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Abstract

Following the econometric literature on model misspecification, we examine statistical inference for linear

regression coefficients βj when the predictors are random and the linear model assumptions of first and/or

second order are violated: E[Y |X1, ..., Xp] is not linear in the predictors and/or V [Y |X1, ..., Xp] is not constant.

Such inference is meaningful if the linear model is seen as a useful approximation rather than part of a generative

truth.

A difficulty well-known in econometrics is that the required standard errors under random predictors and

model violations can be very different from the conventional standard errors that are valid when the linear

model is correct. The difference stems from a synergistic effect between model violations and randomness of the

predictors. We show that asymptotically the ratios between correct and conventional standard errors can range

between infinity and zero. Also, these ratios vary between predictors within the same multiple regression.

This difficulty has consequences for statistics: It entails the breakdown of the classical ancillarity argument

for predictors. If the assumptions of a generative regression model are violated, then the ancillarity argument

for the predictors no longer holds, treating predictors as fixed is no longer valid, and standard inferences may

lose their significance and confidence guarantees.

The standard econometric solution for consistent inference under misspecification and random predictors is

based on the “sandwich estimator” of the covariance matrix of β̂. A plausible alternative is the paired bootstrap

which resamples predictors and response jointly. Discrepancies between conventional and bootstrap standard

errors can be used as diagnostics for predictor-specific model violations, in analogy to econometric misspecifica-

tion tests. The good news is that when model violations are sufficiently strong to invalidate conventional linear

inference, their nature tends to be visible in graphical diagnostics.

Keywords: Ancillarity of predictors; First and second order incorrect models; Model misspecification

1 Introduction

Classical inference for linear regression is conditional on the observed predictors. This means that in a linear

model

y = Xβ + ε , ε ∼ N (0N , σ
2IN×N ), (1)

the standard errors SE(β̂j) only account for the variability in the error vector ε but not in the predictor data

X. In effect, the predictor data are treated as fixed known constants even when they are samples, as they are in

observational data. The justification for conditioning on random X is that the predictor distribution is ancillary
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for the parameters β and σ of the model, hence conditioning on X produces valid frequentist inference for these

parameters (Cox and Hinkley 1974, Example 2.27).

A problem with the ancillarity argument is that it holds only when the linear model is correct. In practice,

of course, whether a model is correct is never known, yet it is fitted just the same and also richly interpreted

with statistical inference that assumes the truth of the model. An awareness of potential problems with such

inference is occasionally handled with a reference to “robustness of validity”, meaning that conventional t- and

F -tests are conservative (though not efficient) when the error distribution is heavier-tailed than normal. This

argument, however, does not address model failure from non-linearity or heteroskedasticity. When first and/or

second order assumptions are violated, there may arise pernicious problems for statistical inference because these

violations can interact with the randomness of the predictors and invalidate conventional standard errors derived

from X-conditional linear models theory. As we will see, this interaction usually inflates and occasionally deflates

the sampling variability of slope estimates relative to conventional X-conditional standard errors.
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Figure 1: Single Predictor, error-less Data: The filled and the open circles represent two “datasets” from the same

population. The x-values are random; the y-values are a deterministic function of x: y = µ(x) (shown in gray).

Left: The true response µ(x) (gray curve) is nonlinear; the open and the filled circles have different LS lines (black

lines).

Right: The true response µ(x) (gray line) is linear; the open and the filled circless have the same LS line (black

overlayed on gray).

The nature of the interaction between model violations and randomness of the predictors is most drastically

illustrated with the artificial example of an error-free nonlinearity, that is, y = µ(x) is a deterministic but nonlinear

function of a (single) random predictor x, as in the left hand plot of Figure 1. It shows two error-free (x, y)

“datasets” of size N = 5 each, marked by open circles (“white data”) and filled circles (“black data”). The

datasets are clearly shifted against each other, the white data being more to the left, the black data more to the

right, even though both are i.i.d. random samples from the same predictor distribution. The relative shift implies

that when a straight line is fitted to the “response” in both datasets the white dataset will “see” a smaller slope

than the black dataset. This difference is solely due to the random differences between the two predictor samples.

— This effect vanishes when the response function µ(x) is linear, as depicted in the right hand plot of Figure 1

for the same two sets of predictor values: obviously both sets “see” the same slope. Thus it is the combination
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of randomness of the x-values and nonlinearity of the response function µ(x) that conspires to create sampling

variability in LS estimates of slopes (and intercepts as well). This additional source of sampling variability is

separate from the variability analyzed in X-conditional linear models theory, which is error in the response.

Furthermore, the additional variability is of the same order 1/
√
N as the conventional error-based variability.

In the econometric literature on misspecification it is known that standard errors can be invalidated not only

by nonlinearity but by heteroskedasticity as well. Heteroscedasticity’s effect on sampling variability is somewhat

less transparent than nonlinearity’s, yet in econometrics it is heteroscedasticity that appears to be more frequently

debated. In the present context the relative importance of the two effects is not the issue; rather, it is the sheer

fact that statistical inference is affected by an interaction of first and second order model violations with predictor

randomness.

An immediate consequence for classical statistics is that for observational data X-conditional inference must

be considered as suspect, and so must the ancillarity argument that justifies it. The ancillarity argument for

regression has been unquestioned by statisticians for many decades, and this acceptance may be partly supported

by a fallacious intuitition. The fallacy may run along the following lines: One starts from the premise that if the

data do not satisfy the first and second order assumptions for the model at hand, they will do so very likely for

some larger linear model. In that “correct” model the ancillarity argument applies, hence it applies in the smaller

model. This very last step is of course the fallacy: ancillarity for the predictors can only be argued in the correct

model, not its incorrect submodels.

A further consequence for classical statistics is that if X-conditional inference is to be used, then checking

first and second order correctness of the chosen model is essential. To address this need we will propose some

simple diagnostics that provide indications of model failure in a predictor-specific manner. Such diagnostics have

of course precursors in econometric misspecification tests. Our diagnostics will add a new level of interpretability

to these established techniques [??? make more specific].

Standard errors that capture the variability generated by the interaction of random predictors and model

violations have existed for quite some time: asymptotically correct standard errors can be obtained from so-

called “sandwich estimators” of the covariance matrix of the estimates (White 1980a, 1980b, 1981, 1982). These

have generated a considerable literature and have been applied to every conceivable type of parametric regression.

They are better known for being “heteroskedasticity consistent” (White 1980b) than nonlinearity consistent (White

1980a).

Another and quite obvious approach to standard errors under random predictors and model violations is

bootstrapping ( ~Xi, Yi) pairs. It captures the joint, unconditional sampling variability of the response and the

predictors without making model assumptions other than i.i.d. sampling. There exists a literature that shows this

bootstrap to be asymptotically correct for linear regression under very general conditions, even if the linear model

is incorrect; see for example Freedman’s (1981) analysis of the “correlation model”, and Mammen’s (1993) analysis

for increasing p. The paired bootstrap, however, has been a source of unease to some statisticians because it violates

conditionality on the predictors. As we have seen above, such unease is ill-founded because conditionality relies

on the ancillarity argument for predictors, which in turn assumes the correctness of the model. Such assumption

creates exposure to potentially flawed statistical inference.

For linear models applied to observational data it should be recommended that all inference be accompanied by

standard errors obtained from either sandwich estimators or a paired bootstrap simulation, if only as a diagnostic.

If data analysts observe sizable discrepancies between conventional and bootstrap standard errors, it should alert

them to potential problems on two levels: (1) the existence of first and/or second order model incorrectness and

consequently a need to diagnose the nature of nonlinearities and/or heteroskedasticities, and (2) a need to use the
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bootstrap standard errors for statistical inference if these are wider.

The reader may object at this point that something is amiss with this argument: If the functional form of

the model is incorrect and if there is indeed a nonlinear association between predictors and response, what is the

meaning of a slope and its standard error? Shouldn’t the nonlinearities be taken care of first, for example, by

fitting an additive model (Buja, Hastie, and Tibshirani 1989; Hastie and Tibshirani 1990) and/or transforming

the response (Box and Cox 1964)? These arguments are of course valid: competent data analysts would discover

critical nonlinearities with residual analysis, non-parametric fitting, nonlinear transformation of the response, and

other methods of model building. Yet, the counterargument is that even when a linear model for observational

data is first order incorrect, it can still be theoretically meaningful and practically useful (viz Box’ (1979, second

section heading) famous dictum). Both assertions can be made precise:

• Theoretically, a fitted linear model can always be interpreted as estimating the best linear approximation

β0 + β1X1 + ... + βpXp to the conditional expectation E[Y |X1, ..., Xp] at the population. This view is in

line with machine learning approaches which investigate best performance within a functional form without

assuming it to contain the truth. The difference of our focus to that in machine learning is that we are not

concerned with prediction but with valid inference for the parameters of the fitted equation.

• Practically, a fitted linear model, even if not strictly correct, can give information about the direction of the

association — positive or negative — between Y and Xj in the presence of the other predictors. Also, it

is possible to give meaning to LS slopes as weighted averages of “observed slopes”, and this carries over to

populations without linear model assumptions. Because of its intuitive appeal we discuss this interpretation

in Appendix A.

In conclusion, the problem of inference for “incorrect” linear models is not misguided; it can be both meaningful

and useful.

The idea that models are approximations, not generative truths, is found in a literature too large to list.

Aspects of approximation are explicit in work on robustness, on misspecified models, and on nonparametric

fitting. Most famously the idea of models as approximations is implied by Box (1979), albeit in more catchy

language. On this matter we follow Cox’ (1995) opinion that “it does not seem helpful to say that all models are

wrong. The very word model implies simplification and idealization,” which implies approximation. The theme

runs through the discussion generated by Chatfield (1995), which is where we found Cox’ comment. — Among

the several meanings of “approximation” as they relate to statistical models, the only one we have in mind is that

of approximating the conditional expectation E[Y |X1, ..., Xp] of a numerically interpreted response by a linear

function β0 + β1X1 + ...+ βpXp of the predictors. The possible causes of nonlinearity include incorrect functional

form, omission of predictors, and measurement errors in predictors. Whatever the causes, known or unknown,

we assume nevertheless that interest is in E[Y |X1, ..., Xp] through inference for the coefficients of the best linear

approximant β0 + β1X1 + ...+ βpXp.

This article continuous as follows: Section 2 shows a data example in which the conventional and bootstrap

standard errors of some slopes are off by as much as a factor 2. Section 3 introduces notation for populations and

samples, LS approximations, adjustment operations, nonlinearities, and decompositions of responses. Section 4

describes the sampling variation caused by random predictors and nonlinearities. Section 5 compares three types

of standard errors and shows that both the (potentially flawed) conventional and the (correct) unconditional

standard errors are inflated by nonlinearities, but Section 6 shows that asymptotically there is no limit to which

inflation of the unconditional standard error can exceed inflation of the conventional standard error. Appendix A

gives intuitive meaning to LS slopes in terms of weighted average slopes found in the data.
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2 The Problem Illustrated with

We will use the well-known Boston Housing data for illustration, but we must begin with a caveat: Theseq data

(Harrison and Rubinfeld 1978) are an enumeration of the census tracts in the larger Boston area. They do not form

a random sample; at a minimum, stochastic modeling would have to include consideration of spatial correlation.

Yet, these data have been used to illustrated regression methods at least since the regression diagnostics book

by Belseley, Kuh and Welsch (1980). In what follows we will treat the data as if they were a random sample

to illustrate the issue of conditional versus unconditional statistical inference in linear regression. Because of

pecularities in the associations among the 14 variables in these data, they are uniquely suited to illustrate the

phenomenon we describe here.

The following table shows in the first three numeric columns the results of a linear regression of MEDV (median

value of owner occupied homes, standardized) on thirteen predictors (all standardized). As we can see, the

predictors RM (average number of rooms per dwelling) and LSTAT (percent of lower status population) are the

strongest in terms of t-ratios.

Slope.est SE.conv t.val SE.boot SE.boot/SE.conv

CRIM -0.099 0.031 -3.261 0.033 1.074

ZN 0.121 0.035 3.508 0.035 1.004

INDUS 0.017 0.046 0.382 0.038 0.843

CHAS 0.074 0.024 3.152 0.036 1.503 <?

NOX -0.224 0.048 -4.687 0.048 1.003

RM 0.290 0.032 9.149 << 0.065 2.049 <<

AGE 0.002 0.040 0.044 0.050 1.236

DIS -0.344 0.045 -7.598 < 0.048 1.068

RAD 0.288 0.062 4.620 0.060 0.958

TAX -0.233 0.068 -3.409 0.051 0.740

PTRATIO -0.218 0.031 -7.126 < 0.026 0.865

B 0.092 0.026 3.467 0.027 1.036

LSTAT -0.413 0.039 -10.558 << 0.078 1.995 <<

Important for us is the comparison of the conventional standard errors (SE.conv, conditional on X) and the paired

bootstrap standard errors (SE.boot, sampling (x, y) pairs, not residuals) in the second and the fourth numeric

column, respectively. The last column shows their ratio. We see that for the two strongest predictors, LSTAT and

RM, the bootstrap standard errors are about twice the size of the conventional standard errors. As a consequence,

these predictors seem to have their t-statistics of -10.558 and 9.149 inflated by about a factor of two. If so, they

would have to cede their first and second ranks to the predictors DIS and PTRATIO whose bootstrap standard errors

are in rough agreement with the traditional standard errors and who exhibit t-statistics of -7.598 and -7.126. So

we must ask how a discrepancy can arise between bootstrap and traditional standard errors.

A pointer toward an answer is given in Figure 2: We are first shown residuals plotted against all predictors,

augmented with smooths. The smooths indicate that the predictors LSTAT and RM are those that most strongly

suggest nonlinear effects. Even more convincingly, a second series of plots shows the results of an additive model

fit, Y ∼ φ1(X1)+ ...+φp(Xp), augmented with bootstrap bands. The transformations of the predictors LSTAT and

RM suggest most strongly a nonlinear effect once again. Other predictors may also have nonlinear associations, but

LSTAT and RM are the two most egregious cases.
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 LSTAT

 0.467

Figure 2: Boston Housing data: The strongest two predictors, RM and LSTAT, show substantial nonlinearities.

Top half: Residuals versus all predictors augmented with lowess smooths.

Bottom half: ACE transformations for an additive model; the response is standardized but otherwise untransformed.

The bottom left corners show the standard deviations of the transforms (= analogs of |β̂j | when the sd(xj) = 1).
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3 Observational Regression Data: Estimation and its Target

Following Freedman (1981) and Mammen (1993), we introduce a framework in which linear LS is applied to data

that are not described by a generative linear model but only by an i.i.d. sampling assumption. The framework

therefore consists of (1) a largely arbitrary multivariate population in which one variable is singled out as the re-

sponse, (2) the associated decomposition of the population response into a linear LS approximation, a nonlinearity,

and error, (3) samples from the population as well as LS estimates obtained from the samples.

3.1 Quantities associated with the population

• The population will be described by random variables X1, ..., Xp and Y . At this point the only assumption

is that these variables have a nontrivial joint distribution P = P (dx1, ..., dxp, dy) in the sense that second

moments exist and the covariance matrix is of full rank.

• We write ~X = (1, X1, ..., Xp)
T for the column random vector consisting of the predictor variables with a

constant 1 prepended to accommodate an intercept term. We write any function f(X1, ..., Xp) equivalently

as f( ~X) as the prepended constant 1 is irrelevant.

• The “true response surface” µ( ~X) is the conditional mean given the predictors ~X:

µ( ~X) = E[Y | ~X ] . (2)

No assumption of linearity as a function of ~X is made.

• The population linear LS approximation to Y is the affine function defined by

βT ~X = β0 + β1X1 + ...+ βpXp , (3)

where the population intercept and slopes are collected in the (p + 1)-vector β = (β0, β1, ..., βp)
T and β is

defined by the following equivalent expressions:

β(P ) = argminβE[ (Y − βT ~X)2 ] = argminβ

(
−2βTE[Y ~X] + βTE[ ~X ~X

T
]β ]
)

(4)

= E[ ~X ~X
T

]−1E[Y ~X ] (5)

= argminβE[ (µ( ~X)− βT ~X)2 ] (6)

= E[ ~X ~X
T

]−1E[µ( ~X) ~X ] . (7)

Equalities (5)-(7) follow from the normal equations for the population linear LS problem in (4):

E[ ~X ~X
T

]β = E[Y ~X] = E[µ( ~X) ~X] . (8)

The vector β = β(P ) is a population parameter and the target of estimation. Unlike in a linear model, it only

describes the best linear approximation to µ( ~X), not µ( ~X) itself. There is no generative model assumed here,

hence β = β(P ) is just a statistical functional defined on multivariate distributions P = P (dx1, ..., dxp, dy).
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• Decompositions of the response and response function:

Response: Y

Response function: µ( ~X) = E[Y | ~X]

Population LS approximation: βT ~X (see (4)-(7))

Nonlinearity, model bias: η( ~X) = µ( ~X)− βT ~X (9)

Error, noise: ε = Y − µ( ~X) (10)

Population residual: ξ = Y − βT ~X = η( ~X) + ε (11)

Error variance: σ2( ~X) = V [Y | ~X] = E[ ε2| ~X] (12)

Conditional MSE: ρ2( ~X) = E[ ξ2| ~X] = η2( ~X) + σ2( ~X) (13)

The first three items are recapitulations, and the rest are definitions. Crucial are the nonlinearity or model

bias function η( ~X) to permit first order incorrectness, and the error variance function σ2( ~X) to permit

second order model incorrectness. For lack of a better name we call ξ the population residual. The error ε

satisfies E[ ε | ~X] = 0.

[Caution: Freedman (1981) and Mammen (1993) use “ε” to mean ξ = η + ε in our notation. They do not

divide the population residual into error and nonlinearity.]

• Orthogonalities/decorrelation at the population: All of ξ, η( ~X) and ε are orthogonal to the predictors:

E[ ξ ~X] = E[ η( ~X) ~X] = E[ ε ~X] = 0 . (14)

The reason for ξ and η( ~X) is that they are residuals in the population linear LS regressions of Y and µ( ~X),

respectively, on ~X. The error ε is orthogonal to ~X because E[ ε | ~X] = 0. — As a consequence of the

inclusion of an intercept entry “1” in ~X, orthogonality of ξ and η( ~X) to ~X entails centering, whereas for ε

it follows from E[ ε | ~X] = 0:

E[ ξ ] = E[ η( ~X) ] = E[ ε ] = 0 . (15)

The error ε satisfies much stronger orthogonalities: For any functions f( ~X) and g( ~X) (with suitable mo-

ments), εf( ~X) is orthogonal to g( ~X). This means E[(εf( ~X))g( ~X)] = 0, which is an immediate consequence

of E[ε| ~X] = 0. Yet ε is not generally independent of ~X.

• Adjustment formulas for the population: We introduce the population version of “adjusted” predictors

in order to express the multiple regression coefficient βj as a simple regression coefficient. The adjusted

predictor Xj• is defined as the residual of the regression of Xj (used as the response) on all other predictors.

To this end we collect all other predictors by writing ~X\j = (1, X1, ..., Xj−1, Xj+1, ..., Xp)
T and defining the

p-vector βj• by

βj• = argminβ̃E[(Xj − β̃
T ~X\j)

2] = E[ ~X\j ~X
T

\j ]
−1E[ ~X\jXj ] .

The adjusted predictor is

Xj• = Xj − βTj• ~X\j . (16)

The representation of βj as a simple regression coefficient is

βj =
E[Y Xj•]

E[Xj•
2]

=
E[µ( ~X)Xj•]

E[Xj•
2]

. (17)

This is a componentwise alternative to (5) above.
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3.2 Notation for observational datasets

• When we use the term “observational data” we actually mean “cross-sectional data” consisting of i.i.d. cases

(Xi,1, ..., Xi,p, Yi) drawn from the multivariate distribution P (dx1, ..., dxp, dy) (i = 1, 2, ..., N). We collect

the predictors of case i in a column (p+1)-vector ~Xi = (1, Xi,1, ..., Xi,p)
T , prepended with 1 for an intercept.

• We stack the N samples to form random column N -vectors and a random predictor N × (p+ 1)-matrix:

Y =


Y1

..

..

YN

 , Xj =


X1,j

..

..

XN,j

 , X = [1,X1, ...,Xp] =


~X
T

1

...

...

~X
T

N

 .

• Similarly we stack the values µ( ~Xi), η( ~Xi), εi = Yi−µ( ~Xi), ξi, and σ( ~Xi) to form random column N -vectors:

µ =


µ( ~X1)

..

..

µ( ~XN )

 , η =


η( ~X1)

..

..

η( ~XN )

 , ε =


ε1
..

..

εN

 , ξ =


ξ1

..

..

ξN

 , σ =


σ( ~X1)

..

..

σ( ~XN )

 . (18)

• The definitions (11) of ξ, (10) of ε, and (9) of η( ~X) translate to vectorized forms:

ξ = Y −Xβ, ε = Y − µ, η = µ−Xβ. (19)

• It is important to keep in mind the distinction between population and sample properties, in particular:

– The (p + 1)-vector β = β(P ) is not the LS estimate obtained from the sample; it is the population

parameter and the target of estimation.

– The N -vectors ξ, ε and η are not orthogonal to the predictor columns Xj in the sample; in general

〈ξ,Xj〉 6= 0, 〈ε,Xj〉 6= 0, 〈η,Xj〉 6= 0, even though the associated random variables are orthogonal to

Xj in the population: E[ ξXj ] = E[ εXj ] = E[ η( ~X)Xj ] = 0.

3.3 Quantities associated with LS estimation

• The sample linear LS estimate of β is the random column (p+ 1)-vector

β̂ = (β̂0, β̂1, ..., β̂p)
T = argminβ ‖Y −Xβ̃‖2 = (XTX)−1XTY . (20)

Randomness stems from both the random response Y and the random predictors in X. Associated with β̂

are the following:

Hat or projection matrix: H = XT (XTX)−1XT (21)

LS fits: Ŷ = Xβ̂ = HY (22)

Residuals: r = Y −Xβ̂ = (I −H)Y (23)

[Note: Sample residual vector r = Y −Xβ̂ 6= population residual vector ξ = Y −Xβ.]
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• Adjustment formulas for samples: Again, we introduce adjusted variables to express a multiple re-

gression as a collection of simple regressions. The sample version of adjustment is immediately useful in

suggesting diagnostic plots, whereas the population version above served to provide targets of estimation.

In a sample, we collect all predictor columns other than Xj in a N ×p matrix X\j = (1, ...,Xj−1,Xj+1, ...),

and we define

β̂j• = argminβ̃ ‖Xj −X\jβ̃‖2 = (XT
\jX\j)

−1XT
\jXj .

The sample-adjusted predictor is

Xj• = Xj − β̂
T

j•X\j = (I −H\j)Xj . (24)

where H\j = X\j(X
T
\jX\j)

−1XT
\j is the associated projection or hat matrix. The j’th slope estimate of the

multiple linear regression of Y on X1, ...,Xp can then be expressed in the well-known manner as the slope

estimate of the simple linear regression (without intercept) of Y on Xj•:

β̂j =
〈Y ,Xj•〉
‖Xj•‖2

. (25)

[An important distinction is that the vector Xj• is sample-adjusted, whereas the random variable Xj• is

population-adjusted. This makes the notation “Xi,j•” ambiguous: it could refer to the i’th component of the

sample-adjusted vector Xj• or to the i’th case drawn from the population-adjusted random variable Xj•.

These are not the same. We will therefore avoid using “Xi,j•”, which is possible without difficulty.]

4 Decomposition of the LS Estimate according to its Sources of Variation

When the predictors are random and the linear model is treated as an approximation rather than a generative truth,

the sampling variation of the LS estimate β̂ can be additively decomposed into two components: one component

due to error, and another component due to nonlinearity interacting with randomness of the predictors. This

decomposition is a direct reflection of the decomposition of the population residual into error and nonlinearity,

ξ = ε + η, according to (11). In this section we state asymptotic normality for each part of the decomposition.

The relevance of the decomposition is that it explains what the paired bootstrap estimates, while the associated

asymptotic normalities are necessary to justify the paired bootstrap.

In the conventional analysis of linear models, which is conditional on X, the target of estimation is E[β̂|X].

When X is treated as random and nonlinearity is allowed, the target of estimation is the population LS solution

β as defined in (4)-(7). In this case, E[β̂|X] is a random variable that sits between β̂ and β:

β̂ − β = (β̂ −E[β̂|X]) + (E[β̂|X]− β) (26)

This decomposition corresponds to the decomposition ξ = ε+ η as the following lemma shows. The lemma gives

both vectorized and componentwise versions, as the former provide easy proofs, while the latter will result in

simple diagnostics.

Lemma and Definition: The following quantities will be called “Estimation Offsets” or “EO” for short, and

10



they will be prefixed as follows:

Total EO: β̂ − β = (XTX)−1XT ξ, β̂j − βj =
〈Xj•, ξ〉
‖Xj•‖2

. (27)

Error EO: β̂ −E[ β̂|X] = (XTX)−1XT ε, β̂j −E[ β̂j |X] =
〈Xj•, ε〉
‖Xj•‖2

. (28)

Nonlinearity EO: E[ β̂|X]− β = (XTX)−1XTη, E[ β̂j |X]− βj =
〈Xj•,η〉
‖Xj•‖2

. (29)

Proof: It is sufficient to consider the vectorized versions. The lemma is a consequence of similar equations for Y ,

µ and Xβ:

β̂ = (XTX)−1XTY (30)

E[ β̂|X] = (XTX)−1XTµ (31)

β = (XTX)−1XT (Xβ) (32)

Of these equations the first is the definition of β̂, the middle follows from the first using E[Yi| ~Xi] = µ( ~Xi), and

the last is a tautology. The equations of the lemma follow by forming the pairwise differences (30)-(32), (30)-(31),

and (31)-(32), respectively, and recalling the vectorized definitions (19): ξ = Y −Xβ, ε = Y −µ, η = µ−Xβ. �

The EOs are not actionable quantities in real data analysis, but they will be useful in comparing unconditional

(bootstrap) and conditional (linear) inference.

Proposition: The three EOs follow central limit theorems:

N1/2 (β̂ − β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ρ2( ~X) ~X ~X

T
]E[ ~X ~X

T
]−1
)

(33)

N1/2 (β̂ −E[ β̂|X])
D−→ N

(
0, E[ ~X ~X

T
]−1E[σ2( ~X) ~X ~X

T
]E[ ~X ~X

T
]−1
)

(34)

N1/2 (E[ β̂|X]− β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[η2( ~X) ~X ~X

T
]E[ ~X ~X

T
]−1
)

(35)

Proof: It is sufficient to prove the first statement, say, as the others follow the same way.

N1/2 (β̂ − β) =
(

1
N
XTX

)−1
(

1

N1/2
XT ξ

)
D−→ E[ ~X ~X

T
]−1N

(
0,E[ρ2( ~X) ~X ~X

T
]
)

= N
(
0,E[ ~X ~X

T
]−1E[ρ2( ~X) ~X ~X

T
]E[ ~X ~X

T
]−1
)
,

We used E[ ξ ] = 0 (= E[ ε ] = E[ η ]) according to (15). It follows that

V [ ξ ~X] = E[ ξ2 ~X ~X
T

] = E[E[ ξ2| ~X] ~X ~X
T

] = E[ ρ2( ~X) ~X ~X
T

] �

The asymptotic variance/covariance matrices in the proposition have the well-known sandwich or butterfly

form. Asymptotic normality can also be expressed for each β̂j separately using population adjustment:
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Corollary: Each component of an estimation offset follows a central limit theorem.

N1/2(β̂j − βj)
D−→ N

(
0,
E[ρ2( ~X)Xj•

2]

E[Xj•
2]2

)
(36)

N1/2(β̂j −E[ β̂j |X])
D−→ N

(
0,
E[σ2( ~X)Xj•

2]

E[Xj•
2]2

)
(37)

N1/2(E[β̂j |X]− βj)
D−→ N

(
0,
E[η2( ~X)Xj•

2]

E[Xj•
2]2

)
(38)

Proof: By the proposition above we know that each component is marginally asymptotically normal. Hence we

only need to verify the form of the asymptotic variance. This in turn is achieved by specializing the asymptotic

variance/covariance matrix of the proposition above to the single predictor case with Xj• as the random variable

underlying the predictor. �

Corollary: The unconditional or marginal bias of β̂j vanishes faster than N−1/2:

N1/2 (E[β̂j ]− βj) −→ 0 (N −→∞). (39)

Proof: This follows from (36). �

[xxxxxxxxx Preliminary note – might go elsewhere:

In econometrics it has long been exploitet that (33) suggests a standard error estimate — the so-called “sandwich

estimator” — that is asymptotically correct even when the linear model is incorrect. It is obtained by estimating

ρ2( ~X) with (Y − β̂T ~X)2, which is asymptotically unbiased: E[(Y − β̂T ~X)2| ~X]→ ρ2( ~X). The sandwich estimator

has come under criticism for being inefficient (Kauermann and Carroll 2001). This inefficiency problem might get

corrected by drawing on the adjustment version (36) and noting that

E[ρ2( ~X)Xj•
2] = E[E[ρ2( ~X) |Xj•

2]Xj•
2] .

The expression E[ρ2( ~X) |Xj•
2] can be estimated nonparametrically in the sample by smoothing r2 = (Y −Xβ̂)2

(= the vector of squared residuals) against Xj•
2 (= the vector of squared adjusted predictor values). Such

smoothing should remove some of the noisiness and hence inefficiency of the sandwich estimator. ]

5 Standard Errors of Regression Coefficients

We compare conventional standard errors with the actual (marginal, unconditional) standard errors. The lat-

ter correctly include the additional variation due to the nonlinearity and randomness of X. In what follows

we distinguish between (squared) standard error V [β̂j ], conditional standard error V [β̂j |X], and standard error

estimate V̂ [β̂j ].

1. The (squared) conventional standard error of β̂j is estimated by σ̂2/‖Xj•‖2 where one uses the usual estimate

of σ2 from the linear model as if the model were correct: σ̂2 = 1
N−p−1 ‖r‖

2. We calculate its conditional

mean allowing for both nonlinearity and heteroskedasticity (see Appendix B.1):

E[σ̂2|X] = 1
N−p−1

(
tr((I −H)Dσ2) + ‖(I −H)η‖2

)
, (40)
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where Dσ2 is the diagonal matrix with the values σ2( ~Xi) in its diagonal. Thus the conventional standard

error estimate σ̂2/‖Xj•‖2 is X-conditionally an unbiased estimate of the following:

SE2
conv[β̂j |X] := E

[
σ̂2

‖Xj•‖2

∣∣∣∣X] =

1
N−p−1tr((I −H)Dσ2)

‖Xj•‖2
+

1
N−p−1‖(I −H)η‖2

‖Xj•‖2
(41)

On the right hand side, the first term accounts for error (possibly heteroscedastic), the second term for

nonlinearity. Under homoscedasticity (Dσ2 = σ2I) and linearity (η = 0) it is true that SE2
conv[β̂j |X] =

V [β̂j |X], hence this is an appropriate conditional squared standard error for E[β̂j |X], which under linearity

equals βj . In the presence of nonlinearity and/or heteroscedasticity, however, SE2
conv[β̂j |X] is not a correct

squared standard error for βj , not even conditionally for E[β̂j |X], as the next item will show.

2. The (squared) unconditional or marginal standard error is V [β̂j ]. Its theoretical relevance is that it is

the true standard error that accounts for sampling variability due to error and due to randomness of the

predictors. Its practical importance is that it can and should be estimated by sandwich estimators or the

paired bootstrap. It can be decomposed as follows:

SE2
marg[β̂j ] := V

[
β̂j

]
= E

[
V [β̂j |X]

]
+ V

[
E[β̂j |X]

]
(42)

= E

[
Xj•

TDσ2Xj•

‖Xj•‖4

]
+ V

[
〈Xj•,η〉
‖Xj•‖2

]
. (43)

In the last equality we drew on (25).

Thus both the conventional and the marginal standard error can be additively decomposed into contributions due

to σ2( ~X) (error) and η2( ~X) (nonlinearity). For a simplified asymptotic analysis, we form the scaled limits:

Proposition and Definition: Defining SE2
conv[β̂j ] := E[SE2

conv[β̂j |X]] and SE2
marg[β̂j ] as in (42), we have:

N SE2
conv(β̂j)

N→∞−→ E[σ2( ~X)]

E[Xj•
2]

+
E[η2( ~X)]

E[Xj•
2]

=
E[ρ2( ~X)]

E[Xj•
2]

(44)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
AV

(j)
conv(σ2( ~X)) +AV

(j)
conv(η2( ~X)) = AV (j)

conv(ρ2( ~X))

N SE2
marg(β̂j)

N→∞−→ E[σ2( ~X)Xj•
2]

E[Xj•
2]2

+
E[η2( ~X)Xj•

2]

E[Xj•
2]2

=
E[ρ2( ~X)Xj•

2]

E[Xj•
2]2

(45)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
AV

(j)
marg(σ2( ~X)) + AV

(j)
marg(η2( ~X)) = AV (j)

marg(ρ2( ~X))

The proofs of (44) and (45) are obtained from the sum representations in (41) and (43). For details of (44) see

Appendix B.3; essentially H and p+1 in (41) become negligible for p fixed as N →∞. The limits in (45) are the

asymptotic variances (36)-(38) of the preceding section.

Structurally all three terms AV
(j)

conv(...) have the same form, and so do the three terms AV
(j)

marg(...), justifying

the notation. Only AV
(j)

marg(...) represent inferentially valid asymptotic variances, while AV
(j)

conv(...) are generally

valid only when σ2( ~X) ≡ σ2 and η ≡ 0.
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6 Asymptotic Comparison of Conventional and Marginal Standard Errors

We show that the conventional asymptotic variances can be too small or too large to unlimited degrees compared

to the proper marginal asymptotic variances. A comparison of asymptotic variances can be done separately for

σ2( ~X), η2( ~X) and ρ2( ~X). To this end we form the ratios RAVj(...) as follows:

Definition and Lemma: Ratios of marginal and conventional Asymptotic Variances

RAVj(σ
2( ~X)) :=

AV
(j)

marg(σ2( ~X))

AV
(j)

conv(σ2( ~X))
=

E[σ2( ~X)Xj•
2]

E[σ2( ~X)]E[Xj•
2]

(46)

RAVj(η
2( ~X)) :=

AV
(j)

marg(η2( ~X))

AV
(j)

conv(η2( ~X))
=

E[η2( ~X)Xj•
2]

E[η2( ~X)]E[Xj•
2]

(47)

RAVj(ρ
2( ~X)) :=

AV
(j)

marg(ρ2( ~X))

AV
(j)

conv(ρ2( ~X))
=

E[ρ2( ~X)Xj•
2]

E[ρ2( ~X)]E[Xj•
2]

(48)

The second equality on each line follows from (44) and (45). The ratios express by how much the conventional

asymptotic variances need to multiplied to match the proper marginal asymptotic variances. Among the three

ratios the relevant one for the overall comparison of conventional and marginal inference is RAVj(ρ
2( ~X)). For

example, if RAVj(ρ
2( ~X)) = 4, say, then, for large sample sizes, the correct marginal standard error of β̂j is about

twice as large as the incorrect conventional standard error. In general RAVj expresses the following:

• if RAVj(ρ
2( ~X)) = 1, the conventional standard error for β̂j is asymptotically correct;

• if RAVj(ρ
2( ~X)) > 1, the conventional standard error for βj is asymptotically too small/optimistic;

• if RAVj(ρ
2( ~X)) < 1, the conventional standard error for βj is asymptotically too large/pessimistic.

The ratios RAVj(σ
2( ~X)) and RAVj(η

2( ~X)) express the degrees to which heteroscedasticity and/or nonlinearity

contribute asymptotically to the defects of conventional standard errors. Structurally, the three ratios are inner

products between the normalized squared quantities

σ2( ~X)

E[σ2( ~X)]
,

η2( ~X)

E[η2( ~X)]
,

ρ2( ~X)

E[ρ2( ~X)]

on the one hand, and the normalized squared adjusted predictor

Xj•
2

E[Xj•
2]

on the other hand. These inner products, however, are not correlations, and they are not bounded by +1. To

analyze the range of RAVj and to take advantage of the identical form of RAVj in all three cases, we will write

f( ~X) for any of σ( ~X), η( ~X) and ρ( ~X), and analyze the range of RAVj(f
2( ~X)) over scenarios f( ~X). It is easy

to see that generally

sup
f
RAVj(f

2( ~X)) =∞ , inf
f
RAVj(f

2( ~X)) = 0 , (49)

where f( ~X) ranges over functions with suitable moments such that RAVj(f
2( ~X)) exists. The limits (49) become

fairly obvious from the following equivalent form of RAVj :

RAVj(f
2( ~X)) =

E[E[f2( ~X) |Xj•
2]Xj•

2]

E[f2( ~X)]E[Xj•
2]

(50)
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Thus RAVj(f
2( ~X)) attains

• a large value ifE[f2( ~X) |Xj•
2] andXj•

2 are positively associated, which is the case for example ifE[f2( ~X) |Xj•
2]

is a monotone increasing function of Xj•
2;

• a value near zero if E[f2( ~X) |Xj•
2] and Xj•

2 are negatively associated, which is the case for example if

E[f2( ~X) |Xj•
2] is a monotone decreasing function of Xj•

2.

We will illustrate the above with some simple scenario constructions.

Consider first nonlinearities η( ~X): We construct a one-parameter family of nonlinearities ηt( ~X) for which

suptRAVj(η
2
t ) = ∞ and inftRAVj(η

2
t ) = 0. Generally in the construction of examples, it must be kept in mind

that nonlinearities are orthogonal to (adjusted for) all other predictors: E[η( ~X) ~X] = 0. To avoid uninsightful

complications arising from adjustment due to complex dependencies among the predictors, we construct an example

for simple linear regression with a single predictor X1 = X and an intercept X0 = 1. W.l.o.g. we will further

assume that X1 is centered (population adjusted for X0, so that X1• = X1) and standardized. In what follows we

write X instead of X1, and the assumptions are E[X] = 0 and E[X2] = 1. To make the example as simple as

possible we adopt some additional assumptions on the distribution of X:

Proposition: Define a one-parameter family of nonlinearities as follows:

ηt(X) =
1[|X|>t] − p(t)√
p(t)(1− p(t))

, where p(t) = P [|X| > t] , (51)

and we assume that p(t) > 0 and 1 − p(t) > 0 ∀t > 0. Assume further that the distribution of X is symmetric

about 0, so that E[ηt(X)X] = 0. Then we have:

lim t↑∞RAV (η2
t ) =∞;

lim t↓0RAV (η2
t ) = 0 if the distribution of X has no atom at the origin: P [X = 0] = 0.

(See Appendix B.5 for the simple proof). By construction these nonlinearities are centered and standardized,

E[ηt(X)] = 0 and E[ηt(X)2] = 1. They are also orthogonal to X, E[ηt(X)X] = 0, due to the assumed symmetry

of the distribution of X, P [X > t] = P [X < −t], and the symmetry of the nonlinearities, ηt(−X) = ηt(X).

Consider next heteroscedastic error variances σ2( ~X): The above construction for nonlinearities can be re-used.

As with nonlinearities, for RAV (σ2
t (X)) to rise with no bound, the conditional error variance σ2

t (X) needs to place

its large values in the unbounded tail of the distribution of X. For RAV (σ2
t (X)) to reach down to zero, σ2

t (X)

needs to place its large values in the center of the distribution of X.

Proposition: Define a one-parameter family of heteroscedastic error variances as follows:

σ2
t (X) =

(1[|X|>t] − p(t))2

p(t)(1− p(t))
, where p(t) = P [|X| > t] , (52)

and we assume that p(t) > 0 and 1− p(t) > 0 ∀t>0. Then we have:

lim t↑∞RAV (σ2
t ) =∞;
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lim t↓0RAV (σ2
t ) = 0 if the distribution of X has no atom at the origin: P [X = 0] = 0.

An important difference between η2( ~X) and σ2( ~X) is that nonlinearities are constrained by orthogonalities to

the predictors, whereas conditional error variances are not.

In the end, of course, it is ρ2( ~X) = σ2( ~X)+η2( ~X) that determines the gap between conventional and marginal

inferences. The following lemma can be used to examine when RAVj(ρ
2( ~X)) approaches ∞ or 0:

Lemma: Define weights

wσ =
E[σ2( ~X)]

E[ρ2( ~X)]
, wη =

E[η2( ~X)]

E[ρ2( ~X)]
, (53)

so that wσ + wη = 1. Then

RAVj(ρ
2( ~X)) = wσRAVj(σ

2( ~X)) + wηRAVj(η
2( ~X)) . (54)

Corollary: If ρ2
t (
~X) = σ2

t (
~X) + η2

t (
~X) is a one-parameter family of scenarios, and if wσt = wσ > 0 and

wηt = wη > 0 from (53) are fixed and strictly positive, then we have

limtRAVj(ρ
2
t (
~X)) =∞ if limtRAVj(σ

2
t (
~X)) =∞ or limtRAVj(η

2
t (
~X)) =∞;

limtRAVj(ρ
2
t (
~X)) = 0 if both limtRAVj(σ

2
t (
~X)) = 0 and limtRAVj(η

2
t (
~X)) = 0.

The corollary adds evidence that large values RAV (ρ2( ~X)) � 1 seem more easily possible than small values

RAV (ρ2( ~X)) � 1, hence conventional inference seems more likely to be too optimistic/liberal than too pes-

simistic/conservative. The reason is that heteroscedasticity σ2( ~X) or nonlinearity η2( ~X) can each individually

cause RAV (ρ2( ~X)) to explode, but each can provide a floor that prevents RAV (ρ2( ~X)) from dropping to 0.

7 Submodels

Following the notation in the PoSI article, we consider submodels given by indices M = {j1, ..., jm} with predictor

submatrices XM = (Xj1 , ...,Xjm) and associated vectors of parameters and their LS estimates βM and β̂M,

respectively. We know the asymptotic normality of β̂M for each M, but we are now also interested in the joint

asymptotic normality of (β̂
T

M, β̂
T

M′)
T for two submodels M and M′. While the asymptotic variance for β̂M is

AV (β̂M) = E[ ~XM
~X
T

M]−1 E[ξ2
M
~XM

~X
T

M] E[ ~XM
~X
T

M]−1,

using the submodel-specific “population residual” variable ξM = Y − ~X
T

MβM, the cross-asymptotic covariance

between β̂M and β̂M′ is

AV (β̂M, β̂M′) = E[ ~XM
~X
T

M]−1 E[ξMξM′
~XM

~X
T

M′ ] E[ ~XM′
~X
T

M′ ]
−1.
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A The Meaning of Regression Slopes as Averages of Case-Based Slopes

In this section we give simple interpretations to slopes when the actual response function is not linear in the

predictors. We first condition on the design and then consider the random design case. It will also be sufficient to

consider simple linear regression only, keeping in mind that all formulas apply to multiple regression by replacing

the single predictor with the j’th predictor adjusted for all other predictors.

For a sample (Yi, Xi) (i = 1, ..., N) of single-predictor/response data, the LS slope estimate can be represented

as follows:

β̂ =

∑
i(Yi − Ȳ )(Xi − X̄)∑

k(Xk − X̄)2
=

∑
i
Yi−Ȳ
Xi−X̄

(Xi − X̄)2∑
k(Xk − X̄)2

=
∑
i

wi bi , (55)

where

bi =
Yi − Ȳ
Xi − X̄

and wi =
(Xi − X̄)2∑
k(Xk − X̄)2

are case-based slopes and weights. The slope for the i’th case is based on the line segment that reaches from

the center point (X̄, Ȳ ) to the data point (Xi, Yi). The weights grow with the square of the distance of Xi

from X̄. This is consistent with the variance of the case-based slopes bi: V [bi|X] = n−1
n σ2/(Xi− X̄)2, assuming

homoskedasticity only, V [Yi|Xi] = σ2, but not linearity of µ(Xi) = E[Yi|Xi]. Plausibly, wi ∼ 1/V [bi] ∼ (Xi−X̄)2,

and β̂ is therefore the LS solution of a weighted mean problem:

β̂ = argminβ̃

∑
i

wi (bi − β̃)2,

which is the same as the unweighted LS problem

β̂ = argminβ̃

∑
i

((Yi − Ȳ )− β̃ (Xi − X̄))2.

[A well-known variant, used for example in Gelman and Park (2008), represents the slope estimate as follows:

β̂ =
∑
i,i′

wi,i′ bi,i′ , where wi,i′ =
(Xi −Xi′)

2∑
k,k′(Xk −Xk′)2

and bi,i′ =
Yi − Yi′
Xi −Xi′

are pairwise weights and slopes.]

We can carry the preceding over to E[β̂|X], which is the target of LS estimation conditional on the design

X. We make no assumption of linearity about µi = E[Yi|X], which can in fact be entirely arbitrary. Taking the

conditional expectation in (55) given X, we obtain

E[β̂|X] =

∑
i(µi − µ̄) · (Xi − X̄)∑

k(Xk − X̄)2
=
∑
i

wi βi , (56)

where βi = (µi− µ̄)/(Xi− X̄). Thus E[β̂|X], too, is an average of case-based slopes, for line segments from (X̄, µ̄)

to (Xi, µi). [This is illustrated in Figure 3.]

Finally, we can extend the above to the population when the design X is considered random, no conditioning

is applied, and again no assumption of linearity about µ(X) = E[Y |X] is made:

β = argminβ̃ E

[(
(Y −E[Y ])− β̃(X −E[X])

)2
]

=
E [(µ(X)−E[µ(X)]) (X −E[X])]

E[(X −E[X])2]

= E[w(X)β(X)] ,
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where

β(X) =
µ(X)−E[µ(X)]

X −E[X]
and w(X) =

(X −E[X])2

E[(X −E[X])2]
,

and, of course: E[µ(X)] = E[Y ].
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Figure 3: The dots show points (Xi, µi) that do not fall on a line; they fall on the red curve. The point (0, 0) is

the center (X̄, µ̄). The arrows show the segments from the center to the points (Xi, µi); their slopes are βi. The

average slope β is shown in blue. It is relatively flat because the weights are large for outlying values Xi.

B Proofs

B.1 Conditional Expectation of RSS

The conditional expectation of the RSS allowing for nonlinearity and heteroskedasticity:

E[‖r‖2|X] = E[Y T (I −H)Y |X] (57)

= E[(Xβ + η + ε)′(I −H)(Xβ + η + ε)|X] (58)

= E[(η + ε)T (I −H)(η + ε)|X] (59)

= tr(E[(I −H)(η + ε)(η + ε)T |X]) (60)

= tr((I −H)(ηηT +E[εεT |X]) (61)

= tr((I −H)(ηηT +Dσ2) (62)

= |(I −H)η|2 + tr((I −H)Dσ2) (63)
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B.2 Limit of Squared Adjusted Predictors

The asymptotic limit of ‖Xj•‖2:

1

N
‖Xj•‖2 =

1

N
XT

j (I −H\j)Xj

=
1

N

(
XT

j Xj −XT
jH\jXj

)
=

1

N
X2
i,j −

(
1

N

∑
Xi,j

~X
T

i,\j

)(∑
i

~Xi,\j
~X
T

i,\j

)−1(∑
i

~Xi,\jXi,j

)
P−→ E[X2

j ] − E[Xj
~X\j ]E[ ~X\j ~X

T

\j ]
−1E[ ~X\jXj ]

= E[Xj•
2]

B.3 Conventional SE

We will use the notations Σ ~X
= E[ ~X ~X

T
] and Σ

η( ~X) ~X
= E[η( ~X)2 ~X ~X

T
], and we will also need a p-dimensional

normal random vector Z for the following limit in distribution:

1
N1/2

N∑
i=1

η( ~Xi) ~X
T

i
D−→ Z ∼ N

(
0,Σ

η( ~X) ~X

)
.

The following are the ingredients for the limiting behaviors of ‖η‖2 and ‖Hη‖2:

N (XTX)−1 =

(
1

N

N∑
i=1

~Xi
~X
T

i

)−1

P−→ Σ−1
~X

1
N ‖η‖

2 = 1
N

N∑
i=1

η( ~Xi)
2

P−→ E[η( ~X)2] = V [η( ~X)]

‖Hη‖2 = ηTX(XTX)−1XTη

=

(
1

N1/2

N∑
i=1

η( ~Xi) ~X
T

i

)(
1
N

N∑
i=1

~Xi
~X
T

i

)−1(
1

N1/2

N∑
i=1

η( ~Xi) ~Xi

)
D−→ ZTΣ−1

~X
Z

1
N ‖Hη‖

2 P−→ 0

For large N and fixed p, as N/(N − p− 1)→ 1 we have

N

1
N−p−1‖(I −H)η‖2

‖Xj•‖2
P−→ E[η( ~X)2]

E[Xj•
2]

. (64)
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B.4 Asymptotic Normality in Terms of Adjustment

We gave the asymptotic limit of the conditional bias in vectorized form after (33)-(35). Here we derive the

equivalent element-wise limit using adjustment to show (36)-(38). The variance of the conditional bias is the

marginal inflator of SE.

N1/2(E[β̂j |X]− βj) = N1/2 〈Xj•,η〉
‖Xj•‖2

=
1

N1/2X
T
j η − 1

N1/2X
T
jH\jη

1
N ‖Xj•‖2

1

N1/2
XT

jH\jη =
1

N1/2
XT

j X\j(X
T
\jX\j)

−1XT
\jη

=

(
1

N

∑
i

Xi,j
~X
T

i,\j

)(
1

N

∑
i

~Xi,\j
~X
T

i,\j

)−1(
1

N1/2

∑
i

~Xi,\jη( ~Xi)

)
D
≈ E[Xj

~X\j ]E[ ~X\j ~X
T

\j ]

(
1

N1/2

∑
i

~Xi,\jη( ~Xi)

)

= βTj·

(
1

N1/2

∑
i

~Xi,\jη( ~Xi)

)

=
1

N1/2

∑
i

(βTj·
~Xi,\j)η( ~Xi)

1

N1/2

(
XT

j η −XT
jH\jη

) D
≈ 1

N1/2

∑
i

(
Xi,j − βTj· ~Xi,\j

)
η( ~Xi)

D−→ N
(

0,V [(Xj − βTj· ~X\j)η( ~X)]
)

= N
(

0,V [Xj•η( ~X)]
)

N1/2(E[β̂j |X]− βj)
D−→ N

(
0,
V [Xj•η( ~X)]

E[Xj•
2]2

)

20



B.5 A Family of Nonlinearities with Extreme RAV

We refer to the example constructed in Section 6 and recall that both E[X2] = 1 and E[ηt(X)2] = 1. We

abbreviate p̄(t) = 1− p(t).

RAV (ηt) = E
[
ηt(X)2X2

]
=

1

p(t)p̄(t)
E
[(

1[|X|>t] − p(t)
)2
X2
]

=
1

p(t)p̄(t)
E
[(

1[|X|>t] − 2 · 1[|X|>t] p(t) + p(t)2
)
X2
]

=
1

p(t)p̄(t)
E
[(

1[|X|>t](1− 2 p(t)) + p(t)2
)
X2
]

=
1

p(t)p̄(t)

(
E
[
1[|X|>t]X

2
]

(1− 2 p(t)) + p(t)2
)

≥ 1

p(t)p̄(t)

(
p(t) t2 (1− 2 p(t)) + p(t)2

)
for p(t) ≤ 1

2

=
1

p̄(t)

(
t2 (1− 2 p(t)) + p(t)

)
≥ t2 (1− 2 p(t)) + p(t)

∼ t2 as t ↑ ∞.

For the following we note 1[|X|>t] − p(t) = −1[|X|≤t] + p̄(t):

RAV (ηt) = E
[
ηt(X)2X2

]
=

1

p(t)p̄(t)
E
[(

1[|X|≤t] − p̄(t)
)2
X2
]

=
1

p(t)p̄(t)
E
[(

1[|X|≤t] − 2 · 1[|X|≤t] p̄(t) + p̄(t)2
)
X2
]

=
1

p(t)p̄(t)
E
[(

1[|X|≤t](1− 2 p̄(t)) + p̄(t)2
)
X2
]

=
1

p(t)p̄(t)

(
E
[
1[|X|≤t]X

2(1− 2 p̄(t))
]

+ p̄(t)2
)

≤ 1

p(t)p̄(t)

(
p̄(t) t2 (1− 2 p̄(t)) + p̄(t)2

)
for p̄(t) ≤ 1

2

=
1

p(t)

(
t2 (1− 2 p̄(t)) + p̄(t)

)
∼ t2 + p̄(t) as t ↓ 0,

assuming p̄(0) = P [X = 0] = 0.
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