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Larry’s Group: The Path to Misspecification

Starting Point: Post-Selection Inference (“PoSI”, Berk et al. 2013)

Does model selection produce “true models”?
Certainly not!

The PoSI method was in a framework of
I normal, homoskedastic errors and
I fixed regressors,

but
I we allowed misspecified conditional response means,
I if an estimate of σ was available.

Then:
I We got interested in treating regressors as random.
I We discovered discrepancies between standard errors from linear models

theory and from the x-y bootstrap.
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Parametric Regressor Ancillarity

A “justification” for conditioning on the regressors / treating them as fixed:

Parametric Regression: q(y , ~x ; θ) = q(y |~x ; θ)q(~x)
The regressor distribution q(~x) is a non-parametric nuisance parameter.

Fact: The set of pairwise probability ratios
(

q(y , ~x ; θ1)/q(y , ~x ; θ2)

)
θ1,θ2

forms a universally sufficient statistic.

Ancillarity of the regressor distributions:

q(y , ~x ; θ1)

q(y , ~x ; θ2)
=

q(y | ~x ; θ1)

q(y | ~x ; θ2)

Removes q(~x) from inference about the parameter θ.

Problem: Regressor Ancillarity holds only if the regression model
q(y |~x ;θ) is correctly specified.
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Discrepancies between Linear Models and Bootstrap

β̂j SElin SEboot
SEboot
SElin

tlin tboot

Intercept 0.760 22.767 16.505 0.726 0.033 0.046

MedianIncome ($K) -0.183 0.187 0.114 0.610 -0.977 -1.601

PercVacant 4.629 0.901 1.385 1.531 5.140 3.341

PercMinority 0.123 0.176 0.165 0.937 0.701 0.748

PercResidential -0.050 0.171 0.112 0.653 -0.292 -0.446

PercCommercial 0.737 0.273 0.390 1.438 2.700 1.892

PercIndustrial 0.905 0.321 0.577 1.801 2.818 1.570

We used the x-y bootstrap, not the residual bootstrap.

The x-y bootstrap is obviously valid without model assumptions.

Why the discrepancies?

Misspecification!
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Regression and Statistical Functionals

First steps of emancipation from model assumptions:

“Non-Model Assumption”: (Yi , ~X i) ∼ P = PY,~X iid

Compute whatever, but think of it operationally: OLS, GLMs, ...

Q: What is the target of estimation, making “no” assumptions?
A: A statistical functional θ(P), same computation, but at P.

Example: Linear OLS, θ(P) = argminθ EP[(Y − ~X
′
θ)2]

Example: GLMs, θ(P) = argminθ EP
[

b (~X ′ θ)− Y ~X ′ θ
]

General optimizations: θ(P) = argminθ EP[L(θ;Y , ~X )]

Solving Estimating Equations (EE): EP[ψ(θ;Y , ~X )] = 0

Ad hoc simple lin. reg. (X univariate): (X ′,Y ′), (X”,Y”) ∼ P iid
θ(P) = EP[(Y ′ − Y”)/(X ′ − X”)| |X ′ − X”| > δ]

=⇒ “Regression Functionals” θ(P) = θ(PY,~X )
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Just What is Regression?

Is the previous slide all there is to regression?

There’s more:

Regression is the asymmetric analysis of association between Y and ~X .

Motivation: Causation and Prediction

Interest focuses on the conditional response distribution:

Y |~X ∼ PY |~X

The goal/hope is that θ(P) is a property of PY |~X alone, not of P~X .

Useful notation: PY,~X = PY |~X ⊗ P~X

Definition: θ(P) is “well-specified” for PY |~X if “θ(PY |~X ⊗P~X ) = θ(PY |~X ).”

(a form of ancillarity requirement for P~X )
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Well-Specification of Regression Functionals

Well-specification ...

... means in mathy terms: θ(PY |~X ⊗ P~X
′) = θ(PY |~X ⊗ P~X

′′) ∀P~X
′,P~X

′′;

... means in practice: the quantity of interest, θ(·), does not depend on
where the data fall in regressor space;

... is a joint property of θ(·) and PY |~X ;
θ(·) will be well-specified for some PY |~X but not for others;

... of ML functionals, θ(P) = argminθ EP[− log(q(Y |~X ;θ))] ?

Yes, if the model is correctly specified: PY |~X = q(y |~x ;θ0) for some θ0;
in which case θ(P) = θ0.

...: Can an ML functional be well-specified for PY |~X /∈ {q(y |~x ;θ)}θ?
Indeed, see next.
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Well-Specification: Some Finger Practice

Let µ(~X ) = EP[Y | ~X ].

Q: When is EP[Y ] well-specified?
A: Iff µ(~X ) = const because EP[Y ] = EP[µ(~X )].

Q: When is θ(P) = EP[YX ]/EP[X 2] well-specified (X univariate)?
A: Iff µ(X ) = θ0X .

Q: When is θ(P) = cor(Y ,X ) 6= 0 well-specified?
A: Never

Q: When is linear OLS well-specified? θ(P) = EP[~X ~X
′
]−1EP[~Xµ(~X )]

A: Iff µ(~X ) = θ′0
~X , regardless of heteroskedasticity, non-Gaussianity.

Well-specification of OLS slopes is weaker than the full linear model!

Q: When is ridge well-specified? θ(P) = (EP[~X ~X
′
] + Ω)−1EP[~Xµ(~X )]

A: Ω = c E[~X ~X
′
] and µ(~X ) = θ′0

~X , hence θ(P) = θ0/(1 + c).
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Well-Specification and Causality

DAG theory of causality provides criteria to select regressors ~X for an
outcome Y to correctly infer causal effects.

The causal mechanism ~X → Y is described by PY |~X .

For ~X to be causal, it must not matter how ~X is manipulated or sampled.
The transmission of the causal effect is always through PY |~X .

Now we want to describe properties of PY |~X , regardless of P~X .
⇒ Use regression functionals θ(·) that are well-specified for PY |~X .

Peters, Bühlmann, Meinshausen (2016) propose a scheme for finding
causal associations from multiple data sources with same variables.
Idea: If PY |~X is causal for some ~X , it will be shared across data sources.
Interpretation: They are selecting for well-specification, not causation.

Andreas Buja (Wharton, UPenn) A Model-Free Theory of Parametric Regression 2018/12/01 11 / 16



A Well-Specification Diagnostic: Reweighting

Q: Can we detect misspecification of regression functionals empirically?
A: Yes, with reweighting.

If w(~x) > 0 is a weight function, of ~x alone, define (density notation)
p(w)(y , ~x) = w(~x)p(y , ~x) (EPw(~X ) = 1)

Facts: p(w)(y |~x) = p(y |~x) and p(w)(~x) = w(~x)p(~x)

Corollary: If θ(·) is well-specified for PY |~X , then θ(P(w)) = θ(P)

Conversely: If θ(P(w)) 6= θ(P), then θ(·) is misspecified for PY |~X .

Methodology: Let wξ(~x) = w(xj − ξ) be a weight function of xj alone,
centered at ξ. Plot ξ 7→ θ(P(wξ)).

LA Homeless Data: θ(P) = βPercVacant(P) OLS slope of interest
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LA Homeless Data, θ(·) = Slope of PercVacant
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Reweighting of Slopes on Own Regressors
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Misspecification and Random ~X → Sampling Variabilty

If θ(P) = θ(PY |~X ⊗ P~X ) is misspecified, it depends on P~X .
Hence the following object has sampling variability:

θ(PY |~X ⊗ P̂~X )

Compare: Linear OLS, V[ θ̂ ] = E[V[ θ̂ | ~X ] ] + V[E[ θ̂ | ~X ] ]

The “Conspiracy Movie”: Misspecification and random ~X conspiring

source("http://stat.wharton.upenn.edu/�buja/src-conspiracy-animation2.R")
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Thank you, Larry !
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