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Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)

I Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:
< 1/4 were viewed as replicated.

I Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase II drug trials

I Ioannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

Many potential causes:
I publication biases
I economic biases
I experimental biases
I statistical biases
I ...
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Statistical Biases – one among several

Hypothesis: A statistical bias is due to
an absence of accounting for model/variable selection.

Model selection is done on several levels:
I formal selection: AIC, BIC, Lasso, ...
I informal selection: residual plots, influence diagnostics, ...
I post hoc selection: “The effect size is too small in relation to the cost of data

collection to warrant inclusion of this predictor.”

Suspicions:
I All three modes of model selection may be used in much empirical research.
I Ironically, the most thorough and competent data analysts may also be the

ones who produce the most spurious findings.
I If we develop valid post-selection inference for “adaptive Lasso”, say,

it won’t solve the problem because few empirical researchers would commit
themselves a priori to one formal selection method and nothing else.
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Linear Model Inference and Variable Selection

Y = Xβ + ε

X = fixed design matrix, N × p, N > p, full rank.

ε ∼ NN
(
0, σ2IN

)
In textbooks:

1 Variables selected
2 Data seen
3 Inference produced

In common practice:
1 Data seen
2 Variables selected
3 Inference produced

Is this inference valid?
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Evidence from a Simulation

Marginal Distribution of Post-Selection t-statistics:
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The overall coverage probability of the conventional post-selection CI is
83.5% < 95%.

For p = 30, the coverage probability can be as low as 39%.
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The PoSI Procedure — Rough Outline

We propose to construct Post Selection Inference (PoSI) with guarantees
for the coverage of CIs and Type I errors of tests.

We widen CIs and retention intervals to achieve correct/conservative
post-selection coverage probabilities. This is the price we have to pay.

The approach is a reduction of PoSI to simultaneous inference.

Simultaneity is across all submodels and all slopes in them.

As a result, we obtain

valid PoSI for all variable selection procedures!

But first we need some preliminaries on

Targets of Inference and Inference in Approximate Models
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Submodels — Notation, Parameters, Assumptions

Denote a submodel by the integers M = {j1, j2, ..., jm} for the predictors:

XM =
(
Xj1 ,Xj2 , ...,Xjm

)
∈ IRN×m.

The LS estimators in the submodel M are

β̂M =
(
XT
MXM

)−1XT
M Y ∈ IRm

What does β̂M estimate, not assuming the truth of M?
A: Its expectation — i.e., we ask for unbiasedness.

µ := E[Y] ∈ IRN arbitrary!!

βM := E[β̂M] =
(
XT
MXM

)−1XT
M µ

Once again: We do not assume that the submodel is correct,
i.e., we allow µ 6= XMβM! But XMβM is the best approximation to µ.
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Adjustment, Estimates, Parameters, t-Statistics

Notation and facts for the components of β̂M and βM, assuming j ∈ M:

Let Xj•M be the predictor Xj adjusted for the other predictors in M:

Xj•M :=
(
I− HMr{j}

)
Xj ⊥ Xk ∀k ∈ Mr {j}.

Let β̂j•M be the slope estimate and βj•M be the parameter for Xj in M:

β̂j•M :=
XT

j•MY
‖Xj•M‖2 , βj•M :=

XT
j•ME[Y]

‖Xj•M‖2 .

Let tj•M be the t-statistic for β̂j•M and βj•M:

tj•M :=
β̂j•M − βj•M

σ̂/‖Xj•M‖
=

XT
j•M(Y− E[Y])

‖Xj•M‖ σ̂
.
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Parameters One More Time

Once more: If the predictors are partly collinear (non-orthogonal) then

M 6= M′ ⇒ βj•M 6= βj•M′ in value and in meaning.

Motto: A difference in adjustment implies a difference in parameters.

It follows that there are up to p 2p−1 different parameters βj•M !!!

However, they are intrinsically p-dimensional:

βM = (XT
MXM)−1XT

M Xβ

where X and β are from the full model.

Hence each βj•M is a lin. comb. of the full model parameters β1, ..., βp.

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximations 2013/11/13 9 / 36



Geometry of Adjustment
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Column space
of X for p =2
predictors,
partly collinear
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Error Estimates σ̂2

Important: To enable simultaneous inference for all tj•M,
I do not use the error estimate /////σ̂2

M := ‖Y− XMβ̂
M
‖2/(n −m) in M;

(the selected model M may well be 1st order wrong;)
I instead, for all models M use σ̂2 = σ̂2

Full from the full model.

=⇒ tj•M will have a t-distribution with the same dfs ∀M, ∀j ∈ M.

What if even the full model is 1st order wrong?
Answer: σ̂2

Full will be inflated and inference will be conservative.
But better estimates are available if ...

I exact replicates exist: use σ̂2 from the 1-way ANOVA of replicates;
I a larger than the full model can be assumed 1st order correct: use σ̂2

Large;
I a previous dataset provided a valid estimate: use σ̂2

previous;
I nonparametric estimates are available: use σ̂2

nonpar (Hall and Carroll 1989).

PS: In the fashionable p > N literature, what is their σ̂2?
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Statistical Inference under First Order Incorrectness

Statistical inference, one parameter at a time:
If r = dfs in σ̂2 and K = t1−α/2,r , then the confidence intervals

CIj•M(K ) := [ β̂j•M ± K σ̂/‖Xj•M‖ ]

satisfy each P[βj•M ∈ CIj•M(K ) ] = 1−α.

Achieved so far:

Y = µ+ ε, ε ∼ NN
(
0, σ2I

)
I No assumption is made that the submodels are 1st order correct;

I Even the full model may be 1st order incorrect
if a valid σ̂2 is otherwise available.

I A single error estimate opens up the possibility of
simultaneous inference across submodels.
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Variable Selection

What is a variable selection procedure?

A map Y 7→ M̂ = M̂(Y), IRN → P({1, ...p})

I M̂ divides the response space IRN into up to 2p subsets.

I In a fixed-predictor framework, selection purely based on X does not
invalidate inference (example: deselect predictors based on VIF, H, ...).

Candidate for meaningful coverage probabilities:

P[ ∀j ∈ M̂ : βj•M̂ ∈ CIj•M̂(K ) ]

Problem: No such coverage probabilities are known or can be estimated
for most selection procedures M̂.

Solution: Ask for more! It is possible to construct
universal Post-Selection Inference for all selection procedures.
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Reduction to Simultaneous Inference

Lemma
For any variable selection procedure M̂ = M̂(Y), we have the following
“significant triviality bound”:

max
j∈M̂
|tj•M̂| ≤ max

M

max
j∈M
|tj•M| ∀Y,µ ∈ IRN .

Theorem
Let K be the 1−α quantile of the “max-max-|t |” statistic of the lemma:

P
[

max
M

max
j∈M
|tj•M| ≤ K

] (≥)
= 1− α.

Then we have the following universal PoSI guarantee:

P
[
βj•M̂ ∈ CIj•M̂(K ) ∀j ∈ M̂

]
≥ 1− α ∀M̂.
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PoSI Geometry — Simultaneity
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PoSI polytope
= intersection
of all t-bands.
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Computing PoSI

The simultaneity challenge: there are p 2p−1 statistics |tj•M|.

p 3 4 5 6 7 8 9 10 11
#|t| 12 32 80 192 448 1, 024 2, 304 5, 120 11, 264
p 12 13 14 15 16 17 18 19 20
#|t| 24, 576 53, 248 114, 688 245, 760 524, 288 1, 114, 112 2, 359, 296 4, 980, 736 10, 485, 760

Monte Carlo-approximation in R, brute force, up to p ≈ 20.

Computations are specific to a design X: KPoSI = KPoSI(X, α, df )

One Monte Carlo computation is good for any α and any error df .
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Scheffé Protection Yields Valid PoSI

Scheffé Simultaneous Inference is based on the statistic

sup
x∈col(X)r{0}

|xT (Y− E[Y])|
‖x‖ σ̂

∼
√

p Fp,df .

I The Scheffé method provides sim. inference for all linear “contrasts”.
I The Scheffé constant is KSch = KSch(p, α, df ) =

√
p Fp,df ;1−α.

Compare: PoSI Simultaneous Inference is based on the statistic

max
M

max
j∈M

|XT
j•M(Y− E[Y])|
‖Xj•M‖ σ̂

The PoSI contrasts are a subset of the Scheffé contrasts, hence:
I Scheffé statistic ≥ PoSI statistic
I KSch ≥ KPoSI

I Scheffé yields universally valid conservative PoSI.
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The Scheffé Ball and the PoSI Polytope
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●

Circle =
Scheffé Ball

The PoSI
polytope is
tangent to
the ball.
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PoSI Benefits

PoSI protection may be very conservative, but it has benefits:

One can try many selection methods and pick the “best” by whatever
standard. The PoSI-significant coefficents will be valid.

One can perform informal model diagnostics and change one’s mind
based on them, PoSI inference will still be valid.

After computing PoSI, one can go on fishing expeditions among models
and search for significances based on PoSI. The fishing will not invalidate
the inference.

In a clinical trial, one can perform post-hoc “data mining” for significant
effects, and the PoSI-protected findings will be valid.
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PoSI from Split Samples

Very different “obvious” approach: Split the data into

a model selection sample and

an estimation & inference sample.

Pros:

Valid inference for the
selected model.

Flexibility in models:
GLIMs!

Less conservative
inference than PoSI.

Cons:

Artificial randomness from a
single split.

Reduced effective sample size.

More model selection uncertainty.

More estimation uncertainty.

Loss of conditionality on X.
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Conditionality on X: Fixed versus Random X

With split-sampling we have broken conditionality on X:
random splitting means the predictors are treated as random.

Why do some statisticians insist on fixed-X regression?

Answer: Fisher’s ancillarity argument for X

Fact: Econometricians do not condition on X.
They use an alternative form of inference based on the

Sandwich Estimate of Standard Error.

Do we know regression inference that is not conditional on X?
Yes, we do: the Pairs Bootstrap
to be distinguished from the Residual Bootstrap (which is fixed-X).
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The Pairs Bootstrap for Regression

Assumptions: (xi , yi ) ∼ P(dx,dy) i.i.d.,
P non-degenerate: E[xx′] > 0, + technicalities for CLTs of estimates.

There is no regression model, but we apply regression anyway, LS, say:
β̂ = (X′X)-1X′y

The nonparametric paired bootstrap applies:
Resample (xi , yi ) pairs → (x∗i , y

∗
i ) → β̂

∗
.

Note: Militant conditionalists would reject this; they would bootstrap residuals.

Estimate SE(β̂j ) by ŜEboot(β̂j ) = SD∗(β∗j ).

Question: Letting ŜElin(β̂j ) = σ̂
‖xj•‖ , is the following always true?

ŜEboot(β̂j)
?
≈ ŜElin(β̂j)
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≈ ŜElin(β̂j)

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximations 2013/11/13 22 / 36



Conventional vs Bootstrap Std Errors: Can they differ?

Compare conventional and bootstrap standard errors:

Boston Housing Data (no groans, please! Caveat...)
Response: MEDV of single residences in a census tract, N = 506
R2 ≈ 0.74, residual dfs = 487

β̂j SElin SEboot SEboot/SElin tlin
CRIM -0.099 0.031 0.033 1.074 -3.261

ZN 0.121 0.035 0.035 1.004 3.508

INDUS 0.017 0.046 0.038 0.843 0.382

CHAS 0.074 0.024 0.036 1.503 3.152

NOX -0.224 0.048 0.048 1.003 -4.687

RM 0.290 0.032 0.065 2.049 9.149

AGE 0.002 0.040 0.050 1.236 0.044

DIS -0.344 0.045 0.048 1.068 -7.598

RAD 0.288 0.062 0.060 0.958 4.620

TAX -0.233 0.068 0.051 0.740 -3.409

PTRATIO -0.218 0.031 0.026 0.865 -7.126

B 0.092 0.026 0.027 1.036 3.467

LSTAT -0.413 0.039 0.078 1.995 -10.558
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Conventional vs Bootstrap Std Errors (contd.)

Compare conventional and bootstrap standard errors:

LA Homeless Data (Richard Berk, UPenn)
Response: StreetTotal of homeless in a census tract, N = 505
R2 ≈ 0.13, residual dfs = 498

β̂j SElin SEboot SEboot/SElin tlin
MedianInc -4.241 4.342 2.651 0.611 -0.977

PropVacant 18.476 3.595 5.553 1.545 5.140

PropMinority 2.759 3.935 3.750 0.953 0.701

PerResidential -1.249 4.275 2.776 0.649 -0.292

PerCommercial 10.603 3.927 5.702 1.452 2.700

PerIndustrial 11.663 4.139 7.550 1.824 2.818

Which standard errors are we to believe?
What is the reason for the discrepancy?
Is the paired bootstrap a failure?
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First Reason for SEboot 6= SElin

Consider a noise-free nonlinearity,

yi = µ(xi ) ∼ x2
i , xi i.i.d.

and fit a straight line anyway. Watch the effect:
source("http://stat.wharton.upenn.edu/�buja/PAPERS/src-conspiracy-animation.R")

source("http://stat.wharton.upenn.edu/�buja/PAPERS/src-conspiracy-animation2.R")

Nonlinearity and randomness of X conspire
to create sampling variability.

“Econometrics 101”: Hal White†2012 (1980)

“Using Least Squares to Approximate Unknown Regression Functions,” Intl. Economic Review.
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Second Reason for SEboot 6= SElin

Which has the smallest/largest true SE(β̂)? (
∑
σ2

i are the same.)
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SE=0.02 SE=0.10 SE=0.07

Heteroskedasticity: σ2(x) := V[y |x] 6= const

Tradition in statistics – conditional on X:
I Hinkley: “Jackknifing in Unbalanced Situations,” Technometrics (1977)

I Wu: “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis,” AoS (1986).

“Econometrics 101”: Hal White†2012 (1980)
I “A Heteroskedasticity-Consistent Covariance Matrix Estimator

and a Direct Test for Heteroskedasticity,” Econometrica (1980)
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Second Reason for SEboot 6= SElin

Which has the smallest/largest true SE(β̂)? (
∑
σ2

i are the same.)
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Second Reason for SEboot 6= SElin

Which has the smallest/largest true SE(β̂)? (
∑
σ2

i are the same.)
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Second Reason for SEboot 6= SElin

Which has the smallest/largest true SE(β̂)? (
∑
σ2

i are the same.)
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But Why Would Anyone Use an Incorrect Model?

Often we don’t know that the model is violated by the data.
=⇒ An argument in favor of diligent model diagnostics...

The problem persists even if we use basis expansion
but miss the nature of the nonlinearity: curves, jaggies, jumps, ...

Linear models provide low-df approximations which may be all that is
feasible when n/p is small.

Even when the model is only an approximation, the slopes contain
information about the direction of the association.

∃ interpretations of slopes w/o assuming a correct model:

weighted averages of “case slopes”

β̂ =
∑

i=1...n

wi β̂i , β̂i =
yi − ȳ
xi − x̄

, wi =
(xi − x̄)2∑

k=1..n(xk − x̄)2 .
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Redefining the Population and the Parameters

Joint distribution, i.i.d. sampling: (xi , yi ) ∼ P(dx,dy)

Assume properties sufficient to grant CLTs for estimates of interest.

No assumptions on µ(x) = E[ y |x ], σ2(x) = V[ y |x ].

Define a population LS parameter:

β := argminβ̃ E
[(

y − β̃
′
x
)2
]

= E[ x x′]-1 E[ x y ]

This is the target of inference: β = β(P)

Thus β is a statistical functional, not a generative parameter.

=⇒ “Semi-parametric LS framework”
(�Random X Theory�)
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The LS Population Parameter

X

Y

Y = µ(X)

X
Y

Y = µ(X)

If µ(x) is nonlinear, β(P) depends on the x-distribution P(dx).

If µ(x) = β′x is linear, then β = β(P) is the same for all P(dx)).
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The LS Estimator and its Target

Data: X = (x1, ...,xN)′, y = (y1, ..., yN)′,

Target of estimation and inference in linear models theory:

β(X) = E[β̂|X] = (X′X)−1X′ E[y|X]

When µ(x) = E[y |x] is nonlinear, then β(X) is a random vector.
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Illustration of Nonlinearity and Heteroskedasticity

x

y

µ(x)
βTx

●

●

●
y

ε

η

δ

Error:

ε|x = y|x − µ(x)

Nonlinearity:

η(x) = µ(x) − βTx

Deviation from Linear:

δ|x = η(x) + ε|x
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The CLT for Random-X and the Sandwich Formula

CLT:

N1/2 (β̂ − β)
D−→ N

(
0, E[ xxT ]−1 E[ (Y − β′x)2xxT ] E[ xxT ]−1)

Simplest Sandwich Estimator of Asymptotic Variance:

ÂVsand :=: Ê [ xxT ]−1 Ê [ (Y − β̂
′
x)2xxT ] Ê [ xxT ]−1

Linear Models Theory Estimator of Asymptotic Variance:

AVlin :=: Ê [ xxT ]−1 σ̂2
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Comparing Conditional 6= Unconditional Inference

Consider the simplest case of a single predictor, no intercept,
and define the conditional MSE by m2(x) := E[(Y − β′x)2|x ]

The correct asymptotic variance is

AVsand =
E[m2(x)x2]

E[x2]2
.

If we were to use standard errors from linear models theory, it would
mean using the following incorrect asymptotic variance:

AVlin =
E[m2(x)]

E[x2]

Define the “Ratio of Asymptotic Variances” or RAV:

RAV :=
AVsand

AVlin
=

E[m2(x)x2]

E[m2(x)] E[x2]
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Extremes of Conditional 6= Unconditional Inference

RAV =
AVsand

AVlin
=

E[m2(x)x2]

E[m2(x)]E[x2]

Fact:
max

m
RAV = ∞, min

m
RAV = 0

Conclusion: Asymptotically the discrepancy between conditional and
unconditional SEs can be arbitrarily large.

In practice, RAV > 1 is more frequent and more dangerous because it
invalidates conventional linear models inference.
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Outlook
Big Benefit: The semi-parametric LS framework permits arbitrary joint
(y ,x) distributions.

I The assumption of homoskedasticity in the PoSI framework can be given up
if its inference is based on sandwich or pairs bootstrp.

I Valid inference is obtained also for arbitrarily transformed data (f (y), g(x)).
I If a new PoSI technology is constructed based on the semi-parametric LS

framework, it will allow us to protect against selection of a finite dictionary of
transformations in addition to selection of predictors.

Some obstacles:
I Asymptotic variance is a 4th order functional of the underlying distribution.
I Hence sandwich estimates of standard error are highly non-robust. A small

fraction of the data can determine the standard error estimates.
I We may have to abandon LS and look for estimation methods whose

asymptotic variances are more robust.
I Computations of PoSI methods based on the semi-parametric framework will

be even more expensive, but this should not deter us.
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THANKS!
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