### "PoSI" — Valid Post-Selection Inference

#### Andreas Buja

joint work with

#### Richard Berk, Lawrence Brown, Kai Zhang, Linda Zhao

Department of Statistics, The Wharton School University of Pennsylvania Philadelphia, USA

UF 2014/01/18

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 のへで

#### Indicators of a problem

(from: Berger, 2012, "Reproducibility of Science: P-values and Multiplicity")

Image: Image:

#### Indicators of a problem

(from: Berger, 2012, "Reproducibility of Science: P-values and Multiplicity")

- Bayer Healthcare reviewed 67 in-house attempts at replicating findings in published research:
  - < 1/4 were viewed as replicated.
- Arrowsmith (2011, Nat. Rev. Drug Discovery 10): Increasing failure rate in Phase II drug trials

#### Indicators of a problem

(from: Berger, 2012, "Reproducibility of Science: P-values and Multiplicity")

- Bayer Healthcare reviewed 67 in-house attempts at replicating findings in published research:
  - < 1/4 were viewed as replicated.
- Arrowsmith (2011, Nat. Rev. Drug Discovery 10): Increasing failure rate in Phase II drug trials
- Ioannidis (2005, PLOS Medicine):
  - "Why Most Published Research Findings Are False"

A (1) > A (2) > A (2)

#### Indicators of a problem

(from: Berger, 2012, "Reproducibility of Science: P-values and Multiplicity")

- Bayer Healthcare reviewed 67 in-house attempts at replicating findings in published research:
  - < 1/4 were viewed as replicated.
- Arrowsmith (2011, Nat. Rev. Drug Discovery 10): Increasing failure rate in Phase II drug trials
- Ioannidis (2005, PLOS Medicine):

"Why Most Published Research Findings Are False"

Simmons, Nelson, Simonsohn (2011, Psychol.Sci):

"False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant,"

#### Indicators of a problem

(from: Berger, 2012, "Reproducibility of Science: P-values and Multiplicity")

- Bayer Healthcare reviewed 67 in-house attempts at replicating findings in published research:
  - < 1/4 were viewed as replicated.
- Arrowsmith (2011, Nat. Rev. Drug Discovery 10): Increasing failure rate in Phase II drug trials
- Ioannidis (2005, PLOS Medicine):

"Why Most Published Research Findings Are False"

Simmons, Nelson, Simonsohn (2011, Psychol.Sci):

"False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant,"

Many potential causes – two major ones:

• □ ▶ • □ ▶ • □ ▶ • □ ▶

#### Indicators of a problem

(from: Berger, 2012, "Reproducibility of Science: P-values and Multiplicity")

- Bayer Healthcare reviewed 67 in-house attempts at replicating findings in published research:
  - < 1/4 were viewed as replicated.
- Arrowsmith (2011, Nat. Rev. Drug Discovery 10): Increasing failure rate in Phase II drug trials
- Ioannidis (2005, PLOS Medicine):

"Why Most Published Research Findings Are False"

Simmons, Nelson, Simonsohn (2011, Psychol.Sci):

"False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant,"

- Many potential causes two major ones:
  - publication bias: "file drawer problem" (Rosenthal 1979)
  - statistical biases: "researcher degrees of freedom" (SNS 2011)

・ロト ・回ト ・ヨト ・ヨト

Hypothesis: A statistical bias is due to

- Hypothesis: A statistical bias is due to an absence of accounting for model/variable selection.
- Model selection is done on several levels:

• Hypothesis: A statistical bias is due to

- Model selection is done on several levels:
  - formal selection: AIC, BIC, Lasso, ...

• Hypothesis: A statistical bias is due to

- Model selection is done on several levels:
  - formal selection: AIC, BIC, Lasso, ...
  - informal selection: residual plots, influence diagnostics, ...

Hypothesis: A statistical bias is due to

- Model selection is done on several levels:
  - ▶ formal selection: AIC, BIC, Lasso, ...
  - informal selection: residual plots, influence diagnostics, ...
  - post hoc selection: "The effect size is too small in relation to the cost of data collection to warrant inclusion of this predictor."

Hypothesis: A statistical bias is due to

- Model selection is done on several levels:
  - ► formal selection: AIC, BIC, Lasso, ...
  - informal selection: residual plots, influence diagnostics, ...
  - post hoc selection: "The effect size is too small in relation to the cost of data collection to warrant inclusion of this predictor."
- Suspicions:

Hypothesis: A statistical bias is due to

- Model selection is done on several levels:
  - ► formal selection: AIC, BIC, Lasso, ...
  - informal selection: residual plots, influence diagnostics, ...
  - post hoc selection: "The effect size is too small in relation to the cost of data collection to warrant inclusion of this predictor."
- Suspicions:
  - All three modes of model selection may be used in much empirical research.

Hypothesis: A statistical bias is due to

an absence of accounting for model/variable selection.

- Model selection is done on several levels:
  - ▶ formal selection: AIC, BIC, Lasso, ...
  - informal selection: residual plots, influence diagnostics, ...
  - post hoc selection: "The effect size is too small in relation to the cost of data collection to warrant inclusion of this predictor."
- Suspicions:
  - All three modes of model selection may be used in much empirical research.
  - Ironically, the most thorough and competent data analysts may also be the ones who produce the most spurious findings.

A (B) + A (B) + A (B) +

• Hypothesis: A statistical bias is due to

an absence of accounting for model/variable selection.

- Model selection is done on several levels:
  - ▶ formal selection: AIC, BIC, Lasso, ...
  - informal selection: residual plots, influence diagnostics, ...
  - post hoc selection: "The effect size is too small in relation to the cost of data collection to warrant inclusion of this predictor."
- Suspicions:
  - All three modes of model selection may be used in much empirical research.
  - Ironically, the most thorough and competent data analysts may also be the ones who produce the most spurious findings.
  - If we develop valid post-selection inference for "adaptive Lasso", say, it won't solve the problem because few empirical researchers would commit themselves a priori to one formal selection method and nothing else.
    - $\Rightarrow$  "Meta-Selection Problem"

How can Variable Selection invalidate Conventional Inference?

A 3 5 A 3

Image: Image:

How can Variable Selection invalidate Conventional Inference?

• Conventional inference after variable selection ignores the fact that the model was obtained through a stochastic selection process.

How can Variable Selection invalidate Conventional Inference?

- Conventional inference after variable selection ignores the fact that the model was obtained through a stochastic selection process.
- Stochastic variable selection distorts sampling distributions of the post-selection parameter estimates: Most selection procedures search for strong, hence highly significant looking predictors.

How can Variable Selection invalidate Conventional Inference?

- Conventional inference after variable selection ignores the fact that the model was obtained through a stochastic selection process.
- Stochastic variable selection distorts sampling distributions of the post-selection parameter estimates: Most selection procedures search for strong, hence highly significant looking predictors.
- Some forms of the problem has been known for decades: Koopmans (1949); Buehler and Fedderson (1963); Brown (1967); and Olshen (1973); Sen (1979); Sen and Saleh (1987); Dijkstra and Veldkamp (1988); Arabatzis et al. (1989); Hurvich and Tsai (1990); Regal and Hook (1991); Pötscher (1991); Chiou and Han (1995a,b); Giles (1992); Giles and Srivastava (1993); Kabaila (1998); Brockwell and Gordeon (2001); Leeb and Pötscher (2003; 2005; 2006a; 2006b; 2008a; 2008b); Kabaila (2005); Kabaila and Leeb (2006): Berk, Brown and Zhao (2009); Kabaila (2009).

Question: What covariates predict length of a criminal sentence best? A small empirical study:

• N = 250 observations.

イロト イポト イヨト イヨト

Question: What covariates predict length of a criminal sentence best? A small empirical study:

- N = 250 observations.
- Response: log-length of sentences

Question: What covariates predict length of a criminal sentence best? A small empirical study:

- N = 250 observations.
- Response: log-length of sentences
- p = 11 covariates (predictors, explanatory variables):
  - race
  - ▶ gender
  - initial age
  - marital status
  - employment status
  - seriousness of crime

psychological problems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- education
- drug related
- alcohol usage
- prior record

Question: What covariates predict length of a criminal sentence best? A small empirical study:

- N = 250 observations.
- Response: log-length of sentences
- p = 11 covariates (predictors, explanatory variables):
  - race
  - ▶ gender
  - initial age
  - marital status
  - employment status
  - seriousness of crime
- What variables should be included?

psychological problems

(4 同) (4 回) (4 回)

- education
- drug related
- alcohol usage
- prior record

## Example: Length of Criminal Sentence (contd.)

- All-subset search with BIC chooses a model  $\hat{\mathrm{M}}$  with seven variables:
  - initial age
  - ▶ gender
  - employment status
  - seriousness of crime

- drugs related
- alcohol usage
- prior records

# Example: Length of Criminal Sentence (contd.)

- All-subset search with BIC chooses a model  $\hat{\mathrm{M}}$  with seven variables:
  - initial age
  - ▶ gender
  - employment status
  - seriousness of crime

- drugs related
- alcohol usage
- prior records
- t-statistics of selected covariates, in descending order:
  - |t<sub>alcohol</sub>| = 3.95;
  - $|t_{\text{prior records}}| = 3.59;$
  - $|t_{seriousness}| = 3.57;$
  - $|t_{drugs}| = 3.31;$

- $|t_{employment}| = 3.04;$
- |t<sub>initial age</sub>| = 2.56;

▶  $|t_{gender}| = 2.33.$ 

# Example: Length of Criminal Sentence (contd.)

- All-subset search with BIC chooses a model  $\hat{\mathrm{M}}$  with seven variables:
  - initial age
  - ▶ gender
  - employment status
  - seriousness of crime

- drugs related
- alcohol usage
- prior records
- *t*-statistics of selected covariates, in descending order:
  - |t<sub>alcohol</sub>| = 3.95;
  - $|t_{\text{prior records}}| = 3.59;$
  - $|t_{seriousness}| = 3.57;$
  - $|t_{drugs}| = 3.31;$

- $|t_{employment}| = 3.04;$
- |t<sub>initial age</sub>| = 2.56;

- ▶  $|t_{gender}| = 2.33.$
- Can we use the cutoff t<sub>.975,250-8</sub> = 1.97?

## Linear Model Inference and Variable Selection

$$\mathbf{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

- $X = fixed design matrix, N \times p, N > p, full rank.$
- $\boldsymbol{\epsilon} \sim \mathcal{N}_{N}(\mathbf{0}, \sigma^{2} \mathbf{I}_{N})$

In textbooks:

- Variables selected
- 2 Data seen
- Inference produced

In common practice:

- Data seen
- 2 Variables selected
- Inference produced

## Linear Model Inference and Variable Selection

$$\mathbf{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

- **X** = fixed design matrix,  $N \times p$ , N > p, full rank.
- $\boldsymbol{\epsilon} \sim \mathcal{N}_{N} \left( \mathbf{0}, \sigma^{2} \mathbf{I}_{N} \right)$

#### In textbooks:

- Variables selected
- 2 Data seen
- Inference produced

In common practice:

- Data seen
- Variables selected
- Inference produced

# Is this inference valid?

Generate Y from the following linear model:

$$Y = \beta x + \sum_{j=1}^{10} \gamma_j Z_j + \epsilon,$$

where p = 11, N = 250, and  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$  iid.



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Generate Y from the following linear model:

$$Y = \beta x + \sum_{j=1}^{10} \gamma_j Z_j + \epsilon,$$

where p = 11, N = 250, and  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$  iid.

 For simplicity: "Protect" x and select only among z<sub>1</sub>,...,z<sub>10</sub>; interest is in inference for β.

► More Details

Generate Y from the following linear model:

$$Y = \beta x + \sum_{j=1}^{10} \gamma_j Z_j + \epsilon,$$

where p = 11, N = 250, and  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$  iid.

- For simplicity: "Protect" x and select only among z<sub>1</sub>,...,z<sub>10</sub>; interest is in inference for β.
- Model selection: All-subset search with BIC among z<sub>1</sub>,...,z<sub>10</sub>; always including x.

Generate Y from the following linear model:

$$Y = \beta x + \sum_{j=1}^{10} \gamma_j Z_j + \epsilon,$$

where p = 11, N = 250, and  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$  iid.

- For simplicity: "Protect" x and select only among z<sub>1</sub>,...,z<sub>10</sub>; interest is in inference for β.
- Model selection: All-subset search with BIC among z<sub>1</sub>,...,z<sub>10</sub>; always including x.
- Proper coverage of a 95% CI on the slope  $\beta$  of x under the chosen model requires that the *t*-statistic is about  $\mathcal{N}(0, 1)$  distributed.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

More Details

## Evidence from a Simulation (contd.)

Marginal Distribution of Post-Selection t-statistics:



# Evidence from a Simulation (contd.)

Marginal Distribution of Post-Selection t-statistics:



 The overall coverage probability of the conventional post-selection CI is 83.5% < 95%.</li>

# Evidence from a Simulation (contd.)

Marginal Distribution of Post-Selection t-statistics:



- The overall coverage probability of the conventional post-selection CI is 83.5% < 95%.</li>
- For p = 30, the coverage probability can be as low as 39%.

Andreas Buja (Wharton, UPenn)

• We propose to construct Post Selection Inference (PoSI) with guarantees for the coverage of CIs and Type I errors of tests.

・ロト ・同ト ・ヨト ・ヨ

- We propose to construct Post Selection Inference (PoSI) with guarantees for the coverage of CIs and Type I errors of tests.
- We widen CIs and retention intervals to achieve correct/conservative post-selection coverage probabilities. This is the price we have to pay.

- We propose to construct Post Selection Inference (PoSI) with guarantees for the coverage of CIs and Type I errors of tests.
- We widen CIs and retention intervals to achieve correct/conservative post-selection coverage probabilities. This is the price we have to pay.
- The approach is a reduction of PoSI to simultaneous inference.

- We propose to construct Post Selection Inference (PoSI) with guarantees for the coverage of CIs and Type I errors of tests.
- We widen CIs and retention intervals to achieve correct/conservative post-selection coverage probabilities. This is the price we have to pay.
- The approach is a reduction of PoSI to simultaneous inference.
- Simultaneity is across all submodels and all slopes in them.

- We propose to construct Post Selection Inference (PoSI) with guarantees for the coverage of CIs and Type I errors of tests.
- We widen CIs and retention intervals to achieve correct/conservative post-selection coverage probabilities. This is the price we have to pay.
- The approach is a reduction of PoSI to simultaneous inference.
- Simultaneity is across all submodels and all slopes in them.
- As a result, we obtain

valid PoSI for all variable selection procedures!

(日)

- We propose to construct Post Selection Inference (PoSI) with guarantees for the coverage of CIs and Type I errors of tests.
- We widen CIs and retention intervals to achieve correct/conservative post-selection coverage probabilities. This is the price we have to pay.
- The approach is a reduction of PoSI to simultaneous inference.
- Simultaneity is across all submodels and all slopes in them.
- As a result, we obtain

valid PoSI for all variable selection procedures!

• But first we need some preliminaries on

Targets of Inference and Inference in Wrong Models

#### PoSI — What's in a word?

#### http://www.thefreedictionary.com/posies

| <ul> <li>Translations</li> </ul>                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>posy</b> ['pauzɪ] <i>N</i> → <u>ramillete</u> <i>m</i>                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                               |
| <b>posy</b> ['pəuzi] <i>n</i> → <u>petit bouquet</u> <i>m</i>                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                               |
| posy $n \rightarrow \underline{\text{Straußchen}} nt$                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                               |
| <b>posy</b> ['pəuzɪ] $n \rightarrow \underline{mazzolino}$ (di fiori)                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                               |
| posy                                                                                                                                                                                                                                                                                                                                          |
| n posy [ˈpəuzi]<br>a small bunch of flowers <i>a posy of primroses.</i> ruiker אין китка kytička lille buket der <u>Strauß</u>                                                                                                                                                                                                                |
| μπουκετάκι <u>ramillete</u> (väike) lillekimp سنه گل kukkavihko <u>petit bouquet</u> (de <u>fleurs) איז י</u> קרַרִים עשעקיבש                                                                                                                                                                                                                 |
| kitica cvijeća kis csokor seikat bunga blómvöndur <u>mazzolino</u> 花束 꽃다발 puokštelė puku pušķītis<br>sejambak bunga <u>boekst liten bukett, blomst</u> bukiecik <u>ramalhete</u> buchetel <u>букет(ик) цветов</u><br>kytička šopek buketić [] bukett и́арал <sup>а</sup> ці <u>küçük çiçek</u> demeti 花束 букетик квітів<br>hoa nhó <u>花</u> 束 |

・ロト ・回ト ・ヨト ・ヨト

Andreas Buja (Wharton, UPenn)

2014/01/18 12/32

(D) (A) (A) (A)

• Denote a submodel by the integers  $M = \{j_1, j_2, ..., j_m\}$  for the predictors:

$$\mathbf{X}_{\mathrm{M}} = \left(\mathbf{X}_{j_1}, \mathbf{X}_{j_2}, ..., \mathbf{X}_{j_m}\right) \in \mathrm{I\!R}^{N imes m}.$$

(I) < ((i) <

• Denote a submodel by the integers  $M = \{j_1, j_2, ..., j_m\}$  for the predictors:

$$\mathbf{X}_{\mathrm{M}} = ig(\mathbf{X}_{j_1}, \mathbf{X}_{j_2}, ..., \mathbf{X}_{j_m}ig) \in \mathrm{I\!R}^{N imes m}.$$

• The LS estimators in the submodel M are

 $\hat{\boldsymbol{eta}}_{\mathrm{M}} \;=\; \left(\boldsymbol{\mathsf{X}}_{\mathrm{M}}^{\mathcal{T}} \boldsymbol{\mathsf{X}}_{\mathrm{M}}\right)^{-1} \boldsymbol{\mathsf{X}}_{\mathrm{M}}^{\mathcal{T}} \; \boldsymbol{\mathsf{Y}} \;\in\; {\mathrm{I\!R}}^{m}$ 

• Denote a submodel by the integers  $M = \{j_1, j_2, ..., j_m\}$  for the predictors:

$$\mathbf{X}_{\mathrm{M}} = ig(\mathbf{X}_{j_1}, \mathbf{X}_{j_2}, ..., \mathbf{X}_{j_m}ig) \in \mathrm{I\!R}^{N imes m}.$$

• The LS estimators in the submodel  ${\rm M}$  are

$$\hat{\boldsymbol{eta}}_{\mathrm{M}} \;=\; \left( \boldsymbol{\mathsf{X}}_{\mathrm{M}}^{\mathcal{T}} \, \boldsymbol{\mathsf{X}}_{\mathrm{M}} 
ight)^{-1} \boldsymbol{\mathsf{X}}_{\mathrm{M}}^{\mathcal{T}} \; \boldsymbol{\mathsf{Y}} \;\in\; \mathrm{I\!R}^{m}$$

• What does  $\hat{\boldsymbol{\beta}}_{\mathrm{M}}$  estimate, **not** assuming the truth of M?

(D) (A) (A) (A)

• Denote a submodel by the integers  $M = \{j_1, j_2, ..., j_m\}$  for the predictors:

 $\mathbf{X}_{\mathrm{M}} = \left(\mathbf{X}_{j_{1}}, \mathbf{X}_{j_{2}}, ..., \mathbf{X}_{j_{m}}\right) \in \mathrm{I\!R}^{N \times m}.$ 

• The LS estimators in the submodel M are

 $\hat{\boldsymbol{eta}}_{\mathrm{M}} = \left( \mathbf{X}_{\mathrm{M}}^{\mathsf{T}} \mathbf{X}_{\mathrm{M}} \right)^{-1} \mathbf{X}_{\mathrm{M}}^{\mathsf{T}} \mathbf{Y} \in \mathrm{I\!R}^{m}$ 

• What does  $\hat{\beta}_{M}$  estimate, **not** assuming the truth of M? A: Its expectation — i.e., we ask for unbiasedness.

 $\boldsymbol{\mu} := \mathbf{E}[\mathbf{Y}] \in \mathbb{R}^{N} \text{ arbitrary!!}$  $\boldsymbol{\beta}_{M} := \mathbf{E}[\hat{\boldsymbol{\beta}}_{M}] = (\mathbf{X}_{M}^{T}\mathbf{X}_{M})^{-1}\mathbf{X}_{M}^{T} \boldsymbol{\mu}$ 

• Once again: We do not assume that the submodel is correct, i.e., we allow  $\mu \neq \mathbf{X}_{M}\beta_{M}$ ! But  $\mathbf{X}_{M}\beta_{M}$  is the best approximation to  $\mu$ .

- Abbreviate  $\hat{\boldsymbol{\beta}} := \hat{\boldsymbol{\beta}}_{M_F}$  and  $\boldsymbol{\beta} := \boldsymbol{\beta}_{M_F}$ ,  $M_F = \{1, 2, ..., p\} =$ full model. Questions:
  - How do submodel estimates  $\hat{\beta}_{\mathrm{M}}$  relate to full-model estimates  $\hat{\beta}$ ?
  - How do submodel parameters  $\beta_{M}$  relate to full-model parameters  $\beta$ ?
  - Is  $\hat{eta}_{\mathrm{M}}$  a subset of  $\hat{eta}$  and  $eta_{\mathrm{M}}$  a subset of eta?

- Abbreviate  $\hat{\boldsymbol{\beta}} := \hat{\boldsymbol{\beta}}_{M_F}$  and  $\boldsymbol{\beta} := \boldsymbol{\beta}_{M_F}$ ,  $M_F = \{1, 2, ..., p\} =$ full model. Questions:
  - How do submodel estimates  $\hat{\beta}_{M}$  relate to full-model estimates  $\hat{\beta}$ ?
  - How do submodel parameters  $\beta_{M}$  relate to full-model parameters  $\beta$ ?
  - Is  $\hat{eta}_{\mathrm{M}}$  a subset of  $\hat{eta}$  and  $eta_{\mathrm{M}}$  a subset of eta?
- Answer: Unless X is an orthogonal design,
  - $\hat{oldsymbol{eta}}_{\mathrm{M}}$  is not a subset of  $\hat{oldsymbol{eta}}$  and
  - $\beta_{\rm M}$  is not a subset of  $\beta$ .

・ロト ・回ト ・ヨト ・ヨト

- Abbreviate  $\hat{\boldsymbol{\beta}} := \hat{\boldsymbol{\beta}}_{M_F}$  and  $\boldsymbol{\beta} := \boldsymbol{\beta}_{M_F}$ ,  $M_F = \{1, 2, ..., p\} =$ full model. Questions:
  - How do submodel estimates  $\hat{\beta}_{\mathrm{M}}$  relate to full-model estimates  $\hat{\beta}$ ?
  - How do submodel parameters  $\beta_{M}$  relate to full-model parameters  $\beta$ ?
  - Is  $\hat{eta}_{\mathrm{M}}$  a subset of  $\hat{eta}$  and  $eta_{\mathrm{M}}$  a subset of eta?
- Answer: Unless X is an orthogonal design,
  - $\hat{oldsymbol{eta}}_{\mathrm{M}}$  is not a subset of  $\hat{oldsymbol{eta}}$  and
  - $\beta_{\rm M}$  is not a subset of  $\beta$ .
- Reason: Slopes, both estimates and parameters, depend on what the other predictors are — in value and in meaning.

- Abbreviate  $\hat{\boldsymbol{\beta}} := \hat{\boldsymbol{\beta}}_{M_F}$  and  $\boldsymbol{\beta} := \boldsymbol{\beta}_{M_F}$ ,  $M_F = \{1, 2, ..., p\} =$ full model. Questions:
  - How do submodel estimates  $\hat{eta}_{\mathrm{M}}$  relate to full-model estimates  $\hat{eta}$ ?
  - How do submodel parameters  $\beta_{M}$  relate to full-model parameters  $\beta$ ?
  - Is  $\hat{eta}_{\mathrm{M}}$  a subset of  $\hat{eta}$  and  $eta_{\mathrm{M}}$  a subset of eta?
- Answer: Unless X is an orthogonal design,
  - $\hat{oldsymbol{eta}}_{\mathrm{M}}$  is not a subset of  $\hat{oldsymbol{eta}}$  and
  - $\beta_{\rm M}$  is not a subset of  $\beta$ .
- Reason: Slopes, both estimates and parameters, depend on what the other predictors are — in value and in meaning.
- Message:  $\hat{\beta}_{M}$  does not estimate full-model parameters! (Exception: The full model is causal or "data generating" ... Submodel estimates suffer then from "omitted variables bias.")

- Survey of potential purchasers of a new high-tech gizmo:
  - Response: "LoP" = Likelihood of Purchase (self-reported on a Likert scale)
  - Predictor 1: Age
  - Predictor 2: Income

- Survey of potential purchasers of a new high-tech gizmo:
  - Response: "LoP" = Likelihood of Purchase (self-reported on a Likert scale)
  - Predictor 1: Age
  - Predictor 2: Income
- Expectation: Younger customers have higher LoP, that is,  $\beta_{Age} < 0$ .

- Survey of potential purchasers of a new high-tech gizmo:
  - Response: "LoP" = Likelihood of Purchase (self-reported on a Likert scale)
  - Predictor 1: Age
  - Predictor 2: Income
- Expectation: Younger customers have higher LoP, that is,  $\beta_{Age} < 0$ .
- Outcome of the analysis:

- Survey of potential purchasers of a new high-tech gizmo:
  - Response: "LoP" = Likelihood of Purchase (self-reported on a Likert scale)
  - Predictor 1: Age
  - Predictor 2: Income
- Expectation: Younger customers have higher LoP, that is,  $\beta_{Age} < 0$ .
- Outcome of the analysis:
  - Against expectations, a regression of LoP on Age alone indicates that older customers have higher LoP: β<sub>Age</sub> > 0

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Survey of potential purchasers of a new high-tech gizmo:
  - Response: "LoP" = Likelihood of Purchase (self-reported on a Likert scale)
  - Predictor 1: Age
  - Predictor 2: Income
- Expectation: Younger customers have higher LoP, that is,  $\beta_{Age} < 0$ .
- Outcome of the analysis:
  - Against expectations, a regression of LoP on Age alone indicates that older customers have higher LoP: β<sub>Age</sub> > 0
  - But a regression of LoP on Age and Income indicates that, adjusted for Income, younger customers have higher LoP: β<sub>AgeeIncome</sub> < 0</li>

- Survey of potential purchasers of a new high-tech gizmo:
  - Response: "LoP" = Likelihood of Purchase (self-reported on a Likert scale)
  - Predictor 1: Age
  - Predictor 2: Income
- Expectation: Younger customers have higher LoP, that is,  $\beta_{Age} < 0$ .
- Outcome of the analysis:
  - Against expectations, a regression of LoP on Age alone indicates that older customers have higher LoP: β<sub>Age</sub> > 0
  - But a regression of LoP on Age and Income indicates that, adjusted for Income, younger customers have higher LoP: β<sub>Age•Income</sub> < 0</p>
  - ► Enabling factor: (partial) collinearity between Age and Income.

- Survey of potential purchasers of a new high-tech gizmo:
  - Response: "LoP" = Likelihood of Purchase (self-reported on a Likert scale)
  - Predictor 1: Age
  - Predictor 2: Income
- Expectation: Younger customers have higher LoP, that is,  $\beta_{Age} < 0$ .
- Outcome of the analysis:
  - Against expectations, a regression of LoP on Age alone indicates that older customers have higher LoP: β<sub>Age</sub> > 0
  - But a regression of LoP on Age and Income indicates that, adjusted for Income, younger customers have higher LoP: β<sub>AgeoIncome</sub> < 0</p>
  - Enabling factor: (partial) collinearity between Age and Income.
- A case of Simpson's paradox:  $\beta_{Age} > 0 > \beta_{Age \cdot Income}$ .
  - The marginal and the Income-adjusted slope have very different values and different meanings.

# Adjustment, Estimates, Parameters, t-Statistics

- Notation and facts for the components of  $\hat{\beta}_{M}$  and  $\beta_{M}$ , assuming  $j \in M$ :
  - Let  $X_{j \in M}$  be the predictor  $X_j$  adjusted for the other predictors in M:

$$\mathbf{X}_{j \bullet \mathrm{M}} := \left( \mathbf{I} - \mathbf{H}_{\mathrm{M} \smallsetminus \{j\}} \right) \mathbf{X}_{j} \perp \mathbf{X}_{k} \forall k \in \mathrm{M} \smallsetminus \{j\}.$$

## Adjustment, Estimates, Parameters, t-Statistics

- Notation and facts for the components of  $\hat{\beta}_{M}$  and  $\beta_{M}$ , assuming  $j \in M$ :
  - ► Let X<sub>j•M</sub> be the predictor X<sub>j</sub> adjusted for the other predictors in M:

$$\mathbf{X}_{j \bullet \mathbf{M}} := \left( \mathbf{I} - \mathbf{H}_{\mathbf{M} \smallsetminus \{j\}} \right) \mathbf{X}_{j} \perp \mathbf{X}_{k} \forall k \in \mathbf{M} \smallsetminus \{j\}.$$

• Let  $\hat{\beta}_{j \bullet M}$  be the slope estimate and  $\beta_{j \bullet M}$  be the parameter for  $X_j$  in M:

$$\hat{\beta}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}} := \frac{\mathbf{X}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}}^{\mathsf{T}} \mathbf{Y}}{\|\mathbf{X}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}}\|^2}, \qquad \beta_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}} := \frac{\mathbf{X}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}}^{\mathsf{T}} \mathbf{E}[\mathbf{Y}]}{\|\mathbf{X}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}}\|^2}.$$

## Adjustment, Estimates, Parameters, t-Statistics

- Notation and facts for the components of  $\hat{\beta}_{M}$  and  $\beta_{M}$ , assuming  $j \in M$ :
  - ► Let X<sub>j•M</sub> be the predictor X<sub>j</sub> adjusted for the other predictors in M:

$$\mathbf{X}_{j \bullet \mathrm{M}} := \left( \mathbf{I} - \mathbf{H}_{\mathrm{M} \smallsetminus \{j\}} \right) \mathbf{X}_{j} \perp \mathbf{X}_{k} \forall k \in \mathrm{M} \smallsetminus \{j\}.$$

• Let  $\hat{\beta}_{j \bullet M}$  be the slope estimate and  $\beta_{j \bullet M}$  be the parameter for  $X_j$  in M:

$$\hat{\beta}_{\boldsymbol{j}\bullet\boldsymbol{M}} := \frac{\mathbf{X}_{\boldsymbol{j}\bullet\boldsymbol{M}}^{\mathsf{T}} \mathbf{Y}}{\|\mathbf{X}_{\boldsymbol{j}\bullet\boldsymbol{M}}\|^2}, \qquad \beta_{\boldsymbol{j}\bullet\boldsymbol{M}} := \frac{\mathbf{X}_{\boldsymbol{j}\bullet\boldsymbol{M}}^{\mathsf{T}} \mathbf{E}[\mathbf{Y}]}{\|\mathbf{X}_{\boldsymbol{j}\bullet\boldsymbol{M}}\|^2}.$$

• Let  $t_{j \bullet M}$  be the *t*-statistic for  $\hat{\beta}_{j \bullet M}$  and  $\beta_{j \bullet M}$ :

$$t_{j \bullet M} := \frac{\hat{\beta}_{j \bullet M} - \beta_{j \bullet M}}{\hat{\sigma} / \|\mathbf{X}_{j \bullet M}\|} = \frac{\mathbf{X}_{j \bullet M}^{\mathsf{T}}(\mathbf{Y} - \mathbf{E}[\mathbf{Y}])}{\|\mathbf{X}_{j \bullet M}\| \hat{\sigma}}.$$

Andreas Buja (Wharton, UPenn)

イロト イヨト イヨト イヨト

• Once more: If the predictors are partly collinear (non-orthogonal) then

 $M \neq M' \Rightarrow \beta_{j \bullet M} \neq \beta_{j \bullet M'}$  in value and in meaning.

Motto: A difference in adjustment implies a difference in parameters.

. . . . . . .

• Once more: If the predictors are partly collinear (non-orthogonal) then

 $M \neq M' \Rightarrow \beta_{j \bullet M} \neq \beta_{j \bullet M'}$  in value and in meaning.

Motto: A difference in adjustment implies a difference in parameters.

• It follows that there are up to  $p2^{p-1}$  different parameters  $\beta_{j \in M}$ !

• □ ▶ • □ ▶ • □ ▶ • □ ▶

• Once more: If the predictors are partly collinear (non-orthogonal) then

 $M \neq M' \Rightarrow \beta_{j \bullet M} \neq \beta_{j \bullet M'}$  in value and in meaning.

Motto: A difference in adjustment implies a difference in parameters.

- It follows that there are up to  $p2^{p-1}$  different parameters  $\beta_{j \in M}$ !
- However, they are intrinsically *p*-dimensional:

 $\boldsymbol{\beta}_{\mathrm{M}} = (\mathbf{X}_{\mathrm{M}}^{\mathsf{T}} \mathbf{X}_{\mathrm{M}})^{-1} \mathbf{X}_{\mathrm{M}}^{\mathsf{T}} \mathbf{X} \boldsymbol{\beta}$ 

where **X** and  $\beta$  are from the full model.

• Hence each  $\beta_{i,M}$  is a lin. comb. of the full model parameters  $\beta_1, ..., \beta_p$ .

#### Geometry of Adjustment



Column space of **X** for p=2predictors, partly collinear

Andreas Buja (Wharton, UPenn)

E ► E ∽ Q C 2014/01/18 18/32

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Important: To enable simultaneous inference for all  $t_{j \bullet M}$ ,

- Important: To enable simultaneous inference for all  $t_{j \in M}$ ,
  - do not use the error estimate  $\hat{\boldsymbol{\beta}}_{M}^{2} := \|\mathbf{Y} \mathbf{X}_{M}\hat{\boldsymbol{\beta}}_{M}\|^{2}/(n-m)$  in M; (the selected model M may well be 1st order wrong;)
  - instead, for all models M use  $\hat{\sigma}^2 = \hat{\sigma}_{Full}^2$  from the full model;

- Important: To enable simultaneous inference for all t<sub>i•M</sub>,
  - ► do not use the error estimate  $\hat{\boldsymbol{\beta}}_{M}^{2}$  :=  $\|\mathbf{Y} \mathbf{X}_{M}\hat{\boldsymbol{\beta}}_{M}\|^{2}/(n-m)$  in M; (the selected model M may well be 1st order wrong;)
  - instead, for all models M use  $\hat{\sigma}^2 = \hat{\sigma}_{Full}^2$  from the full model;
  - ⇒  $t_{j \bullet M}$  will have a *t*-distribution with the same dfs  $\forall M, \forall j \in M$ .

- Important: To enable simultaneous inference for all  $t_{i \in M}$ ,
  - ► do not use the error estimate  $\hat{\boldsymbol{\beta}}_{M}^{2}$  :=  $\|\mathbf{Y} \mathbf{X}_{M}\hat{\boldsymbol{\beta}}_{M}\|^{2}/(n-m)$  in M; (the selected model M may well be 1st order wrong;)
  - instead, for all models M use  $\hat{\sigma}^2 = \hat{\sigma}_{Full}^2$  from the full model;
  - ⇒  $t_{j \bullet M}$  will have a *t*-distribution with the same dfs  $\forall M, \forall j \in M$ .
- What if even the full model is 1st order wrong?

• □ ▶ • □ ▶ • □ ▶ • □ ▶

# Error Estimates $\hat{\sigma}^2$

- Important: To enable simultaneous inference for all  $t_{i \in M}$ ,
  - ► do not use the error estimate  $\hat{\boldsymbol{\beta}}_{M}^{2}$  :=  $\|\mathbf{Y} \mathbf{X}_{M}\hat{\boldsymbol{\beta}}_{M}\|^{2}/(n-m)$  in M; (the selected model M may well be 1st order wrong;)
  - instead, for all models M use  $\hat{\sigma}^2 = \hat{\sigma}_{Full}^2$  from the full model;
  - $\implies$   $t_{j \in M}$  will have a *t*-distribution with the same dfs  $\forall M, \forall j \in M$ .
- What if even the full model is 1st order wrong? Answer:  $\hat{\sigma}_{Full}^2$  will be inflated and inference will be conservative. But better estimates are available if ...

# Error Estimates $\hat{\sigma}^2$

- Important: To enable simultaneous inference for all  $t_{j \in M}$ ,
  - ► do not use the error estimate  $\hat{\beta}_{M}^{2\prime}$  :=  $\|\mathbf{Y} \mathbf{X}_{M}\hat{\beta}_{M}\|^{2}/(n-m)$  in M; (the selected model M may well be 1st order wrong;)
  - instead, for all models M use  $\hat{\sigma}^2 = \hat{\sigma}_{Full}^2$  from the full model;
  - ⇒  $t_{j \bullet M}$  will have a *t*-distribution with the same dfs  $\forall M, \forall j \in M$ .
- What if even the full model is 1st order wrong? Answer:  $\hat{\sigma}_{Full}^2$  will be inflated and inference will be conservative. But better estimates are available if ...
  - exact replicates exist: use  $\hat{\sigma}^2$  from the 1-way ANOVA of replicates;
  - a larger than the full model can be assumed 1st order correct: use  $\hat{\sigma}_{Large}^2$ ;
  - a previous dataset provided a valid estimate: use  $\hat{\sigma}_{previous}^2$ ;
  - nonparametric estimates are available: use  $\hat{\sigma}_{nonpar}^2$  (Hall and Carroll 1989).

・ロン ・四 と ・ 回 と ・ 回 と

# Error Estimates $\hat{\sigma}^2$

- Important: To enable simultaneous inference for all  $t_{j \bullet M}$ ,
  - ► do not use the error estimate  $\hat{\boldsymbol{\beta}}_{M}^{2}$  :=  $\|\mathbf{Y} \mathbf{X}_{M}\hat{\boldsymbol{\beta}}_{M}\|^{2}/(n-m)$  in M; (the selected model M may well be 1st order wrong;)
  - instead, for all models M use  $\hat{\sigma}^2 = \hat{\sigma}_{Full}^2$  from the full model;
  - ⇒  $t_{j \bullet M}$  will have a *t*-distribution with the same dfs  $\forall M, \forall j \in M$ .
- What if even the full model is 1st order wrong? Answer:  $\hat{\sigma}_{Full}^2$  will be inflated and inference will be conservative. But better estimates are available if ...
  - exact replicates exist: use  $\hat{\sigma}^2$  from the 1-way ANOVA of replicates;
  - a larger than the full model can be assumed 1st order correct: use  $\hat{\sigma}_{Large}^2$ ;
  - a previous dataset provided a valid estimate: use  $\hat{\sigma}_{previous}^2$ ;
  - nonparametric estimates are available: use  $\hat{\sigma}^2_{nonpar}$  (Hall and Carroll 1989).

PS: In the fashionable p > N literature, what is their  $\hat{\sigma}^2$ ?

・ロト ・回 ト ・ヨト ・ヨト

Andreas Buja (Wharton, UPenn)

2014/01/18 19/32

• Statistical inference, one parameter at a time:

If r = dfs in  $\hat{\sigma}^2$  and  $K = t_{1-\alpha/2,r}$ , then the confidence intervals

 $\operatorname{CI}_{j \bullet M}(\mathcal{K}) := \left[ \hat{\beta}_{j \bullet M} \pm \mathcal{K} \hat{\sigma} / \| \mathbf{X}_{j \bullet M} \| \right]$ 

satisfy each

 $\mathbf{P}[\beta_{j \bullet M} \in \mathrm{CI}_{j \bullet M}(K)] = 1 - \alpha.$ 

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

• Statistical inference, one parameter at a time:

If r = dfs in  $\hat{\sigma}^2$  and  $K = t_{1-\alpha/2,r}$ , then the confidence intervals

$$\operatorname{CI}_{j \bullet M}(K) := \left[ \hat{\beta}_{j \bullet M} \pm K \hat{\sigma} / \| \mathbf{X}_{j \bullet M} \| \right]$$

satisfy each

$$\mathbf{P}[\beta_{j \bullet M} \in \mathrm{CI}_{j \bullet M}(K)] = 1 - \alpha.$$

Achieved so far:

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim \mathcal{N}_{N}(\mathbf{0}, \sigma^{2}\mathbf{I})$$

(I)

• Statistical inference, one parameter at a time:

If r = dfs in  $\hat{\sigma}^2$  and  $K = t_{1-\alpha/2,r}$ , then the confidence intervals

$$\operatorname{CI}_{j \bullet M}(K) := \left[ \hat{\beta}_{j \bullet M} \pm K \hat{\sigma} / \| \mathbf{X}_{j \bullet M} \| \right]$$

satisfy each

$$\mathbf{P}[\beta_{j\bullet M} \in \mathrm{CI}_{j\bullet M}(K)] = 1-\alpha.$$

Achieved so far:

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}_{N}(\mathbf{0}, \sigma^{2}\mathbf{I})$$

No assumption is made that the submodels are 1st order correct;

(I)

• Statistical inference, one parameter at a time:

If r = dfs in  $\hat{\sigma}^2$  and  $K = t_{1-\alpha/2,r}$ , then the confidence intervals

$$\operatorname{CI}_{j \bullet M}(K) := \left[ \hat{\beta}_{j \bullet M} \pm K \hat{\sigma} / \| \mathbf{X}_{j \bullet M} \| \right]$$

satisfy each

$$\mathbf{P}[\beta_{j \bullet M} \in \mathrm{CI}_{j \bullet M}(K)] = 1 - \alpha.$$

Achieved so far:

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}_{N}(\mathbf{0}, \sigma^{2}\mathbf{I})$$

- No assumption is made that the submodels are 1st order correct;
- Even the full model may be 1st order incorrect if a valid ô<sup>2</sup> is otherwise available;

• Statistical inference, one parameter at a time:

If r = dfs in  $\hat{\sigma}^2$  and  $K = t_{1-\alpha/2,r}$ , then the confidence intervals

$$\mathrm{CI}_{\mathbf{j}\bullet\mathrm{M}}(\mathbf{K}) := \left[\hat{\beta}_{\mathbf{j}\bullet\mathrm{M}} \pm \mathbf{K}\hat{\sigma} / \|\mathbf{X}_{\mathbf{j}\bullet\mathrm{M}}\|\right]$$

satisfy each

$$\mathbf{P}[\beta_{j \bullet M} \in \mathrm{CI}_{j \bullet M}(K)] = 1 - \alpha.$$

Achieved so far:

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}_{N}(\mathbf{0}, \sigma^{2}\mathbf{I})$$

- No assumption is made that the submodels are 1st order correct;
- Even the full model may be 1st order incorrect if a valid ô<sup>2</sup> is otherwise available;
- A single error estimate opens up the possibility of simultaneous inference across submodels.

Andreas Buja (Wharton, UPenn)

≣ ► ≣ •⁄ ৭.ে 2014/01/18 20/32

・ロト ・回ト ・ヨト ・ヨト

• What is a variable selection procedure?

イロト イヨト イヨト イヨ

• What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

イロト イヨト イヨト

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

•  $\hat{\mathrm{M}}$  divides the response space  $\mathbb{R}^{N}$  into up to  $2^{p}$  subsets.

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

- $\hat{\mathrm{M}}$  divides the response space  $\mathrm{I\!R}^N$  into up to  $2^p$  subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

- $\hat{\mathrm{M}}$  divides the response space  $\mathrm{I\!R}^N$  into up to  $2^p$  subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Facing up to post-selection inference: Confusers!

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

- $\hat{\mathrm{M}}$  divides the response space  $\mathrm{I\!R}^N$  into up to  $2^p$  subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Facing up to post-selection inference: Confusers!
  - ► Target of Inference: the vector  $\beta_{\hat{M}(\mathbf{Y})}$ , its components  $\beta_{i \bullet \hat{M}(\mathbf{Y})}$  for  $j \in \hat{M}(\mathbf{Y})$ .

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

- $\hat{\mathrm{M}}$  divides the response space  $\mathrm{I\!R}^N$  into up to  $2^p$  subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Facing up to post-selection inference: Confusers!
  - ► Target of Inference: the vector  $\beta_{\hat{M}(\mathbf{Y})}$ , its components  $\beta_{i \bullet \hat{M}(\mathbf{Y})}$  for  $j \in \hat{M}(\mathbf{Y})$ .
  - The target of inference is random.

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

- $\hat{\mathrm{M}}$  divides the response space  $\mathbb{R}^{N}$  into up to  $2^{p}$  subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Facing up to post-selection inference: Confusers!
  - ► Target of Inference: the vector  $\beta_{\hat{M}(\mathbf{Y})}$ , its components  $\beta_{i \bullet \hat{M}(\mathbf{Y})}$  for  $j \in \hat{M}(\mathbf{Y})$ .
  - The target of inference is random.
  - The target of inference has a random dimension:  $\beta_{\hat{M}(\mathbf{Y})} \in \mathbb{R}^{|\hat{M}(\mathbf{Y})|}$

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

- $\hat{\mathrm{M}}$  divides the response space  $\mathbb{R}^{N}$  into up to  $2^{p}$  subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Facing up to post-selection inference: Confusers!
  - ► Target of Inference: the vector  $\beta_{\hat{M}(\mathbf{Y})}$ , its components  $\beta_{i \bullet \hat{M}(\mathbf{Y})}$  for  $j \in \hat{M}(\mathbf{Y})$ .
  - The target of inference is random.
  - The target of inference has a random dimension:  $\beta_{\hat{M}(\mathbf{Y})} \in \mathbb{R}^{|\hat{M}(\mathbf{Y})|}$
  - Conditional on  $j \in \hat{M}$ , the target component  $\beta_{j \in \hat{M}(Y)}$  has random meanings.

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

- $\hat{\mathrm{M}}$  divides the response space  $\mathbb{R}^{N}$  into up to  $2^{p}$  subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Facing up to post-selection inference: Confusers!
  - Target of Inference: the vector β<sub>M(Y)</sub>, its components β<sub>j•M(Y)</sub> for j ∈ M(Y).
  - The target of inference is random.
  - The target of inference has a random dimension:  $\beta_{\hat{M}(\mathbf{Y})} \in \mathbb{R}^{|\hat{M}(\mathbf{Y})|}$
  - Conditional on  $j \in \hat{M}$ , the target component  $\beta_{j \in \hat{M}(Y)}$  has random meanings.
  - ▶ When  $j \notin \hat{M}$  both  $\beta_{j \bullet \hat{M}}$  and  $\hat{\beta}_{j \bullet \hat{M}}$  are undefined.

What is a variable selection procedure?

A map  $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$ 

- $\hat{\mathrm{M}}$  divides the response space  $\mathrm{I\!R}^{N}$  into up to  $2^{p}$  subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Facing up to post-selection inference: Confusers!
  - ► Target of Inference: the vector  $\beta_{\hat{M}(\mathbf{Y})}$ , its components  $\beta_{j \bullet \hat{M}(\mathbf{Y})}$  for  $j \in \hat{M}(\mathbf{Y})$ .
  - The target of inference is random.
  - The target of inference has a random dimension:  $\beta_{\hat{M}(\mathbf{Y})} \in \mathrm{I\!R}^{|\hat{M}(\mathbf{Y})|}$
  - Conditional on  $j \in \hat{M}$ , the target component  $\beta_{i \in \hat{M}(Y)}$  has random meanings.
  - ▶ When  $j \notin \hat{M}$  both  $\beta_{j \bullet \hat{M}}$  and  $\hat{\beta}_{j \bullet \hat{M}}$  are undefined.
  - ► Hence the coverage probability  $\mathbf{P}[\beta_{j \bullet \hat{M}} \in \mathrm{CI}_{j \bullet \hat{M}}(K)]$  is undefined.

Andreas Buja (Wharton, UPenn)

2014/01/18 21 / 32

• Candidates for meaningful coverage probabilities:

Image: A matrix

• Candidates for meaningful coverage probabilities:

$$\blacktriangleright \mathbf{P}[j \in \hat{\mathbf{M}} \& \beta_{j \bullet \hat{\mathbf{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathbf{M}}}(K)] \qquad (\leq \mathbf{P}[j \in \hat{\mathbf{M}}])$$

Image: A matrix

• Candidates for meaningful coverage probabilities:

- ►  $\mathsf{P}[\beta_{j \bullet \hat{\mathrm{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathrm{M}}}(K) \mid j \in \hat{\mathrm{M}}]$  ( $\mathsf{P}[j \in \hat{\mathrm{M}}] = ???$ )

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Candidates for meaningful coverage probabilities:

- ►  $\mathbf{P}[j \in \hat{\mathrm{M}} \& \beta_{j \bullet \hat{\mathrm{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathrm{M}}}(K)]$
- ►  $\mathsf{P}[ \beta_{j \bullet \hat{\mathrm{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathrm{M}}}(\mathsf{K}) \mid j \in \hat{\mathrm{M}} ]$
- ▶  $\mathbf{P}$ [  $\forall j \in \hat{\mathbf{M}} : \beta_{j \bullet \hat{\mathbf{M}}} \in CI_{j \bullet \hat{\mathbf{M}}}(K)$ ]

All are meaningful; the last will be our choice.

 $(< \mathbf{P}[ \ i \in \hat{M} ])$ 

 $(\mathbf{P}[j \in \hat{M}] = ???)$ 

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Candidates for meaningful coverage probabilities:

- $\blacktriangleright \mathbf{P}[j \in \hat{\mathbf{M}} \& \beta_{j \bullet \hat{\mathbf{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathbf{M}}}(K)] \qquad (\leq \mathbf{P}[j \in \hat{\mathbf{M}}])$
- ►  $\mathsf{P}[\beta_{j \bullet \hat{\mathrm{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathrm{M}}}(\mathcal{K}) \mid j \in \hat{\mathrm{M}}]$  ( $\mathsf{P}[j \in \hat{\mathrm{M}}] = ???$ )
- ▶  $\mathbf{P}$ [ $\forall j \in \hat{\mathbf{M}} : \beta_{j \bullet \hat{\mathbf{M}}} \in \mathbf{CI}_{j \bullet \hat{\mathbf{M}}}(K)$ ]

All are meaningful; the last will be our choice.

- Overcoming the next difficulty:
  - Problem: None of the above coverage probabilities are known or can be estimated for most selection procedures M.

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Candidates for meaningful coverage probabilities:

- $\blacktriangleright \mathsf{P}[j \in \hat{\mathrm{M}} \& \beta_{j \bullet \hat{\mathrm{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathrm{M}}}(\mathcal{K})] \qquad (\leq \mathsf{P}[j \in \hat{\mathrm{M}}])$
- ►  $\mathsf{P}[\beta_{j \bullet \hat{\mathrm{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathrm{M}}}(\mathcal{K}) \mid j \in \hat{\mathrm{M}}]$  ( $\mathsf{P}[j \in \hat{\mathrm{M}}] = ???$ )
- ▶  $\mathbf{P}$ [  $\forall j \in \hat{\mathbf{M}} : \beta_{j \bullet \hat{\mathbf{M}}} \in CI_{j \bullet \hat{\mathbf{M}}}(K)$ ]

All are meaningful; the last will be our choice.

- Overcoming the next difficulty:
  - Problem: None of the above coverage probabilities are known or can be estimated for most selection procedures M.
  - Solution: Ask for more!

Candidates for meaningful coverage probabilities:

- $\blacktriangleright \mathbf{P}[j \in \hat{\mathbf{M}} \& \beta_{j \bullet \hat{\mathbf{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathbf{M}}}(K)] \qquad (\leq \mathbf{P}[j \in \hat{\mathbf{M}}])$
- ►  $\mathsf{P}[\beta_{j \bullet \hat{\mathrm{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathrm{M}}}(K) \mid j \in \hat{\mathrm{M}}]$  ( $\mathsf{P}[j \in \hat{\mathrm{M}}] = ???$ )
- ▶  $\mathbf{P}$ [  $\forall j \in \hat{\mathbf{M}} : \beta_{j \bullet \hat{\mathbf{M}}} \in CI_{j \bullet \hat{\mathbf{M}}}(K)$ ]

All are meaningful; the last will be our choice.

- Overcoming the next difficulty:
  - Problem: None of the above coverage probabilities are known or can be estimated for most selection procedures M.
  - Solution: Ask for more!
     Universal Post-Selection Inference for all selection procedures is doable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

## **Reduction to Simultaneous Inference**

Andreas Buja (Wharton, UPenn)

2014/01/18 22 / 32

# **Reduction to Simultaneous Inference**

#### Lemma

For any variable selection procedure  $\hat{M} = \hat{M}(\mathbf{Y})$ , we have the following "significant triviality bound":

$$\max_{i\in\hat{\mathrm{M}}}|t_{j_{\bullet}\hat{\mathrm{M}}}| \leq \max_{\mathrm{M}}\max_{j\in\mathrm{M}}|t_{j_{\bullet}\mathrm{M}}| \qquad \forall \mathbf{Y}, \boldsymbol{\mu}\in\mathbb{R}^{N}.$$

# **Reduction to Simultaneous Inference**

#### Lemma

For any variable selection procedure  $\hat{M} = \hat{M}(\mathbf{Y})$ , we have the following "significant triviality bound":

$$\max_{i\in\hat{\mathrm{M}}}|t_{j_{\bullet}\hat{\mathrm{M}}}| \leq \max_{\mathrm{M}}\max_{j\in\mathrm{M}}|t_{j_{\bullet}\mathrm{M}}| \qquad \forall \, \mathbf{Y}, \boldsymbol{\mu}\in\mathrm{I\!R}^{N}.$$

#### Theorem

Let K be the  $1-\alpha$  quantile of the "max-max-|t|" statistic of the lemma:

$$\mathbf{P}\left[\max_{\mathbf{M}}\max_{j\in\mathbf{M}}|t_{j\cdot\mathbf{M}}|\leq \mathbf{K}\right] \stackrel{(\geq)}{=} \mathbf{1}-\alpha.$$

Then we have the following universal PoSI guarantee:

$$\mathbf{P}\left[ \beta_{j \bullet \hat{\mathbf{M}}} \in Cl_{j \bullet \hat{\mathbf{M}}}(K) \ \forall j \in \hat{\mathbf{M}} \right] \geq 1 - \alpha \quad \forall \hat{\mathbf{M}}.$$

# PoSI Geometry — Simultaneity



PoSI polytope = intersection of all t-bands.

### How Conservative is PoSI?

Is there a model selection procedure that requires full PoSI protection?

Image: Image:

## How Conservative is PoSI?

- Is there a model selection procedure that requires full PoSI protection?
- $\bullet\,$  Consider  $\hat{\mathrm{M}}$  defined as follows:

$$\hat{\mathrm{M}} := \operatorname{argmax}_{\mathrm{M}} \max_{i \in \mathrm{M}} |t_{i \cdot \mathrm{M}}|$$

## How Conservative is PoSI?

- Is there a model selection procedure that requires full PoSI protection?
- Consider  $\hat{M}$  defined as follows:

$$\hat{\mathrm{M}} := \operatorname{argmax}_{\mathrm{M}} \max_{j \in \mathrm{M}} |t_{j \cdot \mathrm{M}}|$$

A polite name: "Single Predictor Adjusted Regression" =: SPAR

#### How Conservative is PoSI?

- Is there a model selection procedure that requires full PoSI protection?
- Consider  $\hat{\mathrm{M}}$  defined as follows:

$$\hat{\mathrm{M}} := \operatorname{argmax}_{\mathrm{M}} \max_{j \in \mathrm{M}} |t_{j \cdot \mathrm{M}}|$$

A polite name: "Single Predictor Adjusted Regression" =: SPAR A crude name: "Significance Hunting" a special case of "p-hacking" (Simmons, Nelson, Simonsohn 2011)

#### How Conservative is PoSI?

- Is there a model selection procedure that requires full PoSI protection?
- Consider  $\hat{\mathrm{M}}$  defined as follows:

$$\hat{\mathbf{M}} := \operatorname{argmax}_{\mathbf{M}} \left| \max_{j \in \mathbf{M}} \left| t_{j \cdot \mathbf{M}} \right| \right|$$

A polite name: "Single Predictor Adjusted Regression" =: SPAR A crude name: "Significance Hunting" a special case of "p-hacking" (Simmons, Nelson, Simonsohn 2011)

• SPAR requires the full PoSI protection — by construction!

### How Conservative is PoSI?

- Is there a model selection procedure that requires full PoSI protection?
- Consider  $\hat{\mathrm{M}}$  defined as follows:

$$\hat{\mathrm{M}} := \operatorname{argmax}_{\mathrm{M}} \max_{j \in \mathrm{M}} |t_{j \cdot \mathrm{M}}|$$

A polite name: "Single Predictor Adjusted Regression" =: SPAR A crude name: "Significance Hunting" a special case of "p-hacking" (Simmons, Nelson, Simonsohn 2011)

- SPAR requires the full PoSI protection by construction!
- How realistic is SPAR in describing real data analysts behaviors?
  - It ignores the goodness of fit of the selected model.
  - It looks for the minimal achievable p-value / strongest "effect".

Andreas Buja (Wharton, UPenn)

• The simultaneity challenge: there are  $p 2^{p-1}$  statistics  $|t_{j \in M}|$ .

#### • The simultaneity challenge: there are $p2^{p-1}$ statistics $|t_{i+M}|$ .

| p                              | 1       | 2      | 3       | 4        | 5        | 6        | 7           | 8           | 9           | 10           |
|--------------------------------|---------|--------|---------|----------|----------|----------|-------------|-------------|-------------|--------------|
| $\# t_{j \bullet \mathbf{M}} $ | 1       | 4      | 12      | 32       | 80       | 192      | 448         | 1,024       | 2,304       | 5, 120       |
| p                              | 11      | 12     | 13      | 14       | 15       | 16       | 17          | 18          | 19          | 20           |
| $\# t_{j \bullet \mathbf{M}} $ | 11, 264 | 24,576 | 53, 248 | 114, 688 | 245, 760 | 524, 288 | 1, 114, 112 | 2, 359, 296 | 4, 980, 736 | 10, 485, 760 |

#### • The simultaneity challenge: there are $p 2^{p-1}$ statistics $|t_{j+M}|$ .

| p                              | 1       | 2      | 3       | 4        | 5        | 6        | 7           | 8           | 9           | 10           |
|--------------------------------|---------|--------|---------|----------|----------|----------|-------------|-------------|-------------|--------------|
| $\# t_{j \bullet \mathbf{M}} $ | 1       | 4      | 12      | 32       | 80       | 192      | 448         | 1,024       | 2,304       | 5, 120       |
| p                              | 11      | 12     | 13      | 14       | 15       | 16       | 17          | 18          | 19          | 20           |
| $\# t_{j \bullet M} $          | 11, 264 | 24,576 | 53, 248 | 114, 688 | 245, 760 | 524, 288 | 1, 114, 112 | 2, 359, 296 | 4, 980, 736 | 10, 485, 760 |

• Monte Carlo-approximation of  $K_{\text{PoSI}}$  in R, brute force, for  $p \stackrel{\leq}{\approx} 20$ .

#### • The simultaneity challenge: there are $p 2^{p-1}$ statistics $|t_{j+M}|$ .

| p                              | 1       | 2      | 3       | 4        | 5        | 6        | 7           | 8           | 9           | 10           |
|--------------------------------|---------|--------|---------|----------|----------|----------|-------------|-------------|-------------|--------------|
| $\# t_{j \bullet \mathbf{M}} $ | 1       | 4      | 12      | 32       | 80       | 192      | 448         | 1,024       | 2,304       | 5, 120       |
| p                              | 11      | 12     | 13      | 14       | 15       | 16       | 17          | 18          | 19          | 20           |
| $\# t_{j \bullet M} $          | 11, 264 | 24,576 | 53, 248 | 114, 688 | 245, 760 | 524, 288 | 1, 114, 112 | 2, 359, 296 | 4, 980, 736 | 10, 485, 760 |

- Monte Carlo-approximation of  $K_{\text{PoSI}}$  in R, brute force, for  $p \stackrel{>}{\approx} 20$ .
- Computations are specific to a design X:  $K_{PoSI} = K_{PoSI}(X, \alpha, df)$

#### • The simultaneity challenge: there are $p 2^{p-1}$ statistics $|t_{j+M}|$ .

| p                              | 1       | 2      | 3       | 4        | 5        | 6        | 7           | 8           | 9           | 10           |
|--------------------------------|---------|--------|---------|----------|----------|----------|-------------|-------------|-------------|--------------|
| $\# t_{j \bullet \mathbf{M}} $ | 1       | 4      | 12      | 32       | 80       | 192      | 448         | 1,024       | 2,304       | 5, 120       |
| p                              | 11      | 12     | 13      | 14       | 15       | 16       | 17          | 18          | 19          | 20           |
| $\# t_{j \bullet M} $          | 11, 264 | 24,576 | 53, 248 | 114, 688 | 245, 760 | 524, 288 | 1, 114, 112 | 2, 359, 296 | 4, 980, 736 | 10, 485, 760 |

- Monte Carlo-approximation of  $K_{\rm PoSI}$  in R, brute force, for  $p \stackrel{>}{\approx} 20$ .
- Computations are specific to a design X:  $K_{PoSI} = K_{PoSI}(X, \alpha, df)$
- Computations depend only on the inner product matrix X<sup>7</sup>X.

#### • The simultaneity challenge: there are $p 2^{p-1}$ statistics $|t_{j+M}|$ .

| p                              | 1       | 2      | 3       | 4        | 5        | 6        | 7           | 8           | 9           | 10           |
|--------------------------------|---------|--------|---------|----------|----------|----------|-------------|-------------|-------------|--------------|
| $\# t_{j \bullet \mathbf{M}} $ | 1       | 4      | 12      | 32       | 80       | 192      | 448         | 1,024       | 2,304       | 5, 120       |
| p                              | 11      | 12     | 13      | 14       | 15       | 16       | 17          | 18          | 19          | 20           |
| $\# t_{j \bullet M} $          | 11, 264 | 24,576 | 53, 248 | 114, 688 | 245, 760 | 524, 288 | 1, 114, 112 | 2, 359, 296 | 4, 980, 736 | 10, 485, 760 |

- Monte Carlo-approximation of  $K_{\rm PoSI}$  in R, brute force, for  $p \stackrel{>}{\approx} 20$ .
- Computations are specific to a design X:  $K_{PoSI} = K_{PoSI}(X, \alpha, df)$
- Computations depend only on the inner product matrix  $X^T X$ .  $\Rightarrow$  The limiting factor is *p* (*N* may only matter for  $\hat{\sigma}^2$ ).

< 日 > < 同 > < 三 > < 三 >

#### • The simultaneity challenge: there are $p 2^{p-1}$ statistics $|t_{j+M}|$ .

| p                              | 1       | 2      | 3       | 4        | 5        | 6        | 7           | 8           | 9           | 10           |
|--------------------------------|---------|--------|---------|----------|----------|----------|-------------|-------------|-------------|--------------|
| $\# t_{j \bullet \mathbf{M}} $ | 1       | 4      | 12      | 32       | 80       | 192      | 448         | 1,024       | 2,304       | 5, 120       |
| p                              | 11      | 12     | 13      | 14       | 15       | 16       | 17          | 18          | 19          | 20           |
| $\# t_{j \bullet M} $          | 11, 264 | 24,576 | 53, 248 | 114, 688 | 245, 760 | 524, 288 | 1, 114, 112 | 2, 359, 296 | 4, 980, 736 | 10, 485, 760 |

- Monte Carlo-approximation of  $K_{\rm PoSI}$  in R, brute force, for  $p \stackrel{>}{\approx} 20$ .
- Computations are specific to a design X:  $K_{PoSI} = K_{PoSI}(X, \alpha, df)$
- Computations depend only on the inner product matrix  $X^T X$ .  $\Rightarrow$  The limiting factor is p (*N* may only matter for  $\hat{\sigma}^2$ ).
- One Monte Carlo computation is good for any  $\alpha$  and any error df.

#### • The simultaneity challenge: there are $p 2^{p-1}$ statistics $|t_{j+M}|$ .

| p                              | 1       | 2      | 3       | 4        | 5        | 6        | 7           | 8           | 9           | 10           |
|--------------------------------|---------|--------|---------|----------|----------|----------|-------------|-------------|-------------|--------------|
| $\# t_{j \bullet \mathbf{M}} $ | 1       | 4      | 12      | 32       | 80       | 192      | 448         | 1,024       | 2,304       | 5, 120       |
| p                              | 11      | 12     | 13      | 14       | 15       | 16       | 17          | 18          | 19          | 20           |
| $\# t_{j \bullet M} $          | 11, 264 | 24,576 | 53, 248 | 114, 688 | 245, 760 | 524, 288 | 1, 114, 112 | 2, 359, 296 | 4, 980, 736 | 10, 485, 760 |

- Monte Carlo-approximation of  $K_{\rm PoSI}$  in R, brute force, for  $p \stackrel{>}{\approx} 20$ .
- Computations are specific to a design X:  $K_{PoSI} = K_{PoSI}(X, \alpha, df)$
- Computations depend only on the inner product matrix  $X^T X$ .  $\Rightarrow$  The limiting factor is p (*N* may only matter for  $\hat{\sigma}^2$ ).
- One Monte Carlo computation is good for any  $\alpha$  and any error df.
- Computations of universal upper bounds:

 $K_{\text{univ}}(\boldsymbol{p}, \alpha, df) \geq K_{\text{PoSI}}(\mathbf{X}, \alpha, df) \ \forall \mathbf{X}_{\dots \times \boldsymbol{p}}.$ 

Andreas Buja (Wharton, UPenn)

"PoSI" — Valid Post-Selection Inference

2014/01/18 26 / 32

Scheffé Simultaneous Inference is based on the statistic

$$\sup_{\mathbf{x}\in \operatorname{col}(\mathbf{X})\smallsetminus\{\mathbf{0}\}}\frac{|\mathbf{x}^{\mathsf{T}}(\mathbf{Y}-\mathbf{E}[\mathbf{Y}])|}{\|\mathbf{x}\| \hat{\sigma}} \sim \sqrt{\rho \, F_{\rho,df}}.$$

< <p>O > < <p>O >

Scheffé Simultaneous Inference is based on the statistic



The Scheffé method provides sim. inference for all linear "contrasts".

Scheffé Simultaneous Inference is based on the statistic

$$\sup_{\mathbf{x}\in \operatorname{col}(\mathbf{X})\smallsetminus\{\mathbf{0}\}}\frac{|\mathbf{x}^{\mathsf{T}}(\mathbf{Y}-\mathbf{E}[\mathbf{Y}])|}{\|\mathbf{x}\| \ \hat{\sigma}} \sim \sqrt{\rho \, F_{\rho,df}}.$$

- The Scheffé method provides sim. inference for all linear "contrasts".
- The Scheffé constant is  $K_{\text{Sch}} = K_{\text{Sch}}(p, \alpha, df) = \sqrt{p F_{p, df; 1-\alpha}}$ .

Scheffé Simultaneous Inference is based on the statistic

$$\sup_{\mathbf{x}\in \operatorname{col}(\mathbf{X})\smallsetminus\{\mathbf{0}\}}\frac{|\mathbf{x}^{\mathsf{T}}(\mathbf{Y}-\mathbf{E}[\mathbf{Y}])|}{\|\mathbf{x}\| \ \hat{\sigma}} \sim \sqrt{\rho \, F_{\rho,df}}.$$

- The Scheffé method provides sim. inference for all linear "contrasts".
- The Scheffé constant is  $K_{\text{Sch}} = K_{\text{Sch}}(p, \alpha, df) = \sqrt{p F_{p, df; 1-\alpha}}$ .
- Compare: PoSI Simultaneous Inference is based on the statistic

$$\max_{\mathrm{M}} \max_{j \in \mathrm{M}} \frac{|\mathbf{X}_{j \bullet \mathrm{M}}^{\mathsf{T}}(\mathbf{Y} - \mathbf{E}[\mathbf{Y}])|}{\|\mathbf{X}_{j \bullet \mathrm{M}}\| \ \hat{\sigma}}$$

Scheffé Simultaneous Inference is based on the statistic

$$\sup_{\mathbf{x}\in \operatorname{col}(\mathbf{X})\smallsetminus\{\mathbf{0}\}}\frac{|\mathbf{x}^{\mathsf{T}}(\mathbf{Y}-\mathbf{E}[\mathbf{Y}])|}{\|\mathbf{x}\| \ \hat{\sigma}} \sim \sqrt{\rho \, F_{\rho,df}}.$$

- The Scheffé method provides sim. inference for all linear "contrasts".
- The Scheffé constant is  $K_{\text{Sch}} = K_{\text{Sch}}(p, \alpha, df) = \sqrt{p F_{p, df; 1-\alpha}}$ .
- Compare: PoSI Simultaneous Inference is based on the statistic

$$\max_{\mathbf{M}} \max_{j \in \mathbf{M}} \frac{|\mathbf{X}_{j \bullet \mathbf{M}}^{\mathsf{T}}(\mathbf{Y} - \mathbf{E}[\mathbf{Y}])|}{\|\mathbf{X}_{j \bullet \mathbf{M}}\| \ \hat{\sigma}}$$

The PoSI contrasts are a subset of the Scheffé contrasts, hence:

Scheffé Simultaneous Inference is based on the statistic

$$\sup_{\mathbf{x}\in \operatorname{col}(\mathbf{X})\smallsetminus\{\mathbf{0}\}}\frac{|\mathbf{x}^{\mathsf{T}}(\mathbf{Y}-\mathbf{E}[\mathbf{Y}])|}{\|\mathbf{x}\| \ \hat{\sigma}} \sim \sqrt{\rho \, F_{\rho,df}}.$$

- The Scheffé method provides sim. inference for all linear "contrasts".
- The Scheffé constant is  $K_{\text{Sch}} = K_{\text{Sch}}(\rho, \alpha, df) = \sqrt{\rho F_{\rho, df; 1-\alpha}}$ .
- Compare: PoSI Simultaneous Inference is based on the statistic

$$\max_{\mathbf{M}} \max_{j \in \mathbf{M}} \frac{|\mathbf{X}_{j \bullet \mathbf{M}}^{T}(\mathbf{Y} - \mathbf{E}[\mathbf{Y}])|}{\|\mathbf{X}_{j \bullet \mathbf{M}}\| \hat{\sigma}}$$

The PoSI contrasts are a subset of the Scheffé contrasts, hence:

- Scheffé statistic ≥ PoSI statistic
- $\blacktriangleright$   $K_{\rm Sch} \geq K_{\rm PoSI}$
- Scheffé yields universally valid conservative PoSI.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

#### The Scheffé Ball and the PoSI Polytope



Circle = Scheffé Ball The PoSI polytope is tangent to the ball.

Andreas Buja (Wharton, UPenn)

2014/01/18 28 / 32

• • • • • • • • • • • • • •

• In orthogonal designs there is no adjustment:

 $\mathbf{X}_{j \in M}^{\text{orth}} = \mathbf{X}_{j}^{\text{orth}} \quad \forall M, j (\ni M)$ 

In orthogonal designs there is no adjustment:

 $\mathbf{X}_{j \bullet \mathrm{M}}^{\mathrm{orth}} = \mathbf{X}_{j}^{\mathrm{orth}} \quad \forall \mathrm{M}, j (\ni \mathrm{M})$ 

 The PoSI statistic simplifies to max<sub>j=1...p</sub> |t<sub>j•{j}</sub>|, hence the PoSI guarantee reduces to

simultaneity for *p* orthogonal contrasts.

In orthogonal designs there is no adjustment:

 $\mathbf{X}_{j \bullet \mathrm{M}}^{\mathrm{orth}} = \mathbf{X}_{j}^{\mathrm{orth}} \quad \forall \mathrm{M}, j (\ni \mathrm{M})$ 

 The PoSI statistic simplifies to max<sub>j=1...p</sub> |t<sub>j•{j</sub>|, hence the PoSI guarantee reduces to simultaneity for p orthogonal contrasts.

• The PoSI constant for orthogonal designs is uniformly smallest:

 $\mathcal{K}_{\mathrm{orth}}(\boldsymbol{p}, \alpha, df) \leq \mathcal{K}_{\mathrm{PoSI}}(\mathbf{X}_{\ldots \times \boldsymbol{p}}, \alpha, df) \quad \forall \boldsymbol{p}, \alpha, df, \mathbf{X}_{\ldots \times \boldsymbol{p}}$ 

Andreas Buja (Wharton, UPenn)

Natural asymptotics for the PoSI constant K<sub>PoSI</sub>(X<sub>...×p</sub>, α, df) are in terms of design sequences p → X<sub>...×p</sub> as p ↑ ∞ and df = ∞, i.e., σ known.

- Natural asymptotics for the PoSI constant K<sub>PoSI</sub>(X<sub>...×p</sub>, α, df) are in terms of design sequences p → X<sub>...×p</sub> as p ↑ ∞ and df = ∞, i.e., σ known.
- The Scheffé constant has the following rate in *p*:  $K_{\rm Sch}(p, \alpha) = \sqrt{\chi^2_{p;1-\alpha}} \sim \sqrt{p}.$

- Natural asymptotics for the PoSI constant K<sub>PoSI</sub>(X<sub>...×p</sub>, α, df) are in terms of design sequences p → X<sub>...×p</sub> as p ↑ ∞ and df = ∞, i.e., σ known.
- The Scheffé constant has the following rate in *p*:  $K_{\rm Sch}(p, \alpha) = \sqrt{\chi^2_{p;1-\alpha}} \sim \sqrt{p}.$ 
  - This represents an upper bound on the PoSI rate.

- Natural asymptotics for the PoSI constant K<sub>PoSI</sub>(X<sub>...×p</sub>, α, df) are in terms of design sequences p → X<sub>...×p</sub> as p ↑ ∞ and df = ∞, i.e., σ known.
- The Scheffé constant has the following rate in *p*:  $K_{\rm Sch}(p, \alpha) = \sqrt{\chi^2_{p;1-\alpha}} \sim \sqrt{p}.$ 
  - This represents an upper bound on the PoSI rate.
  - We know a sharper rate bound to be  $0.866...\sqrt{p}$ .

- Natural asymptotics for the PoSI constant K<sub>PoSI</sub>(X<sub>...×p</sub>, α, df) are in terms of design sequences p → X<sub>...×p</sub> as p ↑ ∞ and df = ∞, i.e., σ known.
- The Scheffé constant has the following rate in *p*:  $K_{\rm Sch}(p, \alpha) = \sqrt{\chi^2_{p;1-\alpha}} \sim \sqrt{p}.$ 
  - This represents an upper bound on the PoSI rate.
  - We know a sharper rate bound to be  $0.866...\sqrt{p}$ .
  - We know of design sequences that reach  $0.78...\sqrt{p}$ .

・ロン ・回 ・ ・ ヨン

- Natural asymptotics for the PoSI constant K<sub>PoSI</sub>(X<sub>...×p</sub>, α, df) are in terms of design sequences p → X<sub>...×p</sub> as p ↑ ∞ and df = ∞, i.e., σ known.
- The Scheffé constant has the following rate in p:

$$K_{\rm Sch}(\boldsymbol{p}, \alpha) = \sqrt{\chi^2_{\boldsymbol{p}; 1-\alpha}} \sim \sqrt{\boldsymbol{p}}.$$

- This represents an upper bound on the PoSI rate.
- We know a sharper rate bound to be  $0.866...\sqrt{p}$ .
- We know of design sequences that reach  $0.78...\sqrt{p}$ .
- The lowest rate is achieved by orthogonal designs with a rate  $K_{orth}(p, \alpha) \sim \sqrt{2 \log p}$ .

・ロン ・四 と ・ 回 と ・ 日 と

- Natural asymptotics for the PoSI constant K<sub>PoSI</sub>(X<sub>...×p</sub>, α, df) are in terms of design sequences p → X<sub>...×p</sub> as p ↑ ∞ and df = ∞, i.e., σ known.
- The Scheffé constant has the following rate in p:

$$K_{\mathrm{Sch}}(\boldsymbol{p}, \alpha) = \sqrt{\chi^2_{\boldsymbol{p}; 1-\alpha}} \sim \sqrt{\boldsymbol{p}}.$$

- This represents an upper bound on the PoSI rate.
- We know a sharper rate bound to be  $0.866...\sqrt{p}$ .
- We know of design sequences that reach  $0.78...\sqrt{p}$ .
- The lowest rate is achieved by orthogonal designs with a rate  $K_{orth}(p, \alpha) \sim \sqrt{2 \log p}$ .
- Hence there is a wide range of rates for the PoSI constants:  $\sqrt{2 \log p} \stackrel{<}{\sim} K_{PoSI}(\mathbf{X}_{xp}, \alpha) \stackrel{<}{\sim} \sqrt{p}$

- Natural asymptotics for the PoSI constant K<sub>PoSI</sub>(X<sub>...×p</sub>, α, df) are in terms of design sequences p → X<sub>...×p</sub> as p ↑ ∞ and df = ∞, i.e., σ known.
- The Scheffé constant has the following rate in p:

$$K_{\mathrm{Sch}}(\boldsymbol{p}, \alpha) = \sqrt{\chi^2_{\boldsymbol{p}; 1-\alpha}} \sim \sqrt{\boldsymbol{p}}.$$

- This represents an upper bound on the PoSI rate.
- We know a sharper rate bound to be  $0.866...\sqrt{p}$ .
- We know of design sequences that reach  $0.78...\sqrt{p}$ .
- The lowest rate is achieved by orthogonal designs with a rate  $K_{orth}(p, \alpha) \sim \sqrt{2 \log p}$ .
- Hence there is a wide range of rates for the PoSI constants:  $\sqrt{2\log p} \stackrel{<}{\approx} K_{PoSI}(\mathbf{X}_{...\times p}, \alpha) \stackrel{<}{\approx} \sqrt{p}$
- Under all circumstances, K should not be  $t_{df;1-\alpha/2} = D(f1)!$

### Worst Case PoSI Asymptotics — Some Details

• Comments on upper bound  $K_{\text{PoSI}} \stackrel{<}{\sim} 0.866...\sqrt{p}$ :

## Worst Case PoSI Asymptotics — Some Details

- Comments on upper bound  $K_{\text{PoSI}} \stackrel{<}{\sim} 0.866...\sqrt{p}$ :
  - ► Ignores the PoSI structure, i.e., the many orthogonalities from adjustment.

### Worst Case PoSI Asymptotics — Some Details

- Comments on upper bound  $K_{\text{PoSI}} \stackrel{<}{\sim} 0.866...\sqrt{p}$ :
  - Ignores the PoSI structure, i.e., the many orthogonalities from adjustment.
  - ► Based purely on the growth rate:  $|{X_{j \cdot M} : j \in M}| = p 2^{p-1} \sim 2^p$

### Worst Case PoSI Asymptotics — Some Details

- Comments on upper bound  $K_{\text{PoSI}} \stackrel{<}{\sim} 0.866...\sqrt{p}$ :
  - ▶ Ignores the PoSI structure, i.e., the many orthogonalities from adjustment.
  - ► Based purely on the growth rate:  $|{X_{j \cdot M} : j \in M}| = p 2^{p-1} \sim 2^{p}$
  - ▶ Bound is achieved by random selection of ~ 2<sup>*p*</sup> random vectors:

 $\mathbf{X}_{1},...,\mathbf{X}_{p2^{p-1}} \sim U(S^{p-1})$  i.i.d. versus  $\{\mathbf{X}_{j \cdot \mathbf{M}} : j \in \mathbf{M}\}$ 

### Worst Case PoSI Asymptotics — Some Details

- Comments on upper bound  $K_{\rm PoSI} \stackrel{<}{\sim} 0.866...\sqrt{p}$ :
  - ► Ignores the PoSI structure, i.e., the many orthogonalities from adjustment.
  - ► Based purely on the growth rate:  $|{X_{j \cdot M} : j \in M}| = p 2^{p-1} \sim 2^{p}$
  - ▶ Bound is achieved by random selection of ~ 2<sup>p</sup> random vectors:

 $\mathbf{X}_1,...,\mathbf{X}_{p2^{p-1}} \sim U(S^{p-1})$  i.i.d. versus  $\{\mathbf{X}_{j \cdot \mathbf{M}}: j \in \mathbf{M}\}$ 

► Reduction to radial problem:  $\max_{j,\mathbf{M}: j \in \mathbf{M}} \langle \mathbf{U}, \mathbf{X}_{j \cdot \mathbf{M}} \rangle$   $(\mathbf{U} \sim U(S^{p-1})).$ 

 $\Rightarrow$  Wyner's (1967) bounds on sphere packing apply.

## Worst Case PoSI Asymptotics — Some Details

- Comments on upper bound  $K_{\rm PoSI} \stackrel{<}{\sim} 0.866...\sqrt{p}$ :
  - ► Ignores the PoSI structure, i.e., the many orthogonalities from adjustment.
  - ► Based purely on the growth rate:  $|{X_{j \cdot M} : j \in M}| = p2^{p-1} \sim 2^p$
  - Bound is achieved by random selection of  $\sim 2^{\rho}$  random vectors:

 $\mathbf{X}_1,...,\mathbf{X}_{p2^{p-1}} \sim U(S^{p-1})$  i.i.d. versus  $\{\mathbf{X}_{j\cdot\mathbf{M}}: j\in\mathbf{M}\}$ 

- ► Reduction to radial problem: max<sub>j,M:</sub> <sub>j∈M</sub>⟨U, X<sub>j·M</sub>⟩ (U ~ U(S<sup>p-1</sup>)).
  ⇒ Wyner's (1967) bounds on sphere packing apply.
- Comments on lower bound  $K_{\rm PoSI} \stackrel{>}{\sim} 0.78 \sqrt{p}$ :
  - Best lower bound known to date is found by construction of an example.

This is not be the ultimate worst case yet.

# Example: Length of Criminal Sentence (contd.)

- Reminder: *t*-statistics of selected covariates, in descending order:
  - ▶  $|t_{alcohol}| = 3.95;$
  - $|t_{\text{prior records}}| = 3.59;$
  - $|t_{seriousness}| = 3.57;$
  - $|t_{\rm drugs}| = 3.31;$

- $|t_{\text{employment}}| = 3.04;$
- $|t_{\text{initial age}}| = 2.56;$
- ▶ |t<sub>gender</sub>| = 2.33.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# Example: Length of Criminal Sentence (contd.)

- Reminder: *t*-statistics of selected covariates, in descending order:
  - ► |t<sub>alcohol</sub>| = 3.95;
  - $|t_{\text{prior records}}| = 3.59;$
  - $|t_{seriousness}| = 3.57;$
  - $|t_{\rm drugs}| = 3.31;$

- $|t_{\text{employment}}| = 3.04;$
- |t<sub>initial age</sub>| = 2.56;
- ▶ |t<sub>gender</sub>| = 2.33.
- The PoSI constant is  $K_{\rm PoSI} \approx 3.1$ , hence we would claim significance for the four variables on the left.
- For comparison, the Scheffé constant is  $K_{\rm Sch} \approx 4.5$ , leaving us with no significant predictors at all.
- Similarly, Bonferroni with  $\alpha/(p 2^{p-1})$  yields  $K_{Bonf} \approx 4.7$ .

• Valid universal post-selection inference is possible.

イロト イヨト イヨト イヨト

- Valid universal post-selection inference is possible.
- Necessary buy-ins:
  - Each submodel has its own slope parameters.
  - Use one  $\hat{\sigma}$  you believe in for all  $t_{j \in M}$ .
  - Valid inference for "wrong" models is meaningful.

Image: A matrix

- B - - B

- Valid universal post-selection inference is possible.
- Necessary buy-ins:
  - Each submodel has its own slope parameters.
  - Use one  $\hat{\sigma}$  you believe in for all  $t_{j \in M}$ .
  - Valid inference for "wrong" models is meaningful.
- PoSI is not procedure-specific, hence is conservative. However:
  - PoSI is valid even for selection that is informal and post-hoc.
  - PoSI is necessary for selection based on "significance hunting".

. . . . . . .

- Valid universal post-selection inference is possible.
- Necessary buy-ins:
  - Each submodel has its own slope parameters.
  - Use one  $\hat{\sigma}$  you believe in for all  $t_{j \in M}$ .
  - Valid inference for "wrong" models is meaningful.
- PoSI is not procedure-specific, hence is conservative. However:
  - PoSI is valid even for selection that is informal and post-hoc.
  - PoSI is necessary for selection based on "significance hunting".
- Asymptotics in p suggests strong dependence of K<sub>PoSI</sub> on design X.

- Valid universal post-selection inference is possible.
- Necessary buy-ins:
  - Each submodel has its own slope parameters.
  - Use one  $\hat{\sigma}$  you believe in for all  $t_{j \in M}$ .
  - Valid inference for "wrong" models is meaningful.
- PoSI is not procedure-specific, hence is conservative. However:
  - PoSI is valid even for selection that is informal and post-hoc.
  - PoSI is necessary for selection based on "significance hunting".
- Asymptotics in p suggests strong dependence of K<sub>PoSI</sub> on design X.
- Challenges:
  - ▶ PoSI under heteroskedasticity, random X, general misspecification, ...
  - Understanding the design geometry that drives  $K_{PoSI}(X)$ .
  - Computations of  $K_{PoSI}$  for large *p*.

- Valid universal post-selection inference is possible.
- Necessary buy-ins:
  - Each submodel has its own slope parameters.
  - Use one  $\hat{\sigma}$  you believe in for all  $t_{j \in M}$ .
  - Valid inference for "wrong" models is meaningful.
- PoSI is not procedure-specific, hence is conservative. However:
  - PoSI is valid even for selection that is informal and post-hoc.
  - PoSI is necessary for selection based on "significance hunting".
- Asymptotics in p suggests strong dependence of K<sub>PoSI</sub> on design X.
- Challenges:
  - ▶ PoSI under heteroskedasticity, random X, general misspecification, ...
  - Understanding the design geometry that drives  $K_{PoSI}(X)$ .
  - Computations of  $K_{PoSI}$  for large *p*.

# THANK YOU!

## **Details of Simulation**

- Number of simulated datasets: 100,000.
- $\beta = 0, \gamma_j = 4, \forall j = 1, ..., 10.$
- Vectors **x** and **z**<sub>i</sub>'s are standardized to have zero mean and unit variance.
  - ▶ The correlation between **x** and each  $\mathbf{z}_j$  is 0.7,  $\forall j = 1, ..., 10$ .
  - The correlation between  $\mathbf{z}_{j_1}$  and  $\mathbf{z}_{j_2}$  is 0.5,  $\forall j_1, j_2 = 1, \dots, 10$ .

Sometimes there is one focal predictor of interest, X<sub>p</sub>.

- Sometimes there is one focal predictor of interest, X<sub>p</sub>.
- Inference is desired only for  $\beta_{p \bullet M}$  (test statistics:  $t_{p \bullet M}$ ).

(D) (A) (A) (A)

- Sometimes there is one focal predictor of interest, X<sub>p</sub>.
- Inference is desired only for  $\beta_{p \bullet M}$  (test statistics:  $t_{p \bullet M}$ ).
- Search only models M that contain  $p: p \in M$  (# = 2<sup>*p*-1</sup>). Purpose: Boost the statistical significance of  $\hat{\beta}_{p \bullet M}$ .

- Sometimes there is one focal predictor of interest, X<sub>p</sub>.
- Inference is desired only for  $\beta_{p \bullet M}$  (test statistics:  $t_{p \bullet M}$ ).
- Search only models M that contain  $p: p \in M$  (# = 2<sup>*p*-1</sup>). Purpose: Boost the statistical significance of  $\hat{\beta}_{p \bullet M}$ .
- PoSI1 produces a constant K<sub>PoSI1</sub> whose intervals CI<sub>p•M</sub>(K<sub>PoSI1</sub>) are valid after any variable selection procedure M̂ that is subject to p ∈ M̂.

- Sometimes there is one focal predictor of interest, X<sub>p</sub>.
- Inference is desired only for  $\beta_{p \bullet M}$  (test statistics:  $t_{p \bullet M}$ ).
- Search only models M that contain  $p: p \in M$  (# = 2<sup>*p*-1</sup>). Purpose: Boost the statistical significance of  $\hat{\beta}_{p \bullet M}$ .
- PoSI1 produces a constant K<sub>PoSI1</sub> whose intervals CI<sub>p•M</sub>(K<sub>PoSI1</sub>) are valid after any variable selection procedure M̂ that is subject to p ∈ M̂.
- A selection procedure that requires the full PoSI1 protection: SPAR1, defined by  $\hat{M} := \operatorname{argmax}_{M \ni p} |t_{p \bullet M}|.$

- Sometimes there is one focal predictor of interest, X<sub>p</sub>.
- Inference is desired only for  $\beta_{p \bullet M}$  (test statistics:  $t_{p \bullet M}$ ).
- Search only models M that contain  $p: p \in M$  (# = 2<sup>*p*-1</sup>). Purpose: Boost the statistical significance of  $\hat{\beta}_{p \cdot M}$ .
- PoSI1 produces a constant K<sub>PoSI1</sub> whose intervals CI<sub>p•M</sub>(K<sub>PoSI1</sub>) are valid after any variable selection procedure M̂ that is subject to p ∈ M̂.
- A selection procedure that requires the full PoSI1 protection: SPAR1, defined by  $\hat{M} := \operatorname{argmax}_{M \ni p} |t_{p \bullet M}|$ .

Conclusions:

- PoSI1 is more appropriate for some situations than full PoSI.
- Trivially, K<sub>PoSI1</sub> < K<sub>PoSI</sub>, but sometimes not by much!

- The full universe of models for full PoSI: all non-singular submodels
  - ▶  $\mathcal{M}_{all} = \{M : M \subset \{1, 2, ..., p\}, 0 < |M| \le \min(n, p), rank(X_M) = |M|\}.$
- Useful sub-universes:

- The full universe of models for full PoSI: all non-singular submodels
  - ▶  $\mathcal{M}_{all} = \{M : M \subset \{1, 2, ..., p\}, 0 < |M| \le \min(n, p), rank(X_M) = |M|\}.$
- Useful sub-universes:
  - ▶ Protect one or more predictors, as in PoSI1:  $M = \{M : p \in M\}$ .

- The full universe of models for full PoSI: all non-singular submodels
  - ▶  $\mathcal{M}_{all} = \{M : M \subset \{1, 2, ..., p\}, 0 < |M| \le \min(n, p), rank(X_M) = |M|\}.$
- Useful sub-universes:
  - ▶ Protect one or more predictors, as in PoSI1:  $M = \{M : p \in M\}$ .
  - ▶ Sparsity, i.e., submodels of size m' or less:  $\mathcal{M} = \{M : |M| \le m'\}$ .

- The full universe of models for full PoSI: all non-singular submodels
  - ▶  $\mathcal{M}_{all} = \{M : M \subset \{1, 2, ..., p\}, 0 < |M| \le \min(n, p), rank(X_M) = |M|\}.$
- Useful sub-universes:
  - ▶ Protect one or more predictors, as in PoSI1:  $M = \{M : p \in M\}$ .
  - ▶ Sparsity, i.e., submodels of size m' or less:  $M = \{M : |M| \le m'\}$ .
  - ► Richness, i.e., drop fewer than m' predictors from the full model:  $\mathcal{M} = \{M : |M| \ge p - m'\}.$

- The full universe of models for full PoSI: all non-singular submodels
  - ▶  $\mathcal{M}_{all} = \{M : M \subset \{1, 2, ..., p\}, 0 < |M| \le \min(n, p), rank(X_M) = |M|\}.$
- Useful sub-universes:
  - ▶ Protect one or more predictors, as in PoSI1:  $M = \{M : p \in M\}$ .
  - ▶ Sparsity, i.e., submodels of size m' or less:  $M = \{M : |M| \le m'\}$ .
  - ► Richness, i.e., drop fewer than m' predictors from the full model:  $\mathcal{M} = \{M : |M| \ge p - m'\}.$
  - Nested sets of models, as in polynomial regression, AR models, ANOVA.

# PoSI Significance: Strong Error Control

For each  $j \in M$ , consider the *t*-test statistic

$$\mathbf{b}_{\mathbf{0},\mathbf{j}\bullet\mathbf{M}} = \frac{\hat{\beta}_{\mathbf{j}\bullet\mathbf{M}} - \mathbf{0}}{\hat{\sigma}_{\bullet}((\mathbf{X}_{\mathbf{M}}^{\mathsf{T}}\mathbf{X}_{\mathbf{M}})_{\mathbf{j}\mathbf{j}}^{-1})^{\frac{1}{2}}}.$$

#### Theorem

Let  $H_1$  be the random set of true alternatives in  $\hat{M}$ , and  $\hat{H}_1$  the random set of rejections in  $\hat{M}$ :

$$\hat{H}_1 = \{(j, \hat{\mathrm{M}}) : j \in \hat{\mathrm{M}}, |t_{0, j_{\bullet} \hat{\mathrm{M}}}| > K\} \text{ and } H_1 = \{(j, \hat{\mathrm{M}}) : j \in \hat{\mathrm{M}}, \beta_{j_{\bullet} \hat{\mathrm{M}}} \neq 0\}.$$

Then

$$\mathbf{P}(\hat{H}_1 \subset H_1) \ge 1 - \alpha.$$

If we repeat the sampling process many times, the probability that all PoSI rejections are correct is at least  $1 - \alpha$ , no matter how the model is selected.

Andreas Buja (Wharton, UPenn)