a model-free theory of general types of parametric
regression for iid observations. The theory replaces the parameters of
parametric models with statistical functionals, to be called “regression
functionals”, defined on large non-parametric classes of joint x-y dis-
tributions, without assuming a correct model. Parametric models are
reduced to heuristics to suggest plausible objective functions. An exam-
ple of a regression functional is the vector of slopes of linear equations
fitted by OLS to largely arbitrary x-y distributions, without assum-
ing a linear model (see Part I). More generally, regression functionals
can be defined by minimizing objective functions or solving estimating
equations at joint x-y distributions. In this framework it is possible to
achieve the following: (1) define a notion of well-specification for re-
gression functionals that replaces the notion of correct specification of
models, (2) propose a well-specification diagnostic for regression func-
tionals based on reweighting distributions and data, (3) decompose
sampling variability of regression functionals into two sources, one due
to the conditional response distribution and another due to the regres-
sor distribution interacting with misspecification, both of order N−1/2,
(4) exhibit plug-in/sandwich estimators of standard error as limit cases
of x-y bootstrap estimators, and (5) provide theoretical heuristics to in-
dicate that x-y bootstrap standard errors may generally be more stable
than sandwich estimators.
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2 A. BUJA ET AL.

“The hallmark of good science is that it uses models and ’theory’ but never
believes them.” (J.W. Tukey, 1962, citing Martin Wilk)

1. INTRODUCTION

We develop in this second article a model-free theory of parametric regression,
assuming for simplicity iid x-y observations with quite arbitrary joint distribu-
tions. The starting point is the realization that regression models are approxima-
tions and should not be thought of as generative truths. A general recognition
of this fact may be implied by the commonly used term “working model,” but
this vague term does not resolve substantive issues, created here by the fact that
models are approximations and not truths. The primary issue is that model pa-
rameters define meaningful quantities only under conditions of model correctness.
If the idea of models as approximations is taken seriously, one has to extend the
notion of parameter from model distributions to basically arbitrary distributions.
This is achieved by what is often called “projection onto the model,” that is, find-
ing for the actual data distribution the best approximating distribution within
the model; one defines that distribution’s parameter settings to be the target of
estimation. Through such “projection” the parameters of a working model are
extended to “statistical functionals,” that is, mappings of largely arbitrary data
distributions to numeric quantities. We have thus arrived at a functional point
of view of regression, a view based on what we call regression functionals.

The move from traditional regression parameters in correctly specified mod-
els to regression functionals obtained from best approximations may raise fears
of opening the gates to irresponsible data analysis where misspecification is of
no concern. No such thing is intended here. Instead, we rethink the essence of
regression and develop a new notion of well-specification of regression func-
tionals, to replace the notion of correct specification of regression models. In the
following bullets we outline an argument in the form of simple postulates.

• The essence of regression is the asymmetric analysis of association: Variables
with a joint distribution P are divided into response and regressors.
• Motivated by prediction and causation problems, interest focuses on prop-

erties of the conditional distribution of the response given the regressors.
• The goal or, rather, the hope is that the chosen quantities/functionals of

interest are properties of the observed conditional response distribution,
irrespective of the regressor distribution.
• Consequently, a regression functional will be called well-specified if it is

a property of the observed conditional response distribution at hand, irre-
spective of the regressor distribution.

The first bullet is uncontroversial: asymmetric analysis is often natural, as in the
contexts of prediction and causation. The second bullet remains at an intended
level of vagueness as it explains the nature of the asymmetry, namely, the focus on
the regressor-conditional response distribution. Intentionally there is no mention
of regression models. The third bullet also steers clear of regression models by
addressing instead quantities of interest, that is, regression functionals. In this
and the last bullet, the operational requirement is that the quantities of interest
not depend on the regressor distribution. It is this constancy across regressor
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distributions that turns the quantities of interest into properties of the conditional
response distribution alone.

All this can be made concrete with reference to the groundwork laid in Part I,
Section 4. Consider the regression functional consisting of the coefficient vector
obtained from OLS linear regression. It was shown in Part I that this vector
does not depend on the regressor distribution (is well-specified) if and only if
the conditional response mean is a linear function of the regressors. Thus the
coefficient vector fully describes the conditional mean function, but no other
aspect of the conditional response distribution. Well-specification of the OLS
coefficient functional is therefore a weaker condition than correct specification of
the linear model by setting aside homoskedasticity and Gaussianity which are
linear model requirements not intimately tied to the slopes.

A desirable feature of the proposed definition of well-specification is that it
generalizes to arbitrary types of parametric regression or, more precisely, to the
statistical functionals derived from them. In particular, it applies to GLMs where
the meaning of well-specified coefficients is again correct specification of the mean
function but setting aside other model requirements. Well-specification further
applies to regression functionals derived from optimizing general objective func-
tions or solving estimating equations. Well-specification finally applies to any ad
hoc quantities if they define regression functionals for joint x-y distributions.

The proposed notion of well-specification of regression functionals does not
just define an ideal condition for populations but also lends itself to a tangible
methodology for real data. A diagnostic for well-specification can be based on
perturbation of the regressor distribution without affecting the conditional re-
sponse distribution. Such perturbations can be constructed by reweighting the
joint x-y distribution with weight functions that only depend on the regressors. If
a regression functional is not constant under such reweighting, it is misspecified.

In practice, use of this diagnostic often works out as follows. Some form of
misspecification will be detected for some of the quantities of interest, but the
diagnostic will also aid in interpreting the specifics of the misspecification. The
reason is that reweighting essentially localizes the regression functionals. For the
coefficients of OLS linear regression, for example, this means that reweighting
reveals how the coefficients of the best fitting linear equation vary as the weight
function moves across regressor space. Put this way, the diagnostic seems related
to non-parametric regression, but its advantage is that it focuses on the quanti-
ties of interest at all times, while switching from parametric to non-parametric
regression requires a rethinking of the meaning of the original quantities in terms
of the non-parametric fit. To guide users of the diagnostic to insightful choices
of weight functions, we introduce a set of specific reweighting methodologies,
complete with basic statistical inference.

Following these methodological proposals, we return to the inferential issues
raised in Part I and treat them in generality for all types of well-behaved re-
gression functionals. We show that sampling variation of regression functionals
has two sources, one due to the conditional response distribution, the other due
to the regressor distribution interacting with misspecification, where “misspeci-
fication” is meant in the sense of “violated well-specification” of the regression
functional. A central limit theorem (CLT) shows that both sources, as a func-
tion of the sample size N , are of the usual order N−1/2. Finally, it is shown
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4 A. BUJA ET AL.

that asymptotic plug-in/sandwich estimators of standard error are limits of x-y
bootstrap estimators, revealing the former to be an extreme case of the latter.

The present analysis becomes necessarily more opaque because algebra that
worked out explicitly and lucidly for linear OLS in Part I is available in the
general case only in the form of asymptotic approximation based on influence
functions. Still, the analysis is now informed by the notion of well-specification
of regression functionals, which gives the results a rather satisfactory form.

The article continues as follows. In Section 2 we discuss typical ways of defining
regression functionals, including optimization of objective functions and estimat-
ing equations. In Section 3 we give the precise definition of well-specification and
illustrate it with various examples. In Section 4 we introduce the reweighting
diagnostic for well-specification, illustrated in Section 5 with specific reweighting
methodologies applied to the LA homeless data (Part I). Section 6 shows for plug-
in estimators of regression functionals how the sampling variability is canonically
decomposed into contributions from the conditional response noise and from the
randomness of the regressors. In Section 7 we state general CLTs analogous to the
OLS versions of Part I. In Section 8 we analyze model-free estimators of standard
error derived from the M -of-N pairs bootstrap and asymptotic variance plug-in
(often of the sandwich form). It holds in great generality that plug-in is the lim-
iting case of bootstrap when M → ∞. We also give some heuristics to suggest
that boostrap estimators might generally be more stable than plug-in/sandwich
estimators. In Section 9 we summarize the path taken in these two articles.

Remark: For notes on the history of model robustness, see Part I, Section 1.
For the distinction between model robustness and outlier/heavy-tail robustness,
see Part I, Section 13.

2. TARGETS OF ESTIMATION: REGRESSION FUNCTIONALS

This section describes some of the ways of constructing regression functionals,
including those based on “working models” used as heuristics to suggest plausible
objective functions. We use the following notations and assumptions throughout:
At the population level there are two random variables, the regressor ~X with
values in a measurable space X and the response Y with values in a measurable
space Y, with a joint distribution P

Y, ~X
, a conditional response distribution P

Y| ~X
and a marginal regressor distribution P~X . We express the connection between
them using “⊗” notation:

(1) P
Y, ~X

= P
Y| ~X ⊗ P~X .

Informally this is expressed in terms of densities by p(y, ~x) = p(y|~x)p(~x). In
contrast to Part I, the regressor and response spaces X and Y are now entirely
arbitrary. The typographic distinction between ~X and Y is a hold-over from the
OLS context of Part I. Both spaces, X and Y, can be of any measurement type,
univariate or multivariate, or even spaces of signals or images.

Regression functionals need to be defined on universes of joint distributions
that are sufficiently rich to grant the manipulations that follow, including the
assumed existence of moments, influence functions, and closedness for certain
mixtures. The details are tedious, hence deferred to Appendix A.1 without claim
to technical completeness. The treatment is largely informal so as not to get
bogged down in distracting detail. Also, the asymptotics will be traditional in
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the sense that X and Y are fixed and N →∞. For more modern technical work
on related matters, see Kuchibhotla et al. (2018).

2.1 Regression Functionals from Optimization: ML and PS Functionals

In Part I we described the interpretation of linear OLS coefficients as regression
functionals. The expression “linear OLS” is used on purpose to avoid the expres-
sion “linear models” because no model is assumed. Fitting a linear equation using
OLS is a procedure to achieve a best fit of an equation by the OLS criterion. This
approach can be generalized to other objective functions L(θ; y, ~x):

(2) θ(P ) = argminθ∈ΘEP [L(θ;Y, ~X)]

A common choice for L(θ; y, ~x) is the negative log-likelihood of a parametric re-
gression model for Y | ~X, defined by a parametrized family of conditional response
distributions {Q

Y| ~X;θ
: θ∈Θ} with conditional densities {q(y | ~x;θ): θ∈Θ}. The

model is not assumed to be correctly specified, and its only purpose is to serve
as a heuristic to suggest an objective function:

(3) L(θ; y, ~x) = − log q(y | ~x;θ).

In this case the regression functional resulting from (2) will be called a maximum-
likelihood functional or ML functional for short. It minimizes the Kullback-Leibler
(KL) divergence of P

Y, ~X
= P

Y| ~X⊗P~X and Q
Y| ~X;θ

⊗P~X , which is why one loosely

interprets an ML functional as arising from a “projection of the actual data dis-
tribution onto the parametric model.” ML functionals can be derived from major
classes of regression models, including GLMs. Technically, they also comprise
many M-estimators based on Huber ρ functions (Huber 1964), including least
absolute deviation (LAD, L1) as an objective function for conditional medians,
and tilted L1 versions for arbitrary conditional quantiles, all of which can be
interpreted as negative log-likelihoods of certain distributions, even if these may
not usually be viable models for actual data. Not in the class of negative log-
likelihoods are objective functions for M-estimators with redescending influence
functions such as Tukey’s biweight estimator (which also poses complications due
to non-convexity).

Natural extensions of ML functionals can be based on so-called “proper scoring
rules” (Appendix A.2) which arise as cross-entropy terms of Bregman divergences
A special case is the expected negative log-likelihood arising as the cross-entropy
term of KL divergence. The optimization criterion is the proper scoring rule
applied to the conditional response distribution P

Y| ~X and model distributions

Q
Y| ~X;θ

, averaged over regressor space with P~X . The resulting regression func-

tionals may be called “proper scoring functionals” or simply PS functionals, a
superset of ML functionals. All PS functionals, including ML functionals, have
the important property of Fisher consistency: If the model is correctly specified,
i.e., if ∃θ0 such that P

Y| ~X = Q
Y| ~X;θ0

, then the population minimizer is θ0:

(4) if P
Y, ~X

= Q
Y| ~X;θ0

⊗ P~X , then θ(P ) = θ0.

See Appendix A.2 for background on proper scoring rules, Bregman divergences,
and some of their robustness properties to outliers and heavy tailed distributions.
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Further objective functions are obtained by adding parameter penalties to
existing objective functions:

(5) L̃(θ; y, ~x) = L(θ; y, ~x) + λR(θ).

Special cases are ridge and lasso penalties. Note that (5) results in one-parameter
families of penalized functionals θλ(P ) defined for populations as well, whereas
in practice λ=λN applies to finite N with λN→0 as N →∞.

2.2 Regression Functionals from Estimating Equations: EE Funtionals

Objective functions are often minimized by solving stationarity conditions that
amount to estimating equations with the scores ψ(θ; y, ~x) = −∇θL(θ; y, ~x):

(6) EP [ψ(θ;Y, ~X)] = 0.

One may generalize and define regression functionals as solutions in cases where
ψ(θ; y, ~x) is not the gradient of an objective function; in particular it need not
be the score function of a negative log-likelihood. Functionals in this class will be
called EE functionals. For OLS, the estimating equations are the normal equa-
tions, as the score function for the slopes is

(7) ψOLS(β; y, ~x) = ~xy−~x~x′ β = ~x(y−~x′ β).

A seminal work that inaugurated asymptotic theory for general estimating equa-
tions is by Huber (1967). A more modern and rigorous treatment is in Rieder (1994).

An extension is the “Generalized Method of Moments” (GMM, Hansen 1982).
It applies when the number of moment conditions (the dimension of ψ) is larger
than the dimension of θ. An important application is to causal inference based
on numerous instrumental variables.

Another extension is based on “Generalized Estimating Equations” (GEE,
Liang and Zeger 1986). It applies to clustered data that have intra-cluster depen-
dence, allowing misspecification of the variance and intra-cluster dependence.

2.3 The Point of View of Regression Functionals and its Implications

Theories of parametric models deal with the issue that a traditional model
parameter has many possible estimators, as in the normal model N (µ, σ2) where
the sample mean is in various ways the optimal estimate of µ whereas the median
is a less efficient estimate of the same µ. The comparison of estimates of the same
traditional parameter has been proposed as a basis of misspecification tests (Haus-
man 1978) and called “test for parameter estimator inconsistency” (White 1982).
In a framework based on regression functionals the situation presents itself dif-
ferently. Empirical means and medians, for example, are not estimators of the
same parameter; instead, they represent different statistical functionals. Similarly,
slopes obtained by linear OLS and linear LAD are different regression functionals.
Comparing them by forming differences creates new regression functionals that
may be useful as diagnostic quantities, but in a model-robust framework there is
no concept of “parameter inconsistency” (White 1982, p. 15), only a concept of
differences between regression functionals.

A further point is that in a model-robust theory of observational (as opposed
to causal) association, there is no concept of “omitted variables bias.” There
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are only regressions with more or fewer regressor variables, none of which being
“true” but some being more useful or insightful than others. Slopes in a larger
regression are distinct from the slopes in a smaller regression. It is a source of
conceptual confusion to write the slope of the j’th regressor as βj , irrespective of
what the other regressors are. In more careful notation one indexes slopes with
the set of selected regressors M as well, βj·M , as is done of necessity in work on
post-selection inference (e.g., Berk et al. 2013). Thus the linear slopes βj·M and
βj·M ′ for the j’th regressor, when it is contained in both of two regressor sets
M 6= M ′, should be considered as distinct regression functionals. The difference
βj·M ′ − βj·M is not a bias but a difference between two regression functionals.
If it is zero, it indicates that the difference in adjustment between M and M ′

is immaterial for the j’th regressor. If βj·M ′ and βj·M are very different with
opposite signs, there exists a case of Simpson’s paradox for this regressor.

It should be noted that regression functionals generally depend on the full
joint distribution P

Y, ~X
of the response and the regressors. Conventional regres-

sion parameters describe the conditional response distribution only under correct
specification, P

Y| ~X = Q
Y| ~X;θ

, while the regressor distribution P~X is sidelined as

ancillary. That the ancillarity argument for the regressors is not valid under mis-
specification was documented in Part I, Section 4. In the following sections this
fact will be the basis of the notion of well-specification of regression functionals.

Finally, we state the following to avoid misunderstandings: In the present work,
the objective is not to recommend particular regression functionals, but to point
out the freedoms we have in choosing them and the conceptual clarifications we
need when using them.

3. MIS-/WELL-SPECIFICATION OF REGRESSION FUNCTIONALS

The introduction motivated a notion of well-specification for regression func-
tionals, and this section provides the technical notations. The heuristic idea is
that a regression functional is well-specified for a joint distribution of the regres-
sors and the response if it does not depend on the marginal regressor distribution.
In concrete terms, this means that the functional does not depend on where the
regressors happen to fall. The functional is therefore a property of the conditional
response distribution alone.

3.1 Definition of Well-Specification for Regression Functionals

Recall the notation introduced in (1): P
Y, ~X

= P
Y| ~X ⊗P~X . Here a technical de-

tail requires clarification: conditional distributions are defined only almost surely
with regard to P~X , but we will assume that ~x 7→ P

Y | ~X=~x
is a Markov kernel

defined for all ~x ∈ X .1 With these conventions, P
Y| ~X and P~X uniquely determine

P
Y, ~X

= P
Y| ~X ⊗ P~X by (1), but not quite vice versa. Thus θ(·) can be written as

θ(P ) = θ(P
Y| ~X ⊗ P~X).

Definition: The regression functional θ(·) is well-specified for P
Y| ~X if

θ(P
Y| ~X ⊗ P~X) = θ(P

Y| ~X ⊗ P
′
~X

)

1Thus we assume a “regular version” has been chosen, as is always possible on Polish spaces.
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8 A. BUJA ET AL.

for all acceptable regressor distributions P~X and P ′~X .

The term “acceptable” accounts for exclusions of regressor distributions such
as those due to non-identifiability when fitting equations, in particular, perfect
collinearity when fitting linear equations (see Appendix A.1).

Remarks:

• Importantly, the notion of well-specification is a joint property of a specific
θ(·) and a specific P

Y| ~X . A regression functional will be well-specified for

some conditional response distributions but not for others.
• The notion of well-specification represents an idealization, not a reality.

Well-specification is never a fact, only degrees of misspecification are. Yet,
idealizations are useful because they give precision and focus to an idea.
Here, the idea is that a regression functional is intended to be a property of
the conditional response distribution P

Y| ~X alone, regardless of the regressor

distribution P~X .

3.2 Well-Specification — Some Exercises and Special Cases

Before stating general propositions, here are some special cases to train intuitions.

• The OLS slope functional can be written β(P ) = EP [ ~X ~X ′]−1EP [ ~Xµ( ~X)],
where µ(~x) = EP [Y | ~X=~x]. Thus β(P ) depends on P

Y| ~X only through the

conditional mean function. The functional is well-specified if µ(~x) = β0
′~x is

linear, in which case β(P ) = β0. For the reverse, see Part I, Proposition 4.1.

• A special case is regression through the origin, which we generalize slightly
as follows. Let h(~x) and g(y) be two non-vanishing real-valued square-
integrable functions of the regressors and the response, respectively. Define

θh,g(P ) =
EP [ g(Y )h( ~X) ]

EP [h( ~X)2]
.

Then θh,g(P ) is well-defined for P
Y| ~X if EP [ g(Y )| ~X ] = c ·h( ~X) for some c.

• An ad hoc estimate of a simple linear regression slope is

θ(P ) = EP [(Y ′−Y ′′)/(X ′−X ′′)
∣∣ |X ′−X ′′| > δ],

where (Y ′, X ′), (Y ′′, X ′′) ∼ P iid and δ > 0. It is inspired by Part I, Sec-
tion 10 and Gelman and Park (2008). It is well-specified if EP [Y |X] =
β0 + β1X, in which case θ(P ) = β1.

• Ridge regression also defines a slope functional. Let Ω be a symmetric
non-negative definite matrix and β′Ωβ its quadratic penalty. Solving the
penalized LS problem yields β(P ) = (EP [ ~X ~X ′] + Ω)−1EP [ ~Xµ( ~X)]. This
functional is well-specified if the conditional mean is linear, µ(~x) = β0

′~x
for some β0, and Ω = cEP [ ~X ~X ′] for some c ≥ 0, in which case β(P ) =
1/(1+c)β0, causing uniform shrinkage across all regression coefficients.

• Given a univariate response Y , what does it mean for the functional θ(P )=
EP [Y ] to be well-specified for P

Y| ~X? It looks as if it did not depend on the

regressor distribution and is therefore always well-specified. This is a fallacy,
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however. Because EP [Y ]=EP [µ( ~X)], it follows that EP [Y ] is independent
of P~X iff the conditional response mean is constant: µ( ~X) = EP [Y ].

• Homoskedasticity: The average conditional variance functional σ2(P ) =
EP [VP [Y | ~X]] is well-specified iff VP [Y | ~X = ~x] = σ20 is constant, in which
case σ2(P ) = σ20. A difficulty is that access to this functional assumes a
correctly specified mean function µ( ~X) = EP [Y | ~X].

• The average conditional MSE functional wrt linear OLS isE[(Y−β(P )′ ~X)2] =
E[m2( ~X)] using the notation of Part I. If it is well-specified, that is, if
m2( ~X) = m2

o is constant, then linear model-based inference is asymptoti-
cally justified (Part I, Lemma 11.4 (a)).

• The correlation coefficient ρ(Y,X), if interpreted as a regression functional
in a regression of Y on X, is well-specified only in the trivial case when
µ(X) is constant and VP [Y ] > 0, hence ρ(Y,X) = 0.

• Fitting a linear equation by minimizing least absolute deviations (LAD, the
L1 objective function) defines a regression functional that is well-specified
if there exists β0 such that median[P

Y| ~X ] = β0
′ ~X.

• In a GLM regression with a univariate response and canonical link, the
slope functional is given by

β(P ) = argminβEP
[
b ( ~X ′β)− Y ~X ′β

]
,

where b(θ) is a strictly convex function on the real line and θ = ~x′β is the
“canonical parameter” modeled by a linear function of the regressors. The
stationary equations are2

EP
[
Y ~X

]
= EP

[
∂b ( ~X ′β) ~X

]
.

This functional is well-specified iff EP
[
Y | ~X

]
= ∂b ( ~X ′β) for β = β(P ).

Well-specification of β(P ) has generally no implication for VP
[
Y | ~X

]
, ex-

cept in the next example.

• Linear logistic regression functionals are a special case of GLM functionals
where Y ∈ {0, 1} and b(θ) = log(1 + exp(θ)). Well-specification holds iff

P [Y = 1 | ~X] = φ( ~X
′
β) for β = β(P ) and φ(θ) = exp(θ)/(1 + exp(θ)).

Because the conditional response distribution is Bernoulli, the conditional
mean of Y determines the conditional response distribution uniquely, hence
well-specification of the regression functional β(P ) is the same as correct
specification of the logistic regression model.

• If θ(P ) is well-specified for P
Y| ~X , then so is the functional f(θ(P )) for

any function f(·). An example in linear regression is the predicted value
β(P )′~x at the regressor location ~x. Other examples are contrasts such as
β1(P )−β2(P ) where βj(P ) denotes the j’th coordinate of β(P ).

• A meaningless case of “misspecified functionals” arises when they do not de-
pend on the conditional response distribution at all: θ(P

Y| ~X⊗P~X) = θ(P~X).

Examples would be tabulations and summaries of individual regressor vari-
ables. They could not be well-specified for P

Y| ~X unless they are constants.
2To avoid confusion with matrix transposition, we write ∂b instead of b′ for derivatives.
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3.3 Well-Specification of ML, PS and EE Functionals

The following lemma, whose proof is obvious, applies to all ML functionals. The
principle of pointwise optimization in regressor space covers also all PS functionals
(see Appendix A.2.3, equation (13)).

Proposition 3.3.1: If θ0 minimizes EP [L(Y | ~X;θ) | ~X= ~x] for all ~x∈X , then
the minimizer θ(P ) of EP [L(Y | ~X;θ)] is well-specified for P

Y| ~X , and θ(P
Y| ~X ⊗

P~X) = θ0 for all acceptable regressor distributions P~X .

The following fact is corollary of Proposition 3.3.1 but could have been gleaned
from Fisher consistency (4).

Proposition 3.3.2: If θ(·) is a ML or PS functional for the working model
{Q

Y| ~X;θ
: θ∈Θ}, it is well-specified for all model distributions P

Y| ~X = Q
Y| ~X;θ

.

The next fact states that an EE functional is well-specified for a conditional re-
sponse distribution if it satisfies the EE conditionally and globally across regressor
space for one value θ0.

Proposition 3.3.3: If θ0 solves EP [ψ(θ0;Y, ~X)| ~X=~x] = 0 for all ~x ∈ X , then
the EE functional defined by EP [ψ(θ;Y, ~X)] = 0 is well-specified for P

Y| ~X , and

θ(P
Y| ~X ⊗ P~X) = θ0 for all acceptable regressor distributions P~X .

The proof is in Appendix A.4.

3.4 Well-Specification and Causality

The notion of well-specification for regression functionals relates to aspects of
causal inference based on direct acyclic graphs (DAGs) and the Markovian struc-
tures they represent (e.g., Pearl (2009). Given a DAG, the theory explains which
choices of regressors ~X permit correct descriptions of causal effects for a given
outcome variable Y . Focusing on one such choice of ~X and Y , one is left with
the task of describing interesting quantitative aspects of the conditional distri-
bution P

Y| ~X , which is thought to be unchanging under different manipulations

and/or sampling schemes of the regressors ~X. Therefore, if a quantity of interest
is to describe causal effects properly, it should do so irrespective of where the
values of the causal variables ~X have fallen. This is exactly the requirement of
well-specification for regression functionals. In summary, well-specification of the
quantities of interest is necessary for describing causal effects in DAGs.

Recently, Peters, Bühlmann and Meinshausen (2016, Section 1.1) discussed a
related notion of “invariance” which can be interpreted as “invariance to regressor
distributions”. They propose this notion as a heuristic for causal discovery and
inference based on multiple data sources with the same variables, one variable
being singled out as the response Y . These multiple data sources are leveraged
as follows: If for a subset of variables, ~X, the association ~X → Y is causal, then
the conditional distribution P

Y| ~X will be the same across data sources. Subsets

of causal variables ~X with shared P
Y| ~X across sources may therefore be discover-

able if the sources differ in their regressor distributions and/or interventions on
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causal variables. For concreteness, the authors focus on a linear structural equa-
tion model (SEM), which allows us to reinterpret their proposals by abandoning
the SEM assumption and consider instead the regression functional consisting
of the OLS regression coefficients resulting from the linear SEM. Thus the pro-
posed method is at heart an approach to detecting and inferring well-specified
quantities, cast in a causal framework.

In the following section we will introduce a diagnostic for well-specification
that can be interpreted as emulating multiple data sources from a single data
source. The proposal is to systematically reweight the data to synthetically create
alternative datasets. Peters et al. (2016, Section 3.3) briefly mention the idea of
conditioning as related to the idea of multiple data sources. Such conditioning is
naturally achieved by locally reweighting the data, as will be shown next.

4. A REWEIGHTING DIAGNOSTIC FOR WELL-SPECIFICATION:
TARGETS AND INFERENTIAL TOOLS

Well-specification of regression functionals connects naturally to reweighting,
both of populations and of data. A concrete illustration of the basic idea can
be given by again drawing on the example of linear OLS: The OLS slope func-
tional is well-specified iff EP [Y | ~X] = β′0

~X for some β0, in which case for any
non-negative weight function w(~x) we have β0 = argminβEP [w( ~X) (Y −β′ ~X)2].
Therefore the reweighting of interest is with regard to weights that are functions
of the regressors only. The general reason is that such weights affect the distribu-
tion of the regressors but not the conditional response distribution. Reweighting
provides an intuitive basis for diagnosing well-specification of regression function-
als. Because of the practical importance of the proposed reweighting diagnostic,
we insert this material early, deferring estimation and inference to Section 6.

Reweighting has an extensive history in statistics, too rich to recount. The
present purpose of reweighting is methodological: to diagnose the degree to which
the null hypothesis of well-specification of a regression functional is violated. To
this end we propose what we call a “tilt test.” It provides evidence of whether
a real-valued regression functional is likely to rise or fall (tilt up or down) from
one extreme of reweighting to another. The conclusions from a rejection based
on this test are simple and interpretable.

In practice, the majority of regression functionals of interest are regression
slopes connected to specific regressors. A more interesting problem than detec-
tion of misspecification is another question: Does misspecification impinge on the
statistical significance of a slope of interest? That is, would a slope have lost
or gained statistical significance if the regressor distribution had been different?
This is the primary question to be addressed by the reweighting diagnostic.

4.1 Reweighting and Well-Specification

Consider reweighted versions of the joint distribution P = P
Y, ~X

with weight

functions w(~x) that depend only on the regressors, not the response, written as

Pw
Y, ~X

(dy, d~x)=w(~x)P
Y, ~X

(dy, d~x), or pw(y, ~x) = w(~x) p(y, ~x),

where w(~x) > 0 and EP [w( ~X)] = 1, which turns Pw
Y, ~X

into a joint probability

distribution for (Y, ~X) with the same support as P
Y, ~X

. At times, for specific
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12 A. BUJA ET AL.

weight functions, we will write w( ~X)P
Y, ~X

instead of Pw
Y, ~X

.

Lemma 4.1: Pw
Y| ~X = P

Y| ~X and Pw
~X

= w( ~X)P~X .

The proof is elementary and simplest in terms of densities:

pw(~x) =
∫
pw(y, ~x)dy =

∫
w(~x)p(y, ~x)dy = w(~x)

∫
p(y, ~x)dy = w(~x)p(~x),

pw(y|~x) = pw(y, ~x)/pw(~x) = (w(~x) p(y, ~x))/(w(~x) p(~x) = p(y, ~x)/p(~x) = p(y|~x).

We obtain as an immediate consequence:

Proposition 4.1: If the regression functional θ(·) is well-specified for P
Y| ~X , it is

unchanged under arbitrary ~X-dependent reweighting: θ(Pw
Y, ~X

) = θ(P
Y, ~X

).

Remark: In fixed-X linear models theory, which assumes correct specification, it
is known that reweighting the data with fixed weights grants unbiased estimation
of coefficients. Translated to the current framework, this fact returns as a state-
ment of invariance of well-specified functionals under ~X-dependent reweighting.

Tests of misspecification based on reweighting were proposed by White (1980a,
Section 4) for linear OLS. The approach generalizes to arbitrary types of regres-
sion and regression functionals as follows: Given a weight function w( ~X) nor-
malized for P , the null hypothesis is H0 : θ(Pw) = θ(P ). For the case that
θ(·) is the vector of OLS linear regression coefficients, White (ibid., Theorem 4)
proposes a test statistic based on plug-in estimates and shows its asymptotic
null distribution to be χ2. The result is a Hausman test (1978) whereby (using
model-oriented language) an efficient estimate under the model is compared to
an inefficient but consistent estimate. Rejection indicates misspecification. We
will not draw on White’s results but instead use the x-y bootstrap as a basis
of inference because (1) it directly applies to general types of regression under
mild technical conditions, and (2) it lends itself to augmentation of visual dis-
plays that provide more informative diagnostics than vanilla tests. White (1980a)
did not develop a methodology for reweighting tests other than recommending
experimentation with multiple weight functions. The present goal is to introduce
highly interpretable one-parameter families of weight functions and to illustrate
their practical use to gain insights into the nature of misspecifications.

4.2 The Well-Specification Diagnostic: Population Version

In order to construct interpretable weight functions, we construct them as
functions of a univariate variable Z. This variable will often be one of the real-
valued regressors, Z =Xj . However, the variable Z may be any function of the

regressors, Z = f( ~X), as when Z = β′ ~X is the OLS fit of Y , or Z =Xj• is Xj

adjusted for all other regressors (Part I, Section 9).3

Given a variable Z, consider for concreteness a univariate Gaussian weight
function of Z, centered at ξ on the Z axis:

(8) wξ(z) = w∗ξ (z)/E[w∗ξ (Z)] , w∗ξ (z) ∝ exp(−(z − ξ)2/(2γ2)) ,
3Mathematically, the restriction to weights as a function of univariate variables Z is no

restriction at all because any w(~x) can be trivially described as the identity function of Z = w(·).
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MODELS AS APPROXIMATIONS II 13

where γ is a user-specified bandwidth parameter (see Section 4.3 below).
Next consider a one-dimensional regression functional θ(P ), such as a linear

regression slope. A graphical diagnostic is obtained by plotting θ(·) as a function
of the reweighting centers ξ:

(9) ξ 7→ θξ(P ) = θ(wξ(Z)P ) .

If the regression functional θ(P ) is well-specified for P
Y| ~X , then θξ(P ) is constant

in ξ and equal to θ(P ). Equivalently, if θξ(P ) is not constant in ξ, then θ(P )
is misspecified. Thus non-constancy is a sufficient criterion for misspecification.
Insightful choices of traces of the form (9) will be proposed below.

4.3 The Reweighting Diagnostic: Data Version

To make the diagnostic actionable on data, one obtains estimates

θ̂ξ = θ(ŵξ(Z)P̂ ),

where ŵξ(x) is a weight function that is empirically normalized to unit mass,

Ê[ŵξ(Z)]=1, where Ê[...] denotes the sample average. This means using weights
for the observations of the form

wi = ŵξ(zi) ∝ exp(−(zi − ξ)2/(2γ2)), 1
N

∑
iwi = 1, i=1, ..., N.

We parametrize the bandwidth γ = ασ̂(Z) in terms of the empirical standard
deviation σ̂(Z) of Z and a multiplier α. In the examples we use α=1.

In order to plot a discretized version of the trace ξ 7→ θ̂ξ, we obtain estimates

θ̂ξ for a grid of values ξ(1) < ... < ξ(K) on the Z axis, a simple choice being
the interior deciles of the empirical Z distribution. Hence K = 9, unless Z has
numerous ties, causing some deciles to collapse. Finally, we plot ξ(k) 7→ θ̂ξ(k) . This
is carried out in Figures 1-3 for the LA homeless data (see Section 5).

4.4 Interpretations of the Reweighting Diagnostic

The reweighting diagnostic is likely to be accessible to practitioners of regres-
sion. One reason is that the restriction to weights as a function of a univariate
variable Z permits a simple left-to-right comparison: Is ξ 7→ θ(wξ(Z)P ) higher
or lower on the right than on the left? In our experience, the dominant feature of
such traces is indeed monotonicity. The intuitive appeal of reweighting is further
helped by two mutually compatible interpretations:

• Data frequency: Reweighting mimics scenarios of datasets that contain
more or fewer observations as a function of Z than the observed dataset.
Thus it answers questions such as “what if there were more observations
with low (or high) values of Z?” In this sense reweighting mimics alternative
data sources based on the data at hand.
• Conditioning: Reweighting can be seen as “soft conditioning on Z” in the

sense that conditioning on “sharp inclusion” in an interval ξ−c<Z<ξ+c
is replaced by “soft inclusion” according to the weight function wξ(z). In
this sense reweighting localizes the regression functional. However, note
that when Z = Xj , for example, the localization is of “codimension 1” in
regressor space (approached as the bandwidth γ → 0).

In what follows we use either of these interpretations depending on the context.
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4.5 Inferential Features for Reweighting Diagnostics

Graphical diagnostics need inferential augmentation to answer questions of
whether visually detected features are real. Presently the two main questions are:

(1) Is the variation/non-constancy in ξ(k) 7→ θ̂ξ(k) sufficiently strong to be sta-
tistically significant and hence suggest misspecification of θ(·)?

(2) Where are the estimates θ̂ξ(k) statistically significantly different from zero?

For regression slopes question (2) may be more relevant than (1) because one
usually cares about their statistical significance. Therefore, to answer question
(2), we decorate the diagnostic plot with traces of bootstrapped estimates, as
shown in the plots of Figures 1-3. Bootstrap resampling is done from the actual,
not the reweighted, data. The weight functions have the same centers ξ(k), but
their bandwidth is based on bootstrapped standard deviations. In the figures
we show 199 bootstrap traces in gray color, amounting to a so-called “spaghetti
plot”. Along with the bootstrap replications we also show bootstrap error bars
at the grid locations. Their widths are ±2 bootstrap standard errors.

As can be illustrated with Figures 1-3, statistical significance can feature a
variety of patterns. Significance may exist ...

(2a) ... across the whole range of reweighting centers ξ(k) and in the same direc-
tion, as in the top right plot of Figure 1;

(2b) ... both on the left and the right but in opposite directions with a transition
through insignificance in between, as is nearly the case in the center left
plot of Figure 2;

(2c) ... over part of the range, typically the left or the right side; such tendencies
are seen in the two center plots of Figure 1;

(2d) ... nowhere, as in the bottom right plot of Figure 2.

To answer question (1) regarding the presence of misspecification, we piggyback
on the bootstrap exercise meant to answer question (2). Because most detections
of misspecification arise from a monotone tilt in the trace ξ(k) 7→ θ̂ξ(k) , we con-
struct a cheap test statistic by forming the difference between the two extreme
points of the trace, θ̂ξ(K)

− θ̂ξ(1) .
4 We obtain its bootstrap distribution almost for

free, hence we can perform a crude bootstrap test by placing the null value zero
in the bootstrap distribution. The bootstrap p-value and the test statistic are
shown near the top of each plot frame in Figures 1-3. For example, the top left
frame of Figure 1 shows “Tilt: p=0.04 d=2.18”, meaning that the difference of
2.18 is statistically significant with a (two-sided) p-value of 0.04.5

Finally we show on the left side of each frame a visual version of unweighted
plain statistical significance of the quantity of interest in the form of a bootstrap
confidence interval around the unweighted estimate θ̂ ± 2 unweighted bootstrap
standard errors. In addition, we show 199 bootstrap estimates (gray points hori-
zontally jittered to reduce overplotting). The location on the horizontal axis has
no meaning other than being 10% to the left of the range (ξ(1), ξ(K)) of the traces.

4This test statistic does not result in a Hausman (1978) test: both estimates are “inefficient
under correct model specification.” However, it quantifies an obvious visual feature of the traces.

5For 199 bootstrap replicates the lowest possible two-sided p-value is 0.01 = 2 · 1/(1 + 199).
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5. THE REWEIGHTING DIAGNOSTIC FOR WELL-SPECIFICATION:
METHODOLOGY AND EXAMPLES

The following subsections demonstrate three different purposes of the diag-
nostic. The quantities of interest are linear OLS slopes, though the approach
generalizes to all types of regression that permit reweighting:

• Focal Slope: Expose a slope βk(P ) of special interest to reweighting on
each regressor in turn: Z =Xj for j = 1, ..., p (Section 5.1). This produces
highly interpretable insights into interactions of regressor Xk with all other
regressors Xj , without modeling these interactions directly.
• Nonlinearity detection: Expose each regression slope βj(P ) to reweight-

ing on its own regressor, Z=Xj (Section 5.2). This produces insights into
marginal nonlinear behaviors of response surfaces.
• Focal Reweighting Variable: Use a single reweighting variable of inter-

est (here: Z = β′ ~X) to diagnose well-specification of all components of a
regression functional, here: slopes βj(P ) (Section 5.3).

These diagnostics will be illustrated with the LA homeless data of Part I, Sec-
tion 2. The observations consist of a sample of 505 census tracts in the LA
metropolitan area, and the variables are seven quantitative measures of the tracts
with largely self-explanatory names: The response is the StreetTotal (count) of
homeless people in a census tract, and the six regressors are: MedianIncome (of
households, in $1,000s), PercMinority, and the prevalences of four types of lots:
PercCommercial, PercVacant, PercResidential and PercIndustrial.

5.1 Diagnostics for a Focal Regression Coefficient of Interest (Figure 1)

One variable stands out as potentially accessible to intervention by public
policies: PercVacant. Vacant lots could be turned into playgrounds, sports fields,
parks, or offered as neighborhood gardens.6 It would therefore be of interest to
check whether the regression coefficient of PercVacant possibly measures a causal
effect, for which it is a necessary condition that it be well-specified (Section 3.4).
To this end, Figure 1 shows diagnostics for the coefficient of PercVacant under
reweighting on all six regressors.

As the plots show, statistical significance of the coefficient of PercVacant

holds by and large under reweighting across the ranges of all six regressors.
While this is comforting, there exists a weakening of significance in the extremes
of the ranges of three regressors: high MedianInc, low PercMinority and low
PercResidential. With these qualitative observations it is already indicated
that well-specification of the coefficient of PercVacant is doubtful, and indeed
the tilt tests show statistical significance with 2-sided p-values of 0.01 and 0.02
for PercMinority and MedianInc, respectively. The variable PercResidential

also looks rather steep, but its tilt test has a weaker p-value around 0.1. Finally,
a very weak indication is shown for larger effects at higher levels of PercVacant.

Does this indication of misspecification invalidate a causal effect of PercVacant?
It does not. It only points to the likely possibility that the causal effect is not
correctly described by a single linear regression coefficient; it is rather a more

6Such programs have indeed been enacted in some cities. We abstain from commenting on
the controversies surrounding such policies.
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Fig 1. Diagnostics for the slope of PercVacant; LA Homeless Data (see Section 2, Part I).
Vertical axis = regression coefficient of PercVacant (all frames); horizontal axes = regressors.

complex function of the regressors. Useful insight into the nature of the causal ef-
fect (if this is what it is) can be gleaned from the diagnostic plots by using them to
answer an obvious question: Where is the effect of PercVacant likely to be strong?
An answer might indeed help in prioritizing interventions. Interpreting the plots of
Figure 1 liberally, one could state that the effect of PercVacant looks strongest
for census tracts with high PercMinority, followed by high PercResidential

and low MedianInc. These observations seem rather plausible and may indeed
point to census tracts worth prioritizing for intervention with public policies.

The insights gained so far point to the presence of interactions between PercVacant

and other regressors because the slope of PercVacant varies at different levels of
those other regressors. A natural next step would be more detailed modeling that
includes interactions between PercVacant and the three interacting regressors,
but the essential insights have already been gained.
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Fig 2. Misspecification Diagnostics: Each slope reweighted by its own regressor — indications
of nonlinearity.

5.2 Diagnostics for Slopes Reweighted by Their Own Regressors (Figure 2)

The top right plot in Figure 1 is a special case where the slope of interest is
reweighted by its own regressor, PercVacant. It has a different interpretation,
not related to interactions but to nonlinear effects. To get a better picture of the
possibilities that can arise in real data, we show in Figure 2 the corresponding
plots for all six regressors and their slopes.

Glancing at the six plots, we note some unpredictable effects of reweighting,
both on the values and the estimation uncertainties of the slopes. We find ex-
amples of larger and smaller estimates as well as stronger and weaker statistical
significances relative to their unweighted analogs:

• Bottom left plot for the regressor PercCommercial: The unweighted esti-
mate of βj(P ) (on the left side of the plot) is weakly statistically significant
(the lower end of the ±2 standard error confidence interval touches zero).
The reweighted estimates of βj(wξ(Xj)P ), however, are closer to zero and
nowhere statistically significant for any ξ in the range of PercCommercial.
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• Top right plot for the regressor PercVacant: The unweighted estimate and
the reweighted estimates are all statistically significant, but the reweighted
ones are systematically larger and much more statistically significant.

Another noteworthy case of a different nature appears for the regressor PercMinority
(Figure 2, center left plot). While the unweighted estimate is statistically insignif-
icant, the locally reweighted estimates reveal a striking pattern:

• For low values of PercMinority ≈ 20%, the slope is negative and statisti-
cally significant: Incrementally more minorities is associated with a lower
StreetTotal of homeless.
• For high values of PercMinority ≈ 80%, the slope is positive and (weakly)

statistically significant: Incrementally more minorities is associated with a
higher StreetTotal of homeless.

This finding (if real) represents a version of Simpson’s paradox: In aggregate,
there is no statistically significant association, but, conditional on low and high
values of PercMinority, there is, and in opposite directions.

In Appendix A.5 we discuss some reasons for the unpredictable behaviors of
slopes under reweighting wrt to their own regressors. We also mention a (weak)
link to partial additive models with one nonlinear term.

5.3 Diagnostics for a Focal Reweighting Variable of Interest (Figure 3)

Next we illustrate a version of the diagnostics that subjects all slopes of a
linear regression to a single reweighting variable of interest. The goal is to detect
misspecification in any coefficient, and the hope is to do so by reweighting based
on a variable Z that is both powerful and interpretable. Taking a cue from tra-
ditional residual diagnostics, we choose the OLS best approximation, Z = β′ ~X.
The data version is based on reweighting as function of the OLS estimates of the
fitted values, zi = ŷi = β̂′~xi.

7 The question is whether any coefficient reveals mis-
specification when comparing it on data with more low versus more high values
of the linear approximation. The expectation is that the gradient of the linear
approximation should be a direction of high average response variation and hence
may have a higher promise of revealing misspecifications than other directions in
regressor space.

Figure 3 shows this diagnostic applied to the LA homeless data, labeling the
reweighting variable as Fitted. Some observations are as follows:

• The only slope with signs of misspecification is for MedianIncome (top left
plot), whose tilt test has a p-value of 0.03. This slope achieves mild statis-
tical significance for high values of Fitted, which would indicate that the
“effect” (if any) of differences in MedianIncome matter more for high values
of the linear prediction Fitted.
• The slope of PercCommercial (bottom left plot) shows no signs of mis-

specification, but it is mildly statistically significant only for low values of
Fitted due to the lower estimation uncertainty in that range.
• Five of the six plots feature a fan shape of the bootstrap spaghetti bands

(exception: PercVacant). This indicates that these five slope estimates have
greater estimation uncertainty for higher values of Fitted.

7The estimated slope vector β̂ is frozen across bootstraps, ignoring a lower-order source of
sampling variability.
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Fig 3. Misspecification Diagnostics using one focal reweighting variable, the best linear approx-
imation/prediction Fitted, for all slopes.

The last point illustrates that the diagnostic is not only informative about the
average level of estimates but also about their estimation uncertainty.

5.4 Summary Comments on Reweighting Diagnostics

The reweighting diagnostics proposed here are not meant to replace other types
of diagnostics, typically based on residual analysis. They are, however, able to
answer questions about quantities of interest and effects of regressors that residual
analysis might not. They may also be able to provide insights into the nature of
nonlinearities and interactions without explicitly modeling them. Furthermore
they are easily augmented with inferential features such as bootstrap spaghetti
bands and tests of misspecification with specific interpretations. Finally, they are
able to localize regions in regressor space with high or low estimation uncertainty.
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6. ESTIMATION OF REGRESSION FUNCTIONALS:
CANONICAL DECOMPOSITION OF ESTIMATION OFFSETS

We return to the task of building a general framework of plug-in estimation of
regression functionals based on iid data. We decompose sampling variability into
its two sources, one due to the conditional response distribution, the other due
to the randomness of the regressors interacting with misspecification. Along the
way we find new characterizations of well-specification of regression functionals.

6.1 Regression Data and Plug-In Estimation

We adopt some of the notations and assumptions from Part I, Section 5: Data
consist of N iid draws (Yi, ~Xi)∼P =P

Y, ~X
; the responses Yi are collected in a data

structure Y ={Yi}i, and the regressors ~Xi in another data structure X={ ~Xi}i,
called “data frame” in programming languages such as R (2008). We avoid the
terms “vector” and “matrix” because in a general theory of regression all vari-
ables — responses and regressors — can be of any type and of any dimension.8

This is why not only X but Y is best thought of as a (random) “data frame.”
Regression of Y on X is any attempt at estimating aspects of the conditional
distribution P

Y| ~X . We limit ourselves to regression functionals θ(·) that allow

plug-in estimation θ̂ = θ(P̂ ) where P̂ = P̂
Y, ~X

= (1/N)
∑
δ
(Yi, ~Xi)

is the joint em-

pirical distribution. If necessary we may write P̂N for P̂ and θ̂N for θ̂. In addition,
we will also need the empirical regressor distribution P̂~X = (1/N)

∑
δ ~Xi

.

6.2 The Conditional Parameter of Model-Trusting Fixed-X Regression

We now define the important notion of a “conditional parameter” for arbitrary
regression functionals, thereby providing the target of estimation for fixed-X
theories. For OLS slopes this target of estimation is β(X) =EP [β̂|X] (Part I,
Section 5). We use the idea that fixed-X theories condition on observed regressor
observations ~X1, ..., ~XN , collected in the data frame X, and define a target of
estimation by assuming that the population of Y -values at each ~Xi is known:
Yi| ~Xi∼PY| ~Xi

. The joint distribution is then effectively P
Y| ~X ⊗ P̂~X , amounting to

partial plug-in of P̂~X for P~X in P
Y, ~X

= P
Y| ~X ⊗ P~X . The conditional parameter

for θ(·) is therefore defined as θ(X) = θ(P
Y| ~X ⊗ P̂~X). We summarize notations

with emphasis on the centerline of the following box:

θ(P ) = θ(P
Y| ~X ⊗ P~X),

θ(X) = θ(P
Y| ~X ⊗ P̂~X), P̂~X = (1/N)

∑
δ ~Xi

,

θ̂ = θ(P̂ ).

Note that X and P̂~X contain the same information; the conditional response
distribution P

Y| ~X is implied and not shown in θ(X). The main points are:

• In model-trusting theories that condition on X, the target of estimation
is θ(X). They assume θ(X) is the same for all acceptable X.

8Recall that the typographic difference between Y and ~X is a holdover from Part I, where
the response was assumed univariate quantitative.
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• In model-robust theories that do not condition on X, the target of estima-
tion is θ(P ), whereas θ(X) is a random quantity (Corollary 6.3 below).

The above definitions can be made more concrete by illustrating them with the
specific ways of defining regression functionals of Section 2:

• Functionals defined through minimization of objective functions:

θ(P ) = argminθ EP [L(θ;Y, ~X) ],

θ(X) = argminθ
1
N

∑
iEP [L(θ;Yi, ~Xi) | ~Xi],

θ̂ = argminθ
1
N

∑
i L(θ;Yi, ~Xi).

• Functionals defined through estimating equations:

θ(P ) : EP [ψ(θ Y, ~X) ] = 0,

θ(X) : 1
N

∑
iEP [ψ(θ;Yi, ~Xi) | ~Xi] = 0,

θ̂ : 1
N

∑
iψ(θ;Yi, ~Xi) = 0.

These specialize to normal equations for linear OLS by (7).

Summary: Among the three cases in each box, the most impenetrable but also
most critical case is the second one. It defines the “conditional parameter” through
partial plug-in of the empirical regressor distribution. The conditional parameter
is the target of fixed-X regression for arbitrary types of regression functionals.

6.3 Estimation Offsets

The conditional parameter θ(X) enables us to distinguish between two sources
of estimation uncertainty: (1) the conditional response distribution and (2) the
marginal regressor distribution. To this end we defined in Part I for linear OLS
what we call “estimation offsets.” With the availability of θ(X) for regression
functionals, these can be defined in full generality:

Total EO = θ̂−θ(P ),

Noise EO = θ̂−θ(X),

Approximation EO = θ(X)−θ(P ).

The total EO is the offset of the plug-in estimate from its population target.
The noise EO is the component of the total EO that is due to the conditional
distribution Y | ~X. The approximation EO is the part due to the randomness of ~X
under misspecification. These interpretations will be elaborated in what follows.

Remark: We repeat an observation made in Part I, end of Section 5. The ap-
proximation EO θ(X) − θ(P ) could be misinterpreted as a bias because it is
the difference of two targets of estimation. This interpretation is wrong. In the
presence of misspecification, the approximation EO is a non-vanishing random
variable. It will be shown to contribute not a bias to θ̂ but a N−1/2 term to the
sampling variability of θ̂.
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6.4 Well-Specification in Terms of Approximation EOs

The approximation EO lends itself for another characterization of well-specification:

Proposition 6.4: Assume P~X 7→ θ(P
Y| ~X ⊗P~X) is continuous in the weak topol-

ogy. Then θ(·) is well-specified for P
Y| ~X iff θ(X)−θ(P )=0 for all acceptable X.

Proof: If θ(·) is well-specified in the sense of Section 3, then

θ(X) = θ(P
Y| ~X ⊗ P̂~X) = θ(P

Y| ~X ⊗ P~X) = θ(P ).

The converse follows because the empirical regressor distributions P̂~X (for N →
∞) form a weakly dense subset in the set of all regressor distributions, and the
regression functional is assumed continuous in this argument. �

A fine point about this proposition is that X is not meant as random but as
a variable taking on all acceptable regressor datasets of arbitrarily large sample
sizes. On the other hand, here are two consequences when X is random:

Corollary 6.4: Same assumptions as in Proposition 6.4.

• Fixed-X and random-X theories estimate the same target iff θ(·) is well-
specified for P

Y| ~X .

• θ(·) is well-specified for P
Y| ~X iff VP [θ(X)] = 0 for all acceptable P~X .

The first bullet confirms that the notion of well-specification for regression
functionals hits exactly the point of agreement between theories that condition
on the regressors and those that treat them as random. The second bullet leads
the way to the fact that a misspecified regression functional will incur sampling
variability originating from the randomness of the regressors.

6.5 Deterministic Association Annihilates the Noise EO

While well-specification addresses a vanishing approximation EO, one can also
consider the dual concept of a vanishing noise EO. Here is a sufficient condition
under which the noise EO vanishes for all regression functionals:

Proposition 6.5: If Y =f( ~X) is a deterministic function of ~X, then
θ̂ − θ(X) = 0 for all regression functionals.

Proof: The conditional response distribution is P
Y| ~X=~x

= δy=f(~x), hence the

joint distribution formed from P
Y| ~X=~x

and P̂~X is P̂ : P
Y| ~X ⊗ P̂~X = P̂ . It follows

that θ(X) = θ(P
Y| ~X ⊗ P̂~X) = θ(P̂ ) = θ̂. �

The proposition illustrates the fact that the noise EO is due to “noise”, that is,
variability of Y conditional on ~X. Thus, although less transparent than in linear
OLS, the conditional response distribution Y | ~X is the driver of the noise EO.

6.6 Well-Specification and Influence Functions

This section introduces influence functions for regression functionals which will
prove useful for approximations in Section 6.7 and for asymptotic decompositions
in Section 7. For background on influence functions see, for example, Hampel et
al. (1986) and Rieder (1994).
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The influence function is a form of derivative on the space of probability dis-
tributions, which makes it an intuitive tool to characterize well-specification of
regression functionals: If θ(P

Y| ~X⊗P~X) is constant in the argument P~X at a fixed

P
Y| ~X , then this means intuitively that the “partial derivative” wrt P~X vanishes.

The definition of the full influence function of θ(·) is as follows:

(10) IF (y, ~x) =
d

dt

∣∣∣∣
t=0

θ
(
(1−t)P + tδ(y,~x)

)
.

We omit θ(·) as well as P = P
Y, ~X

as arguments of IF (y, ~x) because both will
be clear from the context, except for one occasion in Appendix A.3 where we
write IF (y, ~x;P ). More relevant is the following definition of the partial influence
function of θ(·) with regard to the regressor distribution:

(11) IF (~x) =
d

dt

∣∣∣∣
t=0

θ
(
P
Y| ~X ⊗ ((1−t)P~X + tδ~x)

)
.

For derivations of the following Lemma and Proposition, see Appendix A.3.

Lemma 6.6: IF (~x) = EP
[
IF (Y, ~X) | ~X=~x

]
.

Proposition 6.6: A regression functional θ(·) with an influence function at P
Y, ~X

is well-specified for P
Y| ~X iff IF (~x) = 0 ∀~x.

6.7 Approximating Estimation Offsets with Influence Functions

For linear OLS, Definition and Lemma 5 in Part I exhibited an intuitive corre-
spondence between the total, noise and approximation EO on the one hand and
the population residual, the noise and the nonlinearity on the other hand. No such
direct correspondence exists for general types of regression. The closest general
statement about EOs is in terms of approximations based on influence functions.
Assuming asymptotic linearity of θ(·), the EOs have the following approximations
to order oP (N−1/2):

(12)

Total EO: θ̂−θ(P ) ≈ 1
N

∑
i IF (Yi, ~Xi),

Noise EO: θ̂−θ(X) ≈ 1
N

∑
i

(
IF (Yi, ~Xi)−EP [IF (Y, ~Xi)| ~Xi]

)
,

Approx. EO: θ(X)−θ(P ) ≈ 1
N

∑
iEP [IF (Y, ~Xi)| ~Xi].

These approximations (12) lead straight to the CLTs of the next section.

7. MODEL-ROBUST CENTRAL LIMIT THEOREMS DECOMPOSED

7.1 CLT Decompositions Based on Influence Functions

As in Section 6.7 assume the regression functional θ(P ) is asymptotically
linear with influence function IF (y, ~x) and partial influence function IF (~x) =
EP [IF (Y, ~X) | ~X=~x]. The EOs obey the following CLTs:
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√
N (θ̂ − θ(P ))

D−→ N
(
0, VP [IF (Y, ~X)]

)
,

√
N (θ̂ − θ(X))

D−→ N
(
0, EP [VP [IF (Y, ~X) | ~X]]

)
,

√
N (θ(X)− θ(P ))

D−→ N
(
0, VP [EP [IF (Y, ~X) | ~X]]

)
.

These are immediate consequences of the assumed asymptotic linearities. The
asymptotic variances of the EOs follow the canonical decomposition

VP [IF (Y, ~X)] = EP [VP [IF (Y, ~X) | ~X] ] + VP [EP [IF (Y, ~X) | ~X] ],

the three terms being the asymptotic variance-covariance matrices of the total,
the noise and the approximation EO, respectively. Implicit in this Pythagorean
formula is that IF (Y, ~X)−EP [IF (Y, | ~X) and EP [IF (Y, | ~X) are orthogonal to
each other, which implies by (12) that the noise EO and the approximation EO
are asymptotically orthogonal. Asymptotic orthogonalities based on conditioning
are well-known in semi-parametric theory. For linear OLS this orthogonality holds
exactly for finite N due to (6) and (13) in Part I: VP [β̂−β(X),β(X)−β(P )] = 0.

The following corollary is a restatement of Proposition 6.6, but enlightened by
the fact that it relies on the asymptotic variance of the approximation EO.

Corollary 7.1: The regression functional θ(·) is well-specified for P
Y| ~X iff the

asymptotic variance of the approximation EO vanishes for all acceptable P~X .

Proof: Using careful notation the condition says V P~X
[EP

Y| ~X
[IF (Y, ~X)| ~X]] = 0

for all acceptable P~X . This in turn means EP
Y| ~X

[IF (Y, ~X)| ~X = ~x] = 0 for all ~x,

which is the condition of Proposition 6.6. �

7.2 CLT Decompositions for EE Functionals

For EE functionals the influence function is IF (y, ~x) = Λ(θ)−1ψ(θ; y, ~x) where
θ = θ(P ) and Λ(θ) = ∇θEP [ψ(θ;Y, ~X)] is the Jacobian of size q × q, q =
dim(ψ)=dim(θ). Then the CLTs specialize to the following:

√
N (θ̂ − θ)

D−→ N
(
0, Λ(θ)−1 VP [ψ(θ;Y, ~X)] Λ(θ)′−1

)
√
N (θ̂ − θ(X))

D−→ N
(
0, Λ(θ)−1EP [VP [ψ(θ;Y, ~X) | ~X] ] Λ(θ)′−1

)
√
N (θ(X)− θ)

D−→ N
(
0, Λ(θ)−1 VP [EP [ψ(θ;Y, ~X) | ~X] ] Λ(θ)′−1

)
The first line is Huber’s (1967, Section 3) result. The asymptotic variances have
the characteristic sandwich form. It is natural that they are related according to

VP [ψ(θ;Y, ~X)] = EP [VP [ψ(θ;Y, ~X) | ~X] ] + VP [EP [ψ(θ;Y, ~X) | ~X] ],

where on the right side the first term relates to the noise EO and the second term
to the approximation EO.

Linear OLS is a special case with ψ(β; y, ~x) = ~x~x′β − ~xy, Λ = EP [ ~X ~X ′],
IF (y, ~x)=EP [ ~X ~X ′]−1(~x~x′β−~xy), and hence the CLTs of Part I, Proposition 7.
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7.3 Implications of the CLT Decompositions

We address once again potential confusions relating to different notions of
bias. Misspecification, in traditional parametric modeling, is sometimes called
“model bias” which, due to unfortunate terminology, may suggest a connection to
estimation bias, EP [θ̂N ]−θ(P ). Importantly, there is no connection between the
two notions of bias. Estimation bias typically vanishes at a rate faster than N−1/2

and does not contribute to standard errors derived from asymptotic variances.
Model bias, on the other hand, which is misspecification, generates in conjunction
with the randomness of the regressors a contribution to the standard error, and
this contribution is asymptotically of order N−1/2, the same order as the better
known contribution due to the conditional noise in the response. This is what
the CLT decomposition shows. It also shows that the two sources of sampling
variability are asymptotically orthogonal. — In summary:

Model bias/misspecification does not create estimation bias; it creates sam-
pling variability to the same order as the conditional noise in the response.

8. PLUG-IN/SANDWICH ESTIMATORS VERSUS M -OF-N
BOOTSTRAP ESTIMATORS OF STANDARD ERROR

8.1 Plug-In Estimators are Limits of M -of-N Bootstrap Estimators

In Part I, Section 8, it was indicated that for linear OLS there exists a connec-
tion between two ways of estimating asymptotic variance: the sandwich estimator
for sample size N is the limit of the M -of-N bootstrap as M →∞, where boot-
strap is the kind that resamples x-y cases rather than residuals. This connection
holds at a general level: all plug-in estimators of standard error are limits of
bootstrap in this sense.

The crucial observation of Part I goes through as follows: The M -of-N boot-
strap is iid sampling of M observations from some distribution, hence there
must hold a CLT as the resample size grows, M → ∞. The distribution be-
ing (re)sampled is the empirical distribution P̂N = (1/N)

∑
δ(yi,~xi), where N is

fixed but M → ∞.9 Therefore, the following holds for bootstrap resampling of
any well-behaved statistical functional, be it in a regression context or not:

Proposition 8.1: Assume the regression functional θ(·) is asymptotically nor-
mal for a sufficiently rich class of joint distributions P = P

Y, ~X
with acceptable

regressor distributions P~X as follows:

N1/2(θ̂N − θ(P ))
D−→ N (0, AV [P ;θ(·)]) (N →∞).

Let a fixed dataset of size N with acceptable regressors be represented by the
empirical measure P̂N . Then a CLT holds for the M -of-N bootstrap as M →∞,
with an asymptotic variance obtained by plug-in. Letting θ∗M = θ(P ∗

M ) where P ∗
M

is the empirical distribution of a resample of size M from P̂N , we have:

M1/2 (θ∗M − θ̂N )
D−→ N

(
0, AV [P̂N ;θ(·)]

)
(M →∞, N fixed).

9This causes ever more ties at M grows.
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The proposition contains its own proof. The following is the specialization to EE
functionals where the asymptotic variance has the sandwich form:

Corollary 8.1: The plug-in sandwich estimator for an EE functional is the
asymptotic variance estimated by the M -of-N bootstrap in the limit M→∞ for
a fixed sample of size N .

8.2 Arguments in Favor of M -of-N Bootstrap Over Plug-In Estimators

A natural next question is whether the plug-in/sandwich estimator is to be
preferred over M -of-N bootstrap estimators, or whether there is a reason to prefer
some form ofM -of-N bootstrap. In the latter case the follow-up question would be
how to choose the resample size M . While we do not have any recommendations
for choosing a specific M , there exist various arguments in favor of some M -of-N
bootstrap over plug-in/sandwich estimation of standard error.

A first argument is that bootstrap is more flexible in that it lends itself to
various forms of confidence interval construction that grant higher order accuracy
of coverage. See, for example, Efron and Tibshirani (1994) and Hall (1992).

A second argument is related to the first but in a different direction: Boot-
strap can be used to diagnose whether the sampling distribution of a particular
functional θ(·) is anywhere near asymptotic normality for a given sample size N .
This can be done by applying normality tests to simulated bootstrap values θ∗b
(b = 1, ..., B), or by displaying these values in a normal quantile plot.

A third argument is that there exists theory that shows bootstrap to work for
very small M compared to N in some situations where even conventional N -of-N
bootstrap does not work. (See Bickel, Götze and van Zwet (1997) following Politis
and Romano (1994) on subsampling.) It seems therefore unlikely that the limit
M→∞ for fixed N will yield any form of superiority to bootstrap with finite M .

A fourth argument derives from a result by Buja and Stuetzle (2016), which
states that so-called “M -bagged functionals” have low complexity in a certain
sense, the lower the smaller the resample size M is. The limit M→∞ is therefore
the most complex choice. The connection to the issue of “bootstrap versus plug-
in/sandwich estimators” is that M -of-N bootstrap standard errors are simple
functions of M -bagged functionals, hence the complexity comparison carries over
to standard errors.

It appears that multiple arguments converge on the conclusion that the M -of-
N bootstrap is to be preferred over plug-in/sandwich standard errors. Also recall
that both are to be preferred over the residual bootstrap.

9. SUMMARY AND CONCLUSION

This article completes important aspects of the program set out in Part I.
It pursues the idea of model robustness to its conclusion for arbitrary types of
regression based on iid observations. The notion of model robustness coalesces
into a model-free theory where all quantities of interest are statistical functionals,
called “regression functionals”, and models take on the role of heuristics to suggest
objective functions whose minima define regression functionals defined on largely
arbitrary joint (Y, ~X) distributions. In this final section we recount the path that
makes the definition of well-specification for regression functionals compelling.

To start, an important task of the present article has been to extend the two
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main findings of Part I from linear OLS to arbitrary types of regression. The find-
ings are that nonlinearity and randomness of the regressors interact (“conspire”)

(1) to cause the target of estimation to depend on the regressor distribution;
(2) to cause N−1/2 sampling variability to arise that is wholly different from

the sampling variability caused by the conditional noise in the response.

It was intuitively clear that these effects would somehow carry over from linear
OLS to all types of regression, but it wasn’t clear what would take the place
of “nonlinearity,” a notion of first order misspecification peculiar to fitting lin-
ear equations and estimating linear slopes. In attempting to generalize Part I,
a vexing issue is that one is looking for a framework free of specifics of fitted
equations and additive stochastic components of the response. Attempts at di-
rectly generalizing the notions of “nonlinearity” and “noise” of Part I lead to
dead ends of unsatisfactory extensions that are barely more general than linear
OLS. This raises the question to a level of generality in which there is very little
air to breathe: the objects that remain are a regression functional θ(·) and a joint
distribution P

Y, ~X
. Given these two objects, what do mis- and well-specification

mean? An answer, maybe the answer, is arrived at by casting regression in the
most fundamental way possible: Regression is the attempt to describe the condi-
tional response distribution P

Y| ~X . This interpretation sweeps away idiosyncratic

structure of special cases. It also suggests taking the joint distribution P
Y, ~X

apart
and analyzing the issue of mis- and well-specification in terms of P

Y| ~X and P~X ,

as well as θ(·), the quantities of interest. The solution, finally, to

• establishing a compelling notion of mis- and well-specification at this level
of generality, and
• extending (1) and (2) above to arbitrary types of regression,

is to look no further and use the “conspiracy effect” (1) as the definition: Mis-
specification means dependence of the regression functional on the regressor dis-
tribution. Conversely, well-specification means the regression functional does not
depend on the regressor distribution; it is a property of the conditional response
distribution alone.

The “conspiracy effect” (2) above is now a corollary of the definition: If the
functional is not constant across regressor distributions, it will incur random vari-
ability on empirical regressor distributions, and this at the familiar rate N−1/2.

The link between the proposed definition and conventional ideas of mis-/well-
specification is as follows: Because most regressions consist of fitting some func-
tional form of the regressors to the response, misspecification of the functional
form is equivalent to misspecification of its parameters viewed as regression func-
tionals: depending on where the regressors fall, the misspecified functional form
needs adjustment of its parameters to achieve the best approximation over the
distribution of the regressors.

Well-specification being an ideal, in reality we always face degrees of misspec-
ification. Acknowledging the universality of misspecification, however, does not
justify carelessness in practice. It is mandatory to perform diagnostics and, in
fact, we proposed a type of diagnostic in Sections 4 and 5 tailored to the present
notion of mis-/well-specification. The diagnostic consists of checking the depen-
dence of regression functionals on the regressor distribution by systematically
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perturbing the latter, not by shifting or otherwise moving it, but by reweighting
it. Reweighting has the considerable advantage over other forms of perturbation
that it applies to all variable types, not just quantitative ones.

While the reality of misspecification imposes a duty to perform diagnostics,
there is also an argument to be made to feel less guilty about choosing simpler
models over more complex ones. One reason is that the reweighting diagnostic
permits localization of models and thereby enables a systematic exploration of
local best approximations, always in terms of model parameters interpreted as
regression functionals. As shown in Sections 5.1-5.3, this possibility vastly extends
the expressive power of models beyond that of a single model fit.

Finally, there is an argument to be made in favor of using statistical inference
that is model-robust, and to this end one can use x-y bootstrap estimators or
plug-in/sandwich estimators of standard errors. Between the two, one can give
arguments in favor of bootstrap over plug-in/sandwich estimators. Most impor-
tantly, though, both approaches to inference are in accord with the insight that
misspecification forces us to treat regressors as random.

Acknowledgments: We are grateful to Gemma Moran and Bikram Karmakar
for their help in the generalizations of Section 6.2, and to Hannes Leeb for pointing
out the source of the Tukey quote shown before the introduction.
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APPENDIX

A.1 Assumptions

When defining a regression functional θ(P ), one needs to specify a set P of
joint distributions P =P

Y, ~X
for which the functional is defined. This set can be

specific to the functional in several ways. Here is a list of conditions on P that
will be assumed as needed:

a) Expectations EP [f( ~X, Y )] exist as needed for all distributions in P ∈ P.
b) If the regression functional derives from parameters of fitted equations, it

will be assumed that the regressor distribution P~X grants identifiabiliy of
the fitted parameters, as when strict collinearity of the regressor distribution
needs to be excluded in order to uniquely fit linear equations. If this is the
case we will say P~X is an “acceptable” regressor distribution.

c) With b) in mind, we will assume that if a regressor distribution P~X is
acceptable, a mixture αP~X + (1−α)P ′~X with any other distribution P ′~X ,
subject to a) above, will also be acceptable, the reason being that mixing
can only enlarge but not diminish the support of the distribution, hence
identifiability will be inherited from P~X irrespective of P ′~X .

d) Item c) ensures that the set of acceptable regressor distributions is so rich
that EP~X

[f( ~X] = 0 for all acceptable P~X entails f ≡ 0. Reason: Mix with
atoms at arbitrary locations.

e) For working models {Q
Y| ~X;θ

: θ ∈ Θ} (not treated as correct) it will be

assumed Q
Y| ~X;θ

⊗ P~X ∈ P for all θ∈Θ and all acceptable P~X .

f) Where conditional model densities q(y|~x;θ) of the response appear, they
will be densities with regard to some dominating measure ν(dy).

g) For plug-in estimation it will be required that for N iid draws (Yi, ~Xi) ∼
P ∈P the empirical distribution

P̂ = P̂N = (1/N)
∑

δ
(Yi, ~Xi)

is in P with limiting probability 1 as N→∞. For example, one needs N≥p+1
non-collinear observations in order to fit a linear equation with intercept.

h) To form influence functions for regression functionals, it will be assumed
that for P ∈P and (y, ~x)∈X×Y we have (1−t)P + tδy,~x ∈ P for 0<t<1.

i) P will be assumed to be convex, hence closed under finite mixtures.

A.2 Proper Scoring Rules, Bregman Divergences and Entropies

A.2.1 General Theory: We describe objective functions called “proper scor-
ing rules”, which generalize negative log-likelihoods, and associated Bregman
divergences, which generalize Kullback-Leibler (K-L) divergences. Proper scoring
rules can be used to extend the universe of regression functionals based on work-
ing models. For insightful background on proper scoring rules, see Gneiting and
Raftery (2007) (but note two reversals of conventions: theirs are gain functions
where ours are loss functions, and their order of arguments is switched from ours).

We begin by devising discrepancy measures between pairs of distributions
based on axiomatic requirements that can be gleaned from two properties of K-L
divergences: Fisher consistency at the working model and availability of plug-in
for “empirical risk minimization” (machine learning terminology). The resulting
functionals will be called “proper scoring functionals.”
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Denoting a discrepancy measure between two distributions by D(P ,Q), the
intended roles of the two arguments are that P is the actual data distribution and
Q is a member of a working model. Fisher consistency of a minimum discrepancy
functional follows from the following requirements:

(A) D(P ,Q)≥0 with equality iff P =Q.

The “only if” part in the second clause is essential. Other properties such as
symmetry and triangle inequalities are not needed and would be too restrictive.

As for the availability of plug-in estimation, it would follow from a structural
property such as dependence of D(P ,Q) on P only through its expectation
EP [...], whose plug-in estimate is the empirical mean. Other types of plug-in exist,
for example for quantiles, in particular medians. Yet other cases, such as Hellinger
distances, require density estimation for plug-in, which adds a layer of complexity.
In what follows we will impose the strong condition that D(P ,Q) depends on
P essentially only through EP [·], but this requirement only concerns the part of
D(P ,Q) that is relevant for minimization over working model distributions Q.
We can use the K-L divergence as a guide: In

DKL(P ,Q) = EP [−log
q(Y )

p(Y )
] = EP [−log q(Y )]−EP [−log p(Y )],

the second term requires for plug-in a density estimate of p(y), but this term
does not depend on Q, hence is irrelevant for minimization over Q. By analogy
we impose the following structural form on the discrepancy measure:

(B) D(P ,Q) = EP [S(Y,Q)]−H(P ) .

This condition, combined with condition (A), constrains D(P ,Q) to be a so-
called “Bregman divergence”. The following structure falls into place:

• Define S(P ,Q) = EP [S(Y,Q)]. Then S(P ,P ) = H(P ) due to (A).

• The term S(Y,Q) is a so-called “strict proper scoring rule”, charac-
terized by S(P ,Q) ≥ S(P ,P ), with equality iff P = Q. This is a direct
translation of (A) applied to D(P ,Q) = S(P ,Q)− S(P ,P ).

• The term H(P ) is an “entropy” as it is a strictly concave functional of P .
Its upper tangent at tangent point Q is P 7→ S(P ,Q) due to (A). Also, (A)
excludes tangent points other than Q, hence renders H(P ) strictly concave.

Strict proper scoring rules S(y,Q) generalize negative log-likelihoods.

A.2.2 Examples of Proper Scoring Rules — Density Power Divergences: A
one-parameter family of strict proper scoring rules is as follows:

Sα(y,Q) =


−qα(y)/α+

∫
q1+α dµ /(1 + α) for α 6= 0,−1,

− log(q(y)) for α = 0,
1/q(y) +

∫
log(q) dµ for α = −1.

These include proper scoring rules derived from the “density power divergences”
of Basu et al. (1998) for α > 0, the negative log-likelihood for α = 0, and a
proper scoring rule derived from the Itakura-Saito divergence for α=−1. The two
logarithmic cases (α=0, 1) form smooth fill-in in the manner of the logarithm in
the Box-Cox family of power transforms, which makes the family well-defined for
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all α∈ IR. The case α=1 corresponds to the L2 distance D2(P ,Q) =
∫

(p−q)2dµ;
its proper scoring rule is S(y,Q) = −q(y) +

∫
q2 dµ/2 and its entropy is the

Gini index H(P ) = −
∫
p2 dµ/2. The power α is a robustness parameter, in the

meaning of insensitivity to tails: robustness is gained for α ↑ and sensitivity to
tail probabilities for α ↓. Basu et al. (1998) show that for α > 0 the influence
function is redescending for the minimum divergence estimator of the normal
working model. For α≤−1 the divergence is so sensitive to small probabilities
(hence the opposite of robust) that model densities q(y) need to have tails lighter
even than normal distributions.

A.2.3 Proper Scoring Rules for Regression: When applying a proper scoring
rule S(y,Q) to regression, scoring is on the conditional response distributions
Q
Y| ~X=~x;θ

=Q(dy|~x;θ) in light of a response value y at ~x. The resulting objective

function is therefore:

L(θ; y, ~x) = S(y,Q
Y| ~X=~x;θ

) ,

which is used to construct a regression functional with argument P = P
Y, ~X

by

θ(P ) = argminθ∈ΘEP [L(θ;Y, ~X)] .

Fisher consistency follows from the fact that if P
Y| ~X=~x

= Q
Y| ~X=~x;θ0

, then θ0
minimizes the objective function conditionally at each ~x due to proper scoring:

(13) EP
Y| ~X=~x

[L(θ0;Y, ~x)] ≤ EP
Y| ~X=~x

[L(θ;Y, ~x)] ∀θ, ∀~x.

The same holds after averaging over arbitrary regressor distributions P~X(d~x):

EP [L(θ0;Y, ~X)] ≤ EP [L(θ;Y, ~X)] ∀θ,

and hence θ(P ) = θ0.

A.2.4 Pointwise Bregman Divergences from Convex Functions: We illustrate
one simple way of constructing what one may call “pointwise” Bregman diver-
gences to convey the role of convex geometry. (We use here convex rather than
concave functions, but this is immaterial for the construction.) If φ(q) is a strictly
convex smooth function, define the associated discrepancy between two values p
and q (in this order) to be d(p, q) = φ(p) − (φ(q) + φ′(q)(p − q)). The term in
parens is the subtangent of φ(·) at q as a function of p, hence d(p, q)≥ 0 holds
due to convexity, and d(p, q) = 0 iff p= q due to strict convexity. Note d(p, q) is
not generally symmetric in its arguments. The associated Bregman divergence
between distributions P and Q is obtained by applying d(p, q) to the respective
densities p(y) and q(y), integrated wrt the dominating measure ν(dy):

D(P ,Q) =

∫
φ(p(y))ν(dy)−

∫
φ(q(y))ν(dy)−

∫
φ′(q(y))(p(y)− q(y))ν(dy)

= −H(P ) +H(Q)−EP [φ′(q(Y ))] +EQ[φ′(q(Y ))],

where H(Q) = −
∫
φ(q(y))ν(dy) is the associated entropy and

S(y,Q) = −φ′(q(y)) +EQ[φ′(q(Y ))] +H(Q).

Special cases: K-L divergence for φ(q)=q log(q); L2 distance for φ(q)=q2.

imsart-sts ver. 2014/07/30 file: Buja_et_al_ModelsAsApproximations_II_F.tex date: May 20, 2019



MODELS AS APPROXIMATIONS II 33

A.2.5 Density Power Divergences in Greater Detail: Applying the preceding
subsection to power transformations, suitably transformed to convexity following
the Box-Cox transformation scheme, one obtains the family of density power
divergences. The following is a one-parameter family of convex functions defined
for all α∈ IR:

φα(q) =


q1+α/(α(1+α))− q/α + 1/(1+α) for α 6= 0,−1,
q log(q)− q + 1 for α = 0,
− log(q) + q − 1 for α = −1,

The linear terms in q and the constants are irrelevant but useful to normalize
φα(1) = 0 and φ′α(1) = 0 for all α ∈ IR and to achieve the logarithmic limits for
α=0 and α=−1. The derivatives are:

φ′α(q) =


qα/α− 1/α for α 6= 0,−1,
log(q) for α = 0,
−1/q + 1 for α = −1,

The associated Bregman discrepancies are:

dα(p, q) =


p1+α/(α(1+α)) + q1+α/(1+α)− pqα/α for α 6= 0,−1,
p log(p/q) + q − p for α = 0,
− log(p/q) + p/q for α = −1,

Integrated to form Bregman divergences for pairs of densities p=p(y) and q=q(y)
of P and Q, respectively, one obtains:

Dα(P ,Q) =


∫ (
p1+α/(α(1+α)) + q1+α/(1+α)− pqα/α

)
dµ) for α 6= 0,−1,∫

p log(p/q) dµ for α = 0,
−
∫

(log(p/q) + p/q) dµ for α = −1,

The proper scoring rules associated with density power divergences (neglecting
constants) are as follows:

Sα(y,Q) =


−qα(y)/α+

∫
q1+α dµ /(1 + α) for α 6= 0,−1,

− log(q(y)) for α = 0,
1/q(y) +

∫
log(q) dµ for α = −1.

The associated entropies are as follows:

Hα(Q) =


−
∫
q1+α dµ/(α(1+α)) for α 6= 0,−1,

−
∫
q log(q) dµ for α = 0,∫
log(q) dµ for α = −1.

A.3 Partial Influence Functions with regard to Regressor Distributions

Remark on notation: We have a need to explicitly note the distribution at
which the influence function is created. Recall the definition from Section 6.6:

IF (y, ~x;P ) =
d

dt

∣∣
t=0
θ((1−t)P + tδ(y,~x)).

This definition can be mapped to the interpretation of regression functionals as
having two separate arguments, P

Y| ~X and P~X by splitting the pointmass δ(y,~x)
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off to the two arguments: The conditional response distribution is (1−t)P
Y| ~X=~x

+

tδy at this particular ~x, leaving those at all other ~x′ unchanged; the regressor
distribution is changed to (1−t)P~X + tδ~x.

We show that the partial influence functions wrt P~X is a shown in Proposi-
tion 6.6. We start with the integrated form of the derivative:

IF (P ′;P ) =
d

dt

∣∣
t=0
θ((1−t)P + tP ′) =

∫
IF (y, ~x;P )P ′(dy, d~x).

which uses the fact that
∫
IF (Y, ~X;P )dP = 0. To form the partial influence

function wrt P~X holding P
Y| ~X fixed, we rewrite the expansion with P

Y| ~X being

the same for P ′ and P :

(14)
d

dt

∣∣
t=0
θ(P

Y| ~X ⊗ ((1−t)P~X
′ + tP~X)) =

∫ ∫
IF (y, ~x)P (dy|d~x)P ′(d~x),

which shows that the partial influence function wrt P~X is

IF (~x;P~X) = EP [IF (Y, ~X;P )| ~X = ~x].

(We assumed that if P~X is an acceptable regressor distribution, so is a mixture
(1−t)P~X + tδ~x for small t > 0 and any ~x.)

To show Proposition 6.6, if we have well-specification, then θ((1−t)P + tδ~x) =
θ(P ), hence IF (~x;P ) = 0. For the converse, we use the following integral repre-
sentation, which is integrating up derivatives along a convex segment:

θ(P
Y| ~X ⊗ P~X

′) = θ(P
Y| ~X ⊗ P~X) +

∫
IF (P~X

′; (1−t)P~X + tP~X
′) dt.

As a consequence, if IF (~x; (1− t)P~X + tP~X
′) = 0 for all ~x at all regressor

distributions, then IF (P~X
′; (1− t)P~X + tP~X

′) = 0 for all P~X
′ and P~X , hence

θ(P
Y| ~X ⊗ P~X

′) = θ(P
Y| ~X ⊗ P~X) for all P~X

′ and P~X . �

A.4 Proof of Lemma 3.3.3

The “if” part is trivial as it involves taking expectations wrt arbitrary P~X . The
“only if” part follows by observing that for any acceptable P~X with θ(P

Y| ~X ⊗
P~X) = θ0 there must exist ~x for which EP [ψ(θ0;Y, ~X)| ~X = ~x] 6= 0. Mixtures
Pw
~X

= (1−t)P~X + tδ~x for 0<t<1 will then also be acceptable (see Section A.1),
but they will not satisfy the EE for θ0, hence θ(·) is not independent of the
regressor distribution for this conditional response distribution. �

A.5 Reweighting and Partially Additive Models

We discuss the type of diagnostic illustrated in Section 5.2 where slopes βj(P )
are reweighted wrt to their own regressors, Z = Xj .

If we interpret the slope βj(P ) of the regressor Xj as a partial derivative of
the best approximation to the response surface, then by localizing with a weight
function wξ(Xj) we heuristically interpret βj(wξ(Xj)P ) as partial derivative of
the best approximation conditional on Xj ≈ ξ. If this localized partial derivative
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is not constant in ξ, it indicates some form of nonlinearity of the response surface
as a function of Xj (linearly adjusted for, and averaged over, all other regressors).

This line of thinking may suggest that this diagnostic may be related to a
partially additive regression of the form

(15) Y ≈ s(Xj)+
∑
k(6=j)

βkXk,

where s(·) is a smooth function of Xj . The heuristic correspondence with the
diagnostic is this:

s′(ξ) ≈ βj(wξ(Xj)P ).

Note that in the diagnostic all adjustments are linear in the other regressors, not
nonlinearly additive, hence the diagnostic does not correspond to a full additive
model Y ≈

∑
k sk(Xk), which adjusts sj(Xj) for all other sk(Xk).

Furthermore, there exists even a difference between the diagnostic and the
partially additive regression (15):

• The diagnostic adjusts βj(·) linearly for all other Xk with regard to the
reweighted distribution wξ(Xj)P , whereas
• the partially additive regression (15) adjusts s(Xj) linearly for all other Xk

with regard to the raw distribution P .

These subtle differences are to be considered when surprising effects are observed
under reweighting.

A.6 A Connection of Reweighting to Nonparametrics

Generalizing the idea of reweighting and using many — possibly infinitely
many — weight functions provides a natural bridge from parametric to non-
parametric regression, namely, by using reweighting functions that are “running
Parzen kernels” as, for example, in local linear smoothing. The following are a
few steps to describe the general idea of localizing regression functionals when
the regressor space is IRp: Let w̃~ξ(~x) be a family of Parzen kernels, each member

centered at a location ~ξ in regressor space, an example being Gaussian kernels
w̃~ξ(~x) ∼ exp(−‖~x − ~ξ‖2/(2σ2)). Then w~ξ(~x) = w̃~ξ(~x)/EP [w~ξ(

~X)] is a weight

function that is normalized for P~X at each ~ξ. Finally obtain the value of the

regression functional localized at ~ξ:

(16) θ~ξ(P ) = θ(w~ξ(
~X)P

Y, ~X
).

Two special cases:

• If θ(P ) = EP [Y ], then ~ξ 7→ θ~ξ(P ) is a regularized approximation to the

response surface ~ξ 7→ EP [Y | ~X=~ξ], the result of local averaging.

• If θ(·) is the linear OLS functional, then θ~ξ(P ) consists of a local intercept

and local slopes at each location ~ξ, the latter forming a regularized approx-
imation to the gradient at ~ξ. If we define f(~ξ) = θ~ξ(P )′~ξ, then f(~ξ) is a

locally linear approximation to the response surface ~ξ 7→ EP [Y | ~X=~ξ].
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Estimating smooth functions and comparing them to linear ones has been a
diagnostic idea for some time, and a particularly useful approach along these
lines is by fitting additive models (Hastie and Tibshirani, 1990). In the next
subsection we will pursue a different diagnostic idea that stays closer to the
regression functional of interest.
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