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In the past decade there has been a resurgence of interest in nonlinear dimension reduction. Among new proposals are ‘‘Local Linear

Embedding,’’ ‘‘Isomap,’’ and Kernel Principal Components Analysis which all construct global low-dimensional embeddings from local

affine or metric information. We introduce a competing method called ‘‘Local Multidimensional Scaling’’ (LMDS). Like LLE, Isomap, and

KPCA, LMDS constructs its global embedding from local information, but it uses instead a combination of MDS and ‘‘force-directed’’

graph drawing. We apply the force paradigm to create localized versions of MDS stress functions with a tuning parameter to adjust the

strength of nonlocal repulsive forces. We solve the problem of tuning parameter selection with a meta-criterion that measures how well the

sets of K-nearest neighbors agree between the data and the embedding. Tuned LMDS seems to be able to outperform MDS, PCA, LLE,

Isomap, and KPCA, as illustrated with two well-known image datasets. The meta-criterion can also be used in a pointwise version as a

diagnostic tool for measuring the local adequacy of embeddings and thereby detect local problems in dimension reductions.
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1. INTRODUCTION

Dimension reduction is an essential tool for visualizing high-
dimensional data. High dimensionality is one of two possible
aspects of largeness of data, meaning that the data have a large
number of variables as opposed to cases. High-dimensional
data have arisen naturally as one has moved from the analysis
of single images or single signals to the analysis of databases of
images and signals, so that images and signals are treated as
cases and pixel intensities or amplitudes as the variables. The
correlations between nearby pixels or time points lend plausi-
bility to intrinsic low dimensionality of the collections of
images and signals, and hence to the effectiveness of dimension
reduction.

The most common dimension reduction methods are prin-
cipal component analysis (PCA) and multidimensional scaling
(MDS). PCA finds linear combinations of the variables to
capture the most variation in multivariate data, whereasMDS
aims to preserve proximity/distance between pairs of cases.
Although widely used, these methods fail to flatten curved,
intrinsically low-dimensional manifolds. The (artificial) standard
example is the well-known ‘‘Swiss Roll’’, a two-dimensional
spiraling manifold that can be flattened, but from which a
successful method needs to eliminate the dimensions taken up
by curvature. This cannot be achieved with PCA and MDS as
both attempt to preserve global structure.

One of the newer methods capable of flattening manifolds,
called ‘‘local linear embedding’’ or LLE (Roweis and Saul
2000), is a novel idea: it attempts to preserve local affine
structure by representing each data point as an approximate
affine mixture of its neighbor points and constructing a point
scatter in low dimensions that preserves as best as possible the
affine mixture coefficients from high-dimensional data space,
using an elegant eigenproblem.

A second new method, called ‘‘isometric feature mapping’’
or Isomap (Tenenbaum, Silva, and Langford 2000), builds on
classical MDS but measures large distances in terms of hops
along short distances. That is, Isomap is classical MDS where
large distances have been replaced by estimates of intrinsic
geodesic distances. The use of shortest path lengths as MDS
inputs is due to Kruskal and Seery (1980) in graph drawing (see
also Kamada and Kawai 1989; Gansner, Koren, and North
2004). Isomap’s novelty is to use the idea for nonlinear dimen-
sion reduction.

A third new method and historically the oldest, called
‘‘kernel PCA’’ or KPCA (Schölkopf, Smola, and Müller 1998),
is also classical MDS but based on a localizing transformation
of the inner product data from high-dimensional space.
Localization can be achieved with a Gaussian Kernel trans-
formation such as Æyi, yjæ ¼ exp (� || yi � yj||

2/(2s2)); the
smaller s, the more localized is the inner product compared
with the Euclidean metric.

LMDS, proposed here, derives from MDS by restricting the
stress function to pairs of points with small distances. Thus,
LMDS shares with LLE, Isomap, and KPCA what we may call
‘‘localization.’’ Whereas Isomap completes the ‘‘local graph’’
with shortest path lengths, LMDS stabilizes the stress function
by introducing repulsion between points with large distances.
The idea is borrowed from ‘‘force-directed energy functions’’
used in graph drawing, an important specialty in scientific
visualization (Di Battista, Eades, Tamassia, and Tollis 1999;
Kaufmann and Wagner, 2001; Brandes 2001; Noack 2003;
Michailidis and de Leeuw 2001).

Localization has an unhappy history in MDS. Removing
large distances from the stress function has been tried many
times since Kruskal (1964a, 1964b), but the hope that small
dissimilarities add up to globally meaningful optimal config-
urations was dashed by Graef and Spence (1979): Their
simulations showed that removal of the smallest third of
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dissimilarities was benign, whereas removal of the largest third
had calamitous effects by reducing optimal configurations to
mere jumbles. Thus, the stability of optimal MDS config-
urations stems from the large dissimilarities, and localized
MDS did not appear to be a viable approach.

Isomap’s way out of the localization problem—completion
of the local graph with shortest path lengths—has drawbacks:
shortest paths tend to zig-zag and accumulate noise in esti-
mates of intrinsic geodesic distances. In view of MDS’ reliance
on large distances, Isomap may be driven mostly by the large
but noisy shortest-path imputations, whereas the local distances
play only a minor role. LMDS’ solution to the localization
problem has drawbacks, too, in that it may exhibit systematic
distortions. This may be a classical trade-off between variance
and bias: Isomap suffers from more variance, LLE and LMDS
from more bias. LMDS, on the other hand, has a tuning
parameter for controlling the balance between attractive and
repulsive forces, permitting a range of embeddings from noisy
with little bias to crisp with more bias.

Although LMDS’ tuning parameter provides flexibility, it
also creates a selection problem: how does one know in prac-
tice which among several configurations is most faithful to the
underlying high-dimensional structure? This question can be
answered with measures of faithfulness separate from the stress
functions. We have proposed one such family of measures,
called ‘‘Local Continuity’’ or ‘‘LC’’ meta-criteria and defined
as the average size of the overlap of K-nearest neighborhoods
in the high-dimensional data and the low-dimensional config-
uration (Chen 2006). These measures turn out to be practically
useful for selecting good configurations. Independently, Akkucuk
and Carroll (2006) developed similar measures for comparing
the performance of different methods. We show how such
measures can be employed as part of data analytic method-
ology: (1) for choosing tuning parameters such as strength of
the repulsive force and neighborhood size, and (2) as the basis
of diagnostic plots that show how faithfully each point is
embedded in a configuration.

To further motivate LC meta-criteria, we draw an analogy
between dimension reduction and classification: In classi-
fication, the measures of interest are misclassification rates, yet
classifiers are constructed as minimizers of smooth surrogate
criteria such as logistic loss. Similarly, in dimension reduction,
the measures of interest are the LC meta-criteria, yet config-
urations are constructed as minimizers of smooth stress func-
tions. Like misclassfication rates, LC meta-criteria are not
smooth and statistically unstable, yet of primary interest.

We conclude by noting that LMDS inherits the generality of
MDS: The input used from the data are a matrix of distances or
dissimilarities Di, j, and for this reason the method applies
wherever distances or dissimilarities arise: In dimension
reduction Di,j ¼ ||yi � yj|| for high-dimensional yi; in graph
drawing Di,j are minimum path lengths within a graph; in
proximity analysis Di,j are observed judgments of pairwise
dissimilarity. LMDS applies in all cases.

1.1 Terminology

Straddling the areas of dimension reduction, graph drawing,
and proximity analysis, we adopt terminology from all three.

For {xi} we use ‘‘configuration’’ from proximity analysis, and
also ‘‘embedding’’ and ‘‘graph layout.’’ For Di,j we use ‘‘dis-
similarity’’ from proximity analysis, and also ‘‘target dis-
tance,’’ meaning distances between high-dimensional feature
vectors in dimension reduction and shortest-path-length dis-
tances in graph drawing.

1.2 Background on MDS

Two types of MDS must be distinguished: (1) ‘‘Classical’’
Torgerson-Gower inner-product scaling transforms dissimilarity
data to inner-product data and extracts reduced dimensions from
an eigendecomposition. (2) Kruskal-Shepard distance scaling
approximates dissimilarity data directly with distances from
configurations in reduced dimensions, in the simplest case by
minimizing a residual sum of squares. Classical scaling applied
to high-dimensional Euclidean distances is equivalent to PCA
on the underlying multivariate data. It is hierarchical in the
sense that, for example, a reduction to three-dimensional
consists of the reduction to 2-D plus one more dimension.
Distance scaling is not hierarchical, but it usually approximates
dissimilarities better in a given reduced dimension than clas-
sical scaling. Isomap and KPCA are descendants of classical
scaling; LMDS is a descendant of distance scaling. A further
distinction between metric and nonmetric MDS is irrele-
vant here as we restrict ourselves to the metric case. For more
background (e.g., see Borg and Groenen 2005; Buja and
Swayne 2002; Buja Swayne, Littman, Hofmann, and Chen
2008).

1.3 Further Literature

An early pioneer in nonlinear dimension reduction is She-
pard and Carroll’s (1966) PARAMAP method (Akkacuk and
Carroll 2006). Various forms of model-based proximity anal-
ysis were proposed by Ramsay (1977, 1982), MacKay and
Zinnes (1986), and Oh and Raftery (2001). Related to PCA are
Hastie and Stuetzle’s (1989) principal curves and surfaces. In
a similar class are coordinatization approaches such as Zhang
and Zha (2005) and Brand (2005). A hybrid of classical and
distance scaling are the semidefinite programming (SDP) ap-
proaches by Lu, Keles, Wright,and Wahba (2005) and Weinberger,
Sha, Zhu, and Saul (2006) who fit full-rank Gram matrices K to
local proximities via Di,j

2 � Ki,i þ Kj,j � 2Ki,j and extract
hierarchical embeddings by decomposing K. Related to KPCA
with Gaussian kernels are Laplacian Eigenmaps (Belkin and
Niyogi, 2003) and Diffusion Maps (Coifman et al. 2005).
Hessian Eigenmaps by Donoho and Grimes (2003) make the
stronger assumption of local isometry to parts of a Euclidean
parameter space.

We proceed as follows: Section 2 derives LMDS from
Kruskal’s distance scaling; Section 3 introduces LC meta-criteria,
followed by illustrations with two image datasets (Section 4).

In an online supplemental report, we provide thoughts in
population modeling of nonlinear dimension reduction, a
simulation example to illustrate LMDS, robustness properties
of the LC-meta-criterion, and color versions of plots in this
article. The supplemental report can be downloaded at http://
www.amstat.org/publications/jasa/supplemental_materials
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2. LOCAL MULTIDIMENSIONAL SCALING

The goal of MDS is to map objects i ¼ 1, . . ., N to config-
uration points x1, . . ., xN 2 IRd such that the data, given as
dissimilarities Di,j, are well-approximated by the configuration
distances ||xi � xj||. In ‘‘metric distance scaling’’ one uses mea-
sures of lack of fit, called ‘‘Stress,’’ between {Di,j} and {||xi �
xj||}, which in the simplest case is a residual sum of squares:

MDSDðx1; . . .; xNÞ ¼
X

i; j¼1...N

Di; j� k xi � xj k
� �2

: ð1Þ

For localization, let N be a symmetric set of nearby pairs (i, j),
such as a symmetrized K-nearest neighbor (K-NN) graph:
(i, j) 2N if j is among the K nearest neighbors of i, or i is among
the K nearest neighbors of j. If N does not form a connected
graph, one may map the connected components separately, or
one connects the components by adding connecting pairs to N.

Our initial proposal for localized MDS is to replace the
dissimilarities for (i, j) not in N with a very large value D‘ but
with small weight w:

LMDSD
N ðx1; . . .; xNÞ ¼

X

ði; jÞ2N
Di; j� k xi � xj k
� �2 ð2Þ

þ
X

ði; jÞ=2N
w � D‘� k xi � xj k
� �2

: ð3Þ

The pairs (i, j) 2 N describe the ‘‘local fabric’’ of a high-
dimensional manifold or a graph, whereas the pairs (i, j) ; N
introduce a bias that should avoid the typical problem of MDS
when the large dissimilarities are eliminated from the Stress:
crumpling up of the configuration to a jumble, meaning that
many distant pairs of points are placed close together. The
imputation of a very large distance introduces a pervasive
repulsive force throughout the configuration, similar to electric
static that makes dry hair fly apart. The imputation of a single
large dissimilarity D‘ with little weight is likely to introduce
less noise than the imputation of shortest-path estimates, at the
price of some bias. Thus, LMDS derives configurations
directly from local distances, whereas Isomap derives them
indirectly from estimated noisy large distances.

A question is how to choose the weight w relative to the
imputed value D‘. The following argument shows that w
should be on the order of 1/D‘. We expand the ‘‘repulsion
term’’ (3), discarding functions of the dissimilarities that do not
affect the minimization problem:

LMDSD
N ðx1; . . .; xNÞ;

X

ði; jÞ2N
Di; j� k xi � xj k
� �2 ð4Þ

� 2wD‘

X

ði; jÞ=2N
k xi � xj k ð5Þ

þw
X

ði; jÞ=2N
k xi � xj k2 ð6Þ

As D‘ ! ‘, we let w ! 0 at least on the order of 1/D‘ to
prevent the term (5) from blowing up. The weight w cannot go
to zero faster than 1/D‘, though, because otherwise both terms
(5) and (6) vanish. This leaves w ;1/D‘ as the only nontrivial
choice, in which case (6) disappears. We let therefore D‘! ‘

subject to w¼ t/(2D‘), where t is a fixed constant, and arrive at
the final definition of localized Stress:

LMDSD
N ðx1; . . . ; xNÞ ¼

X

ði; jÞ2N

ðDi; j � jj xi � xj jjÞ2

� t
X

ði; jÞ=2N

jj xi � xj jj ð7Þ

We call the first term ‘‘local stress’’ and the second term
‘‘repulsion.’’ A benefit of passing to the limit is the replace-
ment of two parameters, w and D‘, with a single parameter t. In
addition, the two remaining terms in (7) have intuitive mean-
ing: The first term forces ||xi � xj|| to follow Di, j for (i, j) 2 N
and is responsible for preserving the intended local structure as
much as possible. The second term contributes repulsion out-
side N and is responsible for pushing points away from each
other if they are not locally linked.

The relative strength of attractive and repulsive forces
is balanced by the parameter t. Selecting it in a data-driven
way is the subject of the next section. As it stands, however,
t is unsatisfactory because it suffers from a lack of invari-
ance under desirable transformations. This problem can be
corrected:

Invariance under change of units: Di,j and t have the same
units, hence the units of t can be eliminated, for example, by t¼
medianN(Di, j)t9, where the new parameter t9 is unit free. Instead
of medianN(Di,j) any statistic S that satisfies S({cDi, j}) ¼ c
S({Di, j}) will do.

Approximate invariance under change of graph size: As the
graph size |N| changes, so does the number of summands in (7):
|N| for the local stress and |NC| ¼ N(N � 1)/2 � |N| for the
repulsion. As |N| grows, the relative importance of the repul-
sion diminishes for fixed t. This can be corrected by repar-
ametrizing t with a factor |N|/|NC|:

Figure 1. Sculpture Face Data: Three-dimensional LMDS config-
uration, K ¼ 6, optimized t.
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t ¼ jN j
jN Cj

�medianN ðDi; jÞ � t;

where t is unit free. A good strategy for optimization is to start
with a large value such as t ¼ 1 to obtain a stable configuration,
and lower t successively as low as 0.01, using previous con-
figurations as initializations for smaller values of t. Along the
way one collects the quantities proposed in the next section for
selecting a value of t that may be nearly optimal in specific sense.

Notation. We write LMDSD
N when we allow a general graph

N, but we may write LMDSD
K when the graph N is a symme-

trized K-NN graph. Depending on the context, we may omit or
add arguments, such as LMDSK or LMDSK,t.

3. CRITERIA FOR PARAMETER SELECTION

For automatic selection of tuning parameters and compar-
ison of methods, we need measures of faithfulness of config-
urations separate from the stress functions used for optimizing
configurations. One such family of measures was independ-
ently developed by Carroll and his students (Akkucuk and
Carroll 2006; France and Carroll 2006) and by us (Chen 2006).
The idea is to compare for a given case (1) the K9-NN with
regard to Di,j in data space, and (2) the K9-NN with regard to
||xi � xj|| in configuration space. [We use K9 in distinction from
the K used in the stress function LMDSK .] A high degree of
overlap between the two neighbor sets yields a measure of local
faithfulness of the embedding of the given case. By averaging
over all cases we obtain a global measure that we call ‘‘local
continuity’’ or ‘‘LC meta-criterion’’. The neighborhood size K9

is a free parameter, and its choice requires further discussion.

3.1 Notation

For case i we form the index set N D
K 0 ðiÞ ¼ f j1; . . .; jK 0 g of

K9-NNs with regard to Di, j, and N X
K0 ðiÞ ¼ fk1; . . .; kK 0 g of K9-

NNs with regard to ||xi � xk|| (excluding i). The overlap is
measured pointwise and globally by

NK0 ðiÞ ¼ jN D
K 0 ðiÞ \ N

X
K 0 ðiÞj ; NK 0 ¼

1

N

XN

i¼1

NK0 ðiÞ : ð8Þ

The pointwise criteria NK9(i) lend themselves for diagnostic
plots that pinpoint local lack of faithfulness of embeddings.

Both the pointwise NK9(i) and the global NK9 are bounded by
K9, and NK9 ¼ K9 would imply maximal faithfulness: NK9(i) ¼
K9 for all i, meaning perfect identity of K9-nearest neighbor-
hoods in terms of the data {Di,j} and the configuration {xi}.

3.2 Normalization

To enable comparison of NK9 across different values of K9,
we use the fact that NK9 has K9 as an upper bound and normalize
overlap to the [0, 1] interval:

MK0 ¼
1

K 0
NK 0 : ð9Þ

Figure 2. Sculpture Face Data: Three-dimensional configurations from five methods. The gray tones encode terciles of known parameters
indicated in the three column labels, rotated to best separation.

Table 1. Sculpture Face Data: LC meta-criteria for K9 ¼ 6

Method PCA MDS Isomap LLE LMDSK¼6

NK9¼6 2.6 3.1 4.5 2.8 5.2
MK9¼6 0.43 0.52 0.75 0.47 0.87
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An example of a trace K9 1 MK9 is shown in Figure 3 (top
right, upper curve), which illustrates the fact that the trace
ascends to MK9 ¼ 1 for K9 ¼ N � 1.

3.3 Adjusting for Random Overlap

If there is complete absence of association between the data
and the configuration, the local overlap NK9(i) is random and
can be modeled by a hypergeometric distribution with K9 de-
fectives out of N � 1 items and K9 draws, and hence E[NK9] ¼
K92/(N � 1). This suggests defining adjusted LC meta-criteria
(Chen 2006):

Madj
K9 ¼ MK9 �

K9

N � 1
: ð10Þ

An example of an adjusted trace K91Madj
K9 is also shown in

Figure 3 (top right plot, lower curve). Akkucuk and Carroll
(2006) go further by mapping NK9 to a z-score under random
overlap, but in most applications these z-scores are extreme
because even weak structure results in extreme statistical sig-
nificance under the null hypothesis of random overlap.

3.4 Comparing Two Configurations

For comparing two configurations, one may plot the trace of
differences; K 01M

ð1Þ
K 0 �M

ð2Þ
K 0 : With differences the issue of

random overlap becomes moot. An example is shown in Figure
8 (right hand plot) where LMDS and plain MDS configurations
are compared. The idea is that LMDS’ localization should
produce benefits over plain MDS in terms of MK9 for small K9.

Selection of t:

Given K for LMDSK,t and K9 for MK9, we can optimize the
repulsion weight t with a grid search. This is illustrated in
Figure 3 (top left plot) with a trace t 1 MK9 applied to con-
figurations that are optimized for LMDSK,t for K ¼ K9 ¼ 6.
Henceforth, when applied to LMDSK,t-optimal configurations,
MK9 denotes the t-maximized value for a given K.

Selection of K:

There is a question of which Madj
K9 to use to judge the con-

figurations that minimize LMDSK. Here are two strategies:

Figure 3. Sculpture Face Data: Selection of t and K in the stress function LMDSK,t. Top Left: Trace t 1 MK9¼6 for configurations that
minimize LMDSK¼6,t. A global maximum is attained near t ¼ 0.005. Top Right: Traces K9 1 MK9, Madj

K9 for t-minimized configurations,
constraining K ¼ K9 in LMDSK. The adjusted criterion points to a global maximum at K ¼ K9 ¼ 8. Bottom: Assessing t-optimized solutions of
LMDSK with traces K9 1 MK9, M

ðadjÞ
K9 for various values of K: K ¼ 8 dominates over a range of K9 from 4 to 20.
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K9¼ K: For fixed K minimize LMDSK,t for various values of
t; pick the t whose configuration maximizes Madj

K9 repeat for
various values of K ¼ K9 and plot a trace K91Madj

K9 as, for
example, in Figure 3 (upper right, lower curve). Finally, pick
that K ¼ K9, which maximizes the trace (K ¼ K9 � 8 in the
figure).

K9, K decoupled: It is desirable that K is not just Madj
K9 -optimal

for K9 ¼ K, but for a range of values K9. To find out, one may
plot traces K91Madj

K9 one for each value of K, as in Figure 3
(bottom right). It is comforting that in this case K¼ 8 dominates
uniformly over a range of K9 from 4 up to over 20.

3.5 Concluding Remark

The LC meta-criteria are doubly ‘‘non-metric’’ in the sense
that they only use rank information of both {Di, j} and {||xi �
xj||}. Equivalently, they are invariant under monotone increas-
ing transformations of both quantities. They therefore add—at
the level of parameter tuning—a nonmetric element to LMDS,
which is otherwise a metric form of MDS.

4. EXAMPLES

In this section we apply LMDS to two sets of facial image
data for two reasons: (1) such data are often intrinsically

piecewise low-dimensional and hence promising for dimension
reduction (see later), and (2) facial image data have been the
primary examples in the recent literature (Roweis and Saul
2000; Tenenbaum et al. 2000). This fact enables us to compare
the performance of LMDS with those of competing methods on
the same datasets.

Images are two-way arrays of pixels, which in the simplest
case describe light intensities on a grey scale. By treating each
pixel as a variable, an image of size 64 3 64 pixels becomes a
single data point in a 4,096-dimensional image space. These
dimensions, however, are highly redundant. Two sources of
redundancy are the following: (1) In most images a majority of
nearby pixel pairs have nearly equal light intensities, which
translates to strong correlations between variables. (2) There
are often far fewer degrees of freedom when a collection of
images shows articulations of the same object. The physical
degrees of freedom in the facial image datasets considered later
include viewing direction and lighting direction in one case and
facial expression in the other case.

4.1 Example 1: Sculpture Face Data

This dataset includes 698 images of size 64 3 64 of a sculp-
ture face and was analyzed in the Isomap article (Tenenbaum

Figure 4. Sculpture Face Data: Pointwise diagnostics for 2-D views of three-dimensional configurations from four methods. The grayscales
code N6(i) as follows: overlap 0–3 ; black, overlap 4–6 ; gray. A comparison of the density of black points reveals the local dominance of
Isomap and LMDS over PCA and LLE, as well as an edge of LMDS over Isomap on these data.
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et al. 2000). The images show the same sculpture face while
varying three conditions: left-right pose, up-down pose, and
lighting direction, amounting to three angular parameters that
characterize an image. One can therefore anticipate that the
true intrinsic dimension of the image data are three, and one
hopes that nonlinear dimension reduction tools will reveal them
in a meaningful way. Because the underlying truth is known,
this example serves the same purpose as a simulation.

The Isomap analysis of Tenenbaum et al. (2000) was done
with K ¼ 6 nearest neighbors and Euclidean distances between
images, and we adopt these choices in our LMDS analysis. The
three-dimensional configuration generated by LMDS is close
to a hyperrectangle as Figure 1 shows. We labeled a few points
in both views with the corresponding images. On the widest
dimension (drawn horizontally) the images show transitions in
the left-right pose, on the second widest dimension (vertical
axis of the upper view) transitions in the up-down pose, and on
the third dimension (vertical axis of the lower view) transitions
in the lighting direction.

To compare recovery of the three angular parameters, we
shaded the configuration points by dividing the range of each
parameter in turn into its three tercile brackets and encoding
them in grayscale. If recovery occurs in a configuration, we
should see coherence in the distribution of gray tones. In Figure

2 we show shaded 2-D views of three-dimensional config-
urations for PCA, MDS, Isomap, LLE, and LMDS, with the
configurations rotated to best reveal the gray separations.
We note that the three tones of gray overlap in some of the
plots; in particular the up-down transition is not well-captured
by PCA, MDS, and LLE. Interesting is also a wrap-around
structure in the PCA configuration. The meeting of the
extremes (light gray and black) visible in the frame of PCA
and ‘‘Left-right Pose’’ is probably caused by the darkness
of images showing the extreme left and extreme right poses.
The LLE configuration shows characteristic spikes, which
we observed in most applications: LLE is generally prone to
linear artifacts in its configurations, and LLE may be more
difficult to fine-tune for competitive performance than Isomap
and LMDS. The Isomap and LMDS configurations in Figure 2
look quite similar and show clear color separations. They are
most successful at flattening the nonlinear structure in this
dataset. Of the two, LMDS shows crisper boundaries in the
configuration, which in our experience is a general observation.
The fuzziness in the Isomap configurations is consistent with
the noisiness of shortest-path length imputations discussed
earlier.

We also compared the five methods according to the LC
meta-criterion NK9 for K9 ¼ 6, shown in Table 1. We see that

Figure 5. Frey Face Data: 2-D views of three-dimensional configurations from LMDS with four choices of K.
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Isomap and LMDS generate better configurations by this
measure, with LMDS winning out by a small margin.

In Figure 3 (top left) we show a trace of MK9 (K9 ¼ 6) as a
function of the repulsion weight t. The shape is typical: a
unimodal graph that attains a maximum, in this case of MK9 �
0.87 near t ¼ 0.005. The decrease of the meta-criterion to the
left of the peak indicates that too weak a repulsion allows the
local stress to take over and causes the configuration to
degenerate. Thus, repulsion is essential for the stability of
optimized configurations.

For comparison purposes, we used the same number of
nearest neighbors in LMDS, K ¼ 6, as in Tenenbaum et al.

(2000). They did not discuss how they chose K; presumably they
used trial-and-error to find a useful configuration. We can be
more systematic as we can use the LC meta-criteria to choose K.

Using first the simpler selection methodology, we link K9¼ K.
We tried a grid between K9 ¼ 4 and K9 ¼ 650, with small
increments near 4 and larger increments near 650. For each K, we
optimized the meta-criterion with K9 ¼ K with regard to the
repulsion weight t, and we used this optimized value of M

ðadjÞ
K9 as

the criterion for selecting K. [Note: For different K9 the highest
M
ðadjÞ
K9 is achieved at different values of t.] The resulting traces

are shown in Figure 3 (top right): unexpectedly, there are two
local maxima, at K9 ¼ 8 and K9 ¼ 16, the latter quite minor,

Figure 6. Frey Face Data: 2-D views of three-dimensional configurations, comparing PCA, MDS, Isomap, LLE, KPCA, and LMDS.
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though. After these peaks, the traces dip before MK9 ascends to its
maximum (1) and Madj

K9 descends to its minimum (0) at K9¼ N�
1. Adjustment for random overlap has the desired effect of cre-
ating a single absolute maximum for M

adj
K9 at K¼ K9¼ 8. By this

methodology, the Isomap authors’ choice K ¼ 6 is near optimal.
In the next exercise we unlink K and K9 and plot traces

K91M
ðadjÞ
K9 for a selection of values of K, as in Figure 3

(bottom row). The traces reach their maxima at or near K9¼ K,
which, in this data example, lends support to the simpler
methodology based on K9 ¼ K.

Finally, we use the pointwise LC meta-criterion N6(i) as a
diagnostic by grayscale coding the configurations from PCA,

Isomap, LLE, and LMDS, as shown in Figure 4. The overall
grayscale impression of a configuration reflects its average
level of N6(i), namely, N6. Correspondingly, the lower quality
configurations from PCA and LLE contain overall more black,
those from Isomap and LMDS more light gray. It appears that
Isomap’s configuration is of lesser quality in the left and right
extremes where we find a greater density of black points.
Overall the LMDS configuration has a slight edge.

4.2 Example 2: Frey Face Data

This dataset, from the LLE article (Roweis and Saul 2000),
includes 1,965 images of the face of a single person (by name

Figure 7. Frey Face Data: The six configurations (from Figure 6) with connecting lines that reflect the time order of the video footage.
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of Brendan Frey), taken as sequential frames from a piece of
video footage. The time ordering of these frames and the
expected correlation between frames close in time constitutes a
true known structure that one hopes to recover with dimension
reduction. The image size is 20 3 28; hence the image space is
560-dimensional. We include PCA, MDS, Isomap, LLE, as
well as KPCA as competitors of LMDS. For the localized
methods, nearest neighbor computations were based on plain
Euclidean distances in 560-dimensional image space. With
visualization in mind, we choose again a reduction to three-
dimensional and show an informative 2-D projection of each
three-dimensional configuration. Figure 5 shows four solutions
of LMDS for various values of K, and Figure 6 compares the
six methods.

Overall, LMDS configurations with small K show more
structure than those of the other methods. All configurations
reveal two major clusters (top and bottom in each) corre-
sponding to, respectively, smiling faces (top) and serious faces
(bottom). A second feature shared by all is a dimension cor-
reponding roughly to the left-right pose. All plots were rotated
to line up the serious-smiling division vertically and the left-
right pose horizontally.

The aspect in which the competing methods differ the most
is in the degree to which the major divisions are further sub-
divided into subclusters and linked by transitions between
them. The PCA and MDS configurations show essentially only
the two base dimensions and give little indication of further
subdivisions. LLE produces a configuration that is quite struc-
tured, but it suffers again from a tendency to spikiness that is
most likely artifactual but difficult to prevent. Isomap comes
closest to LMDS in regards to subdivisions and transitions, but

its noisiness obscures transitions between clusters. The LMDS
configurations for small K show transitions between sub-
clusters that can be shown to be real. Our confidence in this
belief is backed up by Figure 7 where the same plots show the
time order with connecting lines. The LMDS configuration
makes it clear that there exist essentially four transitions
between smiling faces at the top and serious faces at the bot-
tom. Although LMDS’ spikiness could raise suspicions that it
suffers from the same problem as the LLE configuration, the
connecting lines show that the spikes describe indeed paths
taken by the video footage. The main bias of the LMDS con-
figuration for K ¼ 4 is most likely in the extent to which it
attempts to separate the serious and smiling faces; the ‘‘true’’
separations are most likely better reflected in the cruder con-
figurations from PCA, MDS, and Isomap.

Table 2 evaluates the six methods according to LC meta-
criteria. Even though we use K9 ¼ 12, LMDSK¼4 is the top
performer, whereas LMDSK¼12 is slightly dominated by reg-
ular MDS. With regard to wealth of structure, MDS is not a
serious competitor of LMDSK¼12. As globally biased as the
LMDSK¼4 configuration appears, it is the most congenial for
the video path, and the meta-criterion MK9¼12 appropriately
singles it out.

We next decouple K and K9 and consider MK9-traces for
LMDSK configurations for various choices of K, as shown in
Figure 8. The unadjusted traces on the left show a very different
behavior from those of the sculpture face data in that all traces
are ascending and maximization is not possible. Adjustment for
random overlap is insufficient as it barely affects the traces in
the range of K9-values shown (4–150 out of N � 1 ¼ 1964).
We therefore use more drastic adjustment with MDS as the
baseline, shown on the right of Figure 8. The horizontal line
(diamonds) at level zero marks MDS. It turns out that config-
urations based on LMDSK with K¼ 4 (circles) performs best in
terms of Madj

K9 for K9 up to 8, whereas the configurations gen-
erated by K ¼ 8 (triangles) and K ¼ 12 (plus signs) perform
badly, as they are uniformly beaten by MDS. Apparently the
neighborhood structure for K9 $ 10 is best captured by global
MDS, but the locally zero- and one-dimensional structures

Table 2. Frey Face Data: LC meta-criteria for K9 ¼ 12

Methods PCA MDS Isomap LLE KPCA LMDSK¼12 LMDSK¼4

NK9¼12 3.6 4.8 4.2 3.2 3.7 4.6 5.1
MK9¼12 0.30 0.40 0.35 0.27 0.31 0.38 0.43

Figure 8. Frey Face Data: Traces of the Meta-Criterion, K9 1 MK9, for various choices of the neighborhood size K in the local stress LMDSK.
Left: unadjusted fractional overlap; right: adjusted with MDS as the baseline. MDS is LMDS with K¼ 1,964, which by definition has the profile
Madj

K9 [ 0 in the right hand frame.
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(clusters and transitions) best rendered by K ¼ 4, as measured
by Madj

K9 for K9 < 10.

5. DISCUSSION AND CONCLUSION

This article makes three contributions: (1) It introduces a
novel version of multidimensional scaling, called LMDS, that
lends itself to locally faithful nonlinear dimension reduction
and as such competes successfully with recent proposals, such
as ‘‘local linear embedding’’ (LLE, Roweis and Saul 2000) and
‘‘isometric feature mapping’’ (Isomap, Tenenbaum et al. 2000).
(2) This article proposes a solution to the problem of selecting
tuning parameters. (3) Finally, it proposes a diagnostics tool for
detecting local flaws in embeddings.

LMDS also applies to graph drawing problems and to
proximity analysis. Inspired by energy functions used in graph
drawing, LMDS uses graph-internal attraction forces to faith-
fully render local proximities and graph-external repulsion
forces to stabilize the configurations. Novel is (1) the deriva-
tion of this particular repulsion and (2) the fact that we subject
it to tuning.

The tuning problem is solved with ‘‘local continuity’’ or LC
meta-criteria that measure K9-NN agreement in the data and
in the configurations. [A version of it was independently
proposed by Akkucuk and Carroll (2006) for comparing dif-
ferent dimension reduction methods.] In addition, we are
able to use LC meta-criteria for tuning the degree of local-
ization, that is, the size of neighborhoods in the LMDS stress
function.

Exploratory tools, such as LMDS, require diagnostics to
detect local flaws in embeddings. We provide methodology to
this end with a pointwise version of the LC meta-criteria.
Further diagnostics for stability and multiplicity of embeddings
with subsampling and perturbation are described by Buja and
Swayne (2002) and Buja et al. (2008). Diagnostics for estab-
lishing local dimensionality can be based on ‘‘prosections’’
proposed by Furnas and Buja (1994).

The Achilles heel of methods considered here is the com-
plete reliance on distance data or dissimilarities, which holds
both for the LMDS fitting criterion and the LC meta-criteria.
As methods cannot be better than their inputs, future research
should address ways to choose distances/dissimilarities in a
problem-specific manner. Such efforts could blend with similar
needs in ‘‘kernelizing’’ regression methods such as SVMs,
which essentially replace predictor spaces with similarity
measures.

[Received December 2006. Revised October 2008.]
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