Reproducibility — Replicability: P-values and the Larger Questions

Andreas Buja
Department of Statistics, The Wharton School
University of Pennsylvania
Philadelphia, USA
With the PoSI group:
Richard Berk, Larry Brown, Linda Zhao, Kai Zhang, Ed George

NRC 2015/02/26-27

P-Values

Boos \& Stefanski's contribution:

- Raising awareness of sampling variability in p-values.
- Showing that it can be quantified.
- Fundamental question: Seeing a p-value, do we believe that under replication something close to it would appear again and again? (see Steve Goodman citing Fisher)
- Use more stringent cut-offs than 0.05 to achieve replicable 0.05 .

Basic pedagogical problems:

- P-values are random variables!

They smell like probabilities but are transformed/inverted test statistics.

- The sense of "random variable": "sampling variability"
\Rightarrow a tragically belittling term for a deep concept!
- "Sampling variability" = dataset-to-dataset variability = possible-worlds variability

P-Values: From Variability to Bias

Source of Bias: Standard Error SE (tie to Benjamini and $G \times L$)

- Generic $\mathbf{S E}^{2}: \quad X_{i}$ standardized $\Rightarrow \mathrm{V}[\bar{X}]=1 / n$
- Assumption: $\quad X_{i} \sim$ uncorrelated
- Consider exchangeable dependence: $\operatorname{Corr}\left[X_{i}, X_{j}\right]=\rho>0$

$$
\Rightarrow \quad \mathbf{V}[\bar{X}]=(1-\rho) / n+\rho \geq \rho>0
$$

- Example: $\rho=0.01 \Rightarrow \mathbf{S E} \geq \sqrt{\rho}=0.1$, never mind n.
- Random effects model for research studies: $\quad \mathbf{X}_{\text {study }, i}=\alpha_{\text {study }}+\epsilon_{\text {study }, i}$

$$
\Rightarrow \quad \operatorname{Corr}\left[X_{\text {study }, i}, X_{\text {study }, j}\right]=\sigma_{\alpha}^{2} /\left(\sigma_{\alpha}^{2}+\sigma_{\epsilon}^{2}\right)=\rho
$$

\Rightarrow Exchangeable intra-study correlation

- Message: Don’t ask for larger studies; ask for multiple studies.

Statistical and Economic Thinking for Replicability

- Statistical Thinking: Statistics = "quantitative epistemology" Statistics = the science that creates protocols for the acquisition of qualified knowledge.
- Absence of protocols is damaging.
- Important distinctions made today: replicability vs reproducibility; empirical, computational, statistical
- Economic Thinking: Research = "economic system"

To solve the replicability problem, we must set incentives right.

- Points of attack:
- Economic incentives: Journals and their policies
- Statistical protocols: Researchers and their protocols

Two Types of Reform: (1) Economics \rightarrow Journals

Journals: Stop the chase of "breakthrough science".

- Publish, solicit, and treat favorably:
- replicated results,
- negative outcomes.
- Insidious:
- Researchers will self-censor if journals treat replicated results and negative outcomes even slightly less favorably.
- Researchers lose interest as soon as negative outcomes are apparent.
- Ideal protocol: Journals should accept/reject NOT knowing outcomes (Young \& Karr, Significance Mag. 2011). Accept/reject based on:
- merit and interest of the research problem,
- study design,
- quality of researchers.
- Goal: No outcome-based deselection and a share of replication.

Two Types of Reform: (2) Statistics \rightarrow Researchers

Researchers: Account for all data-analytic activity.

- Reveal all exploratory data analysis, in particular visualizations.
- Reveal all model searching (lasso, forward/backward/all-subsets, Bayesian, ...; CV, AIC, BIC, RIC...)
- Reveal all model diagnostics and actions resulting from them.
- Attempt inference that accounts for all of the above.
- Principle: Any data-analytic action that could result in a different outcome in another dataset needs to be accounted for.
- Goal: "Whole-Data-Analysis inference"

Some Attempts

- Post-selection inference:
- Did you ever write a contract with yourself to try just one selection method?
- PoSI: Inference that is inferentially insured against all attempts at model selection, including significance hunting (a form of p -hacking). Berk et al., "Valid Post-Selection Inference," AoS, 2013
- Inference for data visualization: a beginning
- Principle: Plot synthetic data and compare with the actual data.
- Sources of synthetic data: Permutations for independence tests, parametric bootstrap for model diagnostics, sampling conditional on sufficient statistics, ...
- Line-up protocol: insert the actual plot among 19 synthetic plots
$\Rightarrow 5 \%$ significance
Buja et al., "Statistical Inference for Exploratory Data Analysis and Model Diagnostics," Philosophical Transactions of the Royal Society A., 2009

Line-Up: 5% significance if you find the actual data

Climate Rating

Summary

- P-values: variability and bias
- Institutional Reforms (1): Outcome-blind policies for journals
- Institutional Reforms (2): Whole-data-analysis protocols for researchers
- To achieve replicability, replicate.

THANKS!

