Post-Selection Inference for Models that are Approximations

Andreas Buja

joint work with the PoSI Group:

Richard Berk, Lawrence Brown, Linda Zhao, Kai Zhang Ed George, Mikhail Traskin, Emil Pitkin, Dan McCarthy

Mostly at the Department of Statistics, The Wharton School University of Pennsylvania

2013/11/13

◆□> ◆□> ◆目> ◆目> ◆日 ◆ ○ ◆

Larger Problem: Non-Reproducible Empirical Findings

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximation

Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem

(from: Berger, 2012, "Reproducibility of Science: P-values and Multiplicity")

- Bayer Healthcare reviewed 67 in-house attempts at replicating findings in published research:
 - < 1/4 were viewed as replicated.
- Arrowsmith (2011, Nat. Rev. Drug Discovery 10): Increasing failure rate in Phase II drug trials
- Ioannidis (2005, PLOS Medicine):
 - "Why Most Published Research Findings Are False"

Larger Problem: Non-Reproducible Empirical Findings

Indicators of a problem

(from: Berger, 2012, "Reproducibility of Science: P-values and Multiplicity")

- Bayer Healthcare reviewed 67 in-house attempts at replicating findings in published research:
 - < 1/4 were viewed as replicated.
- Arrowsmith (2011, Nat. Rev. Drug Discovery 10): Increasing failure rate in Phase II drug trials
- Ioannidis (2005, PLOS Medicine):
 - "Why Most Published Research Findings Are False"
- Many potential causes:
 - publication biases
 - economic biases
 - experimental biases
 - statistical biases

► ...

Statistical Biases - one among several

Hypothesis: A statistical bias is due to

an absence of accounting for model/variable selection.

Statistical Biases - one among several

Hypothesis: A statistical bias is due to

an absence of accounting for model/variable selection.

- Model selection is done on several levels:
 - ▶ formal selection: AIC, BIC, Lasso, ...
 - informal selection: residual plots, influence diagnostics, ...
 - post hoc selection: "The effect size is too small in relation to the cost of data collection to warrant inclusion of this predictor."

Statistical Biases - one among several

• Hypothesis: A statistical bias is due to

an absence of accounting for model/variable selection.

- Model selection is done on several levels:
 - ▶ formal selection: AIC, BIC, Lasso, ...
 - informal selection: residual plots, influence diagnostics, ...
 - post hoc selection: "The effect size is too small in relation to the cost of data collection to warrant inclusion of this predictor."
- Suspicions:
 - All three modes of model selection may be used in much empirical research.
 - Ironically, the most thorough and competent data analysts may also be the ones who produce the most spurious findings.
 - If we develop valid post-selection inference for "adaptive Lasso", say, it won't solve the problem because few empirical researchers would commit themselves a priori to one formal selection method and nothing else.

Linear Model Inference and Variable Selection

$$\mathbf{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

- $X = fixed design matrix, N \times p, N > p, full rank.$
- $\boldsymbol{\epsilon} \sim \mathcal{N}_{N}(\mathbf{0}, \sigma^{2}\mathbf{I}_{N})$

In textbooks:

- Variables selected
- 2 Data seen
- Inference produced

In common practice:

- Data seen
- 2 Variables selected
- Inference produced

Linear Model Inference and Variable Selection

$$\mathbf{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

- **X** = fixed design matrix, $N \times p$, N > p, full rank.
- $\boldsymbol{\epsilon} \sim \mathcal{N}_{N}(\mathbf{0}, \sigma^{2}\mathbf{I}_{N})$

In textbooks:

- Variables selected
- 2 Data seen
- Inference produced

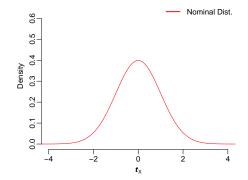
In common practice:

- Data seen
- Variables selected
- Inference produced

Is this inference valid?

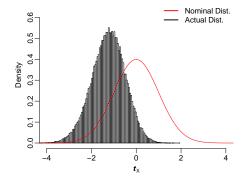
Evidence from a Simulation

Marginal Distribution of Post-Selection t-statistics:



Evidence from a Simulation

Marginal Distribution of Post-Selection t-statistics:



- The overall coverage probability of the conventional post-selection CI is 83.5% < 95%.
- For p = 30, the coverage probability can be as low as 39%.

The **PoSI** Procedure — Rough Outline

- We propose to construct Post Selection Inference (PoSI) with guarantees for the coverage of CIs and Type I errors of tests.
- We widen CIs and retention intervals to achieve correct/conservative post-selection coverage probabilities. This is the price we have to pay.
- The approach is a reduction of PoSI to simultaneous inference.
- Simultaneity is across all submodels and all slopes in them.
- As a result, we obtain

valid PoSI for all variable selection procedures!

• But first we need some preliminaries on

Targets of Inference and Inference in Approximate Models

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Submodels — Notation, Parameters, Assumptions

• Denote a submodel by the integers $M = \{j_1, j_2, ..., j_m\}$ for the predictors:

 $\mathbf{X}_{\mathrm{M}} = \left(\mathbf{X}_{j_{1}}, \mathbf{X}_{j_{2}}, ..., \mathbf{X}_{j_{m}}\right) \in \mathrm{I\!R}^{N \times m}.$

• The LS estimators in the submodel M are

 $\hat{\boldsymbol{eta}}_{\mathrm{M}} = \left(\mathbf{X}_{\mathrm{M}}^{\mathsf{T}} \mathbf{X}_{\mathrm{M}} \right)^{-1} \mathbf{X}_{\mathrm{M}}^{\mathsf{T}} \mathbf{Y} \in \mathrm{I\!R}^{m}$

• What does $\hat{\beta}_{M}$ estimate, **not** assuming the truth of M? A: Its expectation — i.e., we ask for unbiasedness.

 $\boldsymbol{\mu} := \mathbf{E}[\mathbf{Y}] \in \mathbb{R}^{N} \text{ arbitrary!!}$ $\boldsymbol{\beta}_{M} := \mathbf{E}[\hat{\boldsymbol{\beta}}_{M}] = (\mathbf{X}_{M}^{T}\mathbf{X}_{M})^{-1}\mathbf{X}_{M}^{T} \boldsymbol{\mu}$

• Once again: We do not assume that the submodel is correct, i.e., we allow $\mu \neq \mathbf{X}_{M}\beta_{M}$! But $\mathbf{X}_{M}\beta_{M}$ is the best approximation to μ .

Adjustment, Estimates, Parameters, t-Statistics

Notation and facts for the components of $\hat{\beta}_{\mathrm{M}}$ and β_{M} , assuming $j \in \mathrm{M}$:

• Let $X_{i \in M}$ be the predictor X_i adjusted for the other predictors in M:

$$\mathsf{X}_{j \bullet \mathrm{M}} := \left(\mathsf{I} - \mathsf{H}_{\mathrm{M} \smallsetminus \{j\}} \right) \mathsf{X}_{j} \perp \mathsf{X}_{k} \forall k \in \mathrm{M} \smallsetminus \{j\}.$$

• Let $\hat{\beta}_{j \bullet M}$ be the slope estimate and $\beta_{j \bullet M}$ be the parameter for X_j in M:

$$\hat{\beta}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}} \ := \ \frac{\boldsymbol{\mathsf{X}}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}}^{\mathsf{T}} \boldsymbol{\mathsf{Y}}}{\|\boldsymbol{\mathsf{X}}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}}\|^2} \ , \qquad \boldsymbol{\beta}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}} \ := \ \frac{\boldsymbol{\mathsf{X}}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}}^{\mathsf{T}} \boldsymbol{\mathsf{E}}[\boldsymbol{\mathsf{Y}}]}{\|\boldsymbol{\mathsf{X}}_{\boldsymbol{j}\bullet\boldsymbol{\mathrm{M}}}\|^2}.$$

• Let $t_{j \bullet M}$ be the *t*-statistic for $\hat{\beta}_{j \bullet M}$ and $\beta_{j \bullet M}$:

$$t_{\boldsymbol{j}\bullet\mathrm{M}} := \frac{\hat{\beta}_{\boldsymbol{j}\bullet\mathrm{M}} - \beta_{\boldsymbol{j}\bullet\mathrm{M}}}{\hat{\sigma}/\|\mathbf{X}_{\boldsymbol{j}\bullet\mathrm{M}}\|} = \frac{\mathbf{X}_{\boldsymbol{j}\bullet\mathrm{M}}^{\mathsf{T}}(\mathbf{Y} - \mathbf{E}[\mathbf{Y}])}{\|\mathbf{X}_{\boldsymbol{j}\bullet\mathrm{M}}\| \hat{\sigma}}.$$

Parameters One More Time

• Once more: If the predictors are partly collinear (non-orthogonal) then

 $M \neq M' \Rightarrow \beta_{j \bullet M} \neq \beta_{j \bullet M'}$ in value and in meaning.

Motto: A difference in adjustment implies a difference in parameters.

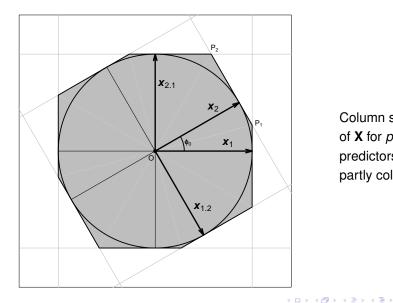
- It follows that there are up to $p2^{p-1}$ different parameters $\beta_{j \in M}$!!!
- However, they are intrinsically *p*-dimensional:

 $\boldsymbol{\beta}_{\mathrm{M}} = (\mathbf{X}_{\mathrm{M}}^{\mathsf{T}} \mathbf{X}_{\mathrm{M}})^{-1} \mathbf{X}_{\mathrm{M}}^{\mathsf{T}} \mathbf{X} \boldsymbol{\beta}$

where **X** and β are from the full model.

• Hence each $\beta_{i \bullet M}$ is a lin. comb. of the full model parameters $\beta_1, ..., \beta_p$.

Geometry of Adjustment



Column space of **X** for p=2predictors, partly collinear

2013/11/13 10/36

Error Estimates $\hat{\sigma}^2$

- Important: To enable simultaneous inference for all t_{j•M},
 - ► do not use the error estimate $\hat{\boldsymbol{\beta}}_{M}^{2}$:= $\|\mathbf{Y} \mathbf{X}_{M}\hat{\boldsymbol{\beta}}_{M}\|^{2}/(n-m)$ in M; (the selected model M may well be 1st order wrong;)
 - instead, for all models M use $\hat{\sigma}^2 = \hat{\sigma}_{Full}^2$ from the full model.
 - ⇒ $t_{j \bullet M}$ will have a *t*-distribution with the same dfs $\forall M, \forall j \in M$.

ヘロト ヘヨト ヘヨト

Error Estimates $\hat{\sigma}^2$

- Important: To enable simultaneous inference for all t_{j•M},
 - ► do not use the error estimate $\hat{\beta}_{M}^{2\prime}$:= $\|\mathbf{Y} \mathbf{X}_{M}\hat{\beta}_{M}\|^{2}/(n-m)$ in M; (the selected model M may well be 1st order wrong;)
 - instead, for all models M use $\hat{\sigma}^2 = \hat{\sigma}_{Full}^2$ from the full model.
 - \implies $t_{j \bullet M}$ will have a *t*-distribution with the same dfs $\forall M, \forall j \in M$.
- What if even the full model is 1st order wrong? Answer: $\hat{\sigma}_{Full}^2$ will be inflated and inference will be conservative. But better estimates are available if ...
 - exact replicates exist: use $\hat{\sigma}^2$ from the 1-way ANOVA of replicates;
 - a larger than the full model can be assumed 1st order correct: use $\hat{\sigma}_{Large}^2$;
 - ► a previous dataset provided a valid estimate: use
 ²/_{previous};
 - nonparametric estimates are available: use $\hat{\sigma}^2_{nonpar}$ (Hall and Carroll 1989).

PS: In the fashionable p > N literature, what is their $\hat{\sigma}^2$?

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Statistical Inference under First Order Incorrectness

• Statistical inference, one parameter at a time:

If r = dfs in $\hat{\sigma}^2$ and $K = t_{1-\alpha/2,r}$, then the confidence intervals

 $\operatorname{CI}_{j \bullet M}(\mathcal{K}) := \left[\hat{\beta}_{j \bullet M} \pm \mathcal{K} \hat{\sigma} / \| \mathbf{X}_{j \bullet M} \| \right]$

satisfy each

 $\mathbf{P}[\beta_{j \bullet M} \in \mathrm{CI}_{j \bullet M}(K)] = 1 - \alpha.$

Statistical Inference under First Order Incorrectness

• Statistical inference, one parameter at a time:

If r = dfs in $\hat{\sigma}^2$ and $K = t_{1-\alpha/2,r}$, then the confidence intervals

$$\mathrm{CI}_{j\bullet\mathrm{M}}(\mathcal{K}) := \left[\hat{\beta}_{j\bullet\mathrm{M}} \pm \mathcal{K}\hat{\sigma} / \|\mathbf{X}_{j\bullet\mathrm{M}}\|\right]$$

satisfy each

$$\mathbf{P}[\beta_{j \bullet M} \in \mathrm{CI}_{j \bullet M}(K)] = 1 - \alpha.$$

Achieved so far:

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim \mathcal{N}_{N}(\mathbf{0}, \sigma^{2}\mathbf{I})$$

- No assumption is made that the submodels are 1st order correct;
- Even the full model may be 1st order incorrect if a valid ô² is otherwise available.
- A single error estimate opens up the possibility of simultaneous inference across submodels.

What is a variable selection procedure?

A map $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$

- $\hat{\mathrm{M}}$ divides the response space \mathbb{R}^{N} into up to 2^{p} subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).

What is a variable selection procedure?

A map $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$

- $\hat{\mathrm{M}}$ divides the response space $\mathrm{I\!R}^{N}$ into up to 2^{p} subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Candidate for meaningful coverage probabilities:

 $\mathbf{P}[\forall j \in \hat{\mathbf{M}} : \beta_{j \bullet \hat{\mathbf{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathbf{M}}}(K)]$

What is a variable selection procedure?

A map $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$

- $\hat{\mathrm{M}}$ divides the response space $\mathrm{I\!R}^N$ into up to 2^p subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Candidate for meaningful coverage probabilities:

 $\mathbf{P}[\forall j \in \hat{\mathbf{M}} : \beta_{j \bullet \hat{\mathbf{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathbf{M}}}(K)]$

 Problem: No such coverage probabilities are known or can be estimated for most selection procedures M.

・ロト ・回ト ・ヨト

What is a variable selection procedure?

A map $\mathbf{Y} \mapsto \hat{\mathbf{M}} = \hat{\mathbf{M}}(\mathbf{Y}), \ \mathbb{R}^N \to \mathcal{P}(\{1, ..., p\})$

- $\hat{\mathrm{M}}$ divides the response space $\mathrm{I\!R}^N$ into up to 2^p subsets.
- In a fixed-predictor framework, selection purely based on X does not invalidate inference (example: deselect predictors based on VIF, H, ...).
- Candidate for meaningful coverage probabilities:

 $\mathbf{P}[\forall j \in \hat{\mathbf{M}} : \beta_{j \bullet \hat{\mathbf{M}}} \in \mathrm{CI}_{j \bullet \hat{\mathbf{M}}}(K)]$

- Problem: No such coverage probabilities are known or can be estimated for most selection procedures M.
- Solution: Ask for more! It is possible to construct universal Post-Selection Inference for all selection procedures.

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Reduction to Simultaneous Inference

Lemma

For any variable selection procedure $\hat{M} = \hat{M}(\mathbf{Y})$, we have the following "significant triviality bound":

$$\max_{i\in\hat{\mathrm{M}}}|t_{j_{\bullet}\hat{\mathrm{M}}}| \leq \max_{\mathrm{M}}\max_{j\in\mathrm{M}}|t_{j_{\bullet}\mathrm{M}}| \qquad \forall \mathbf{Y}, \boldsymbol{\mu}\in\mathbb{R}^{N}.$$

Reduction to Simultaneous Inference

Lemma

For any variable selection procedure $\hat{M} = \hat{M}(\mathbf{Y})$, we have the following "significant triviality bound":

$$\max_{i\in\hat{\mathrm{M}}}|t_{j_{\bullet}\hat{\mathrm{M}}}| \leq \max_{\mathrm{M}}\max_{j\in\mathrm{M}}|t_{j_{\bullet}\mathrm{M}}| \qquad \forall \, \mathbf{Y}, \boldsymbol{\mu}\in\mathrm{I\!R}^{N}.$$

Theorem

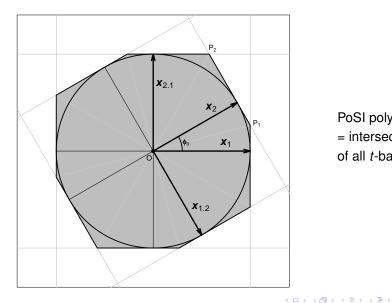
Let *K* be the $1 - \alpha$ quantile of the "max-max-|t|" statistic of the lemma:

$$\mathbf{P}\left[\max_{\mathbf{M}}\max_{j\in\mathbf{M}}|t_{j\cdot\mathbf{M}}|\leq \mathbf{K}\right] \stackrel{(\geq)}{=} \mathbf{1}-\alpha.$$

Then we have the following universal PoSI guarantee:

$$\mathbf{P}\left[\beta_{j \bullet \hat{\mathbf{M}}} \in Cl_{j \bullet \hat{\mathbf{M}}}(K) \ \forall j \in \hat{\mathbf{M}} \right] \geq 1 - \alpha \quad \forall \hat{\mathbf{M}}.$$

PoSI Geometry — Simultaneity



PoSI polytope = intersection of all t-bands.

Computing PoSI

• The simultaneity challenge: there are $p 2^{p-1}$ statistics $|t_{j}|$.

р	3	4	5	6	7	8	9	10	11
# t	12	32	80	192	448	1,024	2,304	5, 120	11, 264
р	12	13	14	15	16	17	18	19	20
# t	24, 576	53, 248	114, 688	245, 760	524, 288	1, 114, 112	2,359,296	4,980,736	10, 485, 760

- Monte Carlo-approximation in R, brute force, up to $p \approx 20$.
- Computations are specific to a design X: $K_{PcSI} = K_{PcSI}(X, \alpha, df)$
- One Monte Carlo computation is good for any α and any error df.

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Scheffé Protection Yields Valid PoSI

Scheffé Simultaneous Inference is based on the statistic

$$\sup_{\mathbf{x}\in \operatorname{col}(\mathbf{X})\smallsetminus\{\mathbf{0}\}}\frac{|\mathbf{x}^{\mathsf{T}}(\mathbf{Y}-\mathbf{E}[\mathbf{Y}])|}{\|\mathbf{x}\| \ \hat{\sigma}} \sim \sqrt{\rho \, F_{\rho,df}}.$$

- The Scheffé method provides sim. inference for all linear "contrasts".
- The Scheffé constant is $K_{\text{Sch}} = K_{\text{Sch}}(p, \alpha, df) = \sqrt{p F_{p, df; 1-\alpha}}$.

Scheffé Protection Yields Valid PoSI

Scheffé Simultaneous Inference is based on the statistic

$$\sup_{\mathbf{x}\in \operatorname{col}(\mathbf{X})\smallsetminus\{\mathbf{0}\}}\frac{|\mathbf{x}^{\mathsf{T}}(\mathbf{Y}-\mathbf{E}[\mathbf{Y}])|}{\|\mathbf{x}\| \ \hat{\sigma}} \sim \sqrt{\rho \, F_{\rho,df}}.$$

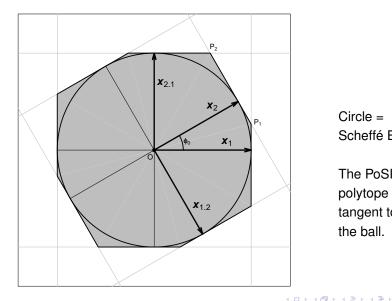
- The Scheffé method provides sim. inference for all linear "contrasts".
- The Scheffé constant is $K_{\text{Sch}} = K_{\text{Sch}}(\rho, \alpha, df) = \sqrt{\rho F_{\rho, df; 1-\alpha}}$.
- Compare: PoSI Simultaneous Inference is based on the statistic

$$\max_{\mathbf{M}} \max_{j \in \mathbf{M}} \frac{|\mathbf{X}_{j \bullet \mathbf{M}}^{T}(\mathbf{Y} - \mathbf{E}[\mathbf{Y}])|}{\|\mathbf{X}_{j \bullet \mathbf{M}}\| \hat{\sigma}}$$

The PoSI contrasts are a subset of the Scheffé contrasts, hence:

- Scheffé statistic ≥ PoSI statistic
- \blacktriangleright $K_{\rm Sch} \geq K_{\rm PoSI}$
- Scheffé yields universally valid conservative PoSI.

The Scheffé Ball and the PoSI Polytope



2013/11/13 18/36 PoSI protection may be very conservative, but it has benefits:

- One can try many selection methods and pick the "best" by whatever standard. The PoSI-significant coefficents will be valid.
- One can perform informal model diagnostics and change one's mind based on them, PoSI inference will still be valid.
- After computing PoSI, one can go on fishing expeditions among models and search for significances based on PoSI. The fishing will not invalidate the inference.
- In a clinical trial, one can perform post-hoc "data mining" for significant effects, and the PoSI-protected findings will be valid.

PoSI from Split Samples

Very different "obvious" approach: Split the data into

- a model selection sample and
- an estimation & inference sample.

Image: A matrix

PoSI from Split Samples

Very different "obvious" approach: Split the data into

- a model selection sample and
- an estimation & inference sample.

Pros:

- Valid inference for the selected model.
- Flexibility in models: GLIMs!
- Less conservative inference than PoSI.

PoSI from Split Samples

Very different "obvious" approach: Split the data into

- a model selection sample and
- an estimation & inference sample.

Pros:

- Valid inference for the selected model.
- Flexibility in models: GLIMs!
- Less conservative inference than PoSI.

Cons:

- Artificial randomness from a single split.
- Reduced effective sample size.
- More model selection uncertainty.
- More estimation uncertainty.
- Loss of conditionality on X.

(4) (3) (4) (4) (4)

Conditionality on X: Fixed versus Random X

- With split-sampling we have broken conditionality on **X**: random splitting means the predictors are treated as random.
- Why do some statisticians insist on fixed-X regression?

- With split-sampling we have broken conditionality on **X**: random splitting means the predictors are treated as random.
- Why do some statisticians insist on fixed-X regression? Answer: Fisher's ancillarity argument for X

- With split-sampling we have broken conditionality on X: random splitting means the predictors are treated as random.
- Why do some statisticians insist on fixed-X regression? Answer: Fisher's ancillarity argument for X
- Fact: Econometricians do not condition on X.
 They use an alternative form of inference based on the Sandwich Estimate of Standard Error.

- With split-sampling we have broken conditionality on X: random splitting means the predictors are treated as random.
- Why do some statisticians insist on fixed-X regression? Answer: Fisher's ancillarity argument for X
- Fact: Econometricians do not condition on X.
 They use an alternative form of inference based on the Sandwich Estimate of Standard Error.
- Do we know regression inference that is not conditional on X?

- With split-sampling we have broken conditionality on **X**: random splitting means the predictors are treated as random.
- Why do some statisticians insist on fixed-X regression? Answer: Fisher's ancillarity argument for X
- Fact: Econometricians do not condition on X.
 They use an alternative form of inference based on the Sandwich Estimate of Standard Error.
- Do we know regression inference that is not conditional on X?
 Yes, we do: the Pairs Bootstrap
 to be distinguished from the Residual Bootstrap (which is fixed-X).

The Pairs Bootstrap for Regression

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximate

2013/11/13 22 / 36

• • • • • • • • • • • • • •

The Pairs Bootstrap for Regression

• Assumptions: $(\mathbf{x}_i, y_i) \sim P(d\mathbf{x}, dy)$ i.i.d.,

P non-degenerate: E[xx'] > 0, + technicalities for CLTs of estimates.

• There is no regression model, but we apply regression anyway, LS, say: $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$

• The nonparametric paired bootstrap applies: Resample (\mathbf{x}_i, y_i) pairs $\rightarrow (\mathbf{x}_i^*, y_i^*) \rightarrow \hat{\boldsymbol{\beta}}^*$.

Note: Militant conditionalists would reject this; they would bootstrap residuals.

• Estimate $SE(\hat{\beta}_j)$ by $\hat{SE}_{boot}(\hat{\beta}_j) = SD^*(\beta_j^*)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The Pairs Bootstrap for Regression

• Assumptions: $(\mathbf{x}_i, y_i) \sim P(d\mathbf{x}, dy)$ i.i.d.,

P non-degenerate: E[xx'] > 0, + technicalities for CLTs of estimates.

• There is no regression model, but we apply regression anyway, LS, say: $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$

• The nonparametric paired bootstrap applies: Resample (\mathbf{x}_i, y_i) pairs $\rightarrow (\mathbf{x}_i^*, y_i^*) \rightarrow \hat{\boldsymbol{\beta}}^*$.

Note: Militant conditionalists would reject this; they would bootstrap residuals.

• Estimate $SE(\hat{\beta}_j)$ by $\hat{SE}_{boot}(\hat{\beta}_j) = SD^*(\beta_j^*)$.

Question: Letting $\hat{SE}_{lin}(\hat{\beta}_j) = \frac{\hat{\sigma}}{\|\mathbf{x}_{i,\bullet}\|}$, is the following always true?

 $\hat{\mathrm{SE}}_{\mathrm{boot}}(\hat{\beta}_j) \stackrel{?}{\approx} \hat{\mathrm{SE}}_{\mathrm{lin}}(\hat{\beta}_j)$

Conventional vs Bootstrap Std Errors: Can they differ?

- Boston Housing Data (no groans, please! Caveat...)
- Response: MEDV of single residences in a census tract, N = 506
- $R^2 \approx 0.74$, residual dfs = 487

Conventional vs Bootstrap Std Errors: Can they differ?

- Boston Housing Data (no groans, please! Caveat...)
- Response: MEDV of single residences in a census tract, N = 506
- $R^2 \approx 0.74$, residual dfs = 487

	$\hat{\beta}_j$	$\mathrm{SE}_{\mathrm{lin}}$	$\rm SE_{boot}$	$\mathrm{SE}_{\mathrm{boot}}/\mathrm{SE}_{\mathrm{lin}}$	$t_{\rm lin}$
CRIM	-0.099	0.031	0.033	1.074	-3.261
ZN	0.121	0.035	0.035	1.004	3.508
INDUS	0.017	0.046	0.038	0.843	0.382
CHAS	0.074	0.024	0.036	1.503	3.152
NOX	-0.224	0.048	0.048	1.003	-4.687
RM	0.290	0.032	0.065	2.049	9.149
AGE	0.002	0.040	0.050	1.236	0.044
DIS	-0.344	0.045	0.048	1.068	-7.598
RAD	0.288	0.062	0.060	0.958	4.620
TAX	-0.233	0.068	0.051	0.740	-3.409
PTRATIO	-0.218	0.031	0.026	0.865	-7.126
В	0.092	0.026	0.027	1.036	3.467
LSTAT	-0.413	0.039	0.078	1.995	-10.558

Conventional vs Bootstrap Std Errors (contd.)

- LA Homeless Data (Richard Berk, UPenn)
- Response: StreetTotal of homeless in a census tract, N = 505
- $R^2 \approx 0.13$, residual dfs = 498

Conventional vs Bootstrap Std Errors (contd.)

- LA Homeless Data (Richard Berk, UPenn)
- Response: StreetTotal of homeless in a census tract, N = 505
- $R^2 \approx 0.13$, residual dfs = 498

	$\hat{\beta}_j$	$\mathrm{SE}_{\mathrm{lin}}$	$\rm SE_{boot}$	$\rm SE_{boot}/SE_{lin}$	t_{lin}
MedianInc	-4.241	4.342	2.651	0.611	-0.977
PropVacant	18.476	3.595	5.553	1.545	5.140
PropMinority	2.759	3.935	3.750	0.953	0.701
PerResidential	-1.249	4.275	2.776	0.649	-0.292
PerCommercial	10.603	3.927	5.702	1.452	2.700
PerIndustrial	11.663	4.139	7.550	1.824	2.818

Conventional vs Bootstrap Std Errors (contd.)

- LA Homeless Data (Richard Berk, UPenn)
- Response: StreetTotal of homeless in a census tract, N = 505
- $R^2 \approx 0.13$, residual dfs = 498

	$\hat{\beta}_j$	$\mathrm{SE}_{\mathrm{lin}}$	$\rm SE_{boot}$	$\rm SE_{boot}/SE_{lin}$	t_{lin}
MedianInc	-4.241	4.342	2.651	0.611	-0.977
PropVacant	18.476	3.595	5.553	1.545	5.140
PropMinority	2.759	3.935	3.750	0.953	0.701
PerResidential	-1.249	4.275	2.776	0.649	-0.292
PerCommercial	10.603	3.927	5.702	1.452	2.700
PerIndustrial	11.663	4.139	7.550	1.824	2.818

- Which standard errors are we to believe?
- What is the reason for the discrepancy?
- Is the paired bootstrap a failure?

First Reason for $SE_{boot} \neq SE_{lin}$

Consider a noise-free nonlinearity,

$$y_i = \mu(\mathbf{x}_i) \sim x_i^2, \quad x_i \text{ i.i.d.}$$

and fit a straight line anyway. Watch the effect:

source("http://stat.wharton.upenn.edu/~buja/PAPERS/src-conspiracy-animation.R")
source("http://stat.wharton.upenn.edu/~buja/PAPERS/src-conspiracy-animation2.R")

First Reason for $SE_{boot} \neq SE_{lin}$

Consider a noise-free nonlinearity,

$$y_i = \mu(\mathbf{x}_i) \sim x_i^2, \quad x_i \text{ i.i.d.}$$

and fit a straight line anyway. Watch the effect:

source("http://stat.wharton.upenn.edu/~buja/PAPERS/src-conspiracy-animation.R")
source("http://stat.wharton.upenn.edu/~buja/PAPERS/src-conspiracy-animation2.R")

Nonlinearity and randomness of X conspire to create sampling variability.

First Reason for $SE_{boot} \neq SE_{lin}$

Consider a noise-free nonlinearity,

$$y_i = \mu(\mathbf{x}_i) \sim x_i^2, \quad x_i \text{ i.i.d.}$$

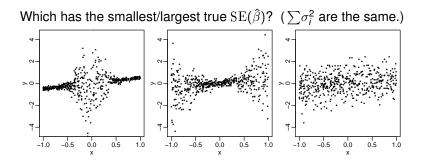
and fit a straight line anyway. Watch the effect:

source("http://stat.wharton.upenn.edu/~buja/PAPERS/src-conspiracy-animation.R")
source("http://stat.wharton.upenn.edu/~buja/PAPERS/src-conspiracy-animation2.R")

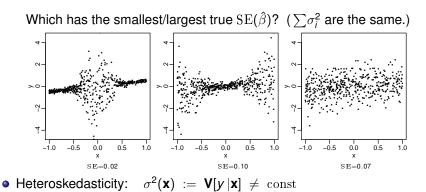
Nonlinearity and randomness of X conspire to create sampling variability.

"Econometrics 101": Hal White^{†2012} (1980)

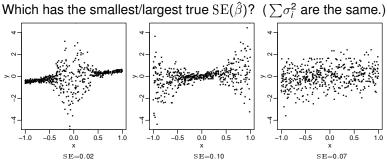
"Using Least Squares to Approximate Unknown Regression Functions," Intl. Economic Review.



2013/11/13 26 / 36

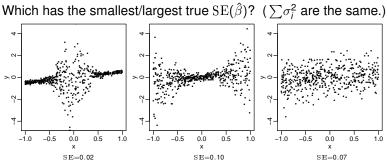


2013/11/13 26 / 36



• Heteroskedasticity: $\sigma^2(\mathbf{x}) := \mathbf{V}[y | \mathbf{x}] \neq \text{const}$

- Tradition in statistics conditional on X:
 - Hinkley: "Jackknifing in Unbalanced Situations," Technometrics (1977)
 - Wu: "Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis," AoS (1986).



• Heteroskedasticity: $\sigma^2(\mathbf{x}) := \mathbf{V}[y | \mathbf{x}] \neq \text{const}$

- Tradition in statistics conditional on X:
 - Hinkley: "Jackknifing in Unbalanced Situations," Technometrics (1977)
 - Wu: "Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis," AoS (1986).

• "Econometrics 101": Hal White^{†2012} (1980)

 "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica (1980)

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximation

2013/11/13 27 / 36

Image: Image:

- Often we don't know that the model is violated by the data.
 - \implies An argument in favor of diligent model diagnostics...

- Often we don't know that the model is violated by the data.
 - ⇒ An argument in favor of diligent model diagnostics...
- The problem persists even if we use basis expansion but miss the nature of the nonlinearity: curves, jaggies, jumps, ...

- Often we don't know that the model is violated by the data.
 - ⇒ An argument in favor of diligent model diagnostics...
- The problem persists even if we use basis expansion but miss the nature of the nonlinearity: curves, jaggies, jumps, ...
- Linear models provide low-df approximations which may be all that is feasible when n/p is small.

- Often we don't know that the model is violated by the data.
 - ⇒ An argument in favor of diligent model diagnostics...
- The problem persists even if we use basis expansion but miss the nature of the nonlinearity: curves, jaggies, jumps, ...
- Linear models provide low-df approximations which may be all that is feasible when n/p is small.
- Even when the model is only an approximation, the slopes contain information about the direction of the association.

- Often we don't know that the model is violated by the data.
 - ⇒ An argument in favor of diligent model diagnostics...
- The problem persists even if we use basis expansion but miss the nature of the nonlinearity: curves, jaggies, jumps, ...
- Linear models provide low-df approximations which may be all that is feasible when n/p is small.
- Even when the model is only an approximation, the slopes contain information about the direction of the association.
- ∃ interpretations of slopes w/o assuming a correct model:

weighted averages of "case slopes"

$$\hat{\beta} = \sum_{i=1\dots n} w_i \hat{\beta}_i, \qquad \hat{\beta}_i = \frac{y_i - \bar{y}}{x_i - \bar{x}}, \qquad w_i = \frac{(x_i - \bar{x})^2}{\sum_{k=1, n} (x_k - \bar{x})^2}.$$

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximation

2013/11/13 28 / 36

Image: Image:

• Joint distribution, i.i.d. sampling: $(\mathbf{x}_i, \mathbf{y}_i) \sim P(d\mathbf{x}, d\mathbf{y})$

Assume properties sufficient to grant CLTs for estimates of interest.

Image: Image:

• Joint distribution, i.i.d. sampling: $(\mathbf{x}_i, \mathbf{y}_i) \sim P(d\mathbf{x}, d\mathbf{y})$

Assume properties sufficient to grant CLTs for estimates of interest.

• No assumptions on $\mu(\mathbf{x}) = \mathbf{E}[y | \mathbf{x}], \sigma^2(\mathbf{x}) = \mathbf{V}[y | \mathbf{x}].$

(D) (A) (A) (A)

• Joint distribution, i.i.d. sampling: $(\mathbf{x}_i, \mathbf{y}_i) \sim P(d\mathbf{x}, d\mathbf{y})$

Assume properties sufficient to grant CLTs for estimates of interest.

- No assumptions on $\mu(\mathbf{x}) = \mathbf{E}[y | \mathbf{x}], \sigma^2(\mathbf{x}) = \mathbf{V}[y | \mathbf{x}].$
- Define a population LS parameter:

$$\boldsymbol{\beta} := \operatorname{argmin}_{\boldsymbol{\tilde{\beta}}} \mathbf{E}\left[\left(\boldsymbol{y} - \boldsymbol{\tilde{\beta}}' \mathbf{x}\right)^2\right] = \mathbf{E}[\mathbf{x} \mathbf{x}']^{-1} \mathbf{E}[\mathbf{x} \mathbf{y}]$$

• Joint distribution, i.i.d. sampling: $(\mathbf{x}_i, \mathbf{y}_i) \sim P(d\mathbf{x}, d\mathbf{y})$

Assume properties sufficient to grant CLTs for estimates of interest.

- No assumptions on $\mu(\mathbf{x}) = \mathbf{E}[y | \mathbf{x}], \sigma^2(\mathbf{x}) = \mathbf{V}[y | \mathbf{x}].$
- Define a population LS parameter:

$$\boldsymbol{\beta} := \operatorname{argmin}_{\boldsymbol{\tilde{\beta}}} \mathsf{E}\left[\left(\boldsymbol{y} - \boldsymbol{\tilde{\beta}}' \mathbf{x}\right)^2\right] = \mathsf{E}[\mathbf{x} \mathbf{x}']^{-1} \mathsf{E}[\mathbf{x} \mathbf{y}]$$

• This is the target of inference: $\beta = \beta(P)$ Thus β is a statistical functional, not a generative parameter.

ヘロト ヘヨト ヘヨト

• Joint distribution, i.i.d. sampling: $(\mathbf{x}_i, \mathbf{y}_i) \sim P(d\mathbf{x}, d\mathbf{y})$

Assume properties sufficient to grant CLTs for estimates of interest.

- No assumptions on $\mu(\mathbf{x}) = \mathbf{E}[y | \mathbf{x}], \sigma^2(\mathbf{x}) = \mathbf{V}[y | \mathbf{x}].$
- Define a population LS parameter:

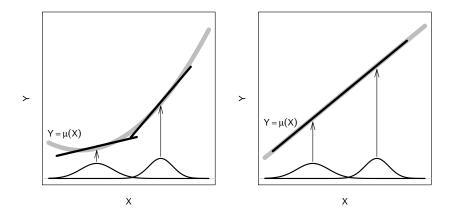
$$\boldsymbol{\beta} := \operatorname{argmin}_{\boldsymbol{\tilde{\beta}}} \mathbf{E}\left[\left(\boldsymbol{y} - \boldsymbol{\tilde{\beta}}' \mathbf{x}\right)^2\right] = \mathbf{E}[\mathbf{x} \mathbf{x}']^{-1} \mathbf{E}[\mathbf{x} \mathbf{y}]$$

• This is the target of inference: $\beta = \beta(P)$ Thus β is a statistical functional, not a generative parameter.

\implies "Semi-parametric LS framework" ("Random X Theory")

(_) (_]) (_)) (_))

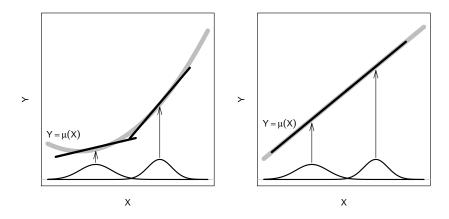
The LS Population Parameter



Post-Selection Inference for Models that are Approxim

2013/11/13 29 / 36

The LS Population Parameter



• If $\mu(\mathbf{x})$ is nonlinear, $\beta(\mathbf{P})$ depends on the **x**-distribution $\mathbf{P}(d\mathbf{x})$.

• If $\mu(\mathbf{x}) = \beta' \mathbf{x}$ is linear, then $\beta = \beta(\mathbf{P})$ is the same for all $\mathbf{P}(d\mathbf{x})$.

The LS Estimator and its Target

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximate

2013/11/13 30 / 36

• • • • • • • • • • • • • •

The LS Estimator and its Target

• Data:
$$\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)', \quad \mathbf{y} = (y_1, ..., y_N)',$$

• Target of estimation and inference in linear models theory:

$$eta(\mathbf{X}) \ = \ \mathbf{E}[\hat{eta}|\mathbf{X}] \ = \ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\,\mathbf{E}[\mathbf{y}|\mathbf{X}]$$

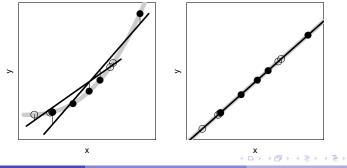
The LS Estimator and its Target

• Data:
$$\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)', \quad \mathbf{y} = (y_1, ..., y_N)',$$

• Target of estimation and inference in linear models theory:

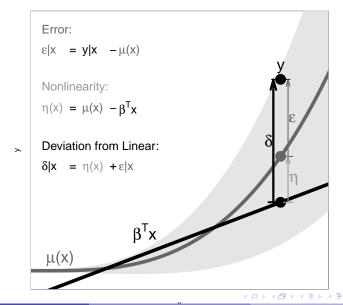
$$eta(\mathbf{X}) \ = \ \mathbf{E}[\hat{eta}|\mathbf{X}] \ = \ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\,\mathbf{E}[\mathbf{y}|\mathbf{X}]$$

• When $\mu(\mathbf{x}) = \mathbf{E}[y|\mathbf{x}]$ is nonlinear, then $\beta(\mathbf{X})$ is a random vector.



Post-Selection Inference for Models that are Approxin

Illustration of Nonlinearity and Heteroskedasticity



The CLT for Random-X and the Sandwich Formula

CLT:

 $N^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{\mathcal{D}} \mathcal{N}(\mathbf{0}, \mathbf{E}[\mathbf{x}\mathbf{x}^{T}]^{-1}\mathbf{E}[(\boldsymbol{Y}-\boldsymbol{\beta}'\mathbf{x})^{2}\mathbf{x}\mathbf{x}^{T}]\mathbf{E}[\mathbf{x}\mathbf{x}^{T}]^{-1})$

Simplest Sandwich Estimator of Asymptotic Variance:

$$\hat{\mathbf{AV}}_{sand} :=: \hat{\mathbf{E}}[\mathbf{x}\mathbf{x}^{T}]^{-1} \hat{\mathbf{E}}[(\mathbf{Y} - \hat{\boldsymbol{\beta}}'\mathbf{x})^{2}\mathbf{x}\mathbf{x}^{T}] \hat{\mathbf{E}}[\mathbf{x}\mathbf{x}^{T}]^{-1}$$

Linear Models Theory Estimator of Asymptotic Variance:

$$AV_{lin} :=: \hat{E}[\mathbf{x}\mathbf{x}^T]^{-1} \hat{\sigma}^2$$

Comparing Conditional \neq Unconditional Inference

- Consider the simplest case of a single predictor, no intercept, and define the conditional MSE by $m^2(x) := \mathbf{E}[(Y - \beta' x)^2 | x]$
- The correct asymptotic variance is

$$\mathbf{AV}_{sand} = \frac{\mathbf{E}[m^2(x)x^2]}{\mathbf{E}[x^2]^2}.$$

 If we were to use standard errors from linear models theory, it would mean using the following incorrect asymptotic variance:

$$AV_{lin} = \frac{\mathbf{E}[m^2(\mathbf{x})]}{\mathbf{E}[x^2]}$$

• Define the "Ratio of Asymptotic Variances" or RAV:

$$\mathbf{RAV} := \frac{\mathbf{AV}_{sand}}{\mathbf{AV}_{lin}} = \frac{\mathbf{E}[m^2(x)x^2]}{\mathbf{E}[m^2(\mathbf{x})]\mathbf{E}[x^2]}$$

$$\mathbf{RAV} = \frac{\mathbf{AV}_{sand}}{\mathbf{AV}_{lin}} = \frac{\mathbf{E}[m^2(\mathbf{x})x^2]}{\mathbf{E}[m^2(x)]\mathbf{E}[x^2]}$$

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximate

2013/11/13 34/36

$$\mathbf{RAV} = \frac{\mathbf{AV}_{sand}}{\mathbf{AV}_{lin}} = \frac{\mathbf{E}[m^2(\mathbf{x})x^2]}{\mathbf{E}[m^2(x)]\mathbf{E}[x^2]}$$

$$\max_m \mathbf{RAV} = \infty, \qquad \min_m \mathbf{RAV} = 0$$

2013/11/13 34 / 36

$$\mathbf{RAV} = \frac{\mathbf{AV}_{sand}}{\mathbf{AV}_{lin}} = \frac{\mathbf{E}[m^2(\mathbf{x})x^2]}{\mathbf{E}[m^2(x)]\mathbf{E}[x^2]}$$

Fact:

- $\max_m \mathbf{RAV} = \infty, \qquad \min_m \mathbf{RAV} = 0$
- Conclusion: Asymptotically the discrepancy between conditional and unconditional SEs can be arbitrarily large.

$$\mathbf{RAV} = \frac{\mathbf{AV}_{sand}}{\mathbf{AV}_{lin}} = \frac{\mathbf{E}[m^2(\mathbf{x})x^2]}{\mathbf{E}[m^2(x)]\mathbf{E}[x^2]}$$

Fact:

 $\max_m \mathbf{RAV} = \infty, \qquad \min_m \mathbf{RAV} = 0$

- Conclusion: Asymptotically the discrepancy between conditional and unconditional SEs can be arbitrarily large.
- In practice, RAV > 1 is more frequent and more dangerous because it invalidates conventional linear models inference.

Outlook

- Big Benefit: The semi-parametric LS framework permits arbitrary joint (y, x) distributions.
 - The assumption of homoskedasticity in the PoSI framework can be given up if its inference is based on sandwich or pairs bootstrp.
 - ► Valid inference is obtained also for arbitrarily transformed data $(f(y), g(\mathbf{x}))$.
 - If a new PoSI technology is constructed based on the semi-parametric LS framework, it will allow us to protect against selection of a finite dictionary of transformations in addition to selection of predictors.

Outlook

- Big Benefit: The semi-parametric LS framework permits arbitrary joint (y, x) distributions.
 - The assumption of homoskedasticity in the PoSI framework can be given up if its inference is based on sandwich or pairs bootstrp.
 - ► Valid inference is obtained also for arbitrarily transformed data $(f(y), g(\mathbf{x}))$.
 - If a new PoSI technology is constructed based on the semi-parametric LS framework, it will allow us to protect against selection of a finite dictionary of transformations in addition to selection of predictors.
- Some obstacles:
 - ► Asymptotic variance is a 4th order functional of the underlying distribution.
 - Hence sandwich estimates of standard error are highly non-robust. A small fraction of the data can determine the standard error estimates.
 - We may have to abandon LS and look for estimation methods whose asymptotic variances are more robust.
 - Computations of PoSI methods based on the semi-parametric framework will be even more expensive, but this should not deter us.

> < 同 > < 三 > < 三 >

THANKS!

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximation

2013/11/13 36 / 36

(日) (日) (日) (日) (日)