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Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)

I Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:
< 1/4 were viewed as replicated.

I Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase II drug trials

I Ioannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

I Simmons, Nelson, Simonsohn (2011, Psychol.Sci):
“False-Positive Psychology: Undisclosed Flexibility in Data Collection and
Analysis Allows Presenting Anything as Significant,”

Many potential causes – two major ones:
I publication bias: “file drawer problem” (Rosenthal 1979)
I statistical biases: “researcher degrees of freedom” (SNS 2011)

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 2 / 32



Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)

I Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:
< 1/4 were viewed as replicated.

I Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase II drug trials

I Ioannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

I Simmons, Nelson, Simonsohn (2011, Psychol.Sci):
“False-Positive Psychology: Undisclosed Flexibility in Data Collection and
Analysis Allows Presenting Anything as Significant,”

Many potential causes – two major ones:
I publication bias: “file drawer problem” (Rosenthal 1979)
I statistical biases: “researcher degrees of freedom” (SNS 2011)

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 2 / 32



Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)

I Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:
< 1/4 were viewed as replicated.

I Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase II drug trials

I Ioannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

I Simmons, Nelson, Simonsohn (2011, Psychol.Sci):
“False-Positive Psychology: Undisclosed Flexibility in Data Collection and
Analysis Allows Presenting Anything as Significant,”

Many potential causes – two major ones:
I publication bias: “file drawer problem” (Rosenthal 1979)
I statistical biases: “researcher degrees of freedom” (SNS 2011)

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 2 / 32



Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)

I Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:
< 1/4 were viewed as replicated.

I Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase II drug trials

I Ioannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

I Simmons, Nelson, Simonsohn (2011, Psychol.Sci):
“False-Positive Psychology: Undisclosed Flexibility in Data Collection and
Analysis Allows Presenting Anything as Significant,”

Many potential causes – two major ones:
I publication bias: “file drawer problem” (Rosenthal 1979)
I statistical biases: “researcher degrees of freedom” (SNS 2011)

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 2 / 32



Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)

I Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:
< 1/4 were viewed as replicated.

I Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase II drug trials

I Ioannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

I Simmons, Nelson, Simonsohn (2011, Psychol.Sci):
“False-Positive Psychology: Undisclosed Flexibility in Data Collection and
Analysis Allows Presenting Anything as Significant,”

Many potential causes – two major ones:

I publication bias: “file drawer problem” (Rosenthal 1979)
I statistical biases: “researcher degrees of freedom” (SNS 2011)

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 2 / 32



Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)

I Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:
< 1/4 were viewed as replicated.

I Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase II drug trials

I Ioannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

I Simmons, Nelson, Simonsohn (2011, Psychol.Sci):
“False-Positive Psychology: Undisclosed Flexibility in Data Collection and
Analysis Allows Presenting Anything as Significant,”

Many potential causes – two major ones:
I publication bias: “file drawer problem” (Rosenthal 1979)
I statistical biases: “researcher degrees of freedom” (SNS 2011)

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 2 / 32



Statistical Biases – one among several

Hypothesis: A statistical bias is due to
an absence of accounting for model/variable selection.

Model selection is done on several levels:
I formal selection: AIC, BIC, Lasso, ...
I informal selection: residual plots, influence diagnostics, ...
I post hoc selection: “The effect size is too small in relation to the cost of data

collection to warrant inclusion of this predictor.”

Suspicions:
I All three modes of model selection may be used in much empirical research.
I Ironically, the most thorough and competent data analysts may also be the

ones who produce the most spurious findings.
I If we develop valid post-selection inference for “adaptive Lasso”, say,

it won’t solve the problem because few empirical researchers would commit
themselves a priori to one formal selection method and nothing else.
⇒ “Meta-Selection Problem”
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The Problem of Post-Selection Inference

How can Variable Selection invalidate Conventional Inference?

Conventional inference after variable selection ignores the fact that the
model was obtained through a stochastic selection process.

Stochastic variable selection distorts sampling distributions of the
post-selection parameter estimates: Most selection procedures search
for strong, hence highly significant looking predictors.

Some forms of the problem has been known for decades:
Koopmans (1949); Buehler and Fedderson (1963); Brown (1967); and Olshen (1973); Sen

(1979); Sen and Saleh (1987); Dijkstra and Veldkamp (1988); Arabatzis et al. (1989);

Hurvich and Tsai (1990); Regal and Hook (1991); Pötscher (1991); Chiou and Han

(1995a,b); Giles (1992); Giles and Srivastava (1993); Kabaila (1998); Brockwell and

Gordeon (2001); Leeb and Pötscher (2003; 2005; 2006a; 2006b; 2008a; 2008b); Kabaila

(2005); Kabaila and Leeb (2006): Berk, Brown and Zhao (2009); Kabaila (2009).
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Example: Length of Criminal Sentence

Question: What covariates predict length of a criminal sentence best?
A small empirical study:

N = 250 observations.

Response: log-length of sentences

p = 11 covariates (predictors, explanatory variables):

I race

I gender

I initial age

I marital status

I employment status

I seriousness of crime

I psychological problems

I education

I drug related

I alcohol usage

I prior record

What variables should be included?
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Example: Length of Criminal Sentence (contd.)

All-subset search with BIC chooses a model M̂ with seven variables:

I initial age

I gender

I employment status

I seriousness of crime

I drugs related

I alcohol usage

I prior records

t-statistics of selected covariates, in descending order:

I |talcohol| = 3.95;

I |tprior records| = 3.59;

I |tseriousness| = 3.57;

I |tdrugs| = 3.31;

I |temployment| = 3.04;

I |tinitial age| = 2.56;

I |tgender| = 2.33.

Can we use the cutoff t.975,250−8 = 1.97?
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Linear Model Inference and Variable Selection

Y = Xβ + ε

X = fixed design matrix, N × p, N > p, full rank.

ε ∼ NN
(
0, σ2IN

)
In textbooks:

1 Variables selected
2 Data seen
3 Inference produced

In common practice:
1 Data seen
2 Variables selected
3 Inference produced

Is this inference valid?
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Evidence from a Simulation

Generate Y from the following linear model:

Y = βx +
10∑

j=1

γjzj + ε,

where p = 11, N = 250, and ε ∼ N (0, I) iid. More Details

For simplicity: “Protect” x and select only among z1,...,z10;
interest is in inference for β.

Model selection: All-subset search with BIC among z1,...,z10;
always including x .

Proper coverage of a 95% CI on the slope β of x under the chosen model
requires that the t-statistic is about N (0,1) distributed.
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Evidence from a Simulation (contd.)

Marginal Distribution of Post-Selection t-statistics:

t X

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 Nominal Dist.

The overall coverage probability of the conventional post-selection CI is
83.5% < 95%.

For p = 30, the coverage probability can be as low as 39%.
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The PoSI Procedure — Rough Outline

We propose to construct Post Selection Inference (PoSI) with guarantees
for the coverage of CIs and Type I errors of tests.

We widen CIs and retention intervals to achieve correct/conservative
post-selection coverage probabilities. This is the price we have to pay.

The approach is a reduction of PoSI to simultaneous inference.

Simultaneity is across all submodels and all slopes in them.

As a result, we obtain

valid PoSI for all variable selection procedures!

But first we need some preliminaries on

Targets of Inference and Inference in Wrong Models
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PoSI — What’s in a word?

http://www.thefreedictionary.com/posies

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 11 / 32



Submodels — Notation, Parameters, Assumptions

Denote a submodel by the integers M = {j1, j2, ..., jm} for the predictors:

XM =
(
Xj1 ,Xj2 , ...,Xjm

)
∈ IRN×m.

The LS estimators in the submodel M are

β̂M =
(
XT
MXM

)−1XT
M Y ∈ IRm

What does β̂M estimate, not assuming the truth of M?
A: Its expectation — i.e., we ask for unbiasedness.

µ := E[Y] ∈ IRN arbitrary!!

βM := E[β̂M] =
(
XT
MXM

)−1XT
M µ

Once again: We do not assume that the submodel is correct,
i.e., we allow µ 6= XMβM! But XMβM is the best approximation to µ.
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Submodels versus the Full Model — Confusions

Abbreviate β̂ := β̂MF
and β := βMF

, MF = {1,2, ...,p} = full model.
Questions:

I How do submodel estimates β̂
M

relate to full-model estimates β̂?
I How do submodel parameters β

M
relate to full-model parameters β?

Is β̂M a subset of β̂ and βM a subset of β?

Answer: Unless X is an orthogonal design,
I β̂

M
is not a subset of β̂ and

I β
M

is not a subset of β.

Reason: Slopes, both estimates and parameters, depend on
what the other predictors are — in value and in meaning.

Message: β̂M does not estimate full-model parameters!
(Exception: The full model is causal or “data generating” ...

Submodel estimates suffer then from “omitted variables bias.”)
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‘Slopes depend on ...’ — An Illustration

Survey of potential purchasers of a new high-tech gizmo:
I Response: “LoP” = Likelihood of Purchase (self-reported on a Likert scale)
I Predictor 1: Age
I Predictor 2: Income

Expectation: Younger customers have higher LoP, that is, βAge < 0.

Outcome of the analysis:
I Against expectations, a regression of LoP on Age alone indicates that

older customers have higher LoP: βAge > 0
I But a regression of LoP on Age and Income indicates that,

adjusted for Income, younger customers have higher LoP: βAge•Income < 0
I Enabling factor: (partial) collinearity between Age and Income.

A case of Simpson’s paradox: βAge > 0 > βAge•Income.
I The marginal and the Income-adjusted slope have

very different values and different meanings.
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Adjustment, Estimates, Parameters, t-Statistics

Notation and facts for the components of β̂M and βM, assuming j ∈ M:

I Let Xj•M be the predictor Xj adjusted for the other predictors in M:

Xj•M :=
(
I− HMr{j}

)
Xj ⊥ Xk ∀k ∈ Mr {j}.

I Let β̂j•M be the slope estimate and βj•M be the parameter for Xj in M:

β̂j•M :=
XT

j•MY
‖Xj•M‖2 , βj•M :=

XT
j•ME[Y]
‖Xj•M‖2 .

I Let tj•M be the t-statistic for β̂j•M and βj•M:

tj•M :=
β̂j•M − βj•M

σ̂/‖Xj•M‖
=

XT
j•M(Y− E[Y])
‖Xj•M‖ σ̂

.

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 15 / 32



Adjustment, Estimates, Parameters, t-Statistics

Notation and facts for the components of β̂M and βM, assuming j ∈ M:

I Let Xj•M be the predictor Xj adjusted for the other predictors in M:

Xj•M :=
(
I− HMr{j}

)
Xj ⊥ Xk ∀k ∈ Mr {j}.

I Let β̂j•M be the slope estimate and βj•M be the parameter for Xj in M:

β̂j•M :=
XT

j•MY
‖Xj•M‖2 , βj•M :=

XT
j•ME[Y]
‖Xj•M‖2 .

I Let tj•M be the t-statistic for β̂j•M and βj•M:

tj•M :=
β̂j•M − βj•M

σ̂/‖Xj•M‖
=

XT
j•M(Y− E[Y])
‖Xj•M‖ σ̂

.

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 15 / 32



Adjustment, Estimates, Parameters, t-Statistics

Notation and facts for the components of β̂M and βM, assuming j ∈ M:

I Let Xj•M be the predictor Xj adjusted for the other predictors in M:

Xj•M :=
(
I− HMr{j}

)
Xj ⊥ Xk ∀k ∈ Mr {j}.

I Let β̂j•M be the slope estimate and βj•M be the parameter for Xj in M:

β̂j•M :=
XT

j•MY
‖Xj•M‖2 , βj•M :=

XT
j•ME[Y]
‖Xj•M‖2 .

I Let tj•M be the t-statistic for β̂j•M and βj•M:

tj•M :=
β̂j•M − βj•M

σ̂/‖Xj•M‖
=

XT
j•M(Y− E[Y])
‖Xj•M‖ σ̂

.

Andreas Buja (Wharton, UPenn) “PoSI” — Valid Post-Selection Inference 2014/01/18 15 / 32



Parameters One More Time

Once more: If the predictors are partly collinear (non-orthogonal) then

M 6= M′ ⇒ βj•M 6= βj•M′ in value and in meaning.

Motto: A difference in adjustment implies a difference in parameters.

It follows that there are up to p 2p−1 different parameters βj•M!

However, they are intrinsically p-dimensional:

βM = (XT
MXM)−1XT

M Xβ

where X and β are from the full model.

Hence each βj•M is a lin. comb. of the full model parameters β1, ..., βp.
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Geometry of Adjustment

x 1

x 2

x 2.1

x 1.2

φφ0
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●

Column space
of X for p=2
predictors,
partly collinear
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Error Estimates σ̂2

Important: To enable simultaneous inference for all tj•M,
I do not use the error estimate /////σ̂2

M := ‖Y− XMβ̂
M
‖2/(n −m) in M;

(the selected model M may well be 1st order wrong;)
I instead, for all models M use σ̂2 = σ̂2

Full from the full model;

=⇒ tj•M will have a t-distribution with the same dfs ∀M, ∀j ∈ M.

What if even the full model is 1st order wrong?
Answer: σ̂2

Full will be inflated and inference will be conservative.
But better estimates are available if ...

I exact replicates exist: use σ̂2 from the 1-way ANOVA of replicates;
I a larger than the full model can be assumed 1st order correct: use σ̂2

Large;
I a previous dataset provided a valid estimate: use σ̂2

previous;
I nonparametric estimates are available: use σ̂2

nonpar (Hall and Carroll 1989).

PS: In the fashionable p > N literature, what is their σ̂2?
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Statistical Inference under First Order Incorrectness

Statistical inference, one parameter at a time:
If r = dfs in σ̂2 and K = t1−α/2,r , then the confidence intervals

CIj•M(K ) := [ β̂j•M ± K σ̂/‖Xj•M‖ ]

satisfy each P[βj•M ∈ CIj•M(K ) ] = 1−α.

Achieved so far:

Y = µ+ ε, ε ∼ NN
(
0, σ2I

)
I No assumption is made that the submodels are 1st order correct;

I Even the full model may be 1st order incorrect
if a valid σ̂2 is otherwise available;

I A single error estimate opens up the possibility of
simultaneous inference across submodels.
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Variable Selection

What is a variable selection procedure?

A map Y 7→ M̂ = M̂(Y), IRN → P({1, ...p})

I M̂ divides the response space IRN into up to 2p subsets.

I In a fixed-predictor framework, selection purely based on X does not
invalidate inference (example: deselect predictors based on VIF, H, ...).

Facing up to post-selection inference: Confusers!
I Target of Inference: the vector β

M̂(Y), its components βj•M̂(Y) for j ∈ M̂(Y).

I The target of inference is random.

I The target of inference has a random dimension: β
M̂(Y) ∈ IR

|M̂(Y)|

I Conditional on j∈M̂, the target component βj•M̂(Y) has random meanings.

I When j /∈ M̂ both βj•M̂ and β̂j•M̂ are undefined.

I Hence the coverage probability P[βj•M̂ ∈ CIj•M̂(K ) ] is undefined.
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Universal Post-Selection Inference

Candidates for meaningful coverage probabilities:
I P[ j ∈ M̂ & βj•M̂ ∈ CIj•M̂(K ) ] (≤ P[ j ∈ M̂ ])

I P[ βj•M̂ ∈ CIj•M̂(K )
∣∣ j ∈ M̂ ] (P[ j ∈ M̂ ] = ???)

I P[ ∀j ∈ M̂ : βj•M̂ ∈ CIj•M̂(K ) ]

All are meaningful; the last will be our choice.

Overcoming the next difficulty:
I Problem: None of the above coverage probabilities are known or can be

estimated for most selection procedures M̂.

I Solution: Ask for more!
Universal Post-Selection Inference for all selection procedures is doable.
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Reduction to Simultaneous Inference

Lemma
For any variable selection procedure M̂ = M̂(Y), we have the following
“significant triviality bound”:

max
j∈M̂
|tj•M̂| ≤ max

M

max
j∈M
|tj•M| ∀Y,µ ∈ IRN .

Theorem
Let K be the 1−α quantile of the “max-max-|t |” statistic of the lemma:

P
[

max
M

max
j∈M
|tj•M| ≤ K

] (≥)
= 1− α.

Then we have the following universal PoSI guarantee:

P
[
βj•M̂ ∈ CIj•M̂(K ) ∀j ∈ M̂

]
≥ 1− α ∀M̂.
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PoSI Geometry — Simultaneity
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PoSI polytope
= intersection
of all t-bands.
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How Conservative is PoSI?

Is there a model selection procedure that requires full PoSI protection?

Consider M̂ defined as follows:

M̂ := argmax
M

max
j∈M

|tj•M|

A polite name: “Single Predictor Adjusted Regression” =: SPAR
A crude name: “Significance Hunting”

a special case of “p-hacking” (Simmons, Nelson, Simonsohn 2011)

SPAR requires the full PoSI protection — by construction!

How realistic is SPAR in describing real data analysts behaviors?
I It ignores the goodness of fit of the selected model.
I It looks for the minimal achievable p-value / strongest “effect”.
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Computing PoSI

The simultaneity challenge: there are p 2p−1 statistics |tj•M|.

p 1 2 3 4 5 6 7 8 9 10
#|tj•M| 1 4 12 32 80 192 448 1, 024 2, 304 5, 120

p 11 12 13 14 15 16 17 18 19 20
#|tj•M| 11, 264 24, 576 53, 248 114, 688 245, 760 524, 288 1, 114, 112 2, 359, 296 4, 980, 736 10, 485, 760

Monte Carlo-approximation of KPoSI in R, brute force, for p
≤
≈ 20.

Computations are specific to a design X: KPoSI = KPoSI(X, α, df )

Computations depend only on the inner product matrix XT X.
⇒ The limiting factor is p (N may only matter for σ̂2).

One Monte Carlo computation is good for any α and any error df .

Computations of universal upper bounds:
Kuniv(p, α, df ) ≥ KPoSI(X, α, df ) ∀X...×p.
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Scheffé Protection Yields Valid PoSI

Scheffé Simultaneous Inference is based on the statistic

sup
x∈col(X)r{0}

|xT (Y− E[Y])|
‖x‖ σ̂

∼
√

p Fp,df .

I The Scheffé method provides sim. inference for all linear “contrasts”.
I The Scheffé constant is KSch = KSch(p, α, df ) =

√
p Fp,df ;1−α.

Compare: PoSI Simultaneous Inference is based on the statistic

max
M

max
j∈M

|XT
j•M(Y− E[Y])|
‖Xj•M‖ σ̂

The PoSI contrasts are a subset of the Scheffé contrasts, hence:
I Scheffé statistic ≥ PoSI statistic
I KSch ≥ KPoSI

I Scheffé yields universally valid conservative PoSI.
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The Scheffé Ball and the PoSI Polytope

x 1

x 2

x 2.1

x 1.2

φφ0

O

P1

P2

●

Circle =
Scheffé Ball

The PoSI
polytope is
tangent to
the ball.
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Orthogonal Designs have the Smallest PoSI Constants

In orthogonal designs there is no adjustment:

Xorth

j•M = Xorth

j ∀M, j (3 M)

The PoSI statistic simplifies to maxj=1...p |tj•{j}| ,
hence the PoSI guarantee reduces to

simultaneity for p orthogonal contrasts.

The PoSI constant for orthogonal designs is uniformly smallest:

Korth(p, α, df ) ≤ KPoSI(X...×p, α, df ) ∀p, α, df ,X...×p
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The PoSI constant for orthogonal designs is uniformly smallest:

Korth(p, α, df ) ≤ KPoSI(X...×p, α, df ) ∀p, α, df ,X...×p
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PoSI Asymptotics

Natural asymptotics for the PoSI constant KPoSI(X...×p, α, df ) are in terms
of design sequences p 7→ X...×p as p ↑ ∞ and df =∞, i.e., σ known.

The Scheffé constant has the following rate in p:
KSch(p, α) =

√
χ2

p;1−α ∼
√

p.

I This represents an upper bound on the PoSI rate.
I We know a sharper rate bound to be 0.866...

√
p.

I We know of design sequences that reach 0.78...
√

p.

The lowest rate is achieved by orthogonal designs with a rate
Korth(p, α) ∼

√
2 log p.

Hence there is a wide range of rates for the PoSI constants:√
2 log p ≤∼ KPoSI(X...×p, α)

<∼ √
p

Under all circumstances, K should not be tdf ;1−α/2 = /////////O(1).
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Worst Case PoSI Asymptotics — Some Details

Comments on upper bound KPoSI

<∼ 0.866...
√

p:

I Ignores the PoSI structure, i.e., the many orthogonalities from adjustment.
I Based purely on the growth rate: |{Xj·M : j ∈ M}| = p 2p−1 ∼ 2p

I Bound is achieved by random selection of ∼ 2p random vectors:
X1, ...,Xp2p−1 ∼ U(Sp−1) i.i.d. versus {Xj·M : j ∈ M}

I Reduction to radial problem: maxj,M: j∈M〈U,Xj·M〉 (U ∼ U(Sp−1)).
⇒Wyner’s (1967) bounds on sphere packing apply.

Comments on lower bound KPoSI

>∼ 0.78
√

p:
I Best lower bound known to date is found by construction of an example.∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 ... c
0 1 0 0 ... c
0 0 1 0 ... c
0 0 0 1 ... c
... ... ... ... ... ...

0 0 0 0 ...
√

1− (p − 1)c2

∣∣∣∣∣∣∣∣∣∣∣∣∣
I This is not be the ultimate worst case yet.
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Example: Length of Criminal Sentence (contd.)

Reminder: t-statistics of selected covariates, in descending order:

I |talcohol| = 3.95;

I |tprior records| = 3.59;

I |tseriousness| = 3.57;

I |tdrugs| = 3.31;

I |temployment| = 3.04;

I |tinitial age| = 2.56;

I |tgender| = 2.33.

The PoSI constant is KPoSI ≈ 3.1, hence we would claim significance for
the four variables on the left.

For comparison, the Scheffé constant is KSch ≈ 4.5, leaving us with no
significant predictors at all.

Similarly, Bonferroni with α/(p 2p−1) yields KBonf ≈ 4.7 .
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Conclusions

Valid universal post-selection inference is possible.

Necessary buy-ins:
I Each submodel has its own slope parameters.
I Use one σ̂ you believe in for all tj•M.
I Valid inference for “wrong” models is meaningful.

PoSI is not procedure-specific, hence is conservative. However:
I PoSI is valid even for selection that is informal and post-hoc.
I PoSI is necessary for selection based on “significance hunting”.

Asymptotics in p suggests strong dependence of KPoSI on design X.

Challenges:
I PoSI under heteroskedasticity, random X, general misspecification, ...
I Understanding the design geometry that drives KPoSI(X).
I Computations of KPoSI for large p.

THANK YOU!
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Details of Simulation

Number of simulated datasets: 100,000.

β = 0, γj = 4,∀j = 1, . . . ,10.

Vectors x and zj ’s are standardized to have zero mean and unit variance.
I The correlation between x and each zj is 0.7, ∀j = 1, . . . , 10.
I The correlation between zj1 and zj2 is 0.5, ∀j1, j2 = 1, . . . , 10.

Back
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PoSI1 — SPAR1: Focus on One Predictor of Interest

Sometimes there is one focal predictor of interest, Xp.

Inference is desired only for βp•M (test statistics: tp•M).

Search only models M that contain p: p ∈ M (# = 2p−1).
Purpose: Boost the statistical significance of β̂p•M.

PoSI1 produces a constant KPoSI1 whose intervals CIp•M(KPoSI1)

are valid after any variable selection procedure M̂ that is subject to p ∈ M̂.

A selection procedure that requires the full PoSI1 protection:
SPAR1, defined by M̂ := argmaxM3p|tp•M|.

Conclusions:

PoSI1 is more appropriate for some situations than full PoSI.

Trivially, KPoSI1 < KPoSI , but sometimes not by much!
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Ways to Limit the Size of the PoSI Problem

The full universe of models for full PoSI: all non-singular submodels

I Mall = {M : M⊂{1, 2, ..., p}, 0 < |M|≤min(n, p), rank(XM)= |M|}.

Useful sub-universes:

I Protect one or more predictors, as in PoSI1: M = {M : p ∈ M}.

I Sparsity, i.e., submodels of size m′ or less: M = {M : |M| ≤ m′}.

I Richness, i.e., drop fewer than m′ predictors from the full model:
M = {M : |M| ≥ p −m′}.

I Nested sets of models, as in polynomial regression, AR models, ANOVA.
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PoSI Significance: Strong Error Control

For each j ∈ M, consider the t-test statistic

t0,j•M =
β̂j•M − 0

σ̂•
((

XT
M

XM

)−1
jj

) 1
2
.

Theorem
Let H1 be the random set of true alternatives in M̂,
and Ĥ1 the random set of rejections in M̂:

Ĥ1 = {(j , M̂) : j ∈ M̂, |t0,j•M̂| > K} and H1 = {(j , M̂) : j ∈ M̂, βj•M̂ 6= 0}.

Then
P
(
Ĥ1 ⊂ H1

)
≥ 1− α.

If we repeat the sampling process many times, the probability that all PoSI
rejections are correct is at least 1− α, no matter how the model is selected.

Back
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