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Larger Problem: Non-Reproducible Empirical Findings
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Larger Problem: Non-Reproducible Empirical Findings

@ Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)
» Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:

< 1/4 were viewed as replicated.

» Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase Il drug trials

» loannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”
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Larger Problem: Non-Reproducible Empirical Findings

@ Indicators of a problem
(from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”)
» Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research:
< 1/4 were viewed as replicated.
» Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase Il drug trials
» loannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

@ Many potential causes:
» publication biases
» economic biases
» experimental biases
statistical biases
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Statistical Biases — one among several

@ Hypothesis: A statistical bias is due to
an absence of accounting for model/variable selection.
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@ Hypothesis: A statistical bias is due to
an absence of accounting for model/variable selection.
@ Model selection is done on several levels:
» formal selection: AIC, BIC, Lasso, ...
» informal selection: residual plots, influence diagnostics, ...
» post hoc selection: “The effect size is too small in relation to the cost of data
collection to warrant inclusion of this predictor.”
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Statistical Biases — one among several

@ Hypothesis: A statistical bias is due to
an absence of accounting for model/variable selection.
@ Model selection is done on several levels:
» formal selection: AIC, BIC, Lasso, ...
» informal selection: residual plots, influence diagnostics, ...

» post hoc selection: “The effect size is too small in relation to the cost of data
collection to warrant inclusion of this predictor.”

@ Suspicions:

» All three modes of model selection may be used in much empirical research.

» lIronically, the most thorough and competent data analysts may also be the
ones who produce the most spurious findings.

» If we develop valid post-selection inference for “adaptive Lasso”, say,
it won’t solve the problem because few empirical researchers would commit
themselves a priori to one formal selection method and nothing else.
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Linear Model Inference and Variable Selection

Y=XB+¢€

@ X = fixed design matrix, N x p, N > p, full rank.
@ €~ ./\/N(O,J2|N)

In textbooks: In common practice:
@ Variables selected @ Data seen
@ Data seen @ Variables selected

@ Inference produced @ Inference produced
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Linear Model Inference and Variable Selection

Y=XB+¢€

@ X = fixed design matrix, N x p, N > p, full rank.
@ e~ NN(O,J2|N)

In textbooks: In common practice:

@ Variables selected @ Data seen

@ Data seen @ Variables selected
@ Inference produced @ Inference produced

Is this inference valid?
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Evidence from a Simulation

Marginal Distribution of Post-Selection ¢-statistics:
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Evidence from a Simulation

Marginal Distribution of Post-Selection ¢-statistics:

—— Nominal Dist.
— Actual Dist.

|

Density
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@ The overall coverage probability of the conventional post-selection Cl is
83.5% < 95%.

@ For p = 30, the coverage probability can be as low as 39%.
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The PoSI Procedure — Rough Outline

@ We propose to construct Post Selection Inference (PoSI) with guarantees
for the coverage of Cls and Type | errors of tests.

@ We widen Cls and retention intervals to achieve correct/conservative
post-selection coverage probabilities. This is the price we have to pay.

@ The approach is a reduction of PoSI to simultaneous inference.
@ Simultaneity is across all submodels and all slopes in them.
@ As aresult, we obtain

valid PoSI for all variable selection procedures!

@ But first we need some preliminaries on

Targets of Inference and Inference in Approximate Models
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Submodels — Notation, Parameters, Assumptions

@ Denote a submodel by the integers M = {ji, o, ..., jm} for the predictors:
Xar = (Xj,, X o Xj,) € RV™.
@ The LS estimators in the submodel M are
By = (XK/IXM)AX{I Y ¢ R"
@ What does 3,, estimate, not assuming the truth of M?
A: Its expectation — i.e., we ask for unbiasedness.

p = E[Y] € RN arbitrary!!
Bu = E[BM] = (XI\T/IXM)71X1(/I 1

@ Once again: We do not assume that the submodel is correct,
i.e., we allow p # Xy 3y, ! But Xy By, is the best approximation to p.

2013/11/13
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Adjustment, Estimates, Parameters, -Statistics

Notation and facts for the components of 3,, and 3,;, assuming j € M:
@ Let X;,\ be the predictor X; adjusted for the other predictors in M:

X]‘.M = (l — HM\{/'}) X/' 1 Xk Vk e M~ {j}

o Let B/-,M be the slope estimate and 3;.\: be the parameter for X; in M:

X];MY . xth E[Y]

B..M = I je M -— :
! [ Xjena 2 ! [ Xjena 12
@ Let t,\; be the t-statistic for 5, and Bjuu:

. Biomt — Biom X]ZM(Y — E[Y])

liom == —% = P
! /11 Xjenll [Xjomll &
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Parameters One More Time

@ Once more: If the predictors are partly collinear (non-orthogonal) then

M#M = B # Bjow | invalue and in meaning.

Motto: A difference in adjustment implies a difference in parameters.
o It follows that there are up to p2f~" different parameters B, !!!
@ However, they are intrinsically p-dimensional:
Bu = (X{iXn) ' X{ X3
where X and 3 are from the full model.

@ Hence each S, is a lin. comb. of the full model parameters 51, ..., 5.

Andreas Buja (Wharton, UPenn) 2013/11/13 9/36



Geometry of Adjustment

Column space
of X for p=2
predictors,
partly collinear

[m] = = =

= 9DaACe
Andreas Buja (Wharton, UPenn)



Error Estimates 62

@ Important: To enable simultaneous inference for all .,

» do not use the error estimate 48/ := ||Y — XaBy[|2/(n — m) in M;
(the selected model M may well be 1st order wrong;)
» instead, for all models M use 4° = 6%, from the full model.

= ti.v Will have a t-distribution with the same dfs VM, Vj € M.
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Error Estimates 62

@ Important: To enable simultaneous inference for all #.u,

» do not use the error estimate 48/ := ||Y — XaBy[|2/(n — m) in M;
(the selected model M may well be 1st order wrong;)
» instead, for all models M use 4° = 6%, from the full model.

= ti.v Will have a t-distribution with the same dfs VM, Vj € M.

@ What if even the full model is 1st order wrong?
Answer: 57, will be inflated and inference will be conservative.
But better estimates are available if ...
» exact replicates exist: use 42 from the 1-way ANOVA of replicates;
> a larger than the full model can be assumed 1st order correct: use &fa,ge;
» a previous dataset provided a valid estimate: use ?rf,,ev,ous;
» nonparametric estimates are available: use a,,o,,pa, (Hall and Carroll 1989).

PS: In the fashionable p > N literature, what is their 52?
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Statistical Inference under First Order Incorrectness

@ Statistical inference, one parameter at a time:
If r=dfsiné?and K = t,_, >, , then the confidence intervals

CLin(K) = [Bom = K&/ Xjumll]

satisfy each P[Bjo € CLiam(K)] = 1—a.
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Statistical Inference under First Order Incorrectness

@ Statistical inference, one parameter at a time:
If r=dfsin 2 and K = ti_o/2.r , then the confidence intervals

Clio(K) = [Bjon = K&/ | Xjoml|]
satisfy each P[Bjm € CLiam(K)] = 1—qu
@ Achieved so far:
Y=rp+e e~Ny0,0%)

» No assumption is made that the submodels are 1st order correct;

» Even the full model may be 1st order incorrect
if a valid 52 is otherwise available.

» A single error estimate opens up the possibility of
simultaneous inference across submodels.
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Variable Selection

@ What is a variable selection procedure?

Amap Y — N =N(Y), RN = P({1,..p})

» M divides the response space IR" into up to 2° subsets.

» In a fixed-predictor framework, selection purely based on X does not

invalidate inference (example: deselect predictors based on VIF, H, ...).
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Variable Selection

@ What is a variable selection procedure?

Amap Y — N =N(Y), RN = P({1,..p})

» M divides the response space IR" into up to 2° subsets.

» In a fixed-predictor framework, selection purely based on X does not
invalidate inference (example: deselect predictors based on VIF, H, ...).

@ Candidate for meaningful coverage probabilities:
P[VjeM: B,y € CL g(K)]

@ Problem: No such coverage probabilities are known or can be estimated
for most selection procedures M.

@ Solution: Ask for more! It is possible to construct
universal Post-Selection Inference for all selection procedures.
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Reduction to Simultaneous Inference

Lemma

For any variable selection procedure NI = NI(Y), we have the following
“significant triviality bound”:

max |t «| < max max|t, VY, ue RV
j€1\7l |j.M| = M jeM |l M| ) b
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Reduction to Simultaneous Inference

Lemma
For any variable selection procedure NI = NI(Y), we have the following
“significant triviality bound”:

max [t
JEM

< max max |f.wm| VY, p e RN
M jeM

Theorem
Let K be the 1—« quantile of the “max-max-|t|” statistic of the lemma:

(

>)
/ <: = —
P maxmax || < K] = 1 —a.
Then we have the following universal PoSI guarantee:
P[ B € Cliy(K) VieM] > 1—a VAL

Andreas Buja (Wharton, UPenn) 2013/11/13
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PoS| Geometry — Simultaneity

PoSI polytope
= intersection
of all t-bands.

o F = = 9DaACe
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Computing PoSI

@ The simultaneity challenge: there are p2P~" statistics |tj.u.

p 3 4 5 6 7 8 9 10 11
#1t| 12 32 80 192 448 1,024 2,304 5,120 11, 264
o 12 13 14 15 16 17 18 19 20
#[t] | 24,576 | 53,248 | 114,688 | 245,760 | 524,288 | 1,114,112 | 2,359,296 | 4,980,736 | 10,485, 760

@ Monte Carlo-approximation in R, brute force, up to p ~ 20.

@ Computations are specific to a design X: Kpst = Kpesi(X, a, df)

@ One Monte Carlo computation is good for any « and any error df.
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Scheffé Protection Yields Valid PoSI

@ Scheffé Simultaneous Inference is based on the statistic

XT(Y — E[Y])
su "~ \/PFpar
N el

» The Scheffé method provides sim. inference for all linear “contrasts”.
» The Scheffé constantis Ksen = Ksen(p, o, df) = /P Fpari—a-
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Scheffé Protection Yields Valid PoSI

@ Scheffé Simultaneous Inference is based on the statistic

XT(Y — E[Y])
su — = 7 o Fy 4.
N el

» The Scheffé method provides sim. inference for all linear “contrasts”.
» The Scheffé constantis Ksc, = Ksen(p, o, df) = /P Fpari—a-

@ Compare: PoSI Simultaneous Inference is based on the statistic
X/ (Y — E[Y])]
max max ———————
M jeM 1 Xjomt|| 6

The PoSI contrasts are a subset of the Scheffé contrasts, hence:

» Scheffé statistic > PoSI statistic
> Kseh > Kpasi
» Scheffé yields universally valid conservative PoSlI.

Andreas Buja (Wharton, UPenn) 2013/11/13
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The Scheffé Ball and the PoSI Polytope

Circle =
Scheffé Ball

The PoSI
polytope is
tangent to
the ball.
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PoSI Benefits

PoSI protection may be very conservative, but it has benefits:

@ One can try many selection methods and pick the “best” by whatever
standard. The PoSl-significant coefficents will be valid.

@ One can perform informal model diagnostics and change one’s mind
based on them, PoSI inference will still be valid.

@ After computing PoSI, one can go on fishing expeditions among models
and search for significances based on PoSl. The fishing will not invalidate
the inference.

@ In a clinical trial, one can perform post-hoc “data mining” for significant
effects, and the PoSlI-protected findings will be valid.
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PoSI from Split Samples

Very different “obvious” approach: Split the data into
@ a model selection sample and

@ an estimation & inference sample.
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PoSI from Split Samples

Very different “obvious” approach: Split the data into
@ a model selection sample and

@ an estimation & inference sample.

Pros:

@ Valid inference for the
selected model.

@ Flexibility in models:
GLIMs!

@ Less conservative
inference than PoSl.
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PoSI from Split Samples

Very different “obvious” approach: Split the data into
@ a model selection sample and

@ an estimation & inference sample.

Pros: Cons:
@ Valid inference for the @ Artificial randomness from a
selected model. single split.
e Flexibility in models: @ Reduced effective sample size.
GLIMs! @ More model selection uncertainty.
@ Less conservative @ More estimation uncertainty.
inference than PoSI. @ Loss of conditionality on X.
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Conditionality on X: Fixed versus Random X

@ With split-sampling we have broken conditionality on X:
random splitting means the predictors are treated as random.

@ Why do some statisticians insist on fixed-X regression?
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@ Fact: Econometricians do not condition on X.
They use an alternative form of inference based on the
Sandwich Estimate of Standard Error.
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Answer: Fisher’s ancillarity argument for X
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They use an alternative form of inference based on the
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Conditionality on X: Fixed versus Random X

@ With split-sampling we have broken conditionality on X:
random splitting means the predictors are treated as random.

@ Why do some statisticians insist on fixed-X regression?
Answer: Fisher’s ancillarity argument for X

@ Fact: Econometricians do not condition on X.
They use an alternative form of inference based on the
Sandwich Estimate of Standard Error.

@ Do we know regression inference that is not conditional on X?
Yes, we do: the Pairs Bootstrap
to be distinguished from the Residual Bootstrap (which is fixed-X).
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The Pairs Bootstrap for Regression
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The Pairs Bootstrap for Regression

@ Assumptions: (X;,y;) ~ P(dx,dy) i.i.d.,

P non-degenerate: E[xx’] > 0, + technicalities for CLTs of estimates.

@ There is no regression model, but we apply regression anyway, LS, say:
B=(XX)"Xy

@ The nonparametric paired bootstrap applies:
Resample (x;, y;) pairs — (xI,y7) — 3.

Note: Militant conditionalists would reject this; they would bootstrap residuals.

e Estimate SE(3) by SEueei() = SD*(5)).
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The Pairs Bootstrap for Regression

@ Assumptions: (x;, y;) ~ P(dx,dy)i.i.d.,

P non-degenerate: E[xx’] > 0, + technicalities for CLTs of estimates.

@ There is no regression model, but we apply regression anyway, LS, say:
B=(XX)"Xy
@ The nonparametric paired bootstrap applies:

Resample (x;, y;) pairs — (xI,y7) — 3.

Note: Militant conditionalists would reject this; they would bootstrap residuals.

o Estimate SE(3) by SEuoe() = SD*(5)).
Question: Letting SE;i,(5) = \IX?.\I’ is the following always true?

SEboot(5) =~ SEm(5)
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Conventional vs Bootstrap Std Errors: Can they differ?

Compare conventional and bootstrap standard errors:

@ Boston Housing Data (no groans, please! Caveat...)
@ Response: MEDV of single residences in a census tract, N = 506
@ R? =~ (.74, residual dfs = 487
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Conventional vs Bootstrap Std Errors: Can they differ?

Compare conventional and bootstrap standard errors:

@ Boston Housing Data (no groans, please! Caveat...)

@ Response: MEDV of single residences in a census tract, N = 506
@ R? ~ 0.74, residual dfs = 487

B  SEin  SEboot SEioot/SEiin hin
CRIM -0.099 0.031 0.033 1.074 -3.261
ZN 0.121 0.035 0.035 1.004 3.508
INDUS 0.017 0.046 0.038 0.843 0.382
CHAS 0.074 0.024 0.036 1.503 3.152
NOX -0.224 0.048 0.048 1.003 -4.687
RM 0.290 0.032 0.065 2.049 9.149
AGE 0.002 0.040 0.050 1.236 0.044
DIS -0.344 0.045 0.048 1.068 -7.598
RAD 0.288 0.062 0.060 0.958 4.620
TAX -0.233 0.068 0.051 0.740 -3.409
PTRATIO -0.218 0.031 0.026 0.865 -7.126
B 0.092 0.026 0.027 1.036 3.467
LSTAT -0.413 0.039 0.078 1.995 -10.558

Andreas Buja (Wharton, UPenn)
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Conventional vs Bootstrap Std Errors (contd.)

Compare conventional and bootstrap standard errors:

@ LA Homeless Data (Richard Berk, UPenn)
@ Response: StreetTotal of homeless in a census tract, N = 505
@ R?~0.13, residual dfs = 498
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Conventional vs Bootstrap Std Errors (contd.)

Compare conventional and bootstrap standard errors:

@ LA Homeless Data (Richard Berk, UPenn)
@ Response: StreetTotal of homeless in a census tract, N = 505
@ R? ~0.13, residual dfs = 498

‘ 3,‘ SElin ~ SEboot  SEboot /SEiin tin
MedianInc -4.241 4.342 2.651 0.611 -0.977
PropVacant 18.476  3.595 5.553 1.545 5.140
PropMinority 2.759 3.935 3.750 0.953 0.701
PerResidential -1.249  4.275 2.776 0.649 -0.292
PerCommercial 10.603 3.927 5.702 1.452 2.700
PerIndustrial 11.663 4.139 7.550 1.824 2.818
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Conventional vs Bootstrap Std Errors (contd.)

Compare conventional and bootstrap standard errors:

@ LA Homeless Data (Richard Berk, UPenn)
@ Response: StreetTotal of homeless in a census tract, N = 505
@ R? ~0.13, residual dfs = 498

‘ Bi  SEin  SEboot  SEboot/SEiin tin
MedianInc -4.241 4.342 2.651 0.611 -0.977
PropVacant 18.476  3.595 5.553 1.545 5.140
PropMinority 2.759 3.936 3.750 0.953 0.701
PerResidential -1.249  4.275 2.776 0.649 -0.292
PerCommercial 10.603  3.927 5.702 1.452 2.700
PerIndustrial 11.663 4.139 7.550 1.824 2.818

@ Which standard errors are we to believe?
@ What is the reason for the discrepancy?

@ Is the paired bootstrap a failure?

Andreas Buja (Wharton, UPenn)
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First Reason for SEqot # SEiin

@ Consider a noise-free nonlinearity,

Yi = ,U,(X,‘) ~ X,-2 X; i.i.d.

and fit a straight line anyway. Watch the effect:
source("http://stat.wharton.upenn.edu/ buja/PAPERS/src-conspiracy-animation.R")

source("http://stat.wharton.upenn.edu/ buja/PAPERS/src-conspiracy-animation2.R")
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Nonlinearity and randomness of X conspire
to create sampling variability.
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First Reason for SEqot # SEiin

@ Consider a noise-free nonlinearity,

Yi = ,U,(X,‘) ~ X,-2 X; i.i.d.

and fit a straight line anyway. Watch the effect:
source("http://stat.wharton.upenn.edu/ buja/PAPERS/src-conspiracy-animation.R")

source("http://stat.wharton.upenn.edu/ buja/PAPERS/src-conspiracy-animation2.R")

Nonlinearity and randomness of X conspire
to create sampling variability.

@ “Econometrics 101”:  Hal White2°12 (1980)

“Using Least Squares to Approximate Unknown Regression Functions,” Intl. Economic Review.
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Second Reason for SEyqo # SEiin

Which has the smallest/largest true SE(3)? (> 0? are the same.)

<

<
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Second Reason for SEyqo # SEiin

Which has the smallest/largest true SE(3)? (> 0? are the same.)

< < <
i i i
T T T T T T T T T T T T T T T
-10 -05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0
X X X
SE=0.02 SE=0.10 SE=0.07

@ Heteroskedasticity: o2(x) := V[y|x] # const
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Second Reason for SEyqo # SEiin

Which has the smallest/largest true SE(3)? (> 0? are the same.)

<~ <~

<4 <4 K <4
I I I
T T T T T T T T T T T T T T T
-10 -05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
X X X
SE=0.02 SE=0.10 SE=0.07

@ Heteroskedasticity: o2(x) := V[y|x] # const

@ Tradition in statistics — conditional on X:
» Hinkley: “Jackknifing in Unbalanced Situations,” Technometrics (1977)
» Wu: “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis,” AoS (1986).
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Second Reason for SEyqo # SEiin

Which has the smallest/largest true SE(3)? (> 0? are the same.)

<~ <~

<4 <4 K <4
I I I
T T T T T T T T T T T T T T T
-10 -05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
X X X
SE=0.02 SE=0.10 SE=0.07

@ Heteroskedasticity: o2(x) := V[y|x] # const

@ Tradition in statistics — conditional on X:
» Hinkley: “Jackknifing in Unbalanced Situations,” Technometrics (1977)
» Wu: “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis,” AoS (1986).

@ “Econometrics 101”: Hal White20'2 (1980)

» “A Heteroskedasticity-Consistent Covariance Matrix Estimator
and a Direct Test for Heteroskedasticity,” Econometrica (1980)
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But Why Would Anyone Use an Incorrect Model?

@ Often we don’t know that the model is violated by the data.
= An argument in favor of diligent model diagnostics...

@ The problem persists even if we use basis expansion
but miss the nature of the nonlinearity: curves, jaggies, jumps, ...

@ Linear models provide low-df approximations which may be all that is
feasible when n/p is small.

@ Even when the model is only an approximation, the slopes contain
information about the direction of the association.

@ Jinterpretations of slopes w/o assuming a correct model:
weighted averages of “case slopes”

3 3, A=Y (X — %)
g = wiBi,  Bi= =, W= =3
/';n - : Xi — X I Zk:1..n(xk - X)2
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Redefining the Population and the Parameters

@ Joint distribution, i.i.d. sampling: (x;, y;) ~ P(dx, dy)

Assume properties sufficient to grant CLTs for estimates of interest.
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Redefining the Population and the Parameters

@ Joint distribution, i.i.d. sampling: (x;, y;) ~ P(dx, dy)

Assume properties sufficient to grant CLTs for estimates of interest.
@ No assumptions on u(x) = E[y|x], o%(x) =V[y|x].
@ Define a population LS parameter:

B = argming E {(y—le)j = E[xx|" E[xy]

@ This is the target of inference: 3 = B(P)
Thus B is a statistical functional, not a generative parameter.
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Redefining the Population and the Parameters

@ Joint distribution, i.i.d. sampling: (x;, y;) ~ P(dx, dy)

Assume properties sufficient to grant CLTs for estimates of interest.
@ No assumptions on (x) = E[y|x], &%(x) = V[y|x].

@ Define a population LS parameter:
s \2
B = argming E {(y—ﬂx) ] = E[xx|" E[xy]

@ This is the target of inference: 3 = B(P)
Thus B is a statistical functional, not a generative parameter.

— “Semi-parametric LS framework”
(“Random X Theory”)
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The LS Population Parameter
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The LS Population Parameter

Y =pu(x)

~__" \_

X

@ If u(x) is nonlinear, 3(P) depends on the x-distribution P(dXx).

o If u(x) = B'x is linear, then 3 = B(P) is the same for all P(dx)).
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The LS Estimator and its Target

=} F = = DA
Andreas Buja (Wharton, UPenn)



The LS Estimator and its Target

@ Data: X = (X1,....,xn)', Y= 1, IN)s
@ Target of estimation and inference in linear models theory:

B(X) = E[BIX] = (X'X)"'X'Ely|X]
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The LS Estimator and its Target

@ Data: X = (X1,....,xn)', Y= 1, IN)s
@ Target of estimation and inference in linear models theory:

B(X) = E[BIX] = (X'X)"'X'Ely|X]

@ When p(x) = E[y|x] is nonlinear, then 3(X) is a random vector.
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lllustration of Nonlinearity and Heteroskedasticity

Error:
ex = yx —px)

Nonlinearity:

ne) = ) ="

- Deviation from Linear:
Olx = n(x) +eglx

B'x
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The CLT for Random-X and the Sandwich Formula
CLT:
N'2(B-8) 2 N(0, Elxx]TE[(Y — B'%)%xxT] E[xx"] )
Simplest Sandwich Estimator of Asymptotic Variance:
Agng = EDex] " EL(Y — B)Pxx] E[xx]
Linear Models Theory Estimator of Asymptotic Variance:

AV, = E[xx"]""4?
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Comparing Conditional # Unconditional Inference

@ Consider the simplest case of a single predictor, no intercept,
and define the conditional MSE by  m?(x) := E[(Y — 8'x)?|x]
@ The correct asymptotic variance is
E[m?(x)x?]
Avsand - W

@ If we were to use standard errors from linear models theory, it would
mean using the following incorrect asymptotic variance:

E[m?(x)]
E[x?]

@ Define the “Ratio of Asymptotic Variances” or RAV:

Avlin -

Ay E[MP(x)x]
RV = "W, = EmP®) ER]
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Extremes of Conditional # Unconditional Inference

AV, E[m?(x)x?]
RAV _ 'sand _
AV/in

E[m?(x)]E[x?]
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Extremes of Conditional # Unconditional Inference

B AV, B E[m2(x)x2]
RAV = WV~ EMPEDT)

@ Fact:
max RAV = oo, min RAV = 0
m m
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Extremes of Conditional # Unconditional Inference

Ay E[mP(x)x?]
RAV = AV,  E[m?(x)|E[x2]

@ Fact:
max RAV = oo, min RAV = 0
m m

@ Conclusion: Asymptotically the discrepancy between conditional and
unconditional SEs can be arbitrarily large.
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Extremes of Conditional # Unconditional Inference

A E[mRP(X)X?]
RV = "M~ E(ERD

@ Fact:
max RAV = oo, min RAV = 0
m m

@ Conclusion: Asymptotically the discrepancy between conditional and
unconditional SEs can be arbitrarily large.

@ In practice, RAV > 1 is more frequent and more dangerous because it

invalidates conventional linear models inference.
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Outlook

@ Big Benefit: The semi-parametric LS framework permits arbitrary joint
(v, x) distributions.

» The assumption of homoskedasticity in the PoSI framework can be given up
if its inference is based on sandwich or pairs bootstrp.

» Valid inference is obtained also for arbitrarily transformed data (f(y), g(x)).

» If a new PoSI technology is constructed based on the semi-parametric LS
framework, it will allow us to protect against selection of a finite dictionary of
transformations in addition to selection of predictors.
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Outlook

@ Big Benefit: The semi-parametric LS framework permits arbitrary joint
(v, x) distributions.

» The assumption of homoskedasticity in the PoSI framework can be given up
if its inference is based on sandwich or pairs bootstrp.

» Valid inference is obtained also for arbitrarily transformed data (f(y), g(x)).

» If a new PoSI technology is constructed based on the semi-parametric LS
framework, it will allow us to protect against selection of a finite dictionary of
transformations in addition to selection of predictors.

@ Some obstacles:

» Asymptotic variance is a 4" order functional of the underlying distribution.

» Hence sandwich estimates of standard error are highly non-robust. A small
fraction of the data can determine the standard error estimates.

» We may have to abandon LS and look for estimation methods whose
asymptotic variances are more robust.

» Computations of PoSI methods based on the semi-parametric framework will
be even more expensive, but this should not deter us.
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THANKS!
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