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It is common practice in statistical data analysis to perform data-
driven variable selection and derive statistical inference from the
resulting model. Such inference enjoys none of the guarantees that
classical statistical theory provides for tests and confidence intervals
when the model has been chosen a priori. We propose to produce valid
“post-selection inference” by reducing the problem to one of simulta-
neous inference and hence suitably widening conventional confidence
and retention intervals. Simultaneity is required for all linear func-
tions that arise as coefficient estimates in all submodels. By purchas-
ing “simultaneity insurance” for all possible submodels, the resulting
post-selection inference is rendered universally valid under all possi-
ble model selection procedures. This inference is therefore generally
conservative for particular selection procedures, but it is always less
conservative than full Scheffé protection. Importantly it does not de-
pend on the truth of the selected submodel, and hence it produces
valid inference even in wrong models. We describe the structure of the
simultaneous inference problem and give some asymptotic results.

1. Introduction — The Problem with Statistical Inference after
Model Selection. Classical statistical theory grants validity of statistical
tests and confidence intervals assuming a wall of separation between the
selection of a model and the analysis of the data being modeled. In prac-
tice, this separation rarely exists and more often a model is “found” by a
data-driven selection process. As a consequence inferential guarantees de-
rived from classical theory are invalidated. Among model selection methods
that are problematic for classical inference, variable selection stands out be-
cause it is regularly taught, commonly practiced, and highly researched as a
technology. Even though statisticians may have a general awareness that the
data-driven selection of variables (predictors, covariates) must somehow af-
fect subsequent classical inference from F - and t-based tests and confidence
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intervals, the practice is so pervasive that it appears in classical undergrad-
uate textbooks on statistics such as Moore and McCabe (2003).

The reason for the invalidation of classical inference guarantees is that a
data-driven variable selection process produces a model that is itself stochas-
tic, and this stochastic aspect is not accounted for by classical theory. Models
become stochastic when the stochastic component of the data is involved in
the selection process. (In regression with fixed predictors the stochastic com-
ponent is the response.) Models are stochastic in a well-defined way when
they are the result of formal variable selection procedures such as stepwise
or stagewise forward selection or backward elimination or all-subset searches
driven by complexity penalties (such as Cp, AIC, BIC, risk-inflation, LASSO,
...) or prediction criteria such as cross-validation, or more recent proposals
such as LARS and the Dantzig selector (for an overview see, for example,
Hastie, Tibshirani, and Friedman (2009)). Models are also stochastic but in
an ill-defined way when they are informally selected through visual inspec-
tion of residual plots or normal quantile plots or other regression diagnostics.
Finally, models become stochastic in an opaque way when their selection is
affected by human intervention based on post hoc considerations such as
“in retrospect only one of these two variables should be in the model” or “it
turns out the predictive benefit of this variable is too weak to warrant the
cost of collecting it.” In practice, all three modes of variable selection may
be exercised in the same data analysis: multiple runs of one or more formal
search algorithms may be performed and compared, the parameters of the
algorithms may be subjected to experimentation, and the results may be
critiqued with graphical diagnostics; a round of fine-tuning based on sub-
stantive deliberations may finalize the analysis.

Posed so starkly, the problems with statistical inference after variable
selection may well seem insurmountable. At a minimum, one would ex-
pect technical solutions to be possible only when a formal selection algo-
rithm is (1) well-specified (1a) in advance and (1b) covering all eventualities,
(2) strictly adhered to in the course of data analysis, and (3) not “improved”
on by informal and post-hoc elements. It may, however, be unrealistic to ex-
pect this level of rigor in most data analysis contexts, with the exception of
well-conducted clinical trials. The real challenge is therefore to devise sta-
tistical inference that is valid following any type of variable selection, be it
formal, informal, post hoc, or a combination thereof. Meeting this challenge
with a relatively simple proposal is the goal of this article. This proposal for
valid Post-Selection Inference, or “PoSI ” for short, consists of a large-scale
family-wise error guarantee that can be shown to account for all types of
variable selection, including those of the informal and post-hoc varieties. On
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the other hand, the proposal is no more conservative than necessary to ac-
count for selection, and in particular it can be shown to be less conservative
than Scheffé’s simultaneous inference.

The framework for our proposal is in outline as follows — details to be
elaborated in subsequent sections: We consider linear regression with predic-
tor variables whose values are considered fixed, and with a response variable
that has normal and homoscedastic errors. The framework does not require
that any of the eligible linear models is correct, not even the full model, as
long as a valid error estimate is available. We assume that the selected model
is the result of some procedure that makes use of the response, but the pro-
cedure does not need to be fully specified. A crucial aspect of the framework
concerns the use and interpretation of the selected model: We assume that,
after variable selection is completed, the selected predictor variables — and
only they — will be relevant; all others will be eliminated from further con-
sideration. This assumption, seemingly innocuous and natural, has critical
consequences: It implies that statistical inference will be sought for the co-
efficients of the selected predictors only and in the context of the selected
model only. Thus the appropriate targets of inference are the best linear
coefficients within the selected model, where each coefficient is adjusted for
the presence of all other included predictors but not those that were elim-
inated. Therefore the coefficient of an included predictor generally requires
inference that is specific to the model in which it appears. Summarizing in
a motto, a difference in adjustment implies a difference in parameters and
hence in inference. The goal of the present proposal is therefore simultane-
ous inference for all coefficients within all submodels. Such inference can be
shown to be valid following any variable selection procedure, be it formal,
informal, post hoc, fully or only partly specified.

Problems associated with post-selection inference were recognized long
ago, for example, by Buehler and Fedderson (1963), Brown (1967), Olshen
(1973), Sen (1979), Sen and Saleh (1987), Dijkstra and Veldkamp (1988),
Pötscher (1991), Kabaila (1998). More recently specific problems have been
the subject of incisive analyses and criticisms by the “Vienna School” of
Pötscher, Leeb and Schneider; see, for example, Leeb and Pötscher (2003;
2005; 2006a; 2006b; 2008a; 2008b), Pötscher (2006), Leeb (2006), Pötscher
and Leeb (2009), Pötscher and Schneider (2009, 2010, 2011), as well as
Kabaila and Leeb (2006) and Kabaila (2009). Important progress was made
by Hjort and Claeskens (2003) and Claeskens and Hjort (2003).

This article proceeds as follows: In Section 2 we first develop the “sub-
model view” of the targets of inference after model selection and contrast
it with the “full model view” (Section 2.1); we then introduce assumptions
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with a view toward valid inference in “wrong models” (Section 2.2). Sec-
tion 3 is about estimation and its targets from the submodel point of view.
Section 4 develops the methodology for PoSI confidence intervals (CIs) and
tests. After some structural results for the PoSI problem in Section 5 , we
show in Section 6 that with increasing number of predictors p the width of
PoSI CIs can range between the asymptotic rates O(

√
log p) and O(

√
p). We

give examples for both rates and, inspired by problems in sphere packing
and covering, we give upper bounds for the limiting constant in the O(

√
p)

case. We conclude with a discussion in Section 7. Some proofs are deferred
to the appendix, and some elaborations to the online appendix.

Computations will be described in a separate article. Simulation-based
methods yield satisfactory accuracy specific to a design matrix up to p ≈ 20,
while non-asymptotic universal upper bounds can be computed for larger p.

2. Targets of Inference and Assumptions. It is a natural intuition
that model selection distorts inference by distorting sampling distributions
of parameter estimates: Estimates in selected models should tend to gener-
ate more Type I errors than conventional theory allows because the typical
selection procedure favors models with strong, hence highly significant pre-
dictors. This intuition correctly points to a multiplicity problem that grows
more severe as the number of predictors subject to selection increases. This
is the problem we address in this article.

Model selection poses additional problems that are less obvious but no less
fundamental: There exists an ambiguity as to the role and meaning of the
parameters in submodels. On one view, the relevant parameters are always
those of the full model, hence the selection of a submodel is interpreted as
estimating the deselected parameters to be zero and estimating the selected
parameters under a zero constraint on the deselected parameters. On another
view, the submodel has its own parameters, and the deselected parameters
are not zero but non-existent. These distinctions are not academic as they
imply fundamentally different ideas regarding the targets of inference, the
measurement of statistical performance, and the problem of post-selection
inference. The two views derive from different purposes of equations:

• Underlying the full model view of parameters is the use of a full equa-
tion to describe a “data generating” mechanism for the response; the
equation hence has a causal interpretation.
• Underlying the submodel view of parameters is the use of any equa-

tion to merely describe association between predictor and response
variables; no data generating or causal claims are implied.

In this article we address the latter use of equations. Issues relating to the

http://stat.wharton.upenn.edu/~buja/PAPERS/PoSI_webappendix.pdf
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former use are discussed in the online appendix, Section B.1.

2.1. The Submodel Interpretation of Parameters. In what follows we
elaborate three points that set the submodel interpretation of coefficients
apart from the full model interpretation, with important consequences for
the rest of this article:

(1) The full model has no special status other than being the repository
of available predictors.

(2) The coefficients of excluded predictors are not zero; they are not de-
fined and therefore don’t exist.

(3) The meaning of a predictor’s coefficient depends on which other pre-
dictors are included in the selected model.

(1) The full model available to the statistician often cannot be argued to
have special status because of inability to identify and measure all relevant
predictors. Additionally, even when a large and potentially complete suite
of predictors can be measured there is generally a question of predictor
redundancy that may make it desirable to omit some of the measurable
predictors from the final model. It is a common experience in the social
sciences that models proposed on theoretical grounds are found on empirical
grounds to have their predictors entangled by collinearities that permit little
meaningful statistical inference. This situation is not limited to the social
sciences: in gene expression studies it may well occur that numerous sites
have a tendency to be expressed concurrently, hence as predictors in disease
studies they will be strongly confounded. The emphasis on full models may
be particularly strong in econometrics where there is a “notion that a longer
regression ... has a causal interpretation, while a shorter regression does not”
(Angrist and Pischke 2009, p. 59). Even in causal models, however, there is
a possibility that included adjustor variables will “adjust away” some of the
causal variables of interest. Generally, in any creative observational study
involving novel predictors it will be difficult a priori to exclude collinearities
that might force a rethinking of the predictors. In conclusion, whenever
predictor redundancy is a potential issue, it cannot a priori be claimed that
the full model provides the parameters of primary interest.

(2) In the submodel interpretation of parameters, claiming that the coef-
ficients of deselected predictors are zero does not properly describe the role
of predictors. Deselected predictors have no role in the submodel equation;
they become no different than predictors that had never been considered.
The selected submodel becomes the vehicle of substantive research irrespec-
tive of what the full model was. As such the submodel stands on its own.
This view is especially appropriate if the statistician’s task is to determine

http://stat.wharton.upenn.edu/~buja/PAPERS/PoSI_webappendix.pdf
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which predictors are to be measured in the future.
(3) The submodel interpretation of parameters is deeply seated in how

we teach regression. We explain that the meaning of a regression coefficient
depends on which of the other predictors are included in the model: “the
slope is the average difference in the response for a unit difference in the
predictor, at fixed levels of all other predictors in the model.” This “ceteris
paribus” clause is essential to the meaning of a slope. That there is a differ-
ence in meaning when there is a difference in covariates is most drastically
evident when there is a case of Simpson’s paradox. For example, if purchase
likelihood of a high-tech gadget is predicted from Age, it might be found
against expectations that younger people have lower purchase likelihood,
whereas a regression on Age and Income might show that at fixed levels of
income younger people have indeed higher purchase likelihood. This case of
Simpson’s paradox would be enabled by the expected positive collinearity
between Age and Income. Thus the marginal slope on Age is distinct from
the Income-adjusted slope on Age as the two slopes answer different ques-
tions, apart from having opposite signs. In summary, different models result
in different parameters with different meanings.

Must we use the full model with both predictors? Not if Income data is
difficult to obtain or if it provides little improvement in R2 beyond Age. The
model based on Age alone cannot be said to be a priori “wrong”. If, for ex-
ample, the predictor and response variables have jointly multivariate normal
distributions, then every linear submodel is “correct”. These considerations
drive home, once again, that sometimes no model has special status.

In summary, a range of applications call for a framework in which the full
model is not the sole provider of parameters, where rather each submodel
defines its own. The consequences of this view will be developed in Section 3.

2.2. Assumptions, Models as Approximations, and Error Estimates. We
state assumptions for estimation and for the construction of valid tests and
CIs when fitting arbitrary linear equations. The main goal is to prepare the
ground for valid statistical inference after model selection — not assuming
that selected models are correct.

We consider a quantitative response vector Y∈Rn, assumed random, and
a full predictor matrix X = (X1,X2, . . . ,Xp) ∈ Rn×p, assumed fixed. We
allow X to be of non-full rank, and n and p to be arbitrary. In particular,
we allow n < p. Throughout the article we let

(2.1) d , rank(X) = dim(span(X)), hence d ≤ min(n, p).

Due to frequent reference we call d = p (≤ n) “the classical case”.
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It is common practice to assume the full model Y∼Nn(Xβ, σ2I) to be cor-
rect. In the present framework, however, first-order correctness, E[Y] = Xβ,
will not be assumed. By implication, first-order correctness of any submodel
will not be assumed either. Effectively,

(2.2) µ , E[Y] ∈ Rn

is allowed to be unconstrained and, in particular, need not reside in the col-
umn space of X. That is, the model given by X is allowed to be “first-order
wrong”, and hence we are in a well-defined sense serious about G.E.P. Box’
famous quote. What he calls “wrong models” we prefer to call “approxima-
tions”: All predictor matrices X provide approximations to µ, some better
than others, but the degree of approximation plays no role in the clarifi-
cation of statistical inference. The main reason for elaborating this point
is as follows: after model selection the case for “correct models” is clearly
questionable, even for “consistent model selection procedures” (Leeb and
Pötscher 2003, p. 101); but if correctness of submodels is not assumed, it
is only natural to abandon this assumption for the full model also, in line
with the idea that the full model has no special status. As we proceed with
estimation and inference guarantees in the absence of first-order correctness
we will rely on assumptions as follows:

• For estimation (Section 3), we will only need the existence of µ=E[Y].
• For testing and CI guarantees (Section 4), we will make conventional

second order and distributional assumptions:

(2.3) Y ∼ N (µ, σ2I).

The assumptions (2.3) of homoscedasticity and normality are as questionable
as first order correctness, and we will report elsewhere on approaches that
avoid them. For now we follow the vast model selection literature that relies
on the technical advantages of assuming homoscedastic and normal errors.

Accepting the assumption (2.3), we address the issue of estimating the
error variance σ2, because the valid tests and CIs we construct require a
valid estimate σ̂2 of σ2 that is independent of LS estimates. In the classical
case, the most common way to assert such an estimate is to assume that
the full model is first order correct, µ = Xβ in addition to (2.3), in which
case the mean squared residual (MSR) σ̂2F = ‖Y−Xβ̂‖2/(n− p) of the full
model will do. However, other possibilities for producing a valid estimate σ̂2

exist, and they may allow relaxing the assumption of first order correctness:

• Exact replications of the response obtained under identical conditions
might be available in sufficient numbers. An estimate σ̂2 can be ob-
tained as the MSR of the one-way ANOVA of the groups of replicates.
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• In general, a larger linear model than the full model might be consid-
ered as correct, hence σ̂2 could be the MSR from this larger model.
• A different possibility is to use another dataset, similar to the one

currently being analyzed, to produce an independent estimate σ̂2 by
whatever valid estimation method.
• A special case of the preceding is a random split-sample approach

whereby one part of the data is reserved for producing σ̂2 and the
other part for estimating coefficients, selecting models, and carrying
out post-model selection inference.
• A different type of estimates σ̂2 may be based on considerations bor-

rowed from non-parametric function estimation (Hall and Carroll 1989).

The purpose of pointing out these possibilities is to separate at least in
principle the issue of first-order model incorrectness from the issue of error
estimation under the assumption (2.3). This separation puts the case n<p
within our framework as the valid and independent estimation of σ2 is a
problem faced by all “n<p” approaches.

3. Estimation and its Targets in Submodels. Following Section 2.1,
the value and meaning of a regression coefficient depends on what the other
predictors in the model are. An exception occurs, of course, when the pre-
dictors are perfectly orthogonal, as in some designed experiments or in func-
tion fitting with orthogonal basis functions. In this case a coefficient has the
same value and meaning across all submodels. This article is hence a story
of (partial) collinearity.

3.1. Multiplicity of Regression Coefficients. We will give meaning to LS
estimators and their targets in the absence of any assumptions other than
the existence of µ = E[Y], which in turn is permitted to be entirely un-
constrained in Rn. Besides resolving the issue of estimation in “first order
wrong models”, the major purpose here is to elaborate the idea that the
slope of a predictor generates different parameters in different submodels.
As each predictor appears in 2p−1 submodels, the p regression coefficients
of the full model generally proliferate into a plethora of as many as p 2p−1

distinct regression coefficients according to the submodels they appear in.
To describe the situation we start with notation.

To denote a submodel we use the (non-empty) index set M = {j1, j2, ..., jm}
⊂ MF = {1, . . . , p} of the predictors Xji in the submodel; the size of
the submodel is m = |M| and that of the full model is p = |MF |. Let
XM = (Xj1 , ...,Xjm) denote the n × m submatrix of X with columns in-
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dexed by M. We will only allow submodels M for which XM is of full rank:

rank(XM) = m ≤ d.

We let β̂M be the unique least squares estimate in M:

(3.1) β̂M = (XT
MXM)−1XT

MY.

Now that β̂M is an estimate, what is it estimating? Following Section 2.1,
we will not interpret β̂M as estimates of the full model coefficients and,
more generally, of any model other than M. Thus it is natural to ask that
β̂M define its own target through the requirement of unbiasedness:

(3.2) βM , E[β̂M] = (XT
MXM)−1XT

M E[Y] = argmin
β′∈Rm

‖µ−XMβ
′‖2.

This definition requires no other assumption than the existence of µ=E[Y].
In particular there is no need to assume first order correctness of M or MF .
Nor does it matter to what degree M provides a good approximation to µ
in terms of approximation error ‖µ−XMβM‖2.

In the classical case d = p ≤ n, we can define the target of the full-model
estimate β̂ = (XTX)−1XTY as a special case of (3.2) with M = MF :

(3.3) β , E[β̂] = (XTX)−1XTE[Y].

In the general (including the non-classical) case, let β be any (possibly non-
unique) minimizer of ‖µ−Xβ′‖2; the link between β and βM is as follows:

(3.4) βM = (XT
MXM)−1XT

MXβ.

Thus the target βM is an estimable linear function of β, without first-order
correctness assumptions. Equation (3.4) follows from span(XM) ⊂ span(X).

Notation: To distinguish the regression coefficients of the predictor Xj

relative to the submodel it appears in, we write βj·M = E[β̂j·M] for the
components of βM = E[β̂M] with j ∈M. An important convention is that
indexes are always elements of the full model, j∈{1, 2, ..., p}=MF , for what
we call “full model indexing”.

3.2. Interpreting Regression Coefficients in First-Order Incorrect Models.
The regression coefficient βj·M is conventionally interpreted as the “average
difference in the response for a unit difference in Xj , ceteris paribus in the
model M”. This interpretation no longer holds when the assumption of first
order correctness is given up. Instead, the phrase “average difference in the
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response” should be replaced with the unwieldy phrase “average difference
in the response approximated in the submodel M”. The reason is that the
target of the fit ŶM = XMβ̂M in the submodel M is µM = XMβM, hence in
M we estimate unbiasedly not the true µ but its LS approximation µM.

A second interpretation of regression coefficients is in terms of adjusted
predictors: For j ∈ M define the M-adjusted predictor Xj·M as the residual
vector of the regression of Xj on all other predictors in M. Multiple regres-

sion coefficients, both estimates β̂j·M and parameters βj·M, can be expressed
as simple regression coefficients with regard to the M-adjusted predictors:

(3.5) β̂j·M =
XT
j·MY

‖Xj·M‖2
, βj·M =

XT
j·M µ

‖Xj·M‖2
.

The left hand formula lends itself to an interpretation of β̂j·M in terms of the
well-known leverage plot which shows Y plotted against Xj·M and the line

with slope β̂j·M. This plot is valid without first-order correctness assumption.
A third interpretation can be derived from the second: To unclutter no-

tation let x = (xi)i=1...n be any adjusted predictor Xj·M, so that β̂ =

xTY/‖x‖2 and β = xTµ/‖x‖2 are the corresponding β̂j·M and βj·M. In-

troduce (1) case-wise slopes through the origin, both as estimates β̂(i) =
Yi/xi and as parameters β(i) = µi/xi, and (2) case-wise weights w(i) =
x2i /

∑
i′=1...n x

2
i′ . Equations (3.5) are then equivalent to the following:

β̂ =
∑
i

w(i)β̂(i), β =
∑
i

w(i)β(i).

Hence regression coefficients are weighted averages of case-wise slopes, and
this interpretation holds without first-order assumptions.

4. Universally Valid Post-Selection Confidence Intervals.

4.1. Test Statistics with One Error Estimate for All Submodels. We con-
sider inference for β̂M and its target βM. Following Section 2.2 we require a
normal homoscedastic model for Y, but we leave its mean µ=E[Y] entirely
unspecified: Y∼N (µ, σ2I). We then have equivalently

β̂M ∼ N (βM, σ
2(XT

MXM)−1) and β̂j·M ∼ N (βj·M, σ
2/‖Xj·M‖2).

Again following Section 2.2 we assume the availability of a valid estimate
σ̂2 of σ2 that is independent of all estimates β̂j·M, and we further assume
σ̂2 ∼ σ2χ2

r/r for r degrees of freedom. If the full model is assumed correct,
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n > p and σ̂2= σ̂2F , then r = n−p. In the limit r →∞ we obtain σ̂ = σ, the
case of known σ, which will be used starting with Section 6.

Let tj·M denote a t-ratio for βj·M that uses σ̂ irrespective of M:

(4.1) tj·M ,
β̂j·M − βj·M(

(XT
MXM)−1

) 1
2
jj
σ̂

=
β̂j·M − βj·M
σ̂/‖Xj·M‖

=
(Y − µ)TXj·M
σ̂‖Xj·M‖

,

where (...)jj refers to the diagonal element corresponding to Xj . The quan-
tity tj·M = tj·M(Y) has a central t-distribution with r degrees of freedom.
Essential is that the standard error estimate in the denominator of (4.1)
does not involve the MSR σ̂M from the submodel M, for two reasons:

• We do not assume that the submodel M is first-order correct, hence σ̂2M
would in general have a distribution that is a multiple of a non-central
χ2 distribution with unknown non-centrality parameter.
• More disconcertingly, σ̂2M would be the result of selection: σ̂2

M̂
(see

Section 4.2). Not much of real use is known about its distribution
(see, for example, Brown 1967 and Olshen 1973).

These problems are avoided by using one valid estimate σ̂2 that is indepen-
dent of all submodels.

With this choice of σ̂, confidence intervals for βj·M take the form

CIj·M(K) ,

[
β̂j·M ± K

[
(XT

MXM)−1
] 1
2

jj
σ̂

]
(4.2)

=
[
β̂j·M ± K σ̂/‖Xj·M‖

]
.

If K = tr,1−α/2 is the 1−α/2 quantile of a t-distribution with r degrees of
freedom, then the interval is marginally valid with a 1−α coverage guarantee:

P[βj·M ∈ CIj·M(K)]
(≥)
= 1− α.

This holds if the submodel M is not the result of variable selection.

4.2. Model Selection and Its Implications for Parameters. In practice,
the model M tends to be the result of some form of model selection that
makes use of the stochastic component of the data, which is the response
vector Y (X being fixed, Section 2.2). This model should therefore be ex-
pressed as M̂ = M̂(Y). In general we allow a variable selection procedure to
be any (measurable) map

(4.3) M̂ : Y 7→ M̂(Y), Rn →Mall,
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where Mall is the set of all full-rank submodels:

(4.4) Mall , {M |M ⊂ {1, 2, ..., p}, rank(XM) = |M| }

Thus the procedure M̂ is a discrete map that divides Rn into as many as
|Mall| different regions with shared outcome of model selection.

Data dependence of the selected model M̂ has strong consequences:

• Most fundamentally, the selected model M̂ = M̂(Y) is now random.
Whether the model has been selected by an algorithm or by human
choice, if the response Y has been involved in the selection, the result-
ing model is a random object because it could have been different for
a different realization of the random vector Y.
• Associated with the random model M̂(Y) is the parameter vector of

coefficients βM̂(Y), which is now randomly chosen also:

– It has a random dimension m(Y)= |M̂(Y)|: βM̂(Y) ∈ Rm(Y).

– For any fixed j, it may or may not be the case that j∈M̂(Y).

– Conditional on j ∈ M̂(Y), the parameter βj·M̂(Y) changes ran-

domly as the adjustor covariates in M̂(Y) vary randomly.

Thus the set of parameters for which inference is sought is random also.

4.3. Post-Selection Coverage Guarantees for Confidence Intervals. With
randomness of the selected model and its parameters in mind, what is a de-
sirable form of post-selection coverage guarantee for confidence intervals? A
natural requirement would be a 1−α confidence guarantee for the coefficients
of the predictors that are selected into the model:

(4.5) P
[
∀j ∈ M̂ : βj·M̂ ∈ CIj·M̂(K)

]
≥ 1− α.

Several points should be noted:

• The guarantee is family-wise for all selected predictors j ∈ M̂, though
the sense of “family-wise” is unusual because M̂ = M̂(Y) is random.
• The guarantee has nothing to say about predictors j /∈ M̂ that have

been deselected, regardless of the substantive interest they might have.
Predictors of overarching interest should be protected from variable
selection, and for these one can use a modification of the PoSI approach
which we call “PoSI1”; see Section 4.10.
• Because predictor selection is random, M̂ = M̂(Y), two realized sam-

ples y(1), y(2) ∈ Rn from Y may result in different sets of selected
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predictors, M̂(y(1)) 6= M̂(y(2)). It would be a fundamental misunder-
standing to wonder whether the guarantee holds for both realizations.
Instead, the guarantee (4.5) is about the procedure

Y 7→ σ̂(Y), M̂(Y), β̂M̂(Y)(Y) 7→ CIj·M̂(K) (j ∈ M̂)

for the long run of independent realizations of Y (by the LLN), and
not for any particular realizations y(1), y(2). A standard formulation
used to navigate these complexities after a realization y of Y has been
analyzed is the following: “For j∈M̂ we have 1−α confidence that the
interval CIj·M̂(y)(K) contains βj·M̂(y).”
• Marginal guarantees for individual predictors require some care be-

cause βj·M̂ does not exist for j /∈ M̂. This makes βj·M̂ ∈ CIj·M̂(K) an
incoherent statement that does not define an event. Guarantees are
possible if the condition j∈M̂ is added with a conjunction or is being
conditioned on: the marginal and conditional probabilities

P
[
j ∈ M̂ & βj·M̂ ∈ CIj·M̂(Kj·)

]
and P

[
βj·M̂ ∈ CIj·M̂(Kj·)

∣∣∣ j ∈ M̂
]

are both well-defined and can be the subject of coverage guarantees;
see the online appendix, Section B.4.

Finally, we note that the smallest constant K that satisfies the guarantee
(4.5) is specific to the procedure M̂. Thus different variable selection proce-
dures would require different constants. Finding procedure-specific constants
is a challenge that will be intentionally bypassed by the present proposals.

4.4. Universal Validity for all Selection Procedures. The “PoSI” proce-
dure proposed here produces a constant K that provides universally valid
post-selection inference for all model selection procedures M̂:

(4.6) P
[
βj·M̂ ∈ CIj·M̂(K) ∀j ∈ M̂

]
≥ 1− α ∀ M̂.

Universal validity irrespective of the model selection procedure M̂ is a strong
property that raises questions of whether the approach is too conservative.
There are, however, some arguments in its favor:

(1) Universal validity may be desirable or even essential for applications in
which the model selection procedure is not specified in advance or for which
the analysis involves some ad hoc elements that cannot be accurately pre-
specified. Even so, we should think of the actually chosen model as part of a
“procedure” Y 7→ M̂(Y), and though the ad hoc steps are not specified for
Y other than the observed one, this is not a problem because our protection

http://stat.wharton.upenn.edu/~buja/PAPERS/PoSI_webappendix.pdf
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is irrespective of what a specification might have been. This view also allows
data analysts to change their minds, to improvise and informally decide in
favor of a model other than that produced by a formal selection procedure,
or to experiment with multiple selection procedures.

(2) There exists a model selection procedure that requires the full strength
of universally valid PoSI, and this procedure may not be entirely unrealistic
as an approximation to some types of data analytic activities: “significance
hunting”, that is, selecting that model which contains the statistically most
significant coefficient; see Section 4.9.

(3) There is a general question about the wisdom of proposing ever tighter
confidence and retention intervals for practical use when in fact these inter-
vals are valid only under tightly controlled conditions. It might be realistic
to suppose that much applied work involves more data peeking than is re-
ported in published articles. With inference that is universally valid after
any model selection procedure we have a way to establish which rejections
are safe, irrespective of unreported data peeking as part of selecting a model.

(4) Related to the previous point is the fact that today there is a real-
ization that a considerable fraction of published empirical work is unrepro-
ducible or reports exaggerated effects (well-known in this regard is Ioannidis
2005). A factor contributing to this problem might well be liberal handling
of variable selection and absent accounting for it in subsequent inference.

4.5. Restricted Model Selection. The concerns over PoSI’s conservative
nature can be alleviated somewhat by introducing a degree of flexibility to
the PoSI problem with regard to the universe of models being searched. Such
flexibility is additionally called for from a practical point of view because it is
not true that all submodels inMall (4.4) are always being searched. Rather,
the search is often limited in a way that can be specified a priori, without
involvement of Y. For example, a predictor of interest may be forced into the
submodels of interest, or there may be a restriction on the size of the sub-
models. Indeed, if p is large, a restriction to a manageable set of submodels
is a computational necessity. In much of what follows we can allow the uni-
verseM of allowable submodels to be an (almost) arbitrary but pre-specified
non-empty subset ofMall; w.l.o.g. we can assume

⋃
M∈MM = {1, 2, ..., p}.

Because we allow only non-singular submodels (see (4.4)) we have |M| ≤ d
∀M∈M, where as always d=rank(X). — Selection procedures are now maps

(4.7) M̂ : Y 7→ M̂(Y), Rn →M.

The following are examples of model universes with practical relevance (see
also Leeb and Pötscher (2008a), Section 1.1, Example 1).
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(1) Submodels that contain the first p′ predictors (1 ≤ p′ ≤ p):
M1 = {M∈Mall | {1, 2, ..., p′} ⊂ M}.
Classical: |M1| = 2p−p

′
. Example: forcing an intercept into all models.

(2) Submodels of size m′ or less (“sparsity option”):
M2 = {M∈Mall | |M| ≤ m′}. Classical: |M2| =

(
p
1

)
+ ...+

(
p
m′

)
.

(3) Submodels with fewer than m′ predictors dropped from the full model:
M3 = {M∈Mall | |M| > p−m′}. Classical: |M3| = |M2|.

(4) Nested models: M4 = {{1, ..., j} | j∈{1, ..., p}}. |M4| = p.
Example: selecting the degree up to p−1 in a polynomial regression.

(5) Models dictated by an ANOVA hierarchy of main effects and interac-
tions in a factorial design.

This list is just an indication of possibilities. In general, the smaller the
set M̃ = {(j,M) | j ∈M ∈M} is, the less conservative the PoSI approach
is, and the more computationally manageable the problem becomes. With
sufficiently strong restrictions, in particular using the sparsity option (2) and
assuming the availability of an independent valid estimate σ̂, it is possible
to apply PoSI in certain non-classical p > n situations.

Further reduction of the PoSI problem is possible by pre-screening ad-
justed predictors without the response Y. In a fixed-design regression, any
variable selection procedure that does not involve Y does not invalidate
statistical inference. For example, one may decide not to seek inference for
predictors in submodels that impart a “Variance Inflation Factor” (VIF )
above a user-chosen threshold: VIF j·M = ‖Xj‖2/‖Xj·M‖2 if Xj is centered,
hence does not make use of Y, and elimination according to VIF j·M > c
does not invalidate inference.

4.6. Reduction of Universally Valid Post-Selection Inference to Simulta-
neous Inference. We show that universally valid post-selection inference
(4.6) follows from simultaneous inference in the form of family-wise error
control for all parameters in all submodels. The argument depends on the
following lemma that may fall into the category of the “trivial but not im-
mediately obvious”.

Lemma 4.1. (“Significant Triviality Bound”) For any model selection
procedure M̂ : Rn →M, the following inequality holds for all Y ∈ Rn:

max
j∈M̂(Y)

|tj·M̂(Y)(Y)| ≤ max
M∈M

max
j∈M

|tj·M(Y)|

Proof: This is a special case of the triviality f(M̂(Y)) ≤ maxM f(M),
where f(M) = maxj∈M |tj·M(Y)|.
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The right hand max-|t| bound of the lemma is sharp in the sense that
there exists a variable selection procedure M̂ that attains the bound; see
Section 4.9. — Next we introduce the 1−α quantile of the right hand max-
|t| statistic of the lemma: Let K be the minimal value that satisfies

(4.8) P

[
max
M∈M

max
j∈M
|tj·M| ≤ K

]
≥ 1− α.

This value will be called “the PoSI constant”. It does not depend on any
model selection procedures, but it does depend on the design matrix X, the
universe M of models subject to selection, the desired coverage 1− α, and
the degrees of freedom r in σ̂, hence K = K(X,M, α, r).

Theorem 4.1. For all model selection procedures M̂ : Rn →M we have

(4.9) P

[
max
j∈M̂
|tj·M̂| ≤ K

]
≥ 1− α,

where K=K(X,M, α, r) is the PoSI constant.

This follows immediately from Lemma 4.1. Although mathematically triv-
ial we give the above the status of a theorem as it is the central statement of
the reduction of universal post-selection inference to simultaneous inference.
The following is just a repackaging of Theorem 4.1:

Corollary 4.1. “Simultaneous Post-Selection Confidence Guarantees”
hold for any model selection procedure M̂: Rn→M:

(4.10) P
[
βj·M̂ ∈ CIj·M̂(K) ∀j ∈ M̂

]
≥ 1− α,

where K=K(X,M, α, r) is the PoSI constant.

Simultaneous inference provides strong family-wise error control, which
in turn translates to strong error control for tests following model selection.

Corollary 4.2. “Strong Post-Selection Error Control” holds for any
model selection procedure M̂: Rn→M:

P
[
∃j∈M̂ : βj·M̂ 6= 0 & |t(0)

j·M̂
| > K

]
≤ α,

where K=K(X,M, α, r) is the PoSI constant and t
(0)
j·M is the t-statistic for

the null hypothesis βj·M=0.
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The proof is standard (see the online appendix, Section B.3). The corollary
states that, with probability 1 − α, in a selected model all PoSI-significant
rejections have detected true alternatives.

4.7. Computation of the POSI Constant. Several portions of the follow-
ing treatment are devoted to a better understanding of the structure and
value of the POSI constant K(X,M, α, r). Except for very special choices
it does not seem possible to provide closed form expressions for its value.
However the structural geometry and other properties to be described later
do enable a reasonably efficient computational algorithm. R-code for com-
puting the POSI constant for small to moderate values of p is available on
the authors’ web pages. This code is accompanied by a manuscript that will
be published elsewhere describing the computational algorithm and general-
izations. For the basic setting involvingMall the algorithm will conveniently
provide values of K(X,Mall, α, r) for matrices X of rank ≤ 20, or slightly
larger depending on available computing speed and memory. It can also be
adapted to compute K for some other families contained within Mall, such
as some discussed in Section 4.5.

4.8. Scheffé Protection. Realizing the idea that the LS estimators in dif-
ferent submodels are generally unbiased estimates of different parameters,
we generated a simultaneous inference problem involving up to p 2 p−1 lin-
ear contrasts βj·M. In view of the enormous number of linear combinations
for which simultaneous inference is sought, one should wonder whether the
problem is not best solved by Scheffé’s method (1959) which provides simul-
taneous inference for all linear combinations. To accommodate rank-deficient
X, we cast Scheffé’s result in terms of t-statistics for arbitrary non-zero
x ∈ span(X):

(4.11) tx ,
(Y − µ)Tx

σ̂‖x‖
.

The t-statistics in (4.1) are obtained for x = Xj·M. Scheffé’s guarantee is

(4.12) P

[
sup

x∈span(X)
|tx| ≤ KSch

]
= 1− α,

where the Scheffé constant is

(4.13) KSch = KSch(α, d, r) =
√
dFd,r,1−α.

It provides an upper bound for all PoSI constants:

http://stat.wharton.upenn.edu/~buja/PAPERS/PoSI_webappendix.pdf
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Proposition 4.1. K(X,M, α, r) ≤ KSch(α, d, r) ∀X,M, d=rank(X).

Thus for j ∈ M̂ a parameter estimate β̂j·M̂ whose t-ratio exceeds KSch in
magnitude is universally safe from having the rejection of “H0 : βj·M̂ = 0”
invalidated by variable selection. The universality of the Scheffé constant
is a tip-off that it may be too loose for some predictor matrices X, and
obtaining the sharper constant K(X) may be worthwhile. An indication is
given by the following comparison as r →∞:

• For the Scheffé constant it holds KSch ∼
√
d.

• For orthogonal designs it holds Korth ∼
√

2 log d.

(For orthogonal designs see Section 5.5.) Thus the PoSI constant Korth

is much smaller than KSch. The large gap between the two suggests that
the Scheffé constant may be too conservative at least in some cases. We
will study certain non-orthogonal designs for which the PoSI constant is
O(
√

log(d)) in Section 6.1. On the other hand, the PoSI constant can ap-
proach the order O(

√
d) of the Scheffé constant KSch as well, and we will

study an example in Section 6.2.
Even though in this article we will give asymptotic results for d = p→∞

and r →∞ only, we mention another kind of asymptotics whereby r is held
constant while d = p→∞: In this case KSch is in the order of the product
of
√
d and the 1−α quantile of the inverse-root-chi-square distribution with

r degrees of freedom. In a similar way, the constant Korth for orthogonal
designs is in the order of the product of

√
2 log d and the 1−α quantile of

the inverse-chi-square distribution with r degrees of freedom.

4.9. PoSI-Sharp Model Selection — “SPAR”. There exists a model se-
lection procedure that requires the full protection of the simultaneous infer-
ence procedure (4.8). It is the “significance hunting” procedure that selects
the model containing the most significant “effect”:

M̂SPAR(Y) , argmax
M∈M

max
j∈M

|tj·M(Y)|.

We name this procedure “SPAR” for “Single Predictor Adjusted Regression.”
It achieves equality with the “significant triviality bound” in Lemma 4.1 and
is therefore the worst case procedure for the PoSI problem. In the submodel
M̂SPAR(Y) the less significant predictors matter only in so far as they boost
the significance of the winning predictor by adjusting it accordingly. This
procedure ignores the quality of the fit to Y provided by the model. While
our present purpose is to point out the existence of a selection procedure
that requires full PoSI protection, SPAR could be of practical interest when
the analysis is centered on strength of “effects”, not quality of model fit.
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4.10. One Primary Predictor and Controls — “PoSI1”. Sometimes a
regression analysis is centered on a predictor of interest, Xj , and on in-
ference for its coefficient βj·M. The other predictors in M act as controls,
so their purpose is to adjust the primary predictor for confounding effects
and possibly to boost the primary predictor’s own “effect”. This situation
is characterized by two features:

• Variable selection is limited to models that contain the primary pre-
dictor. We therefore define for any model universe M a sub-universe
Mj· of models that contain the primary predictor Xj :

Mj· , {M | j ∈ M ∈M},

so that for M∈M we have j∈M iff M∈Mj·.
• Inference is sought for the primary predictor Xj only, hence the rele-

vant test statistic is now |tj·M| and no longer maxj∈M |tj·M|. The former
statistic is coherent because it is assumed that j∈M.

We call this the “PoSI1” situation in contrast to the unconstrained PoSI
situation. Similar to PoSI, PoSI1 starts with a “significant triviality bound”:

Lemma 4.2. (“Primary Predictor’s Significant Triviality Bound”) For a
fixed predictor Xj and model selection procedure M̂ : Rn →Mj·, it holds:

|tj·M̂(Y)(Y)| ≤ max
M∈Mj·

|tj·M(Y)|.

For a “proof”, the only thing to note is j∈M̂(Y) by the assumption M̂(Y)∈
Mj·. — We next define the “PoSI1” constant for the predictor Xj as the
1−α quantile of the max-|t| statistic on the right side of the lemma: Let
Kj· = Kj·(X,M, α, r) be the minimal value that satisfies

(4.14) P

[
max

M∈Mj·
|tj·M| ≤ Kj·

]
≥ 1− α.

Importantly, this constant is dominated by the general PoSI constant:

(4.15) Kj·(X,M, α, r) ≤ K(X,M, α, r),

for the obvious reason that the present max-|t| is smaller than the general
PoSI max-|t| due to Mj· ⊂ M and the restriction of inference to Xj . The
constant Kj· provides the following “PoSI1” guarantee shown as the analog
of Theorems 4.1 and Corollary 4.1 folded into one:
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Theorem 4.2. Let M̂ : Rn → Mj· be a selection procedure that always
includes the predictor Xj in the model. Then we have

(4.16) P
[
|tj·M̂| ≤ Kj·

]
≥ 1− α,

and accordingly we have the following post-selection confidence guarantee:

(4.17) P
[
βj·M̂ ∈ CIj·M̂(Kj·)

]
≥ 1− α.

Inequality (4.16) is immediate from Lemma 4.2. The “triviality bound” of
the lemma is attained by the following variable selection procedure which
we name “SPAR1”:

(4.18) M̂j·(Y) , argmax
M∈Mj·

|tj·M(Y)|.

It is a potentially realistic description of some data analyses when a pre-
dictor of interest is determined a priori, and the goal is to optimize this
predictor’s “effect”. This procedure requires the full protection of the PoSI1
constant Kj·.

In addition to its methodological interest, the PoSI1 situation addressed
by Theorem 4.2 is of theoretical interest: Even though the PoSI1 constant
Kj· is dominated by the unrestricted PoSI constant K, we will construct in
Section 6.2 an example of predictor matrices for which the PoSI1 constant
increases at the Scheffé rate and is asymptotically more than 63% of the
Scheffé constant KSch. It follows that near-Scheffé protection can be needed
even for SPAR1 variable selection.

5. The Structure of the PoSI Problem.

5.1. Canonical Coordinates. We can reduce the dimensionality of the
PoSI problem from n × p to d × p, where d = rank(X) ≤ min(n, p), by in-
troducing Scheffé’s canonical coordinates. This reduction is important both
geometrically and computationally because the PoSI coverage problem really
takes place in the column space of X.

DEFINITION: Let Q = (q1, ...,qd) ∈ Rn×d be any orthonormal basis of
the column space of X. Note that Ŷ = QQTY is the orthogonal projection
of Y onto the column space of X even if X is not of full rank. We call
X̃ = QTX ∈ Rd×p and Ỹ = QT Ŷ ∈ Rd canonical coordinates of X and Ŷ.

We extend the notation XM for extraction of subsets of columns to canonical
coordinates X̃M. Accordingly slopes obtained from canonical coordinates
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will be denoted by β̂M(X̃, Ỹ) = (X̃T
MX̃M)−1X̃T

MỸ to distinguish them from
the slopes obtained from the original data β̂M(X,Y) = (XT

MXM)−1XT
MY,

if only to state in the following proposition that they are identical.

Proposition 5.1. Properties of canonical coordinates:

(1) Ỹ = QTY.

(2) X̃T
MX̃M = XT

MXM and X̃T
MỸ = XT

MY.

(3) β̂M(X̃, Ỹ) = β̂M(X,Y) for all submodels M .

(4) Ỹ ∼ N (µ̃, σ2Id), where µ̃ = QTµ.

(5) X̃j·M = QTXj·M, where j ∈ M and X̃j·M ∈ Rd is the residual vector
of the regression of X̃j onto the other columns of X̃M.

(6) tj·M = (β̂j·M (X̃, Ỹ)− βj·M )/(σ̂/‖X̃j·M‖).
(7) In the classical case d=p, X̃ can be chosen to be an upper triangular

or a symmetric matrix.

The proofs of (1)-(6) are elementary. As for (7), an upper triangular X̃
can be obtained from a QR-decomposition based on a Gram-Schmidt pro-
cedure: X = QR, X̃ = R. A symmetric X̃ is obtained from a singular value
decomposition: X = UDVT , Q = UVT , X̃ = VDVT .

Canonical coordinates allow us to analyze the PoSI coverage problem in
Rd. In what follows we will freely assume that all objects are rendered in
canonical coordinates and write X and Y for X̃ and Ỹ, implying that the
predictor matrix is of size d× p and the response is of size d× 1.

5.2. PoSI Coefficient Vectors in Canonical Coordinates. We simplify the
PoSI coverage problem (4.8) as follows: Due to pivotality of t-statistics, the
problem is invariant under translation of µ and rescaling of σ (see equation
(4.1)). Hence it suffices to solve coverage problems for µ = 0 and σ = 1.
In canonical coordinates this implies E[Ỹ] = 0d , hence Ỹ ∼ N (0d, Id). For
this reason we use the more familiar notation Z instead of Ỹ. The random
vector Z/σ̂ has a d-dimensional t-distribution with r degrees of freedom,
and any linear combination uTZ/σ̂ with a unit vector u has a 1-dimensional
t-distribution. Letting Xj·M be the adjusted predictors in canonical coordi-
nates, the estimates (3.5) and their t-statistics (4.1) simplify to

(5.1) β̂j·M =
XT
j·MZ

‖Xj·M‖2
= lTj·MZ, tj·M =

XT
j·MZ

‖Xj·M‖σ̂
= l̄

T
j·MZ/σ̂,
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which are linear functions of Z and Z/σ̂, respectively, with “PoSI coefficient
vectors” lj·M and l̄j·M that equal Xj·M up to scale:

(5.2) lj·M ,
Xj·M
‖Xj·M‖2

, l̄j·M ,
lj·M
‖lj·M‖

=
Xj·M
‖Xj·M‖

.

As we now operate in canonical coordinates we have lj·M ∈ Rd and l̄j·M ∈
Sd−1, the unit sphere in Rd. To complete the structural description of the
PoSI problem we let

(5.3) L(X,M) , {l̄j·M | j∈M∈M} ⊂ Sd−1.

If M=Mall we omit the second argument and write L(X).

Proposition 5.2. The PoSI problem (4.8) is equivalent to a d-dimensional
coverage problem for linear functions of the multivariate t-vector Z/σ̂:

(5.4) P

[
max
M∈M

max
j∈M

|tj·M| ≤ K
]

= P

[
max

l̄∈L(X,M)
|l̄TZ/σ̂| ≤ K

]
(≥)
= 1−α.

5.3. Orthogonalities of PoSI Coefficient Vectors. The set L(X,M) of
unit vectors l̄j·M has interesting geometric structure which is the subject
of this and the next subsection. The following proposition (proof in Ap-
pendix A.1) elaborates the fact that l̄j·M is essentially the predictor vector
Xj orthogonalized with regard to the other predictors in the model M. Vec-
tors will always be assumed in canonical coordinates and hence d-dimensional.

Proposition 5.3. Orthogonalities in L(X,M): The following statements
hold assuming that the models referred to are in M (hence are of full rank).

1. Adjustment properties:
l̄j·M ∈ span{Xj | j∈M} and l̄j·M ⊥ Xj′ for j 6= j′ both ∈ M.

2. The following vectors form an orthonormal “Gram-Schmidt” series:

{l̄1·{1}, l̄2·{1,2}, l̄3·{1,2,3}, ..., l̄d·{1,2,...,d}}

Other series are obtained using (j1, j2, ..., jd) in place of (1, 2, ..., d).

3. Vectors l̄j·M and l̄j′·M′ are orthogonal if M⊂M′, j∈M and j′∈M′ \M.

4. Classical case d= p and M=Mall: Each vector l̄j·M is orthogonal to
(p−1) 2p−2 vectors l̄j′·M′ (not all of which may be distinct).
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The cardinality of orthogonalities in the classical case and M = Mall

is as follows: If the predictor vectors Xj have no orthogonal pairs among
them, then |L(X)| = p 2p−1. If there exist orthogonal pairs, then |L(X)| is
less. For example, if there exists exactly one orthogonal pair, then |L(X)| =
(p−1) 2p−1. When X is a fully orthogonal design, then |L(X)| = p.

5.4. The PoSI Polytope. Coverage problems can be framed geometrically
in terms of probability coverage of polytopes in Rd. For the PoSI problem
the polytope with half-width K is defined by

(5.5) ΠK = ΠK(X,M) , {z ∈ Rd| |l̄T z| ≤ K, ∀ l̄ ∈ L(X,M) },

henceforth called the “PoSI polytope”. The PoSI coverage problem (5.4) is
equivalent to calibrating K such that

P[Z/σ̂ ∈ ΠK ] = 1− α.

The simplest case of a PoSI polytope, for d=p=2, is illustrated in Figure 1
in the online appendix, Section B.7. More general polytopes are obtained
for arbitrary sets L of unit vectors, that is, subsets L ⊂ Sd−1 of the unit
sphere in Rd. For the special case L = Sd−1 the “polytope” is the “Scheffé

ball” with coverage
√
dFd,r →

√
χ2
d as r →∞:

BK , {z ∈ Rd| ‖z‖ ≤ K }, P[Z/σ̂ ∈ BK ] = FFd,r
(K2/d).

Many properties of the polytopes ΠK are not specific to PoSI because
they hold for polytopes (5.5) generated by simultaneous inference problems
for linear functions with arbitrary sets L of unit vectors. These polytopes ...

1. ... form scale families of geometrically similar bodies: ΠK = KΠ1.

2. ... are point symmetric about the origin: ΠK = −ΠK .

3. ... contain the Scheffé ball: BK ⊂ ΠK .

4. ... are intersections of “slabs” of width 2K:

ΠK =
⋂
l̄∈L

{z ∈ Rd| |zT l̄ | ≤ K }.

5. ... have 2 |L| faces (assuming L∩−L = ∅), and each face is tangent to
the Scheffé ball BK with tangency points ±K l̄ (l̄ ∈ L).

Specific to PoSI are the orthogonalities described in Proposition 5.3.

http://stat.wharton.upenn.edu/~buja/PAPERS/PoSI_webappendix.pdf
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5.5. PoSI Optimality of Orthogonal Designs. In orthogonal designs, ad-
justment has no effect: Xj·M = Xj for all j∈M, hence l̄j·M = Xj/‖Xj‖ and
L(X,M)={X1/‖X1‖, ...,Xp/‖Xp‖}. The polytope ΠK is therefore a hyper-
cube. This observation implies an optimality property of orthogonal designs
if the submodel universesM are sufficiently rich to force L(X,M) to contain
an orthonormal basis of Rd: The polytope generated by an orthonormal basis
is a hypercube, hence the polytope ΠK(X,M) is contained in this hyper-
cube; thus ΠK(X,M) has maximal extent iff it is equal to this hypercube,
which is the case iff L(X,M) is this orthonormal basis and nothing more,
that is, X is an orthogonal design. — A simple sufficient condition forM to
grant the existence of an orthonormal basis in L(X,M) is the existence of
a maximal nested sequence of submodels such as {1}, {1, 2},...,{1, 2, ..., d}
inM. It follows according to item 2. in Proposition 5.3 that there exists an
orthonormal Gram-Schmidt basis in L(X,M). We summarize:

Proposition 5.4. Among predictor matrices with rank(X)=d and model
universesM that contain at least one maximal nested sequence of submodels,
orthogonal designs with p=d columns yield

• the maximal coverage probability P[Z/σ̂ ∈ ΠK ] for fixed K, and
• the minimal PoSI constant K satisfying P[Z/σ̂ ∈ ΠK ] = 1 − α for

fixed α: infrank(X)=dK(X,M, α, r) = Korth(α, d, r).

The proposition holds not only for multivariate t-vectors and their Gaus-
sian limits but for arbitrary spherically symmetric distributions. — Opti-
mality of orthogonal designs translates to optimal asymptotic behavior of
their constant K(X, α) for large d:

Proposition 5.5. Consider the Gaussian limit r →∞. For X and M
as in Proposition 5.4, the asymptotic lower bound for the constant K as
d→∞ is attained for orthogonal designs for which the asymptotic rate is

inf
rank(X)=d

K(X,M, α) = Korth(d, α) =
√

2 log d+ o(d).

By Proposition 5.4 the PoSI problem is bounded below by orthogonal
designs, and by Proposition 4.1 it is loosely bounded above by the Scheffé
ball (both for all α, d, and r). The question of how close to the Scheffé bound
PoSI problems can get for r →∞ will occupy us in Section 6.2. Unlike the
infimum problem, the supremum problem does not appear to have a unique
optimizing design X uniformly in α, d and r.



VALID POST-SELECTION INFERENCE 25

5.6. A Duality Property of PoSI Vectors. In the classical case d = p
and M=Mall there exists a duality for PoSI vectors L(X) which we will
use in Section 6.1 below but which is also of independent interest. Some
preliminaries: Letting MF = {1, 2, ..., p} be the full model, we observe that
the (unnormalized) PoSI vectors lj·MF

= Xj·MF
/‖Xj·MF

‖2 form the rows of
the matrix (XTX)−1XT (see (3.5) and (3.4)). In a change of perspective,
we interpret the transpose matrix

X∗ = X(XTX)−1

as a predictor matrix, to be called the “dual design” of X. It is also of size
p × p in canonical coordinates, and its columns are the PoSI vectors lj·MF

.
It turns out that X∗ and X pose identical PoSI problems if M=Mall:

Theorem 5.1. L(X∗) = L(X), ΠK(X∗) = ΠK(X), K(X∗) = K(X).

Recall that L(X) and L(X∗) contain the normalized versions of the re-
spective adjusted predictor vectors. The theorem follows from the following
lemma which establishes the identities of vectors between L(X∗) and L(X).
We extend obvious notations from X to X∗ as follows:

X∗j = l∗j·{j} = lj·MF
.

Submodels for X∗ will be denoted M∗, but they, too, will be given as subsets
of {1, 2, ..., p} which, however, refer to columns of X∗. Finally, the normalized
version of l∗j·M∗ will be written as l̄

∗
j·M∗ .

Lemma 5.1. For two submodels M and M∗ that satisfy M ∩M∗ = {j}
and M ∪M∗ = MF , we have

l̄
∗
j·M∗ = l̄j·M , ‖l∗j·M∗‖ ‖lj·M‖ = 1

The proof is in Appendix A.2. The assertion about norms is really only
needed to exclude collapse of l∗j·M∗ to zero.

A special case arises when the predictor matrix (in canonical coordinates)
is chosen to be symmetric according to Proposition 5.1 (7.): if XT = X, then
X∗ = X(XTX)−1 = X−1, and hence:

Corollary 5.1. If X is symmetric in canonical coordinates, then

L(X−1) = L(X), ΠK(X−1) = ΠK(X), and K(X−1) = K(X)
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6. Illustrative Examples and Asymptotic Results. We consider
examples in the classical case d=p and M=Mall. Also, we work with the
Gaussian limit r →∞, that is, σ2 known, and w.l.o.g. σ2 = 1.

6.1. Example 1: Exchangeable Designs. In exchangeable designs all pairs
of predictor vectors enclose the same angle. In canonical coordinates a con-
venient parametrization of a family of symmetric exchangeable designs is

(6.1) X(p)(a) = Ip + aEp×p,

where −1/p < a <∞, and Ep×p is a matrix with all entries equal to 1. The
range restriction on a assures that X(p) is positive definite. We will write
X = X(p) = X(a) = X(p)(a) depending on which parameter matters in a
given context. We will make use of the fact that

X(p)(a)−1 = X(p)(−a/(1 + pa))

is also an exchangeable design. The function cp(a) = −a/(1 + pa) maps
the interval (−1/p,∞) onto itself, and it holds cp(0) = 0, cp(a) ↓ −1/p as
a ↑ +∞, and vice versa. Exchangeable designs include orthogonal designs
for a = 0, and they extend to two types of strict collinearities: for a ↑ ∞
the predictor vectors collapse to a single dimension span(1), and for a ↓
−1/p they collapse to a subspace span(1)⊥ of dimension (p − 1), where
1 = (1, 1, ..., 1)T ∈ Rp.

As collinearity drives the fracturing of the regression coefficients into
model-dependent quantities βj·M, it is of interest to analyze K(X(a)) as
X(a) moves from orthogonality at a = 0 toward either of the two types of
collinearity. Here is what we find: Unguided intuition might suggest that the
collapse to rank 1 calls for larger K(X) than the collapse to rank p−1. This
turns out to be entirely wrong: collapse to rank 1 or rank p−1 has identi-
cal effects on K(X). The reason is duality (Section 5.6): for exchangeable
designs, X(a) collapses to rank 1 iff X(a)∗ = X(a)−1 = X(−a/(1 + pa)) col-
lapses to rank p−1, and vice versa, while K(X(a)−1) = K(X(a)) according
to Corollary 5.1.

We next address the asymptotic behavior of K = K(X(p), α) for increas-
ing p. As noted in Section 4.8, there is a wide gap between orthogonal designs
with Korth ∼

√
2 log p and the full Scheffé protection with KSch ∼

√
p. The

following theorem shows how exchangeable designs fall into this gap:

Theorem 6.1. PoSI constants of exchangeable design matrices X(p)(a)
(defined in (6.1) above) have the following limiting behavior:

lim
p→∞

sup
a∈(−1/p,∞)

K(X(p)(a), α)√
2 log p

= 2.
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The proof can be found in Appendix A.3. The theorem shows that for
exchangeable designs the PoSI constant remains much closer to the orthog-
onal case than the Scheffé case. Thus, for this family of designs it is possible
to improve on the Scheffé constant by a considerable margin.

The following detail of geometry for exchangeable designs has a bearing
on their PoSI constants: The angle between pairs of predictor vectors as a

function of a is cos(X
(p)
j (a),X

(p)
j′ (a)) = a(2 + pa)/(pa2 + 4a + 2). As the

vectors fall into the rank-(p−1) collinearity at a ↓ −1/p, the cosine becomes
−1/(2p−3), which converges to zero as p→∞. Thus, as p ↑ ∞, exchangeable
designs approach orthogonal designs even at their most collinear extreme.
— For further illustratrive materials related to exchangeable designs see
Figures 2 and 3 in the online appendix, Section B.7.

6.2. Example 2: Where K(X) is close to the Scheffé Bound. The follow-
ing is a situation in which the asymptotic upper bound for K(X(p), α) is
O(
√
p), hence equal to the rate of the Scheffé constant KSch(α, p). Perhaps

surprisingly, it is sufficient to consider PoSI1 (Section 4.10) whose constant

is dominated by that of full PoSI. Let the PoSI1 predictor of interest be X
(p)
p ,

so the search is over all models M 3 p, but inference is sought only for βp·M.
Consider the following upper triangular p × p design matrix in canonical
coordinates:

(6.2) X(p)(c) = (e1, e2, ..., ep−1,Xp(c)),

where Xp(c) = (c, c, ..., c,
√

1− (p− 1)c2)T ∈ RT is the primary predictor
and the canonical basis vectors e1, ..., ep−1 ∈ Rp are the controls. The vector
Xp(c) has unit length, hence the parameter c is the correlation between
the primary predictor and the controls. It is constrained to c2 < 1/(p− 1),
so X(p)(c) has full rank. For c2 = 1/(p − 1) the primary predictor Xp(c)
becomes fully collinear with the controls, and it is on the approach to this
boundary where the rate of the following theorem is attained:

Theorem 6.2. For σ2 known, the designs (6.2) have PoSI1 constants
Kp·(X

(p)(c), α) with the following asymptotic rate:

lim
p→∞

sup
c2<1/(p−1)

Kp·(X
(p)(c), α)
√
p

= 0.6363....

The proof is in Appendix A.4. As K(X, α) ≥ Kj·(X, α) the theorem
provides a lower bound on the rate of the full PoSI constant. The value

http://stat.wharton.upenn.edu/~buja/PAPERS/PoSI_webappendix.pdf
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0.6363... is not maximal, and we have indications that the supremum over
all designs may exceed 0.78. Together with the upper bound of Corollary 6.1
this would provide a narrow asymptotic range for worst-case PoSI. — Most
importantly, the example shows that for some designs PoSI constants can
be much larger than the O(1) |t|-quantiles used in common practice.

6.3. Bounding Away from Scheffé. The following is a rough asymptotic
upper bound on all PoSI constants K(X,M, α). It has the Scheffé rate but
with a multiplier that is strictly less than Scheffé’s. The bound is loose
because it ignores the rich structure of the sets L(X,M) (Section 5.3) and
only uses their cardinality |L| (= p 2p−1 in the classical case d = p and
M=Mall).

Theorem 6.3. Denote by Ld arbitrary finite sets of d-dimensional unit

vectors, Ld ⊂ Sd−1, such that |Ld| ≤ ad where a
1/d
d → a (> 1). Denote by

K(Ld, α) the (1−α)-quantile of supl̄∈Ld |l̄
T
Z|. Then the following describes

an asymptotic worst-case bound for K(Ld, α) and its attainment:

lim
d→∞

sup
|Ld|≤ad

K(Ld, α)√
d

=

(
1− 1

a2

)1/2

.

The proof of Theorem 6.3 (see Appendix A.5) is an adaptation of Wyner’s
(1967) techniques for sphere packing and sphere covering. The worst-case
bound (≤) is based on a surprisingly crude Bonferroni-style inequality for
caps on spheres. Attainment of the bound (≥) makes use of the artifice of
picking the vectors l̄ ∈ L randomly and independently. — Applying the
theorem to PoSI sets L=L(Xn×p,Mall) in the classical case d=p, we have

|L|=p 2p−1=ap, hence a
1/p
p →2, so the theorem applies with a=2:

Corollary 6.1. In the classical case d = p a universal asymptotic upper
bound for the PoSI constant K(Xn×p,Mall, α) is

lim
p→∞

sup
Xn×p

K(Xn×p,Mall, α)
√
p

≤
√

3

2
= 0.866... .

The corollary shows that the asymptotic rate of the PoSI constant, if it
reaches the Scheffé rate, will always have a multiplier that is strictly below
that of the Scheffé constant. We do not know whether there exist designs
for which the bound of the corollary is attained, but the theorem says the
bound is sharp for unstructured sets L.
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7. Summary and Discussion. We investigated the Post-Selection In-
ference or “PoSI” problem for linear models whereby valid statistical tests
and confidence intervals are sought after variable selection, that is, after se-
lecting a subset of the predictors in a data-driven way. We adopted a frame-
work that does not assume any of the linear models under consideration to
be correct. We allowed the response vector to be centered at an arbitrary
mean vector but with homoscedastic and Gaussian errors. We further al-
lowed the full predictor matrix Xn×p to be rank-deficient, d= rank(X)<p,
and we also allowed the setM of models M under consideration to be largely
arbitrary. In this framework we showed that valid post-selection inference
is possible via simultaneous inference. An important enabling principle is
that submodels have their own regression coefficients; put differently, βj·M
and βj·M′ are generally different parameters if M 6= M′. We showed that si-
multaneity protection for all parameters βj·M provides valid post-selection
inference. In practice this means enlarging the constant t1−α/2,r used in con-
ventional inference to a constant K(Xn×p,M, α, r) that provides simultane-
ity protection for up to p 2p−1 parameters βj·M. We showed that the constant
depends strongly on the predictor matrix X as the asymptotic bound for
K(X,M, α, r) with d = rank(X) ranges between the minimum of

√
2 log d

achieved for orthogonal designs on the one hand, and a large fraction of the
Scheffé bound

√
d on the other hand. This wide asymptotic range suggests

that computation is critical for problems with large numbers of predictors.
In the classical case d= p our current computational methods are feasible
up to about p≈20.

We carried out post-selection inference in a limited framework. Several
problems remain open, and many natural extensions are desirable:

• Among open problems is the quest for the largest fraction of the
asymptotic Scheffé rate

√
d attained by PoSI constants. So far we

know this fraction to be at least 0.6363 but no more than 0.8660... in
the classical case d= p. When the size of models |M| is limited as a
function of p (“sparse models”), better rates can be achieved, and we
will report these results elsewhere.
• Computations for p > 20 are a challenge. Straight enumeration of the

set of up to p 2p−1 linear combinations should be replaced with heuris-
tic shortcuts that yield practically useful upper bounds on K(Xn×p,
M, α, r) that are specific to X and the set of submodels M, unlike
the 0.8660 fraction of the Scheffé bound which is universal.
• Situations to which the PoSI framework should be extended include

generalized linear models, mixed effects models, models with random
predictors, as well as prediction problems. Results for the last two
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situations will be reported elsewhere.
• It would be desirable to devise post-selection inference for specific se-

lection procedures for cases in which a strict model selection protocol
is being adhered to.

R code for computing the PoSI constant for up to p = 20 can be obtained
from the authors’ web pages (a manuscript describing the computations is
available from the authors).
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APPENDIX A: PROOFS

A.1. Proof of Proposition 5.3.

1. The matrix X∗M = XM(XT
MXM)−1 has the vectors lj·M as its columns.

Thus lj·M ∈ span(Xj : j ∈ M). Orthogonality lj·M ⊥ Xj′ for j′ 6= j
follows from XT

MX∗M = Ip. The same properties hold for the normalized
vectors l̄j·M.

2. The vectors {l̄1·{1}, l̄2·{1,2}, l̄3·{1,2,3}, ..., l̄p·{1,2,...,p}} form a Gram-
Schmidt series with normalization, hence they are an o.n. basis of Rp.

3. For M ⊂ M′, j ∈ M, j′ ∈ M′\M, we have l̄j·M ⊥ l̄j′·M because they can
be embedded in an o.n. basis by first enumerating M and subsequently
M′ \M, with j being last in the enumeration of M and j′ last in the
enumeration of M′ \M.

4. For any (j0,M0), j0 ∈ M0, there are (p − 1) 2p−2 ways to choose a
partner (j1,M1) such that either j1 ∈ M1 ⊂ M0 \ j0 or M0 ⊂ M1 \ j1,
both of which result in l̄j0·M0 ⊥ l̄j1·M1 by the previous part.

A.2. Proof of Duality: Lemma 5.1 and Theorem5.1. The proof
relies on a careful analysis of orthogonalities as described in Proposition 5.3,
part 3. In what follows we write [A] for the column space of a matrix A, and
[A]⊥ for its orthogonal complement. We show first that, for M ∩M∗ = {j},
M ∪M∗ = MF , the vectors l̄

∗
j·M∗ and l̄j·M are in the same one-dimensional

subspace, hence are a multiple of each other. To this end we observe:

l̄j·M ∈ [XM] , l̄j·M ∈ [XM\j ]
⊥,(A.1)

l̄
∗
j·M∗ ∈ [X∗M∗ ] , l̄

∗
j·M∗ ∈ [X∗M∗\j ]

⊥,(A.2)

[X∗M∗ ] = [XM\j ]
⊥, [X∗M∗\j ]

⊥ = [XM] .(A.3)



VALID POST-SELECTION INFERENCE 31

The first two lines state that l̄j·M and l̄
∗
j·M∗ are in the respective column

spaces of their models, but orthogonalized with regard to all other predic-
tors in these models. The last line, which can also be obtained from the
orthogonalities implied by XTX∗ = Ip, establishes that the two vectors fall
in the same one-dimensional subspace:

l̄j·M ∈ [XM] ∩ [XM\j ]
⊥ = [X∗M∗ ] ∩ [X∗M∗\j ]

⊥ 3 l̄∗j·M∗ .

Since they are normalized, it follows l̄
∗
j·M∗ = ±l̄j·M. This result is sufficient

to imply all of Theorem 5.1. The lemma, however, makes a slightly stronger
statement involving lengths which we now prove. In order to express lj·M
and l∗j·M∗ according to (5.2), we use PM\j as before and we write P∗M∗\j for

the analogous projection onto the space spanned by the columns M∗ \ j of
X∗. The method of proof is to evaluate lTj·M l

∗
j·M∗ . The main argument is

based on

(A.4) XT
j (I−PM\j)(I−P∗M∗\j)X

∗
j = 1,

which follows from these facts:

PM\jP
∗
M∗\j = 0, PM\jX

∗
j = 0, P∗M∗\jXj = 0, XT

j X∗j = 1,

which in turn are consequences of (A.3) and XTX∗ = Ip. We also know
from (5.2) that

(A.5) ‖lj·M‖ = 1/‖(I−PM\j)Xj‖ , ‖l∗j·M∗‖ = 1/‖(I−P∗M∗\j)X
∗
j‖ .

Putting together (A.4), (A.5), and (5.2), we obtain

(A.6) lTj·M l
∗
j·M∗ = ‖lj·M‖2 ‖l∗j·M∗‖2 > 0.

Because the two vectors are scalar multiples of each other, we also know
that

(A.7) lTj·M l
∗
j·M∗ = ± ‖lj·M‖ ‖l∗j·M∗‖.

Putting together (A.6) and (A.7) we conclude

‖lj·M‖ ‖l∗j·M∗‖ = 1, l̄
∗
j·M∗ = l̄j·M,

This proves the lemma and the theorem.
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A.3. Proof of Theorem 6.1. The parameter a in equation (6.1) can
range from −1/p to ∞, but because of duality there is no loss of generality
in considering only the case in which a ≥ 0, and we do so in the following.
Let M ⊂ {1, . . . , p} and j ∈ M.

Consider first the case |M| = 1, hence M = {j}: We have lj·M = Xj , the

j-th column of X, and l̄j·M = lj·M/
√
pa2 + 2a+ 1. For any Z ∈ Rp it follows

(A.8) |l̄Tj·MZ| ≤ |Zj |+

∣∣∣∣∣ 1
√
p

∑
k

Zk

∣∣∣∣∣ ≤ ‖Z‖∞ +

∣∣∣∣∣ 1
√
p

∑
k

Zk

∣∣∣∣∣ .
Consider next the case |M| > 1, and for notational convenience let j = 1

and M = {1, . . . ,m} where 1 < m ≤ p. The following results can then be
applied to arbitrary M and j ∈ M by permuting coordinates. The projection
of X1 on the space spanned by X2, . . . ,Xm must be of the form

Proj =
c

m− 1

m∑
k=2

Xk =

ca, ca+
c

m− 1
, . . . , ca+

c

m− 1︸ ︷︷ ︸
m−1

, ca, . . . , ca︸ ︷︷ ︸
p−m

 ,

where the constant c satisfies l1·M = (X1 − Proj)⊥Proj. This follows from
symmetry, and no calculation of projection matrices is needed to verify this.
Let d = 1− c. Then

(A.9) (l1·M)k =


1 + da (k = 1)

− 1−d
m−1 + da (2 ≤ k ≤ m)

da (k ≥ m+ 1)

.

Some algebra starting from lT1·MX2 = 0 yields

d =
1/(m− 1)

pa2 + 2a+ 1/(m− 1)
.

The term da is non-negative, maximal wrt m for m = 2, and thereafter
maximal wrt a for a = 1/

√
p, whence maxa≥0,m≥2 da = 1/(2(

√
p + 1)) and

finally

(A.10) 0 ≤ da < 1

2
√
p
.

This fact will make the term da in (A.9) asymptotically irrelevant. Using
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‖l1·M‖ ≥ 1 and l̄1·M = l1·M/‖l1·M‖ as well as (A.9) and (A.10) we obtain

|̄lT1·MZ| ≤ |Z1|+
1

m− 1

m∑
j=2

|Zj |+

∣∣∣∣∣∣ 1

2
√
p

p∑
j=1

Zj

∣∣∣∣∣∣
≤ ‖Z‖∞ + ‖Z‖∞ +

∣∣∣∣∣∣ 1

2
√
p

p∑
j=1

Zj

∣∣∣∣∣∣ .(A.11)

Combining (A.8) and (A.11) we obtain for Z ∼ N (0, Ip) the following:

sup
a≥0;j,M:j∈M

|̄lTj·MZ| ≤ 2‖Z‖∞ +

∣∣∣∣∣∣ 1
√
p

p∑
j=1

Zj

∣∣∣∣∣∣
≤ 2

√
2 log p(1 + op(1)) +Op(1) .

This verifies that

(A.12) lim sup
p→∞

supa∈(−1/p,∞)K(X(a))
√

2 log p
≤ 2 in probability.

It remains to prove that equality holds in (A.12). To this end let Z(1) <
Z(2) < . . . < Z(p) denote the order statistics of Z1, Z2, ..., Zp. Fix m. We
have in probability

lim
p→∞

Z(1)√
2 log p

= −1 and lim
p→∞

Z(j)√
2 log p

= 1 ∀j : p−m+2 ≤ j ≤ p.

Note that

lim
a→∞

da = 0 and lim
a→∞

‖l1·M‖2 = 1 + (m− 1)−1.

For a given Z we choose lj∗·M∗ such that j∗ = j∗(Z) is the index of Z(1) and
M∗ = M∗(Z) includes j∗ as well as the set of indices of Z(k) for p−m+ 2 ≤
k ≤ p. From (A.9) we then obtain in probability

lim
p→∞,a→∞

|̄lTj∗·M∗Z|√
2 log p

≥ 2√
1 + (m− 1)−1

.

Choosing m arbitrarily large and combining this with (A.12) yields the de-
sired conclusion.
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A.4. Proof of Theorem 6.2. Recall from (6.2) the designs

X = (e1, e3, ..., ep−1,Xp(c)),

where Xp(c) = (c, c, ..., c,
√

1− (p− 1)c2)T is the primary predictor. The
matrix X will be treated according to PoSI1 (Section 4.10), hence we will

examine the distribution of maxM:p∈M |l̄
T
p·MZ| (assuming σ2 = 1 known). We

determine l̄p·M for a fixed model M (3p) with |M| = m:

l̄p·M,j =



√
1−(p−1)c2
1−(m−1)c2 j = p

0 j ∈ M\{p}

c√
1−(m−1)c2

j ∈ Mc

Therefore,

(A.13) zp·M = l̄
T
p·MZ =

√
1− (p− 1)c2

1− (m− 1)c2
Z1 +

c√
1− (m− 1)c2

∑
j∈Mc

Zj .

For fixed m we can explicitly maximize the sum on the right hand side:

max
M: |M|=m

∣∣∣∣∣∣
∑
j∈Mc

Zj

∣∣∣∣∣∣ = max

p−m∑
j=1

Z(p−j), −
p−m∑
j=1

Z(j)

 ,

where Z(j) is the j-th order statistic of Z1, Z2, ..., Zp−1, omitting Zp. We

can also explicitly maximize the factor c/
√

1− (m− 1)c2 in (A.13):

sup
c2<1/(p−1)

c√
1− (m− 1)c2

=
1√
p−m

,

and equality is attained as c2 ↑ 1/(p − 1). Therefore, for fixed m, we can
continue from (A.13) as follows:

sup
c2<1/(p−1)

max
|M|=m

|zp·M|√
p

= Op

(√
1

p

)

+

√
p

p−m
max

p−m∑
j=1

Z(p−j)
1

p
, −

p−m∑
j=1

Z(j)
1

p

 .
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The reason for writing the two sums in this manner is that we will interpret
them as approximations to Riemann sums. To this end we borrow from
Bahadur (1966) the following approximations for j=1, ..., p−1:

Z(j) = Φ−1
(
j

p

)
+ Op(p

−1/2).

Reparametrizing m=rp, the anticipated Riemann approximation is∫ 1

r
Φ−1(x)dx =

p−m∑
j=1

Φ−1
(
p− j
p

)
1

p
+ O(p−2).

Therefore,

p−m∑
j=1

Z(p−j)
1

p
=

∫ 1

r
Φ−1(x)dx + Op(p

−1/2),

and similarly

−
p−m∑
j=1

Z(j)
1

p
=

∫ 1

r
Φ−1(x)dx + Op(p

−1/2).

Summarizing,

sup
c

max
|M|=m

∣∣∣∣zp·M√p
∣∣∣∣

=
1√
p−m

max

p−m∑
j=1

Z(p−j)
1

p
,−

p−m∑
j=1

Z(j)
1

p

 + Op(
√

1/p)

=
1√

1− r

∫ 1

r
Φ−1(x)dx + Op(p

−1/2) + Op(
√

1/p)

=
1√

1− r
φ(Φ−1(r)) + Op(

√
1/p).

The function f(r) = 1√
1−rφ(Φ−1(r)) is maximized at r∗ ≈ 0.72972 with

f(r∗) ≈ 0.6363277. Therefore,

(A.14) lim sup
p→∞

sup
c

1
√
p

max
M
|zp·M| = 0.636... .

The bound is sharp because it is attained by the models that include the
first or last m∗ = r∗p order statistics of Z when p→∞ and c2 ↑ 1

p−1 . From
(A.14) we conclude that K1·(X) ∼ 0.6363

√
p.
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A.5. Proof of Theorem 6.3. We show that if a
1/p
p → a (>1), then

• we have a uniform asymptotic worst-case bound,

lim
p→∞

sup
|Lp|≤ap

max
l̄∈Lp

|l̄TZ|/√p
P
≤
√

1− 1/a2,

• which is attained when |Lp| = ap and l̄ ∈ Lp are i.i.d. Unif(Sp−1)
independent of Z:

lim
p→∞

max
l̄∈Lp

|l̄TZ|/√p
P
≥
√

1− 1/a2.

These facts imply the assertions about (1−α)-quantilesK(Lp) of maxl̄∈Lp |l̄
T
Z|

in Theorem 6.3. We decompose Z = RU where R2 = ‖Z‖2 ∼ χ2
p and

U = Z/‖Z‖ ∼ Unif(Sp−1) are independent. Due to R/
√
p

P→ 1 it is suffi-
cient to show the following:

• uniform asymptotic worst-case bound:

(A.15) lim
p→∞

sup
|Lp|≤ap

max
l̄∈Lp

|l̄TU|
P
≤

√
1− 1/a2 ;

• attainment of the bound when |Lp| = ap and l̄ ∈ Lp are i.i.d. Unif(Sp−1)
independent of U:

(A.16) lim
p→∞

max
l̄∈Lp

|l̄TU|
P
≥

√
1− 1/a2 .

To show (A.15), we upper-bound the non-coverage probability and show
that it converges to zero for K ′ >

√
1− 1/a2. To this end we start with a

Bonferroni-style bound, as in Wyner (1967):

P[ max
l̄∈L
|l̄TU| > K ′] = P

⋃
l̄∈L

[ |l̄TU| > K ′]

≤
∑
l̄∈L

P[ |l̄TU| > K ′]

= |Lp|P[ |U | > K ′],(A.17)

where U is any coordinate of U or projection of U onto a unit vector. We
will show that the bound (A.17) converges to zero. We use the fact that
U2 ∼ Beta(1/2, (p− 1)/2), hence

(A.18) P[ |U | > K ′] =
1

B(1/2, (p− 1)/2)

∫ 1

K′2
x−1/2(1− x)(p−3)/2dx
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We bound the Beta function and the integral separately:

1

B(1/2, (p− 1)/2)
=

Γ(p/2)

Γ(1/2)Γ((p− 1)/2)
<

√
(p− 1)/2

π
,

where we used Γ(x + 1/2)/Γ(x) <
√
x (a good approximation, really) and

Γ(1/2) =
√
π.∫ 1

K′2
x−1/2(1− x)(p−3)/2dx ≤ 1

K ′
1

(p− 1)/2
(1−K ′2)(p−1)/2,

where we used x−1/2 ≤ 1/K ′ on the integration interval. Continuing with
the chain of bounds from (A.17) we have:

|Lp|P[ |U | > K ′] ≤ 1

K ′

(
2

(p− 1)π

)1/2 (
|Lp|1/(p−1)

√
1−K ′2

)p−1
.

Since |Lp|1/(p−1) → a (> 0), the right hand side converges to zero at geomet-
ric speed if a

√
1−K ′2 < 1, that is, if K ′ >

√
1− 1/a2. This proves (A.15).

To show (A.16), we upper-bound the coverage probability and show that
it converges to zero for K ′ <

√
1− 1/a2. We make use of independence of

l̄ ∈ Lp, as in Wyner (1967):

P[ max
l̄∈Lp
|l̄TU| ≤ K ′] =

∏
l̄∈Lp

P[ |l̄TU| ≤ K ′] = P[ |U | ≤ K ′]|Lp|

=
(
1−P[ |U | > K ′]

)|Lp|
≤ exp

(
−|Lp|P[ |U | > K ′]

)
.(A.19)

We will lower-bound the probability P[ |U | > K ′] recalling (A.18) and again
deal with the Beta function and the integral separately:

1

B(1/2, (p− 1)/2)
=

Γ(p/2)

Γ(1/2)Γ((p− 1)/2)
>

√
p/2− 3/4

π
,

where we used Γ(x+ 1)/Γ(x+ 1/2) >
√
x+ 1/4 (again, a good approxima-

tion). ∫ 1

K′2
x−1/2(1− x)(p−3)/2dx ≥ 1

(p− 1)/2
(1−K ′2)(p−1)/2,
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where we used x−1/2 ≥ 1. Putting it all together we bound the exponent
in (A.19):

|Lp|P[ |U | > K ′] ≥
√
p/2− 3/4√
π (p− 1)/2

(
|Lp|1/(p−1)

√
1−K ′2

)p−1
.

Since |Lp|1/(p−1)→a (> 0), the r.h.s. converges to +∞ at nearly geometric
speed if a

√
1−K ′2 > 1, that is, K ′ <

√
1− 1/a2. This proves (A.16).
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