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Abstract.
In the early 1980s Halbert White inaugurated a “model-robust” form

of statistical inference based on the “sandwich estimator” of standard
error. This estimator is known to be “heteroskedasticity-consistent”,
but it is less well-known to be “nonlinearity-consistent” as well. Non-
linearity, however, raises fundamental issues because in its presence
regressors are not ancillary, hence can’t be treated as fixed. The con-
sequences are deep: (1) population slopes need to be re-interpreted as
statistical functionals obtained from OLS fits to largely arbitrary joint
x-y distributions; (2) the meaning of slope parameters needs to be
rethought; (3) the regressor distribution affects the slope parameters;
(4) randomness of the regressors becomes a source of sampling variabil-
ity in slope estimates; (5) inference needs to be based on model-robust
standard errors, including sandwich estimators or the x-y bootstrap. In
theory, model-robust and model-trusting standard errors can deviate
by arbitrary magnitudes either way. In practice, significant deviations
between them can be detected with a diagnostic test.
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1. INTRODUCTION

Halbert White’s basic sandwich estimator of standard error for OLS can be
described as follows: In a linear model with regressor matrix XN×(p+1) and response
vector yN×1, start with the familiar derivation of the covariance matrix of the OLS
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2 A. BUJA ET AL.

coefficient estimate β̂, but allow heteroskedasticity, V [y|X]=D diagonal:

(1) V [ β̂ |X] = V [(X′X)−1X′ y |X] = (X′X)−1(X′DX)(X′X)−1.

The right hand side has the characteristic “sandwich” form, (X′X)−1 forming
the “bread” and X′DX the “meat.” Although this sandwich formula does not
look actionable for standard error estimation because the variances Dii=σ2

i are
not known, White showed that (1) can be estimated asymptotically correctly. If
one estimates σ2

i by squared residuals r2
i , each r2

i is not a good estimate, but the
averaging implicit in the “meat” provides an asymptotically valid estimate:1

(2) V̂sand[ β̂ ]
∆
= (X′X)−1(X′ D̂X)(X′X)−1,

where D̂ is diagonal with D̂ii = r2
i . Standard error estimates are obtained by

ŜEsand[ β̂j ] = V̂sand[ β̂ ]
1/2
jj . They are asymptotically valid even if the responses

are heteroskedastic, hence the term “Heteroskedasticity-Consistent Covariance
Matrix Estimator” in the title of one of White’s (1980b) famous articles.

Lesser known is the following deeper result in one of White’s (1980a, p. 162-3)
less widely read articles: the sandwich estimator of standard error is asymptoti-
cally correct even in the presence of nonlinearity:2

(3) E[y |X] 6= Xβ for all β.

The term “heteroskedasticity-consistent” is an unfortunate choice as it obscures
the fact that the same estimator of standard error is also “nonlinearity-consistent”
when the regressors are treated as random. The sandwich estimator of standard
error is therefore “model-robust” not only against second order model violations
but first order violations as well. Because of the relative obscurity of this impor-
tant fact we will pay considerable attention to its implications. In particular we
will show how nonlinearity “conspires” with randomness of the regressors

(1) to make slopes dependent on the regressor distribution and
(2) to generate sampling variability, even in the absence of noise in the response.

For an intuitive grasp of these effects, the reader may peruse Figure 2 for effect (1)
and Figure 4 for effect (2).3

From the sandwich estimator (2), the usual model-trusting estimator is ob-
tained by collapsing the sandwich form using homoskedasticity, D̂ = σ̂I:

V̂lin[ β̂ ]
∆
= (X′X)−1σ̂2, σ̂2 = ‖r‖2/(N−p−1).

1This sandwich estimator is only the simplest version of its kind. Other versions were exam-
ined, for example, by MacKinnon and White (1985) and Long and Ervin (2000). Some forms
are pervasive in Generalized Estimating Equations (GEE; Liang and Zeger 1986; Diggle et al.
2002) and in the Generalized Method of Moments (GMM; Hansen 1982; Hall 2005).

2The term “nonlinearity” is meant in the sense of first order model misspecification. A differ-
ent meaning of “nonlinearity”, not intended here, occurs when the regressor matrix X contains
multiple columns that are functions (products, polynomials, B-splines, ...) of underlying inde-
pendent variables. One needs to distinguish between “regressors” and “independent variables”:
Multiple regressors may be functions of one or more independent variable(s).

3A more striking illustration of effect (2) in the form of an animation is available to users of
the R Language (2008) by executing the following line of code:

source("http://stat.wharton.upenn.edu/~buja/src-conspiracy-animation2.R")
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MODELS AS APPROXIMATIONS 3

This yields finite-sample unbiased squared standard error estimators ŜE
2
lin[ β̂j ]=

V̂lin[ β̂ ]jj if the model is first and second order correct: E[y |X] = Xβ (linear-
ity) and V [y |X]=σ2IN (homoskedasticity). Assuming distributional correctness
(Gaussian errors), one obtains finite-sample correct tests and confidence intervals.

The corresponding tests and confidence intervals based on the sandwich esti-
mator have only an asymptotic justification, but their asymptotic validity holds
under much weaker assumptions. In fact, it may rely on no more than the assump-
tion that the rows (yi, ~x

′
i) of the data matrix (y,X) are iid samples from a joint

multivariate distribution subject to some technical conditions. Thus sandwich-
based theory provides asymptotically correct inference that is model-robust. The
question then arises what model-robust inference is about: When no model is
assumed, what are the parameters, and what is their meaning?

Discussing these questions is a first goal of this article. An established answer
is that parameters can be re-interpreted as statistical functionals β(P ) defined
on a large nonparametric class of joint distributions P = P (dy, d~x) through best
approximation (Section 3), sometimes called “projection.” The sandwich estima-
tor produces then asymptotically correct standard errors for the slope functionals
βj(P ) (Section 5). Vexing is the question of the meaning of slopes in the presence
of nonlinearity as the standard interpretations no longer apply. We will propose
interpretations that draw on the notions of case-wise and pairwise slopes after
linear adjustment (Section 10).

A second goal of this article is to discuss why the regressors should be treated
as random. Based on an ancillarity argument, model-trusting theories tend to
condition on the regressors and hence treat them as fixed (Cox and Hinkley
1974, p. 32f, Lehmann and Romano 2008, p. 395ff). However, it will be shown
that under misspecification ancillarity of the regressors is violated (Section 4).
Here are some implications:

• Population parameters β(P ), now interpreted as statistical functionals, de-
pend on the distribution of the regressors. Thus it matters where the re-
gressors fall. The reason is intuitive: When models are approximations, it
matters where the approximation is made; see Figure 2.
• A natural intuition fails, caused by misleading terminology: Nonlinearity

— sometimes called “model bias” — does not primarily cause bias in esti-
mates β(P̂ ). It causes sampling variability of order N−1/2, thereby rivaling
error/noise as a source of sampling variability (Section 6).
• A second intuition fails: While it is correct that an inference guarantee

conditional on the regressors implies a marginal inference guarantee, this
principle is inapplicable because the premise is false — under misspecifi-
cation there is no inference guarantee conditional on the regressors. The
reason is that inference theories that treat regressors as fixed are incapable
of correctly accounting for misspecification.

All three implications hold in great generality, but in this article they will be
worked out for OLS linear regression to achieve the greatest degree of lucidity.

A third goal of this article is to argue in favor of the “x-y bootstrap” which
resamples observations (~x′i, yi). The better known “residual bootstrap” resamples
residuals ri and thereby assumes a linear response surface and exchangeable er-
rors. There exists theory to justify both (Freedman (1981) and Mammen (1993),
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4 A. BUJA ET AL.

for example), but only the x-y bootstrap is model-robust and solves the same
problem as the sandwich estimator.4 In Part II (Buja et al. 2018), it will be
shown that the sandwich estimator is a limiting case of the x-y bootstrap.

A fourth goal of this article is to practically (Section 2) and theoretically (Sec-
tion 11) compare model-robust and model-trusting estimators of standard error
in the case of OLS linear regression. To this end we define a ratio of asymptotic
variances — “RAV ” for short — that describes the discrepancies between the
two standard errors in the asymptotic limit.

A fifth goal is to estimate the RAV for use as a test statistic. We derive
an asymptotic null distribution to test for model deviations that invalidate the
usual standard error of a specific coefficient. The resulting “misspecification test”
differs from other such tests in that it answers the question of discrepancies among
standard errors directly and separately for each coefficient (Section 12).

A final goal is to briefly discuss issues with sandwich estimators (Section 13):
They can be inefficient when models are correctly specified. We additionally point
out that they are non-robust to heavy tails in the joint x-y distribution. To
make sense of this observation, the following distinctions are needed: (1) classical
robustness to heavy tails is distinct from model robustness to first and second
order model misspecifications; (2) at issue is not robustness (in either sense) of
parameter estimates but of standard errors. It is the latter we examine here.

Throughout we use precise notation for clarity, yet this article is not very
technical. Many results are elementary, not new, and stated without regularity
conditions. Readers may browse the tables and figures and read associated sec-
tions that seem most germane. Important notations are shown in boxes.

The present article is limited to OLS linear regression, both for populations
and for data. The case permits explicit calculations and lucid interpretations.
Part II (Buja et al. 2018) will treat arbitrary regressions at the cost of reduced
lucidity. It will also propose new types of diagnostics.

The idea that models are approximations and hence generally “misspecified”
to a degree has a long history, most famously expressed by Box (1979). We pre-
fer to quote Cox (1995): “it does not seem helpful just to say that all models
are wrong. The very word model implies simplification and idealization.” The
history of inference under misspecification can be traced to Cox (1961, 1962),
Eicker (1963), Berk(1966, 1970), Huber (1967), before being systematically elab-
orated by White’s articles (1980a, 1980b, 1981, 1982, among others), capped by a
monograph (White 1994). A wide-ranging discussion by Wasserman (2011) calls
for “Low Assumptions, High Dimensions.” A book by Davies (2014) elaborates
the idea of adequate models for a given sample size. We, the present authors, got
involved with this topic through our work on post-selection inference (Berk et
al. 2013) because the results of model selection should certainly not be assumed
to be “correct.” We compared the obviously model-robust standard errors of the
x-y bootstrap with the usual ones of linear models theory and found the dis-
crepancies illustrated in Section 2. Attempting to account for these discrepancies
became the starting point of the present article.

4Note David Freedman’s (1981) surprise when he inadvertently discovered the same
assumption-lean validity of the x-y bootstrap (ibid. top of p. 1220).
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MODELS AS APPROXIMATIONS 5

β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

Intercept 0.760 22.767 16.505 16.209 0.726 0.712 0.981 0.033 0.046 0.047

MedianIncome ($K) -0.183 0.187 0.114 0.108 0.610 0.576 0.944 -0.977 -1.601 -1.696

PercVacant 4.629 0.901 1.385 1.363 1.531 1.513 0.988 5.140 3.341 3.396

PercMinority 0.123 0.176 0.165 0.164 0.937 0.932 0.995 0.701 0.748 0.752

PercResidential -0.050 0.171 0.112 0.111 0.653 0.646 0.988 -0.292 -0.446 -0.453

PercCommercial 0.737 0.273 0.390 0.397 1.438 1.454 1.011 2.700 1.892 1.857

PercIndustrial 0.905 0.321 0.577 0.592 1.801 1.843 1.023 2.818 1.570 1.529

Table 1
LA Homeless Data: Comparison of Standard Errors. See also Table 6 in the Appendix for the

Boston Housing Data.

2. DISCREPANCIES BETWEEN STANDARD ERRORS ILLUSTRATED

Table 1 shows regression results for a dataset consisting of a sample of 505
census tracts in Los Angeles that has been used to relate the local number of
homeless (Y ) to covariates for demographics and building usage (Berk et al.
2008).5 We do not intend a careful modeling exercise but show the raw results of
linear regression to illustrate the degree to which discrepancies can arise among
three types of standard errors: SElin from linear models theory, SEboot from the
x-y bootstrap (Nboot = 100, 000) and SEsand from the sandwich estimator (accord-
ing to MacKinnon and White’s (1985) HC2 proposal). Ratios of standard errors
that are far from +1 are shown in bold font.

The ratios SEsand/SEboot show that the sandwich and bootstrap estimators are
in good agreement. Not so for the linear models estimates: we have SEboot,SEsand >
SElin for the regressors PercVacant, PercCommercial and PercIndustrial, and
SEboot,SEsand < SElin for Intercept, MedianIncome ($K), PercResidential.
Only for PercMinority is SElin off by less than 10% from SEboot and SEsand. The
discrepancies affect outcomes of some of the t-tests: Under linear models the-
ory the regressors PercCommercial and PercIndustrial have sizable t-values of
2.700 and 2.818, respectively, which are reduced to unconvincing values below 1.9
and 1.6, respectively, if the x-y bootstrap or the sandwich estimator are used. On
the other hand, for MedianIncome ($K) the t-value −0.977 from linear models
theory becomes borderline significant with the bootstrap or sandwich estimator
if the plausible one-sided alternative with negative sign is used.

A similar exercise with fewer discrepancies but similar conclusions is shown in
Appendix B for the Boston Housing data.

Conclusions: (1) SEboot and SEsand are in substantial agreement; (2) SElin
on the one hand and {SEboot,SEsand} on the other hand can have substantial
discrepancies; (3) the discrepancies are specific to regressors.

3. THE POPULATION FRAMEWORK FOR LINEAR OLS

As noted earlier, model-robust inference needs a target of estimation that is
well-defined outside the linear working model. To this end we need notation
for data distributions that are free of model assumptions, essentially relying on
iid sampling of x-y tuples. Subsequently OLS parameters can be introduced as
statistical functionals of these distributions through best linear approximation.

5The response is the raw number of homeless in a census tract. The tracts do not differ by
magnitudes and, according to experts, size effects seem minor. The homeless tend to clump
in certain areas within census tracts, and it is thought that the regressors describe features of
the tracts that make them magnets for the homeless. Finally, policy makers are accustomed to
thinking in counts, not percentages.
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6 A. BUJA ET AL.

This is sometimes called “projection”, meaning that the assumption-free data
distribution is “projected” to the “nearest” distribution in the working model.

3.1 Populations for OLS Linear Regression

In an assumption-lean, model-robust population framework for OLS linear re-
gression with random regressors, the ingredients are regressor random variables
X1, ..., Xp and a response random variable Y . For now the only assumption is
that they are all numeric and have a joint distribution, written as

P = P (dy,dx1, ...,dxp).

Data will consist of iid multivariate samples from this joint distribution (Sec-
tion 5). No working model for P will be assumed.

It is convenient to add a fixed regressor 1 to accommodate an intercept pa-
rameter; we may hence write

~X = (1, X1, ..., Xp)
′

for the column random vector of the regressor variables, and ~x = (1, x1, ..., xp)
′

for its values. We further write

P
Y, ~X

= P , P
Y | ~X , P~X ,

for, respectively, the joint distribution of (Y, ~X), the conditional distribution
of Y given ~X, and the marginal distribution of ~X. These denote actual data
distributions, free of assumptions of a working model.

All variables will be assumed to be square integrable. Required is also that
E[ ~X ~X ′ ] is full-rank, but permitted are nonlinear degeneracies among regres-
sors as when they are functions of underlying independent variables such as in
polynomial or B-spline regression or product interactions.

3.2 Targets of Estimation: The OLS Statistical Functional

We write any function f(X1, ..., Xp) of the regressors as f( ~X). We will need

notation for the “true response surface” µ( ~X), which is the conditional expec-
tation of Y given ~X and the best L2(P ) approximation to Y among functions
of ~X. It is not assumed to be linear in ~X:

µ( ~X)
∆
= E[Y | ~X ] = argmin

f( ~X)∈L2(P )
E[(Y − f( ~X))2] .

The main definition concerns the best population linear approximation to
Y , which is the linear function l( ~X) = β′ ~X with coefficients β = β(P ) given by

β(P )
∆
= argminβ∈IRp+1 E[(Y −β′ ~X)2] = E[ ~X ~X ′ ]−1E[ ~XY ]

= argminβ∈IRp+1 E[(µ( ~X)−β′ ~X)2] = E[ ~X ~X ′ ]−1E[ ~Xµ( ~X) ].

Both right hand expressions follow from the population normal equations:

(4) E[ ~X ~X ′ ]β −E[ ~XY ] = E[ ~X ~X ′ ]β −E[ ~Xµ( ~X)] = 0.
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µ(x)
βTx
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●

●
y

x

ε

η

δ

Noise:

ε|x = y|x − µ(x)

Nonlinearity:

η(x) = µ(x) − βTx

Population Residual:

δ|x = η(x) + ε|x

Fig 1. Illustration of the decomposition (5) for linear OLS.

The population coefficients β(P ) = (β0(P ), β1(P ), ..., βp(P ))′ form a vector
statistical functional, P 7→ β(P ), defined for a large class of joint data distri-
butions P =P

Y, ~X
. If the response surface under P happens to be linear, µ( ~X)=

β̃′ ~X, as it is for example under a Gaussian linear model, Y | ~X ∼ N (β̃′ ~X, σ2),
then β(P ) = β̃. The statistical functional is therefore a natural extension of the
traditional meaning of a model parameter, justifying the notation β = β(P ).
The point is, however, that β(·) is defined even when linearity does not hold.
(Depending on the context, we may write β to mean β(P ).)

3.3 The Noise-Nonlinearity Decomposition for Population OLS

The response Y has the following canonical decompositions:

(5)

Y = β′ ~X + (µ( ~X)− β′ ~X)︸ ︷︷ ︸ + (Y − µ( ~X))︸ ︷︷ ︸
= β′ ~X + η( ~X) + ε︸ ︷︷ ︸
= β′ ~X + δ

We call ε = ε| ~X the noise and η = η( ~X) the nonlinearity 6, while for δ there is
no standard term, so “population residual” may suffice; see Table 2 and Figure 1.
Important to note is that (5) is a decomposition, not a model assumption. In a
model-robust framework there is no notion of “error term” in the usual sense;
its place is taken by the population residual δ which satisfies few of the usual
assumptions made in generative models. It naturally decomposes into a system-
atic component, the nonlinearity η = η( ~X), and a random component, the noise

6The term “nonlinearity” has two meanings, related to each other. “The/a nonlinearity”
refers to η(~x), but “presence of nonlinearity” is a property of µ(~x).
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8 A. BUJA ET AL.

η = µ( ~X)− β′ ~X = η( ~X), nonlinearity,

ε = Y− µ( ~X), noise,

δ = Y−β′ ~X = η + ε, population residual,

µ( ~X) = β′ ~X + η( ~X) response surface,

Y = β′ ~X + η( ~X) + ε = β′ ~X + δ response.

Table 2
Random variables and their canonical decompositions.

ε = ε| ~X. Model-trusting linear modeling, before conditioning on ~X, must assume

η( ~X)
P
= 0 and ε to have the same ~X-conditional distribution in all of regressor

space, that is, to be independent of ~X. No such assumptions are made here.
What is left are orthogonalities satisfied by η and ε in relation to ~X. If we call
independence “strong-sense orthogonality”, we have instead

(6)
weak-sense orthogonality: η ⊥ ~X (E[η ·Xj ] = 0 ∀j=0, 1, ..., p),

medium-sense orthogonality: ε ⊥ L2(P~X) (E[ε·f(~X)] = 0 ∀f ∈L2(P~X)).

These are not assumptions but consequences of population OLS and the defini-
tions. Because of the inclusion of an intercept (j = 0 and f = 1, respectively),
both the nonlinearity and noise are marginally centered: E[ η ] = E[ ε ] = 0.
Importantly, it also follows that ε ⊥ η( ~X) because η is just some f ∈L2(P~X).

In what follows we will need the following natural definitions:

• Conditional noise variance: The noise ε, not assumed homoskedastic,
can have arbitrary conditional distributions P (dε| ~X = ~x) for different ~x
except for conditional centering and finite conditional variances. Define:

(7) σ2( ~X)
∆
= V [ ε | ~X] = E[ ε2 | ~X]

P
< ∞.

When we use the abbreviation σ2 we will mean σ2 = σ2( ~X) as we will never
assume homoskedasticity.

• Conditional mean squared error: This is the conditional MSE of Y
w.r.t. the population linear approximation β′ ~X. Its definition and bias-
variance decomposition are:

(8) m2( ~X)
∆
= E[ δ2 | ~X] = η2( ~X) + σ2( ~X).

The right hand side follows from δ = η+ε and ε ⊥ η( ~X) noted after (6).

In the above definitions and statements, randomness of the regressor vector ~X
has started to play a role. The next section will discuss a crucial role of the
marginal regressor distribution P~X .
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MODELS AS APPROXIMATIONS 9

4. BROKEN REGRESSOR ANCILLARITY I:
NONLINEARITY AND RANDOM X JOINTLY AFFECT SLOPES

4.1 Misspecification Destroys Regressor Ancillarity

Conditioning on the regressors and treating them as fixed when they are ran-
dom has historically been justified with the ancillarity principle. Regressor ancil-
larity is a property of working models p(y | ~x; θ) for the conditional distribution
of Y | ~X, where θ is the parameter of interest in the usual meaning of a parametric
model. Because we treat ~X as random, the assumed joint distribution of (Y, ~X) is

p(y, ~x; θ) = p(y | ~x; θ) p(~x),

where p(~x) is the unknown marginal regressor distribution, acting as a “non-
parametric nuisance parameter.” Ancillarity of p(~x) in relation to θ is immedi-
ately recognized by forming likelihood ratios,

p(y, ~x; θ1)/p(y, ~x; θ2) = p(y | ~x; θ1)/p(y | ~x; θ2),

which are free of p(~x), detaching the regressor distribution from inference about
the parameter θ. (For more on ancillarity, see Appendix C.) This logic is valid if
p(y | ~x; θ) correctly describes the actual conditional regressor distribution P

Y | ~X
for some θ. If this is not the case, the ancillarity argument does not apply.

To pursue the consequences of non-ancillarity, one needs to consider P
Y | ~X not

in the working model and interpret parameters as statistical functionals:

Proposition 4.1: Breaking Regressor Ancillarity in linear OLS
Consider joint distributions that share a function µ(~x) as a (a.s.) version of their
conditional expectation of the response. Among these distributions, there exist P 1

and P 2 with β(P 1) 6= β(P 2) if and only if µ(~x) is nonlinear.

See Appendix E.1. Because β(P 1,2) depend on Y only through µ( ~X), the cause
of β(P 1) 6= β(P 2) must be a difference in their regressor distributions.

The proposition is best explained graphically: Figure 2 shows single regressor
scenarios with nonlinear and linear mean functions, respectively, and the same
two regressor distributions. The two population OLS lines for the two regressor
distributions differ in the nonlinear case and they are identical in the linear case.7

Ancillarity of regressors is sometimes informally explained as the regressor
distribution being independent of, or unaffected by, the parameters of interest.
From the present point of view where parameters are not labels for distributions
but rather statistical functionals, this phrasing has things upside down:

It is not the parameters that affect the regressor distribution;
it is the regressor distribution that affects the parameters.

4.2 Implications of the Dependence of Slopes on Regressor Distributions

A first practical implication, illustrated by Figure 2, is that two empirical stud-
ies that use the same regressors, the same response, and the same model, may yet
estimate different parameter values, β(P1) 6=β(P2). This possibility arises even

7See also White (1980a, p. 155f); his g(Z) + ε is our Y .
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10 A. BUJA ET AL.

X

Y

Y = µ(X)

X

Y

Y = µ(X)

Fig 2. Illustration of the dependence of the population OLS solution on the marginal distribution
of the regressors: The left figure shows dependence in the presence of nonlinearity; the right figure
shows independence in the presence of linearity.

X

Y Y = µ(X)

P2(dx)

P1(dx)

Fig 3. Illustration of the interplay between regressors’ high-density range and nonlinearity: Over
the small range of P1 the nonlinearity is undetectable and immaterial for realistic sample sizes,
whereas over the extended range of P2 the nonlinearity is more likely to be detectable and relevant.

if the true response surface µ(~x) is identical between the studies. The reason is
model misspecification and differences between the regressor distributions in the
two studies. Here is therefore a potential cause of so-called “parameter hetero-
geneity” in meta-analyses. — The single-regressor situation of Figure 2 gives only
an insufficient impression of the problem because for a single regressor such differ-
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MODELS AS APPROXIMATIONS 11

ences between regressor distributions are easily detected. For multiple regressors
the differences take on a multivariate nature and may become undetectable.

A second practical implication, illustrated by Figure 3, is that misspecification
is a function of the regressor range: Over a narrow range a model has a better
chance of appearing “correctly specified.” In the figure the narrow range of P1(d~x)
makes the linear approximation appear very nearly correctly specified, whereas
the wide range of P2(d~x) results in gross misspecification. Again, the issue gets
magnified for larger numbers of regressors where the notion of “regressor range”
takes on a multivariate meaning.

Finally, the fact that all models have limited ranges of “acceptable approxi-
mation” is a universal issue. This holds even in those physical sciences that are
based on the most successful theories known to us.

5. THE NOISE-NONLINEARITY DEPOMPOSITION OF OLS ESTIMATES

We turn to estimation from iid data8. We denote iid observations from a joint
distribution P

Y, ~X
by (Yi, ~Xi

′ ) = (Yi, 1, Xi,1, ..., Xi,p) (i = 1, 2, ..., N). We stack
them to vectors and matrices as in Table 3, inserting a constant 1 in the regressors
to accommodate an intercept term. In particular, ~Xi

′ is the i’th row and Xj the
j’th column of the regressor matrix X (i = 1, ..., N, j = 0, ..., p).

β = (β0, β1, ..., βp)′ , parameter vector ((p+ 1)×1)

Y = (Y1, ..., YN )′ , response vector (N×1)

Xj = (X1,j , ..., XN,j)
′ , j’th regressor vector (N×1)

X = [1,X1, ...,Xp] =



~X1
′

.....

.....

~XN
′


,

regressor matrix

with intercept
(N×(p+ 1))

µ = (µ1, ..., µN )′ , µi = µ( ~Xi) = E[Y | ~Xi], conditional means (N×1)

η = (η1, ..., ηN )′ , ηi = η( ~Xi) = µi − β′ ~Xi, nonlinearities (N×1)

ε = (ε1, ..., εN )′ , εi = Yi − µi, noise values (N×1)

δ = (δ1, ..., δN )′ , δi = ηi + εi, population residuals (N×1)

σ = (σ1, ..., σN )′ , σi = σ( ~Xi) = V [Y | ~Xi]
1/2, conditional sdevs (N×1)

β̂ = (β̂0, β̂1, ..., β̂p)′ = (X′X)−1X′Y , parameter estimates ((p+ 1)×1)

r = (r1, ..., rN )′ = Y −Xβ̂, sample residuals (N×1)

Table 3
Random variable notation for estimation in linear OLS based on iid observational data.

The nonlinearity η, the noise ε, and the population residuals δ generate random

8In econometrics, where misspecification has been an important topic, the assumption of iid
data is too limiting; instead, one assumes time series structures. See, for example, White (1994).
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12 A. BUJA ET AL.

N -vectors when evaluated at all N observations (again, see Table 3):

η = µ−Xβ, ε = Y−µ, δ = Y−Xβ = η + ε.(9)

It is important to distinguish between population and sample properties: The
vectors δ, ε and η are not orthogonal to the regressor columns Xj in the sample.
Writing 〈·, ·〉 for the usual Euclidean inner product on IRN , we have in general

〈δ,Xj〉 6= 0, 〈ε,Xj〉 6= 0, 〈η,Xj〉 6= 0,

even though the associated random variables are orthogonal to Xj in the popu-

lation: E[ δXj ]=0, E[ εXj ]=0, E[ η( ~X)Xj ]=0, according to (6).

The OLS estimate of β(P ) is as usual

(10) β̂ = argminβ̃ ‖Y−Xβ̃‖2 = (X′X)−1X′Y .

If we write P̂ for the empirical distribution of the observations (Yi, ~Xi
′ ), then β̂ =

β(P̂ ) is the plug-in estimate. Associated is the sample residual vector r = Y−Xβ̂,
based on β̂, which is distinct from the population residual vector δ = Y−Xβ,
based on β = β(P ).

In linear models theory which conditions on (or fixes) X, the target of estima-
tion is what we may call the “X-conditional parameter”:

(11) β(X)
∆
= E[ β̂ |X ] = argminβE[ ‖Y−Xβ‖2 |X ] = (X′X)−1X′µ.

In random-X theory, on the other hand, the target of estimation is β(P ), while
the X-conditional parameter β(X) is a random vector. The vectors β̂ = β(P̂ ),
β(X) and β(P ) lend themselves to the following telescoping decomposition:

(12) β̂ − β(P ) = (β̂ − β(X)) + (β(X)− β(P )),

which in turn reflects the decomposition δ = ε+ η:

Definition and Lemma 5: Define “Estimation Offsets” (EOs) as follows:

(13)

Total EO
∆
= β̂ − β(P ) = (X′X)−1X′ δ,

Noise EO
∆
= β̂ − β(X) = (X′X)−1X′ ε,

Approximation EO
∆
= β(X)− β(P ) = (X′X)−1X′ η.

The right sides follow from (9), i.e., ε = Y−µ, η = µ−Xβ, δ = Y−Xβ, and

β̂ = (X′X)−1X′Y, E[ β̂ |X] = (X′X)−1X′µ, β(P ) = (X′X)−1X′ (Xβ).

The first defines β̂, the second uses E[Y|X] = µ, and the third is a tautology.

Remark: One might be tempted to interpret the approximation EO β(X)−
β(P ) as a bias because it is the difference of two targets of estimation. This
interpretation is entirely wrong. The approximation EO is a random variable
when nonlinearity is present. It will be seen to contribute not a bias but a N−1/2

order term to the sampling variability of β̂ (Section 7).
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Fig 4. Noise-less Response: The filled and the open circles represent two “datasets” from the
same population. The x-values are random; the y-values are a deterministic function of x: y =
µ(x) (shown in gray).
Left: The true response µ(x) is nonlinear; the open and the filled circles have different OLS lines
(shown in black). Right: The true response µ(x) is linear; the open and the filled circles have the
same OLS line (black on top of gray).

6. BROKEN REGRESSOR ANCILLARITY II:
NONLINEARITY AND RANDOM X CREATE SAMPLING VARIATION

6.1 Sampling Variation’s Two Sources: Noise AND Nonlinearity

For the X-conditional parameter β(X) to be a non-trivial random variable, two
factors need to be present: (1) the regressors ~X need to be random and (2) the
nonlinearity η( ~X) must not vanish: P [η( ~X) 6= 0] > 0. In combination, these
factors conspire to produce sampling variation according to (13) which shows the
approximation EO to depend on the random matrix (X′X)−1X′ and the vector
of nonlinearity values η.

(14) V [ β̂ ] = E[V [ β̂ |X]] + V [E[ β̂ |X]] ,

where the left side represents the full unconditional variability of β̂ relevant for
statistical inference. In view of Lemma 5 this decomposition parallels δ = ε+ η:

(15)

V [ β̂ ] = V [ (X′X)−1X′ δ ] ,

E[V [ β̂ |X]] = E[ (X′X)−1X′ V [ ε |X] X (X′X)−1 ]

V [E[ β̂ |X] ] = V [β(X) ] = V [ (X′X)−1X′ η ]

The center line above the box represents the marginal sampling variability due to
noise combined with randomness in X. Note that V [ ε |X] = Dσ2 is the diagonal
matrix of noise variances. The box shows how the vector of nonlinearities η
“conspires” with the randomness of X to generate sampling variability in β(X).

Intuition for the sampling variability of β(X) is best provided by a graphical
illustration. In order to isolate this effect we consider a noise-free situation where
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14 A. BUJA ET AL.

the response is deterministic and nonlinear, hence a linear fit is “misspecified.”
To this end let Y =µ( ~X) where µ(·) is some non-linear function (that is, P

Y | ~X are

point masses δ
µ( ~X)

), and hence V [β̂|X] = 0 vanishes a.s. An example is shown

in the left hand frame of Figure 4 for a single regressor, with OLS lines fitted
to two “datasets” consisting of N = 5 regressor values each. The randomness
in the regressors causes the fitted line to differ between datasets, hence exhibit
sampling variability due to the nonlinearity of the response. This effect is absent
in the right hand frame of Figure 4 where the response is linear.9

6.2 Quandaries of Fixed-X Theory and the Need for Random-X Theory

The fixed-X approach of linear models theory necessarily assumes correct spec-
ification. Its only source of sampling variability is the noise EO β̂−β(X) aris-
ing from the conditional response distribution, ignoring the approximation EO
β(X)−β(P ) due to conditioning on X. A partial remedy in fixed-X theory is
to rely on diagnostics to detect lack of fit (misspecification). We emphasize that
diagnostics should be part of every regression analysis. In fact, to assist such di-
agnostics and make them relevant for correctly sized standard errors, we propose
in Section 12 a test to identify slopes that may have their usual standard errors
invalidated by misspecification. Furthermore, in Part II we propose a misspecifi-
cation diagnostic for regression parameters.

Data analysts may not stop with negative findings from model diagnostics and
instead continue with data-driven model improvement by, for example, trans-
forming variables and adding terms to the fitted equation till the residuals “look
right.” However, model improvement based on the data can have drawbacks and
limits. A drawback is that it can invalidate subsequent inferences in unpredictable
ways, as does any data-driven variable selection, formal or informal (see, e.g.,
Berk et al. 2013; Lee et al. 2016). A limit is that residual diagnostics lose power
as the number of regressors increases. This fact follows from what we may call
“Mammen’s dilemma.” Mammen (1996) showed, roughly speaking, that for mod-
els with numerous regressors the residual distribution tends to look as assumed
by the working model, e.g., Gaussian for OLS, Laplacian for LAD, irrespective
of the true error distribution. For these reasons, data analysts who diagnose and
improve their models will find themselves torn at some point between hunches of
having done too much of a good thing and missing out on something.

In light of such uncertainties arising from diagnostics and model improvement,
it may be of some comfort that tools are available for asymptotically correct infer-
ence under model misspecification, including misspecified deterministic responses
(Y =µ( ~X), σ2( ~X)=0). These tools — sandwich and x-y bootstrap10 estimators
of standard error — derive their justification from central limit theorems (CLTs)
to be described next.

9As in footnote 1, we urge the reader to watch a more striking animated illustration of this
effect by executing the following line of code in an R Language (2008) interpreter:

source("http://stat.wharton.upenn.edu/~buja/src-conspiracy-animation2.R")
10It needs to pointed out again that the residual bootstrap is not assumption-lean. It requires

the population residual δ to be a conventional error term, iid across the N observations, implying
first and second order correct specification (η( ~X) = 0 and σ2( ~X) = σ2 constant). The only lean
aspect is that the error term no longer needs to be Gaussian.
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7. MODEL-ROBUST CLTS, CANONICALLY DECOMPOSED

Random-X CLTs for OLS are standard, and the novel aspect of the follow-
ing proposition is in decomposing the overall asymptotic variance into contribu-
tions stemming from the noise EO and the approximation EO according to (13),
thereby providing an asymptotic analog of the finite-sample decomposition of
sampling variance in Section 6.1.

Proposition 7: For linear OLS the three EOs follow CLTs:

(16)

√
N (β̂ − β)

D−→ N
(
0,E[ ~X ~X ′ ]−1E[m2( ~X) ~X ~X ′ ] E[ ~X ~X ′ ]−1

)
√
N (β̂ − β(X))

D−→ N
(
0,E[ ~X ~X ′ ]−1E[σ2( ~X) ~X ~X ′ ] E[ ~X ~X ′ ]−1

)
√
N (β(X)− β)

D−→ N
(
0,E[ ~X ~X ′ ]−1E[ η2( ~X) ~X ~X ′ ] E[ ~X ~X ′ ]−1

)

These three statements once again reflect the decomposition (8),m2( ~X) = σ2( ~X)+
η2( ~X). According to (7) and (8), m2( ~X) can be replaced by δ2 and σ2( ~X) by ε2:

(17) E[m2( ~X) ~X ~X ′ ] = E[ δ2 ~X ~X ′ ], E[σ2( ~X) ~X ~X ′ ] = E[ ε2 ~X ~X ′ ].

The asymptotic variance of linear OLS can therefore be written as

(18) AV [P ;β]
∆
= E[ ~X ~X ′ ]−1E[ δ2 ~X ~X ′ ]E[ ~X ~X ′ ]−1 .

As always, β stands for the statistical functional β = β(P ) and by implication
its plug-in OLS estimator β̂ = β(P̂ ). The formula is the basis for plug-in that
produces the sandwich estimator of standard error (Section 8.1).

Special cases covered by the above proposition are the following:

• First order correct specification: η( ~X)
P
= 0. The sandwich form is

solely due to heteroskedasticity.

• Deterministic nonlinear response: σ2( ~X)
P
= 0. The sandwich form is

solely due to the nonlinearity and randomness of X.

• First and second order correct specification: η( ~X)
P
= 0, σ2( ~X)

P
=

σ2
0. The non-sandwich form is asymptotically valid without Gaussianity:√
N (β̂ − β)

D−→ N
(
0, σ2

0 E[ ~X ~X ′ ]−1
)

.

8. SANDWICH ESTIMATORS AND THE M -OF-N BOOTSTRAP

Empirically one observes that standard error estimates obtained from the x-y
bootstrap and from the sandwich estimator are generally close to each other (Sec-
tion 2). This is intuitively unsurprising as they both estimate the same asymptotic
variance, that of the first CLT in Proposition 7. A closer connection between them
will be described here and established in generality in Part II (Buja et al. 2018).11

11A third assumption-lean method of inference is empirical likelihood. See Owen (2001).
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16 A. BUJA ET AL.

8.1 The Plug-In Sandwich Estimator of Asymptotic Variance

Plug-in estimators of standard error are obtained by substituting the empirical
distribution P̂ for the true P in formulas for asymptotic variances. As the asymp-
totic variance AV [P ;β] in (18) is given explicitly and also suitably continuous in
the two arguments, one obtains a consistent estimator by plugging in P̂ for P :

(19) ÂV [β ]
∆
= AV [β, P̂ ], ŜE[βj ]

∆
=

1

N1/2
(ÂV [β ])

1/2
jj .

[Recall again that β = β(P ) stands for the OLS statistical functional which
specializes to its plug-in estimator through β̂ = β(P̂ ).] Concretely, one estimates
expectations E[...] with sample means Ê[...], β = β(P ) with β̂ = β(P̂ ), and
hence population residuals δ2 = (Y−~Xβ)2 with sample residuals r2

i = (Yi−~Xiβ̂)2.
Collecting the latter in a diagonal matrix D2

r, one has

Ê[ r2 ~X ~X ′ ] = 1
N (X′D2

r X), Ê[ ~X ~X ′ ] = 1
N (X′X).

The sandwich estimator ÂVsand[β ] = ÂV [β ] for linear OLS in its original form
(White 1980a) is therefore obtained explicitly as follows:

(20)
ÂVsand[β ]

∆
= Ê[ ~X ~X ′ ]−1 Ê[ r2 ~X ~X ′ ] Ê[ ~X ~X ′ ]−1

= N (X′X)−1 (X′D2
r X) (X′X)−1

This is version “HC” in MacKinnon and White (1985). A modification accounts
for the fact that residuals have smaller variance than noise, calling for a correc-
tion by replacing 1/N1/2 in (19) with 1/(N−p−1)1/2, in analogy to the linear
models estimator (“HC1” ibid.). Another modification is to correct individual
residuals for their reduced variance according to V [ri|X] = σ2(1 − Hii) under
homoskedasticity and ignoring nonlinearity (“HC2” ibid.). Further modifications
include a version based on the jackknife (“HC3” ibid.) using leave-one-out resid-
uals. MacKinnon and White (1985) also mention that some forms of sandwich
estimators were independently derived by Efron (1982, p. 18f) using the infinites-
imal jackknife, and by Hinkley (1977) using a “weighted jackknife.” See Weber
(1986) for a concise comparison in the linear model limited to heteroskedasticity.

8.2 Sandwich Estimators are Limits of M -of-N Bootstrap Estimators

An alternative to plug-in is estimating asymptotic variance with the x-y boot-
strap whose justification essentially derives from the validity of the CLT . Con-
ventionally the resample size, here denoted by M , is taken to be the same as the
sample size N , but it is useful to distinguish between these two quantities and
allow the resample size M to differ from N , resulting in the “M -of-N bootstrap.”
One distinguishes

• M -of-N bootstrap resampling with replacement from
• M -out-of-N subsampling without replacement.

In resampling, M can be any M<∞; in subsampling, M must satisfy M<N .12

To fix notation, denote bootstrap estimates by β∗M = β(P ∗M ), where P ∗M is the

12The M -of-N bootstrap for M �N “works” more often than the conventional N -of-N
bootstrap; see Bickel, Götze and van Zwet (1997) who showed that the favorable properties of
M�N subsampling obtained by Politis and Romano (1994) carry over to the M�N bootstrap.
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MODELS AS APPROXIMATIONS 17

empirical distribution of bootstrap data {(Y ∗i , ~X
∗
i
′ )}i=1...M drawn iid from P̂N .

Bootstrap estimates of asymptotic variance are therefore

ÂVboot[β ]
∆
= M VP̂N [β∗M ].(21)

The connection between bootstrap and sandwich estimates is as follows:

Proposition 8.2: The sandwich estimator (20) is the M -of-N bootstrap estima-
tor (21) in the limit M→∞ for a fixed sample of size N .

See Part II (Buja et al. 2018) for full generality. Bootstrap approaches may be
more flexible than sandwich approaches because the bootstrap distribution can
be used to generate confidence intervals that are second order correct (see, e.g.,
Efron and Tibshirani 1994; Hall 1992; McCarthy, Zhang et. al. 2016).

9. ADJUSTED REGRESSORS

This section prepares the ground for two projects: (1) proposing meanings of
slopes in the presence of nonlinearity (Section 10), and (2) comparing standard
errors of slopes, model-robust versus model-trusting (Section 11). The first re-
quires the well-known adjustment formula for slopes in multiple regression, while
the second requires adjustment formulas for standard errors, both model-trusting
and model-robust. Although the adjustment formulas are standard, they will be
stated explicitly to fix notation. [See Appendix D for more notational details.]

• Adjustment in Populations: The population-adjusted regressor random
variable Xj• is the “residual” of the population regression of Xj , used as the
response, on all other regressors. The response Y can be adjusted similarly,
and we may denote it by Y•−j to indicate that Xj is not among the ad-
justors, which is implicit in the adjustment of Xj . The multiple regression

coefficient βj = βj(P ) of the population regression of Y on ~X is obtained
as the simple regression through the origin of Y•−j or Y on Xj•:

(22) βj =
E[Y•−jXj•]

E[X 2
j•]

=
E[Y Xj•]

E[X 2
j•]

=
E[µ( ~X)Xj•]

E[X 2
j•]

.

The rightmost representation holds because Xj• is a function of ~X only

which permits conditioning of Y on ~X in the numerator.

• Adjustment in Samples: Define the sample-adjusted regressor column
Xj•̂ to be the residual vector of the sample regression of Xj , used as the
response vector, on all other regressors. The response vector Y can be
sample-adjusted similarly, and we may denote it by Ŷ•−j to indicate that
Xj is not among the adjustors, which is implicit for Xj•̂. (Note the use of
hat notation “ •̂ ” to distinguish it from population-based adjustment “•.”)
The coefficient estimate β̂j of the multiple regression of Y on X is obtained
as the simple regression through the origin of Ŷ•−j or Y on Xj•:

(23) β̂j =
〈Ŷ•−j ,Xj•̂〉
‖Xj•̂‖2

=
〈Y,Xj•̂〉
‖Xj•̂‖2

.

[For practice, the patient reader may wrap his/her mind around the distinction
between Xj•̂ and Xj•, the latter being the vector of population-adjusted Xi,j•.
The components of the former are dependent, those of the latter independent.]
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Fig 5. Case-wise and pairwise average weighted slopes illustrated: Both plots show the same six
points (“cases”) as well as the OLS line fitted to them (fat gray). The left hand plot shows the
case-wise slopes from the mean point (open circle) to the six cases, while the right hand plot
shows the pairwise slopes between all 15 pairs. In both plots the observed slopes are positive with
just one exception each, supporting the impression that the direction of association is positive.

10. MEANINGS OF SLOPES IN THE PRESENCE OF NONLINEARITY

A first use of regressor adjustment is for proposing meanings of linear slopes
in the presence of nonlinearity, and responding to Freedman’s (2006, p. 302)
objection: “... it is quite another thing to ignore bias [nonlinearity]. It remains
unclear why applied workers should care about the variance of an estimator for the
wrong parameter.” Against this view one may argue that “flawed” models are a
fact of life. Flaws such as nonlinearity can go undetected, or they can be tolerated
for insightful simplification. A “parameter” based on best approximation is then
not intrinsically wrong but in need of a useful interpretation.

The issue is that, in the presence of nonlinearity, slopes lose their usual in-
terpretation: βj is no longer the average difference in Y associated with a unit
difference in Xj at fixed levels of all other Xk. Such an interpretation holds for
the best approximation β′~x but not the conditional mean function µ(~x). The
challenge is to provide an alternative interpretation that remains valid and in-
tuitive. As mentioned, a plausible approach is to use adjusted variables, hence
by (22) and (23) it is sufficient to solve the interpretation problem for simple
regression through the origin. In a sense to be made precise, slopes can then
be interpreted as weighted averages of “case-wise” and “pairwise” slopes. — To
lighten the notational burden, we drop subscripts from adjusted variables:

y ← Y•−j , x← Xj• , β ← βj for populations,

yi ← (Ŷ•−j)i , xi ← (Xj•̂)i , β̂ ← β̂j for samples.

By (22) and (23), the population slopes and their estimates are, respectively,

β =
E[yx]

E[x2]
and β̂ =

∑
yixi∑
x2
i

.

Slope interpretation will be based on the following devices:
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• Population parameters β can be represented as weighted averages of ...

– case-wise slopes: For a random case (x, y) we have

β = E[w b ], where b
∆
=
y

x
, w

∆
=

x2

E[x2 ]
.

Thus b is the case-wise slope through the origin and w its weight.

– pairwise slopes: For iid cases (x, y) and (x′, y′) we have

β = E[w b ], where b
∆
=
y − y′

x− x′
, w

∆
=

(x− x′)2

E[ (x− x′)2 ]
.

Thus b is the pairwise slope and w its weight.

• Sample estimates β̂ can be represented as weighted averages of ...

– case-wise slopes:

β̂ =
∑
i

wi bi , where bi
∆
=
yi
xi
, wi

∆
=

x2
i∑

i′ x
2
i′
.

Thus bi are case-wise slopes and wi their weights.

– pairwise slopes:

β̂ =
∑
ik

wik bik , where bik
∆
=
yi − yk
xi − xk

, wik
∆
=

(xi − xk)2∑
i′k′ (xi′ − xk′)2

.

Thus bik are pairwise slopes and wik their weights (i 6= k).

See Figure 5 for an illustration for samples. The formulas support the intuition
that, even in the presence of nonlinearity, a linear fit can describe the overall
direction of the association between the response and a regressor after adjustment.

There exist of course examples where no global direction of association ex-
ists, as when E[y|x]∼ x2 and the regressor distribution Px is symmetric about
0. The association is local, negative for x < 0 and positive for x > 0. But if
E[x]/SD[x]� 0, the direction of association is positive, and a linear fit provides
an excellent approximation to x2, illustrating once again the crucial role of Px.

We conclude with a note on the history of the above formulas: Stigler (2001)
points to Edgeworth, while Berman (1988) traces them back to an 1841 article
by Jacobi written in Latin. A generalization based on tuples rather than pairs of
cases was used by Wu (1986) for the analysis of jackknife and bootstrap proce-
dures (see his Section 3, Theorem 1). Gelman and Park (2008) also refer to the
representation of OLS slopes as weighted means of pairwise slopes.

11. ASYMPTOTIC VARIANCES — PROPER AND IMPROPER

The following prepares the ground for an asymptotic comparison of model-
robust and model-trusting standard errors, one regressor at a time.
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11.1 Preliminaries: Adjustment Formulas for EOs and Their CLTs:

The vectorized formulas for estimation offsets (12) can be written componen-
twise using adjustment as follows:

(24)

Total EO : β̂j − βj =
〈Xj•̂, δ〉
‖Xj•̂‖2

,

Noise EO : β̂j − βj(X) =
〈Xj•̂, ε〉
‖Xj•̂‖2

,

Approximation EO : βj(X)− βj =
〈Xj•̂,η〉
‖Xj•̂‖2

.

To see these identities directly, note the following, in addition to (23): E[β̂j |X] =
〈µ,Xj•̂〉/‖Xj•̂‖2 and βj = 〈Xβ,Xj•̂〉/‖Xj•̂‖2, the latter due to 〈Xj•̂,Xk〉 = δjk‖Xj•̂‖2.
Finally use δ = Y−Xβ, η = µ−Xβ and ε = Y−µ. �

From (24), asymptotic normality of the coefficient-specific EOs can be sepa-
rately expressed using population adjustment:

Corollary 11.1:

N1/2(β̂j − βj)
D−→ N

(
0,
E[m2( ~X)X 2

j•]

E[X 2
j•]

2

)
= N

(
0,
E[ δ2X 2

j•]

E[X 2
j•]

2

)

N1/2(β̂j − βj(X))
D−→ N

(
0,
E[σ2( ~X)X 2

j•]

E[X 2
j•]

2

)
= N

(
0,
E[ ε2X 2

j•]

E[X 2
j•]

2

)

N1/2(βj(X)− βj)
D−→ N

(
0,
E[ η2( ~X)X 2

j•]

E[X 2
j•]

2

)

The equalities on the right side in the first and second case are based on (17).
The first CLT in its right side form is useful for plug-in estimation of asymptotic
variance, one slope at a time. The sandwich form of matrices has been reduced
to ratios where numerators correspond to the “meat” and squared denominators
to the “breads.”

11.2 Model-Robust Asymptotic Variances in Terms of Adjusted Regressors:

The CLTs of Corollary 11.1 contain three asymptotic variances of the same
form with arguments m2( ~X), σ2( ~X) and η2( ~X). We will use m2( ~X) in the
following definition for the overall asymptotic variance, but by substituting σ2( ~X)
or η2( ~X) for m2( ~X) one obtains terms that can be interpreted as components of
the overall asymptotic variance or else as asymptotic variances in the absence of
nonlinearity or absence of noise.
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Definition 11.2: Proper Asymptotic Variance.

AVlean[βj ;m
2]

∆
=

E[m2( ~X)X 2
j•]

E[X 2
j•]

2
.

From (8), m2( ~X)=σ2( ~X)+η2( ~X), one obtains

AVlean[βj ;m
2] = AVlean[βj ;σ

2] +AVlean[βj ; η
2].

The subscript “lean” refers to validity in the assumption-lean model-robust frame-
work. This proper asymptotic variance will be compared to the potentially im-
proper asymptotic variance of model-trusting linear models theory (Section 11.4).

11.3 Model-Trusting Asymptotic Variances in Terms of Adjusted Regressors

The goal is to provide an asymptotic limit for the usual model-trusting stan-
dard error estimate of linear models theory in the model-robust framework. To
this end we need the model-robust limit of the usual estimate of the noise vari-
ance, σ̂2 = ‖Y −Xβ̂‖2/(N−p−1):

σ̂2 P−→ E[ δ2 ] = E[m2( ~X) ] = E[σ2( ~X) ] +E[ η2( ~X) ], N →∞.

Thus the model-robust limit of σ̂2 is the average conditional MSE of Y , which
again decomposes according to m2( ~X)=σ2( ~X)+η2( ~X).

Squared standard error estimates are, in matrix and adjustment form,

(25) V̂lin[ β̂ ] = σ̂2 (X′X)−1, ŜE
2
lin[ β̂] =

σ̂2

‖Xj•̂‖2
.

Their assumption-lean scaled limits are

N V̂lin[ β̂ ]
P−→ E[m2( ~X) ] E[ ~X ~X ′ ]−1, N ŜE

2
lin[ β̂j ]

P−→ E[m2( ~X) ]

E[X2
j• ]

.

Definition 11.3 Improper Asymptotic Variance.

AVlin[βj ;m
2]

∆
=

E[m2( ~X)]

E[X 2
j•]

.

This decomposes once again according to m2( ~X)=σ2( ~X)+η2( ~X):

AVlin[βj ;m
2] = AVlin[βj ;σ

2] +AVlin[βj ; η
2].

The subscript lin refers to validity of this asymptotic variance under the assumption-
loaded model-trusting framework of linear models theory.
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11.4 RAV — Ratio of Proper and Improper Asymptotic Variances

To examine the discrepancies between proper and improper asymptotic vari-
ances we form their ratio, which results in the following elegant functional of the
conditional MSE and the squared adjusted regressor:

Definition 11.4: Ratio of Asymptotic Variances (RAV), Proper/Improper.

RAV [βj ,m
2]

∆
=

AVlean[βj ,m
2]

AVlin[βj ,m2]
=

E[m2( ~X)X 2
j•]

E[m2( ~X)]E[X 2
j•]
.

In order to examine the effect of heteroskedasticities and nonlinearities on the
discrepancies separately, one can also define RAV [βj , σ

2] and RAV [βj , η
2]. By

the decomposition lemma in Appendix E.2, RAV [βj ,m
2] is a weighted mixture

of these two terms. — Belaboring the obvious, the interpretation of the RAV is:

If RAV [βj ,m
2]


> 1
= 1
< 1

 , then ŜElin[β̂j ] is asymptotically


too small
correct
too large

 .

We will later have use for the following sufficient condition for RAV =1. It says
essentially that when the population residual δ is a traditional error term, then
the usual standard error of linear models theory is asymptotically correct. The
condition is equivalent to first and second order correct specification, including
linearity and homoskedasticity but not Gaussianity.

Lemma 11.4: Sufficient conditions for RAV [βj ,m
2] = 1 are the following:

(a) m2( ~X) = m2
0 is constant.

(b) δ2 and Xj•
2 are independent.

Proof: (a) is immediate from Definition 11.4. (b) The numerator of RAV [βj ,m
2]

is E[m2( ~X)Xj•
2]=E[ δ2Xj•

2]=E[ δ2]E[Xj•
2], hence equals the denominator. �

The ratio RAV [βj ,m
2] is the inner product between the random variables

m2( ~X)

E[m2( ~X)]
and

X 2
j•

E[X 2
j•]
.

It is not a correlation as both m2( ~X) and X 2
j• are L1-normalized; a non-centered

correlation would require L2-normalization with denominators E[m4( ~X)]1/2 and
E[X 4

j•]
1/2, respectively. Its upper bound is obviously not +1 but rather ∞:

11.5 The Range of RAV

The analysis of the RAV is simplified by conditioning m2( ~X) on X 2
j•:

Definition and Lemma 11.5: Letting

m2
j (X

2
j•)

∆
= E[m2( ~X) |X 2

j•],
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Fig 6. A family of functions f2
t (x) that can be interpreted as conditional MSEs m2

j (X 2
j•), het-

eroskedasticities σ2
j (X 2

j•) or squared nonlinearities η2j (X 2
j•) (shown as functions of x = Xj• rather

than X 2
j•): The family interpolates RAV from 0 to ∞ for x = Xj• ∼ N(0, 1). The three solid

black curves show f2
t (x) that result in RAV=0.05, 1, and 10. (See Appendix E.4 for details.)

RAV =∞ is approached as f2
t (x) bends ever more strongly in the tails of the x-distribution.

RAV = 0 is approached by an ever stronger spike in the center of the x-distribution.

we have:
RAV [βj ,m

2] = RAV [βj ,m
2
j ].

Thus the analysis of the RAV is reduced to single squared adjusted regressors
X 2
j•. This fact lends itself to simple case studies and graphical illustrations.

Next we describe the extremes of the RAV over scenarios of m2( ~X) or, by
Lemma 11.5, of m2

j (X
2
j•).

Proposition 11.5: If E[X 2
j•] <∞ and X 2

j• has unbounded support, then

sup
m2

j

RAV [βj ,m
2
j ] = ∞.

If E[X 2
j•] <∞ and X 2

j• has 0 in its support, then

inf
m2

j

RAV [βj ,m
2
j ] = 0.

Thus, when the adjusted regressor distribution is unbounded, the usual standard
error can be too small to any degree. Conversely, if the adjusted regressor is not
bounded away from zero, it can be too large to any degree.

What shapes of m2
j (X

2
j•) approximate these extremes? The answer can be

gleaned from Figure 6 which illustrates the proposition for normally distributed
Xj•: If nonlinearities and/or heteroskedasticities blow up ...

• in the tails of the Xj• distribution, then RAV takes on large values;
• in the center of the Xj• distribution, then RAV takes on small values.
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Fig 7. The effect of heteroskedasticity on the sampling variability of slope estimates: How does
the treatment of the heteroskedasticities as homoskedastic affect statistical inference?
Left: High noise variance in the tails of the regressor distribution elevates the true sampling
variability of the slope estimate above the usual standard error: RAV [βj , σ

2] > 1.
Center: High noise variance near the center of the regressor distribution lowers the true sampling
variability of the slope estimate below the usual standard error: RAV [βj , σ

2] < 1.
Right: The noise variance oscillates in such a way that the usual standard error is coincidentally
correct (RAV [βj , σ

2] = 1).

The proof in Appendix E.3 bears this out. As the main concern is with usual
standard errors that are too small, RAV >1, the proposition indicates that Xj•-
distributions with bounded support enjoy some protection from the worst case.

11.6 Illustration of Factors that Drive the RAV

We further analyze the RAV in terms of the constituents of m2
j (X

2
j•), condi-

tional variance and squared nonlinearity, as functions of X 2
j•:

(26) σ2
j (X

2
j•) = E[σ2( ~X)|X 2

j•] and η2
j (X

2
j•) = E[η2( ~X)|X 2

j•].

For qualitative insights into the drivers of the RAV, we translate (26) to concrete
data scenarios. Figure 7 shows three noise scenarios and Figure 8 three nonlinear-
ity scenarios. The illustrated effects will both be present to degrees in real data.
Their combined effect is described by a decomposition lemma in Appendix E.2:
RAV [βj ,m

2
j ] is a weighted mixture of RAV [βj , σ

2
j ] and RAV [βj , η

2
j ]. Therefore:

• Heteroskedasticities with large σ2
j (X

2
j•) in the tails of Xj•

2 produce an up-

ward contribution to RAV [βj ,m
2
j ]; heteroskedasticities with large σ2

j (X
2
j•)

near X 2
j• = 0 imply a downward contribution to RAV [βj ,m

2
j ].

• Nonlinearities with large average values η2
j (X

2
j•) in the tails of X 2

j• imply

an upward contribution to RAV [βj ,m
2
j ]; nonlinearities with large η2

j (X
2
j•)

concentrated near X 2
j• = 0 imply a downward contribution to RAV [βj ,m

2
j ].

These facts also suggest that large values RAV>1 should occur more often than
small values RAV<1 because large conditional variances as well as nonlinearities
are often more pronounced in the extremes of regressor distributions, not their
centers. This is most natural for nonlinearities which are often convex or concave.
Also, it follows from theRAV decomposition lemma (Appendix E.2) that either of
RAV [βj , σ

2
j ] or RAV [βj , η

2
j ] is able to single-handedly pull RAV [βj ,m

2
j ] to +∞,
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Fig 8. The effect of nonlinearities on the sampling variability of slope estimates: The three plots
show three different noise-free nonlinearities; each plot shows for one nonlinearity 20 overplotted
datasets of size N = 10 and their fitted lines through the origin. The question is how the misin-
terpretation of the nonlinearities as homoskedastic random errors affects statistical inference.
Left: Strong nonlinearity in the tails of the regressor distribution elevates the true sampling vari-
ability of the slope estimate above the usual standard error (RAV [βj , η

2] > 1).
Center: Strong nonlinearity near the center of the regressor distribution lowers the true sampling
variability of the slope estimate below the usual standard error (RAV [βj , η

2] < 1).
Right: An oscillating nonlinearity mimics homoskedastic random error to make the usual stan-
dard error coincidentally correct (RAV [βj , η

2] = 1).
Caveat: These are cartoons illustrating potential causes of standard error discrepancies. Nonlin-
earities may not be detectable in actual data in the presence of noise and other regressors.

whereas both have to be close to zero to pull RAV [βj ,m
2
j ] toward zero. These

heuristics support the observation that in practice ŜElin is more often too small
than too large compared to the asymptotically correct ŜEsand.

12. SANDWICH ESTIMATORS IN ADJUSTED FORM AND A RAV TEST

The goal here is to write the RAV in adjustment form and estimate it with
plug-in for use as a test statistic to decide whether the usual standard error is
adequate. We will obtain one test per regressor. The proposal is related to the
class of “misspecification tests” for which there exists a literature starting with
Hausman (1978) and continuing with White (1980a,b; 1981; 1982) and others.
These tests are largely global rather than coefficient-specific, which ours is. The
test proposed here has similarities to White’s (1982, Section 4) “information
matrix test” which compares two types of information matrices globally, while
we compare two types of standard errors, one coefficient at a time.

12.1 Sandwich Estimators in Adjustment Form and the ˆRAVj Test Statistic

The adjustment versions of the asymptotic variances in the CLTs of Corol-
lary 11.1 can be used to rewrite the sandwich estimator by replacing expectations
E[...] with means Ê[...], β with β̂, Xj• with Xj•̂, and rescaling by N :

(27) ŜEsand[β̂j ]
2 =

1

N

Ê[ (Y − ~X ′ β̂)2Xj•̂
2]

Ê[Xj•̂
2] 2

=
〈r2,Xj•̂

2〉
‖Xj•̂‖4

.

The squaring of N -vectors is meant to be coordinate-wise. Formula (27) is alge-
braically equivalent to the diagonal elements of (20).
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To match the raw plug-in form of the sandwich estimator (27), we use the
plug-in version of the standard error estimator of linear models theory, the only
difference being division by N rather than N−p−1:

(28) ŜElin[β̂j ]
2 =

1

N

Ê[(Y − ~X ′ β̂)2]

Ê[Xj•̂
2]

=
1

N

‖r‖2

‖Xj•̂‖2
,

Thus the plug-in estimate of RAV [βj ,m
2] is

(29) ˆRAVj
∆
=

Ê[ (Y − ~X ′ β̂)2Xj•̂
2 ]

Ê[ (Y − ~X ′ β̂)2 ] Ê[Xj•̂
2 ]

= N
〈r2,Xj•̂

2〉
‖r‖2 ‖Xj•̂‖2

.

This is the proposed test statistic. Analogous to the population-levelRAV [βj ,m
2],

the sample-level ˆRAVj responds to associations between squared residuals and
squared adjusted regressors.

12.2 The Asymptotic Null Distribution of the RAV Test Statistic

Here is an asymptotic result that would be expected to yield approximate infer-
ence under a null hypothesis that impliesRAV [βj ,m

2] = 1 based on Lemma 11.4:

Proposition 12.2: Under the null hypothesis H0 that the population residuals
δ and the adjusted regressor Xj• are independent, it holds:

(30) N1/2 ( ˆRAVj − 1)
D−→ N

(
0,
E[ δ4]

E[ δ2]2
E[Xj•

4]

E[X 2
j•]

2
− 1)

)
.

As always we ignore technical assumptions. A proof outline is in Appendix E.5.
The asymptotic variance of ˆRAVj underH0 is driven by the standardized fourth

moments or the kurtoses (= same− 3) of δ and Xj•. Some observations:

1. The larger the kurtosis of population residuals δ and/or adjusted regressors
Xj•, the less likely is detection of first and second order model misspecifi-
cation resulting in standard error discrepancies.

2. As standardized fourth moments are always ≥ 1 by Jensen’s inequality, the
asymptotic variance is ≥ 0, as it should be. The asymptotic variance van-
ishes iff the minimal standardized fourth moment is +1 for both δ and Xj•,
hence both have symmetric two-point distributions (as both are centered).
For such Xj• it holds RAV [βj ,m

2]=1 by Proposition E.3 in the appendix.
3. A test of the stronger H0 that includes normality of δ is obtained by setting
E[δ4]/E[δ2]2 = 3 rather than estimating it. The result, however, is an overly
sensitive non-normality test much of the time, which does not seem useful
as non-normality can be diagnosed and tested by other means.

12.3 An Approximate Permutation Distribution for the RAV Test Statistic

The asymptotic result of Proposition 12.2 provides qualitative insights, but it
is not suitable for practical application because the null distribution of ˆRAVj can
be very non-normal for finite N , and this in ways that are not easily overcome
with simple tools such as nonlinear transformations. Another approach to null
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β̂j SElin SEsand
ˆRAVj 2.5% Perm. 97.5% Perm.

(Intercept) 0.760 22.767 16.209 0.495 0.354 3.182

MedianIncome ($K) -0.183 0.187 0.108 0.318 0.274 5.059

PercVacant 4.629 0.901 1.363 2.071 0.303 3.823

PercMinority 0.123 0.176 0.164 0.860 0.403 2.238

PercResidential -0.050 0.171 0.111 0.406 0.369 3.058

PercCommercial 0.737 0.273 0.397 2.046 0.355 3.073

PercIndustrial 0.905 0.321 0.592 3.289* 0.323 3.215
Table 4

LA Homeless data: Permutation Inference for ˆRAVj (10,000 permutations). The value of
ˆRAVj for PercIndustrial detects a statistically significant difference between SElin and SEsand

for this regressor. See also Table 8 in the Appendix for the Boston Housing data where
significant differences are detected for 6 of 13 regressors.

distributions for finite N is needed, and it is available in the form of an approxi-
mate permutation test because H0 is just a null hypothesis of independence, here
between δ and Xj•. The test is not exact, requiring N � p, because population
residuals δi must be estimated with sample residuals ri and population adjusted
regressor values Xi,j• with sample adjusted analogs Xi,j•̂. The permutation sim-
ulation is cheap: Once coordinate-wise squared vectors r2 and Xj•̂

2 are formed, a
draw from the conditional null distribution of ˆRAVj is obtained by randomly per-
muting one of the vectors and forming the inner product with the other, rescaled
by a permutation-invariant factor N/(‖r‖2‖Xj•̂‖2). A retention interval should
be formed directly from the α/2 and 1−α/2 quantiles of the permutation distri-
bution to account for distributional asymmetries. The permutation distribution
also yields an easy diagnostic of non-normality (see Appendix F for examples).
Finally, by applying permutation simulations simultaneously to RAV statistics of
multiple regressors, one can calibrate the retention intervals to control family-wise
error. — See Table 4 (and 8 in the Appendix) for examples of RAV tests.

13. ISSUES WITH MODEL-ROBUST STANDARD ERRORS

Model-robustness is a highly desirable property, but as always there is no free
lunch. Kauermann and Carroll (2001) have shown that a cost of the sandwich
estimator can be inefficiency when the assumed model is correct. Sandwich
estimators should be accurate only when the sample size is sufficiently large.

Another cost associated with the sandwich estimator is non-robustness in
the sense of robust statistics (Huber and Ronchetti 2009, Hampel et al. 1986),

meaning strong sensitivity to heavy-tailed distributions: The statistic ŜE
2
sand[β̂j ]

(27) is a ratio of fourth order quantities of the data, whereas ŜE
2
lin[β̂j ] (28) is

“only” a ratio of second order quantities.13 The two types of robustness are in
conflict: Model-robust standard error estimators are highly non-robust to heavy
tails compared to their model-trusting analogs. This is a large issue which we can
only raise but not solve. Here are some observations and suggestions:

• Classical robust regression may confer partial robustness to the sandwich
standard error as it caps residuals with a bounded ψ function, thereby ad-
dressing robustness to heavy tails in the vertical (y) direction. Anecdotal

13Note we are here concerned with non-robustness of standard error estimates, not parameter
estimates.
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evidence suggests partial benefits. In the LA Homeless data, for example,
when comparing boostrap standard errors and standard errors reported by
the R (2008)) software (function lmrob in package robustbase), we ob-
served ratios SEboot

SElmrob
of 1.470 and 0.957 for the coefficients of PercVacant

and PercIndustrial, respectively. For linear OLS, the corresponding ra-
tios SEboot

SElin
in Table 1 were 1.513 and 1.843, respectively. Thus the roughly

50% discrepancy for PercVacant persists, but the 80% discrepancy for
PercIndustrial is completely corrected.
• Heavy-tail robustness in the horizontal (~x) direction can be achieved with

bounded-influence regression (e.g., Krasker and Welsch 1982, and references
therein) which downweights observations in high-leverage positions.
• Robustness to horizontally heavy tails can also be addressed by transform-

ing the regressor variables to bounded ranges (though this changes the
meaning of the slopes). Taking a cue from Proposition E.3 in the appendix,
one might search for transformations that obviate the need for a model-
robust standard error in the first place.

To illustrate the last point, we transformed the regressors of the LA Homeless data
with their empirical cdfs to achieve approximately uniform marginal distributions.
The transformed data are no longer iid, but the point is to examine the effect
of transforming the regressors to a finite range. As a result, shown in Table 5 of
Appendix A, the discrepancies between sandwich and usual standard errors have
all but disappeared. The same drastic effect is not seen in the Boston Housing
data (Appendix B, Table 7), although the discrepancies are greatly reduced, too.

14. SUMMARY AND OUTLOOK

We explored for linear OLS the idea that statistical models imply “simplifica-
tion and idealization” (Cox 1995), and hence should be treated as approximations
rather than truths. The implications are many: (1) Slope parameters need to be
re-interpreted as statistical functionals β(P

Y, ~X
) arising from best-approximating

linear equations to essentially arbitrary conditional mean functions µ( ~X); (2) the
presence of nonlinearity η( ~X) requires new interpretations of slope parameters
and their estimates; (3) regressors are no longer ancillary for the slope parame-
ters; hence (4) conditioning on the regressors is not justified and regressors must
be treated as random, arising from a regressor distribution P~X ; (5) nonlinearity
causes slope parameters to depend not only on the conditional response distribu-
tion P

Y | ~X but on the regressor distribution P~X as well; (6) nonlinearity causes

randomness in the regressors ~X to generate sampling variation in slope estimates
of order N−1/2; (7) sampling variability due to Y | ~X and due to ~X are asymptot-
ically correctly captured by model-robust standard error estimates from the x-y
bootstrap and sandwich plug-in, the latter being a limiting case of the former;
(8) the factors that render the usual standard error of a slope too liberal are
strong nonlinearity and/or large noise variance in the extremes of the adjusted
regressor; (9) validity of the usual standard error varies from slope to slope but
can be tested with a slope-specific test; (10) unresolved remains the problem that
model-robustness and classical heavy-tail robustness of standard error estimates
appear to be in conflict with each other.

A vexing item in this list is (2): What is the meaning of a slope in the presence
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of nonlinearity? We gave an answer in terms of average observed slopes, but
this issue may remain controversial. Yet, the traditional interpretation of slopes
should be even more controversial because the notion of “average difference in the
response for a unit difference in the regressor, ceteris paribus,” tacitly assumes
the fitted linear equation to be correctly specified. It remains correct if “in the
response” is replaced by “in the best linear approximation”, but this correction
may leave some dissatified as well. Yet, misspecification is often a fact, as when
simple models are needed for substantive reasons or for communication with
consumers of statistical analysis. It may then be prudent to use interpretations
and inferences that do not assume correct specification.

Since White’s seminal work, research into misspecification has progressed far in
addressing specific classes of misspecification: dependencies, heteroskedasticities
and nonlinearities. A generalization of White’s sandwich estimator to time series
dependence in regression is the “heteroskedasticity and auto-correlation consis-
tent” (HAC) estimator of standard error by Newey and West (1987). Structured
second order misspecification such as over/underdispersion have been addressed
with quasi-likelihood. Intra-cluster dependencies in clustered (e.g., longitudinal)
data have been addressed with generalized estimating equations (GEE) where
the sandwich estimator is in common use, as it is in the generalized method of
moments (GMM) literature. Finally, nonlinearities have been modeled with spe-
cific function classes or estimated nonparametrically with, for example, additive
models, spline and kernel methods, and tree-based fitting. In spite of these ad-
vances, in finite data not all possibilities of misspecification can be approached
simultaneously, and there still arises a need for model-robust inference.

There exist, finally, areas that frequently rely on model-trusting theory:

• Bayes inference based on uninformative priors is asymptotically equivalent
to model-trusting frequentist inference (Hartigan 1983). It should be rea-
sonable to ask how much inferences from Bayesian models are adversely
affected by misspecification. After the early work by Berk (1966, 1970) we
find some more recent promising developments: Szpiro, Rice and Lumley
(2010) derive a sandwich estimator from Bayesian assumptions, and a lively
discussion of misspecification from a Bayesian perspective involved Walker
(2013), De Blasi (2013), Hoff and Wakefield (2013) and O’Hagan (2013),
who provide further references.

• High-dimensional inference is the subject of a large literature that often
relies on the assumptions of linearity, homoskedasticity as well as normality
of error distributions. It may be uncertain whether procedures proposed
in this area are model-robust. Recently, however, attention to the issue
started to be paid by Bühlmann and van de Geer (2015). Relevant is also
the incorporation of ideas from classical robust statistics by, for example,
El Karoui et al. (2013), Donoho and Montanari (2014), and Loh (2015).

In summary, while interesting developments are in progress, there remain open
problems, especially in some of today’s most lively research areas. Even in the
non-Bayesian and low-dimensional domain there remains the conflict between
model-robustness and classical robustness. The implications of statistical models
viewed as approximations are not yet satisfactorily realized.
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APPENDIX A: LA HOMELESS DATA: SE DISCREPANCIES VANISH
AFTER CDF TRANSFORM OF REGRESSORS

β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

(Intercept) 2.932 0.381 0.395 0.395 1.037 1.036 0.999 7.697 7.422 7.427

MedianIncome ($K) -1.128 0.269 0.280 0.278 1.041 1.033 0.992 -4.195 -4.030 -4.061

PercVacant 1.264 0.207 0.203 0.202 0.982 0.978 0.996 6.111 6.221 6.247

PercMinority -0.467 0.230 0.246 0.246 1.070 1.069 0.999 -2.028 -1.896 -1.897

PercResidential -0.314 0.220 0.228 0.230 1.040 1.049 1.008 -1.432 -1.377 -1.366

PercCommercial 0.201 0.212 0.220 0.220 1.040 1.042 1.002 0.949 0.913 0.911

PercIndustrial 0.180 0.238 0.244 0.244 1.022 1.024 1.002 0.754 0.737 0.736

Table 5
LA Homeless Data: Comparison of Standard Errors after transforming the regressors with
their cdfs to approximately uniform distributions. The taming of the tails of the regressor

distributions has resolved all discrepancy issues for the usual model-trusting standard errors.

APPENDIX B: THE BOSTON HOUSING DATA

Table 6 illustrates discrepancies between types of standard errors with the
Boston Housing data (Harrison and Rubinfeld 1978) which will be well known to
many readers. Again, we dispense with the question as to whether the analysis is
meaningful and focus on the comparison of standard errors. Here, too, SEboot and
SEsand are mostly in agreement as they fall within less than 2% of each other,
an exception being CRIM with a deviation of about 10%. By contrast, SEboot and
SEsand are larger than their linear models cousin SElin by a factor of about 2 for
RM and LSTAT, and about 1.5 for the intercept and the dummy variable CHAS.
On the opposite side, SEboot and SEsand are less than 3/4 of SElin for TAX. For
several regressors there is no major discrepancy among all three standard errors:
ZN, NOX, B, and even for CRIM, SElin falls between the slightly discrepant values
of SEboot and SEsand.

Table 7 compares standard errors after the regressors are transformed to ap-
proximately uniform distributions using a rank or cdf transform.

Table 8 illustrates the RAV test for the Boston Housing data. Values of ˆRAVj
that fall outside the middle 95% range of their permutation null distributions are
marked with asterisks.

β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

(Intercept) 36.459 5.103 8.038 8.145 1.575 1.596 1.013 7.144 4.536 4.477

CRIM -0.108 0.033 0.035 0.031 1.055 0.945 0.896 -3.287 -3.115 -3.478

ZN 0.046 0.014 0.014 0.014 1.005 1.011 1.006 3.382 3.364 3.345

INDUS 0.021 0.061 0.051 0.051 0.832 0.823 0.990 0.334 0.402 0.406

CHAS 2.687 0.862 1.307 1.310 1.517 1.521 1.003 3.118 2.056 2.051

NOX -17.767 3.820 3.834 3.827 1.004 1.002 0.998 -4.651 -4.634 -4.643

RM 3.810 0.418 0.848 0.861 2.030 2.060 1.015 9.116 4.490 4.426

AGE 0.001 0.013 0.016 0.017 1.238 1.263 1.020 0.052 0.042 0.042

DIS -1.476 0.199 0.214 0.217 1.075 1.086 1.010 -7.398 -6.882 -6.812

RAD 0.306 0.066 0.063 0.062 0.949 0.940 0.990 4.613 4.858 4.908

TAX -0.012 0.004 0.003 0.003 0.736 0.723 0.981 -3.280 -4.454 -4.540

PTRATIO -0.953 0.131 0.118 0.118 0.899 0.904 1.005 -7.283 -8.104 -8.060

B 0.009 0.003 0.003 0.003 1.026 1.009 0.984 3.467 3.379 3.435

LSTAT -0.525 0.051 0.100 0.101 1.980 1.999 1.010 -10.347 -5.227 -5.176

Table 6
Boston Housing data: Comparison of Standard Errors. Sandwich and bootstrap SEs are in
general agreement, not so linear models SEs. While significances at conventional levels are

unchanged in this case, the magnitude of the t statistics can change drastically, for example,
for RM and LSTAT, which are the strongest regressors.
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β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

(Intercept) 37.481 2.368 2.602 2.664 1.099 1.125 1.024 15.828 14.405 14.069

CRIM 4.179 1.746 1.539 1.533 0.882 0.878 0.996 2.394 2.715 2.726

ZN 0.826 1.418 1.359 1.353 0.959 0.954 0.995 0.583 0.608 0.611

INDUS -1.844 1.501 1.410 1.413 0.939 0.941 1.002 -1.228 -1.308 -1.305

CHAS 6.328 1.764 2.490 2.485 1.411 1.409 0.998 3.587 2.542 2.547

NOX -6.209 1.986 2.035 2.037 1.025 1.026 1.001 -3.127 -3.051 -3.048

RM 4.848 1.044 1.354 1.380 1.297 1.322 1.019 4.645 3.581 3.514

AGE 2.925 1.454 1.897 1.904 1.305 1.310 1.004 2.012 1.542 1.536

DIS -9.047 1.754 1.933 1.945 1.102 1.109 1.006 -5.159 -4.679 -4.652

RAD 1.042 1.307 1.115 1.128 0.853 0.863 1.011 0.797 0.935 0.924

TAX -5.319 1.343 1.155 1.157 0.860 0.862 1.003 -3.961 -4.607 -4.596

PTRATIO -4.720 0.954 0.982 0.982 1.029 1.029 1.000 -4.946 -4.806 -4.808

B -1.103 0.822 0.798 0.800 0.970 0.972 1.002 -1.342 -1.383 -1.380

LSTAT -21.802 1.377 2.259 2.318 1.641 1.683 1.026 -15.832 -9.649 -9.404

Table 7
Boston Housing data: Comparison of Standard Errors; regressors are transformed with cdfs.

Forcing a bounded well-behaved distribution on the regressors greatly mitigates the
discrepancies between SEs.

β̂j SElin SEsand
ˆRAVj 2.5% Perm. 97.5% Perm.

(Intercept) 36.459 5.103 8.145 2.458* 0.717 1.562

CRIM -0.108 0.033 0.031 0.776 0.302 4.025

ZN 0.046 0.014 0.014 1.006 0.653 1.723

INDUS 0.021 0.061 0.051 0.671 0.641 2.007

CHAS 2.687 0.862 1.310 2.255* 0.499 1.929

NOX -17.767 3.820 3.827 0.982 0.694 1.579

RM 3.810 0.418 0.861 4.087* 0.631 1.805

AGE 0.001 0.013 0.017 1.553* 0.715 1.472

DIS -1.476 0.199 0.217 1.159 0.702 1.520

RAD 0.306 0.066 0.062 0.857 0.685 1.983

TAX -0.012 0.004 0.003 0.512* 0.579 1.998

PTRATIO -0.953 0.131 0.118 0.806 0.725 1.395

B 0.009 0.003 0.003 0.995 0.576 1.763

LSTAT -0.525 0.051 0.101 3.861* 0.645 1.830
Table 8

Boston Housing data: Permutation Inference for ˆRAVj (10,000 permutations). Of the 13
regressors, 6 have significant SE discrepancies, 5 of them indicating that linear models SEs are

too small, hence inferences are too optimistic.
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APPENDIX C: ANCILLARITY

The facts as laid out in Section 4 amount to an argument against condition-
ing on regressors in regression. The justification for conditioning derives from an
ancillarity argument according to which the regressors, if random, form an ancil-
lary statistic for the linear model parameters β and σ2, hence conditioning on X
produces valid frequentist inference for these parameters (Cox and Hinkley 1974,
Example 2.27). Indeed, with a suitably general definition of ancillarity, it can be
shown that in any regression model the regressors form an ancillary. To see this
we need an extended definition of ancillarity that includes nuisance parameters.
The ingredients and conditions are as follows:

(1) θ = (ψ,λ) : the parameters, where ψ is of interest and λ is nuisance;
(2) S = (T ,A) : a sufficient statistic with values (t,a);
(3) p(t,a; ψ,λ) = p(t |a; ψ) p(a; λ) : the condition that makes A an ancillary.

We say that the statistic A is ancillary for the parameter of interest, ψ, in the
presence of the nuisance parameter, λ. Condition (3) can be interpreted as saying
that the distribution of T is a mixture with mixing distribution p(a|λ). More im-
portantly, for a fixed but unknown value λ and two values ψ1, ψ0, the likelihood
ratio

p(t,a; ψ1,λ)

p(t,a; ψ0,λ)
=

p(t |a; ψ1)

p(t |a; ψ0)

has the nuisance parameter λ eliminated, justifying the conditionality principle
according to which valid inference for ψ can be obtained by conditioning on A.

When applied to regression, the principle implies that in any regression model
the regressors, when random, are ancillary and hence can be conditioned on:

p(y,X; θ) = p(y |X; θ) pX(X),

where X acts as the ancillary A and pX as the mixing distribution p(a |λ) with a
“nonparametric” nuisance parameter that allows largely arbitrary distributions
for the regressors. (The regressor distribution should grant identifiability of θ in
general, and non-collinearity in linear models in particular.) The literature does
not seem to be rich in crisp definitions of ancillarity, but see, for example, Cox and
Hinkley (1974, p.32-33). For the interesting history of ancillarity see the articles
by Stigler (2001) and Aldrich (2005).

As explained in Section 4, the problem with the ancillarity argument is that it
holds only when the regression model is correct. In practice, whether models are
correct is never known.

APPENDIX D: ADJUSTMENT

D.1 Adjustment in Populations

To define the population-adjusted regressor random variable Xj•, collect all
other regressors in the random p-vector

~X−j = (1, X1, ..., Xj−1, Xj+1, ..., Xp)
′ ,

and let

Xj• = Xj − ~X−j
′ β−j•, where β−j• = E[ ~X−j ~X−j

′ ]−1E[ ~X−jXj ].

The response Y can be adjusted similarly, and we may denote it by Y•−j to indicate
that Xj is not among the adjustors, which is implicit in the adjustment of Xj .
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D.2 Adjustment in Samples

Define the sample-adjusted regressor column Xj•̂ by collecting all regressor
columns other than Xj in a N×p random regressor matrix

X−j = [1, ...,Xj−1,Xj+1, ...,Xp]

and let

Xj•̂ = Xj −X−j β̂−j•̂ where β̂−j•̂ = (X−j
′X−j)

−1X−j
′Xj .

(Note the use of hat notation “ •̂ ” to distinguish it from population-based adjust-
ment “•.”) The response vector Y can be sample-adjusted similarly, and we may
denote it by Ŷ•−j to indicate that Xj is not among the adjustors.

APPENDIX E: PROOFS

E.1 Precise Non-Ancillarity Statements and Proofs for Section 4

Lemma: The functional β(P ) depends on P only through the conditional mean
function and the regressor distribution; it does not depend on the conditional noise
distribution.

In the nonlinear case the clause ∃P 1,P 2 : β(P 1) 6= β(P 2) is driven solely
by differences in the regressor distributions P 1(d~x) and P 2(d~x) because P 1 and
P 2 share the mean function µ0(.) while their conditional noise distributions are
irrelevant by the above lemma.

The Lemma is more precisely stated as follows: For two data distributions
P 1(dy,d~x) and P 2(dy,d~x) the following holds:

P 1(d~x) = P 2(d~x), µ1( ~X)
P 1,2
= µ2( ~X) =⇒ β(P 1) = β(P 2).

Proposition: The OLS functional β(P ) does not depend on the regressor dis-
tribution if and only if µ( ~X) is linear. More precisely, for a fixed measurable
function µ0(~x) consider the class of data distributions P for which µ0(.) is a

version of their conditional mean function: E[Y | ~X] = µ( ~X)
P
= µo( ~X). In this

class the following holds:

µ0(.) is nonlinear =⇒ ∃P 1,P 2 : β(P 1) 6= β(P 2),
µ0(.) is linear =⇒ ∀P 1,P 2 : β(P 1) = β(P 2).

For the proposition we show the following: For a fixed measurable function
µ0(~x) consider the class of data distributions P for which µ0(.) is a version of

their conditional mean function: E[Y | ~X] = µ( ~X)
P
= µo( ~X). In this class the

following holds:

µ0(.) is nonlinear =⇒ ∃P 1,P 2 : β(P 1) 6= β(P 2),
µ0(.) is linear =⇒ ∀P 1,P 2 : β(P 1) = β(P 2).

The linear case is trivial: if µ0( ~X) is linear, that is, µ0(~x) = β′ ~x for some β,
then β(P ) = β irrespective of P (d~x). The nonlinear case is proved as follows:
For any set of points ~x1, ...~xp+1 ∈ IRp+1 in general position and with 1 in the
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first coordinate, there exists a unique linear function β′ ~x through the values
of µ0(~xi). Define P (d~x) by putting mass 1/(p+ 1) on each point; define the
conditional distribution P (dy | ~xi) as a point mass at y = µo(~xi); this defines
P such that β(P ) = β. Now, if µ0() is nonlinear, there exist two such sets of
points with differing linear functions β1

′ ~x and β2
′ ~x to match the values of µ0()

on these two sets; by following the preceding construction we obtain P 1 and P 2

such that β(P 1) = β1 6= β2 = β(P 2).

E.2 RAV Decomposition

Lemma E.2: RAV Decomposition.

RAV [β̂j ,m
2] = wσRAV [β̂j , σ

2] + wηRAV [β̂j , η
2],

where wσ
∆
=

E[σ2( ~X)]

E[m2( ~X)]
, wη

∆
=
E[η2( ~X)]

E[m2( ~X)]
, wσ + wη = 1.

E.3 Proof of the RAV -Range Proposition in Section 11.5

Proposition E.3: If E[X 2
j•] <∞, then

sup
m2

j

RAV [β̂j ,m
2
j ] =

P -maxX 2
j•

E[X 2
j•]

, inf
m2

j

RAV [β̂j ,m
2
j ] =

P -minX 2
j•

E[X 2
j•]

.

Here are some corollaries that follow from the proposition:

• If, for example, Xj• ∼ U [−1,+1] is uniformly distributed, then E[X 2
j•] =

1/3. Hence the upper bound on the RAV is 3 and, asymptotically, the usual
standard error will never be too short by more than a factor

√
3 ≈ 1.732.

• However, when E[X 2
j•] is very small compared to P -maxX 2

j•, that is, when
Xj• is highly concentrated around its mean 0, then this approximates the
case of an unbounded support and the worst-case RAV can be very large.

• If, on the other hand, E[X 2
j•] is very close to P -maxX 2

j• = c2, then Xj•
approximates a balanced two-point distribution at ±c, and the sandwich
and usual standard errors necessarily agree in the limit.

The result for the last case, a two-point balanced distribution, is intuitive because
here it is impossible to detect nonlinearity. Heteroskedasticity, however, is still
possible (different noise variances at ±c), but this does not matter because the
dependence of RAV is on X 2

j•, not Xj•, and X 2
j• has a one-point distribution at c2.

The RAV can only respond to heteroskedasticities that vary in X 2
j•.

The RAV is a functional of X 2
j• and f2

j (X 2
j•), suggesting simplified notation:

X2 for X 2
j•, f

2(X2) for f2
j (X 2

j•), and RAV [f2] for RAV [β̂j , f
2
j ]. Proposition E.3

is proved by the first lemma as applied to σ2
j (X

2
j•), and by the second lemma

as applied to η2
j (X

2
j•). The difference between the two cases is that nonlineari-

ties ηj(X
2
j•) is necessarily centered whereas for σ2

j (X
2
j•) there exists no such re-

quirement; the construction below requires in the centered case that P -min and
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P -max of X 2
j• do not carry positive probability mass. This is a largely technical

condition because even for discrete regressors Xj the adjusted squared version
X 2
j• will have a continuous distribution if there exists just one other regressor that

is continuous and non-orthogonal (partly collinear) to Xj .

Lemma E.3.1: Assume E[X2] <∞.

(a) Define a one-parameter family f2
t :

f2
t (X2)

∆
=

1[|X|≥t]

p(t)
, where p(t)

∆
= P [|X| ≥ t]

for p(t) > 0. Then the following holds:

sup
t
RAV [f2

t ] =
P -maxX2

E[X2]
.

(b) Define a one-parameter family g2
t :

g2
t (X

2)
∆
=

1[|X|≤t]

p̄(t)
, where p̄(t)

∆
= P [|X| ≤ t] .

Then the following holds:

inf
t
RAV [g2

t ] =
P -minX2

E[X2]
.

Proof of part (a): Preliminary observations:

• E[f2
t (X2)] = 1.

• E[f2
t (X2)X2] ≤ P -maxX2.

• P -maxX2 = supp(t)>0 t
2.

For p(t) > 0 we have

E
[
f2
t (X)X2

]
=

1

p(t)
E
[
1[|X|≥t]X

2
]
≥ 1

p(t)
p(t) t2 = t2,

hence suptE
[
f2
t (X)X2

]
= P -maxX2. �

Proof of part (b): Preliminary observations:

• E[g2
t (X

2)] = 1.

• E[g2
t (X

2)X2] ≥ P -minX2.

• P -minX2 = inf p̄(t)>0 t
2.

For p̄(t) > 0 we have:

E
[
g2
t (X)X2

]
=

1

p̄(t)
E
[
1[|X|≤t]X

2
]
≤ 1

p̄(t)
p̄(t) t2 = t2,

hence inftE
[
g2
t (X)X2

]
= P -minX2. �

Lemma E.3.2:
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(a) Define a one-parameter family

ft(X
2) =

1[|X|≥t] − p(t)√
p(t)(1− p(t))

, where p(t) = P [|X| ≥ t] ,

for p(t)>0 and 1−p(t)>0. If p(t) is continuous at t=P -max |X|, that is,
P [|X| = P -max |X|] = 0, then

sup
t
RAV [f2

t ] =
P -maxX2

E[X2]
.

(b) Define a one-parameter family

gt(X
2) =

1[|X|≤t] − p̄(t)√
p̄(t)(1− p̄(t))

, where p̄(t) = P [|X| ≤ t] ,

for p̄(t)>0 and 1−p̄(t)>0. If p̄(t) is continuous at t=P -min |X|, that is,
P [|X| = P -min |X|] = 0, then

inf
t
RAV [g2

t ] =
P -minX2

E[X2]
.

Proof of part (a): Preliminary observations:

• E[f2
t (X2)] = 1.

• E[f2
t (X2)X2] ≤ P -maxX2.

• P -maxX2 = sup 0<p(t)<1 t
2.

For p(t)>0 we have:

E
[
f2
t (X)X2

]
=

1

p(t)(1− p(t))
E
[(

1[|X|≥t] − p(t)
)2
X2
]

=
1

p(t)(1− p(t))
(
E
[
1[|X|≥t]X

2
]

(1− 2 p(t)) + p(t)2E[X2]
)

≥ 1

p(t)(1− p(t))
(
p(t) t2 (1− 2 p(t)) + p(t)2E[X2]

)
for p(t) ≤ 1

2

=
1

1− p(t)
(
t2 (1− 2 p(t)) + p(t)E[X2]

)
−→ P -maxX2

as t ↑ P -max |X| and hence p(t) ↓ 0. �

Proof of part (b): Preliminary observations:

• E[g2
t (X

2)] = 1.

• E[g2
t (X

2)X2] ≥ P -minX2.

• P -minX2 = inf 0<p̄(t)<1 t
2.
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E
[
g2
t (X)2X2

]
=

1

p̄(t)(1− p̄(t))
E
[(

1[|X|≤t] − p̄(t)
)2
X2
]

=
1

p̄(t)(1− p̄(t))
(
E
[
1[|X|≤t]X

2(1− 2 p̄(t))
]

+ p̄(t)2E[X2]
)

≤ 1

p̄(t)(1− p̄(t))
(
p̄(t) t2 (1− 2 p̄(t)) + p̄(t)2E[X2]

)
for p̄(t) ≤ 1

2

=
1

1− p̄(t)
(
t2 (1− 2 p̄(t)) + p̄(t)E[X2]

)
−→ P -minX2

as t ↓ P -min |X| and hence p̄(t) ↓ 0. �

E.4 Details for Figure 6

We write X instead of Xj• and assume it has a standard normal distribution,
X ∼ N(0, 1), whose density will be denoted by φ(x). In Figure 6 the base function
is, up to scale, as follows:

f(x) = exp

(
− t

2

x2

2

)
, t > −1.

These functions are normal densities up to normalization for t > 0, constant 1
for t = 0, and convex for t < 0. Conveniently, f(x)φ(x) and f2(x)φ(x) are both
normal densities (up to normalization) for t > −1:

f(x)φ(x) = s1 φs1(x), s1 = (1 + t/2)−1/2,

f2(x)φ(x) = s2 φs2(x), s2 = (1 + t)−1/2,

where we write φs(x) = φ(x/s)/s for scaled normal densities. Accordingly we
obtain the following moments:

E[f(X)] = s1E[ 1 |N(0, s1
2)] = s1 = (1 + t/2)−1/2,

E[f(X)X2] = s1E[X2|N(0, s1
2)] = s1

3 = (1 + t/2)−3/2,

E[f2(X)] = s2E[ 1 |N(0, s2
2)] = s2 = (1 + t)−1/2,

E[f2(X)X2] = s2E[X2|N(0, s2
2)] = s2

3 = (1 + t)−3/2,

and hence

RAV [β̂, f2] =
E[f2(X)X2]

E[f2(X)]E[X2]
= s2

2 = (1 + t)−1

Figure 6 shows the functions as follows: f(x)2/E[f2(X)] = f(x)2/s2.

E.5 Proof of Asymptotic Normality of ˆRAVj, Section 12.2

We will need notation for each observation’s population-adjusted regressors:
Xj• = (X1,j•, ..., XN,j•)

′ = Xj −X−jβ−j•. The following distinction is elementary
but important: The component variables of Xj• = (Xi,j•)i=1...N are iid as they are
population-adjusted, whereas the component variables of Xj•̂ = (Xi,j•̂)i=1...N are
dependent as they are sample-adjusted. As N →∞ for fixed p, this dependency
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disappears asymptotically, and we have for the empirical distribution of the values
{Xi,j•̂}i=1...N the obvious convergence in distribution:

{Xi,j•̂}i=1...N
D−→ Xj•

D
= Xi,j• (N →∞).

We recall (29) for reference in the following form:

(31) ˆRAVj =
1
N 〈(Y −Xβ̂)2,Xj•̂

2〉
1
N ‖Y −Xβ̂‖2 1

N ‖Xj•̂‖2
.

For the denominators it is easy to show that

(32)
1
N ‖Y −Xβ̂‖2 P−→ E[ δ2 ],

1
N ‖Xj•̂‖2

P−→ E[X 2
j• ].

For the numerator a CLT holds based on

1
N1/2 〈(Y −Xβ̂)2,Xj•̂

2〉 = 1
N1/2 〈(Y −Xβ)2,Xj•

2〉+OP (N−1/2).(33)

For a proof outline see Details below. It is therefore sufficient to show asymptotic
normality of 〈δ2,Xj•

2〉. Here are first and second moments:

E[ 1
N 〈δ

2,Xj•
2〉] = E[δ2X 2

j•] = E[δ2]E[X 2
j•],

V [ 1
N1/2 〈δ2,Xj•

2〉] = E[δ4Xj•
4]−E[δ2X 2

j•]
2 = E[δ4]E[Xj•

4]−E[δ2]2E[X 2
j•]

2.

The second equality on each line holds under the null hypothesis of independent
δ and ~X. For the variance one observes that we assume that {(Yi, ~Xi)}i=1...N to
be iid sampled pairs, hence {(δ2

i , Xi,j•
2)}i=1...N are N iid sampled pairs as well.

Using the denominator terms (32) and Slutsky’s theorem, we arrive at the first
version of the CLT for ˆRAVj :

N1/2 ( ˆRAVj − 1)
D−→ N

(
0,
E[ δ4]

E[ δ2]2
E[Xj•

4]

E[X 2
j•]

2
− 1

)

With the additional null assumption of normal noise we have E[ δ4] = 3E[ δ2]2,
and hence the second version of the CLT for ˆRAVj :

N1/2 ( ˆRAVj − 1)
D−→ N

(
0, 3

E[Xj•
4]

E[X 2
j•]

2
− 1

)
.

Details for the numerator (33), using notation of Sections D.1 and D.2, in
particular Xj• = Xj −X−jβ−j• and Xj•̂ = Xj −X−jβ̂−j•̂:
(34)

〈(Y −Xβ̂)2,Xj•̂
2〉 = 〈 ((Y −Xβ)−X(β̂ − β))2, (Xj• −X−j(β̂−j•̂ − β−j•))2 〉

= 〈 δ2 + (X(β̂ − β))2 − 2 δ (X(β̂ − β)),

Xj•
2 + (X−j(β̂−j•̂ − β̂−j•))2 − 2 Xj•(X−j(β̂−j•̂ − β−j•)) 〉

= 〈 δ2,Xj•
2 〉+ ...
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Among the 8 terms in “...”, each contains at least one subterm of the form β̂−β
or β̂−j•̂−β−j•, each being of order OP (N−1/2). We first treat the terms with just
one of these subterms to first power, of which there are only two, normalized by
N1/2:

1
N1/2 〈−2 δ (X(β̂ − β)), Xj•

2 〉 = −2
∑

k=0...p

(
1

N1/2

∑
i=1...N δiXi,kX

2
i,j•

)
(β̂j − βj)

=
∑

k=0...p OP (1)OP (N−1/2) = OP (N−1/2),

1
N1/2 〈 δ2, −2 Xj•(X−j(β̂−j•̂ − β−j•)) 〉 = −2

∑
k(6=j)

(
1

N1/2

∑
i=1...N δ

2
iXi,j•Xi,k

)
(β̂−j•̂,k − β−j•,k)

=
∑

k(6=j) OP (1)OP (N−1/2) = OP (N−1/2).

The terms in the big parens are OP (1) because they are asymptotically normal.
This is so because they are centered under the null hypothesis that δi is indepen-
dent of the regressors ~Xi: In the first term we have

E[δiXi,kX
2
i,j•] = E[δi]E[Xi,kX

2
i,j•] = 0

due to E[δi] = 0. In the second term we have

E[δ2
iXi,j•Xi,k] = E[δ2

i ]E[Xi,j•Xi,k] = 0

due to E[Xi,j•Xi,k] = 0 as k 6= j.
We proceed to the 6 terms in (34) that contain at least two β-subterms or one

β-subterm squared. For brevity we treat one term in detail and assume that the
reader will be convinced that the other 5 terms can be dealt with similarly. Here
is one such term, again scaled for CLT purposes:

1
N1/2 〈 (X(β̂ − β))2,Xj•

2 〉 =
∑

k,l=0...p

(
1
N

∑
i=1...N Xi,kXi,lX

2
i,j•

)
N1/2(β̂k − βk)(β̂l − βl)

=
∑

k,l=0...p const ·OP (1)OP (N−1/2) = OP (N−1/2).

The term in the parens converges in probability to E[Xi,kXi,lX
2
i,j•], accounting

for “const”; the term N1/2(β̂k − βk) is asymptotically normal and hence OP (1);
and the term (β̂l − βl) is OP (N−1/2) due to its CLT.
Details for the denominator terms (32): It is sufficient to consider the first
denominator term. LetH = X(X′X)−1X′ be the hat or projection matrix for X.

1
N ‖Y −Xβ̂‖2 = 1

N Y′ (I −H)Y

= 1
N

(
‖Y‖2 −Y′HY

)
= 1

N ‖Y‖
2 −

(
1
N

∑
Yi ~Xi

′
)(

1
N

∑
~Xi

~Xi
′
)−1 (

1
N

∑
~XiYi

)
P−→ E[Y 2] − E[Y ~X]E[ ~X ~X ′ ]−1E[ ~XY ]

= E[Y 2]−E[Y ~X ′ β]

= E[(Y − ~X ′ β)2] due to E[(Y − ~X ′ β) ~X] = 0

= E[ δ2].

The calculations are the same for the second denominator term, substituting Xj

for Y, X−j for X, Xj• for δ, and β−j• for β.
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APPENDIX F: NON-NORMALITY OF CONDITIONAL NULL

DISTRIBUTIONS OF ˆRAVJ

Fig 9. Permutation distributions of ˆRAVj for the LA Homeless Data

Fig 10. Permutation distributions of ˆRAVj for the Boston Housing Data
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