A Model-Free Theory of Parametric Regression

Andreas Buja, Lawrence Brown, Arun Kuchibhotla, Richard Berk, Ed George, Linda Zhao

Department of Statistics, The Wharton School University of Pennsylvania

Larry's Memorial — 2018/12/01

<ロ> (四) (四) (三) (三) (三) (三)

Ten Years of Joy with Larry

2018/12/01 2/16

・ロト ・回ト ・ヨト ・ヨト

Ten Years of Joy with Larry

・ロト ・回ト ・ヨト ・ヨト

Larry's Group: The Path to Misspecification

- Starting Point: Post-Selection Inference ("PoSI", Berk et al. 2013)
- Does model selection produce "true models"?
 Certainly not!
- The PoSI method was in a framework of
 - normal, homoskedastic errors and
 - fixed regressors,

but

- we allowed misspecified conditional response means,
- if an estimate of σ was available.
- Then:
 - We got interested in treating regressors as random.
 - We discovered discrepancies between standard errors from linear models theory and from the x-y bootstrap.

Parametric Regressor Ancillarity

- A "justification" for conditioning on the regressors / treating them as fixed:
 - Parametric Regression: $q(y, \vec{x}; \theta) = q(y|\vec{x}; \theta) q(\vec{x})$ The regressor distribution $q(\vec{x})$ is a non-parametric nuisance parameter.
 - Fact: The set of pairwise probability ratios $\left(q(y, \vec{x}; \theta_1)/q(y, \vec{x}; \theta_2)\right)_{\theta_1, \theta_2}$ forms a universally sufficient statistic.
 - Ancillarity of the regressor distributions:

 $\frac{q(y, \vec{x}; \theta_1)}{q(y, \vec{x}; \theta_2)} = \frac{q(y \mid \vec{x}; \theta_1)}{q(y \mid \vec{x}; \theta_2)}$

Removes $q(\vec{x})$ from inference about the parameter θ .

• **Problem:** Regressor Ancillarity holds only if the regression model $q(y|\vec{x}; \theta)$ is correctly specified.

Discrepancies between Linear Models and Bootstrap

	\hat{eta}_{j}	SE_{lin}	SE_{boot}	$\frac{S E_{boot}}{S E_{lin}}$	t _{in}	t _{boot}
Intercept	0.760	22.767	16.505	0.726	0.033	0.046
MedianIncome (\$K)	-0.183	0.187	0.114	0.610	-0.977	-1.601
PercVacant	4.629	0.901	1.385	1.531	5.140	3.341
PercMinority	0.123	0.176	0.165	0.937	0.701	0.748
PercResidential	-0.050	0.171	0.112	0.653	-0.292	-0.446
PercCommercial	0.737	0.273	0.390	1.438	2.700	1.892
PercIndustrial	0.905	0.321	0.577	1.801	2.818	1.570

• We used the *x*-*y* bootstrap, not the residual bootstrap.

• The *x*-*y* bootstrap is obviously valid without model assumptions.

Why the discrepancies?

Discrepancies between Linear Models and Bootstrap

	\hat{eta}_{j}	SE_{lin}	SE_{boot}	$\frac{S E_{boot}}{S E_{lin}}$	t _{in}	t _{boot}
Intercept	0.760	22.767	16.505	0.726	0.033	0.046
MedianIncome (\$K)	-0.183	0.187	0.114	0.610	-0.977	-1.601
PercVacant	4.629	0.901	1.385	1.531	5.140	3.341
PercMinority	0.123	0.176	0.165	0.937	0.701	0.748
PercResidential	-0.050	0.171	0.112	0.653	-0.292	-0.446
PercCommercial	0.737	0.273	0.390	1.438	2.700	1.892
PercIndustrial	0.905	0.321	0.577	1.801	2.818	1.570

- We used the *x*-*y* bootstrap, not the residual bootstrap.
- The *x*-*y* bootstrap is obviously valid without model assumptions.

Why the discrepancies? **Misspecification!**

Regression and Statistical Functionals

First steps of emancipation from model assumptions:

- "Non-Model Assumption": $(Y_i, \vec{X}_i) \sim \mathbf{P} = \mathbf{P}_{Y, \vec{X}}$ iid
- Compute whatever, but think of it operationally: OLS, GLMs, ...
- Q: What is the target of estimation, making "no" assumptions?
 A: A statistical functional θ(P), same computation, but at P.
- Example: Linear OLS, $\theta(\mathbf{P}) = \operatorname{argmin}_{\theta} \mathbf{E}_{\mathbf{P}}[(Y \vec{\mathbf{X}}'\theta)^2]$
- Example: GLMs, $\theta(\mathbf{P}) = \operatorname{argmin}_{\theta} \mathbf{E}_{\mathbf{P}} [b(\vec{\mathbf{X}}' \theta) Y \vec{\mathbf{X}}' \theta]$
- General optimizations: $\theta(\mathbf{P}) = \operatorname{argmin}_{\theta} \mathbf{E}_{\mathbf{P}}[\mathcal{L}(\theta; Y, \vec{\mathbf{X}})]$
- Solving Estimating Equations (EE): $\mathbf{E}_{\mathbf{P}}[\psi(\theta; \mathbf{Y}, \mathbf{X})] = \mathbf{0}$
- Ad hoc simple lin. reg. (X univariate): $(X', Y'), (X'', Y'') \sim \mathbf{P}$ iid $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[(Y' - Y'')/(X' - X'') | |X' - X''| > \delta]$

Regression and Statistical Functionals

First steps of emancipation from model assumptions:

- "Non-Model Assumption": $(Y_i, \vec{X}_i) \sim \mathbf{P} = \mathbf{P}_{Y, \vec{X}}$ iid
- Compute whatever, but think of it operationally: OLS, GLMs, ...
- Q: What is the target of estimation, making "no" assumptions?
 A: A statistical functional θ(P), same computation, but at P.
- Example: Linear OLS, $\theta(\mathbf{P}) = \operatorname{argmin}_{\theta} \mathbf{E}_{\mathbf{P}}[(\mathbf{Y} \mathbf{\vec{X}}'\theta)^2]$
- Example: GLMs, $\theta(\mathbf{P}) = \operatorname{argmin}_{\theta} \mathbf{E}_{\mathbf{P}} [b(\vec{\mathbf{X}}' \theta) Y \vec{\mathbf{X}}' \theta]$
- General optimizations: $\theta(\mathbf{P}) = \operatorname{argmin}_{\theta} \mathbf{E}_{\mathbf{P}}[\mathcal{L}(\theta; Y, \vec{X})]$
- Solving Estimating Equations (EE): $\mathbf{E}_{\mathbf{P}}[\psi(\theta; \mathbf{Y}, \mathbf{X})] = \mathbf{0}$
- Ad hoc simple lin. reg. (X univariate): $(X', Y'), (X'', Y'') \sim \mathbf{P}$ iid $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[(Y' - Y'')/(X' - X'')| |X' - X''| > \delta]$

 \implies "Regression Functionals" $\theta(\mathsf{P}) = \theta(\mathsf{P}_{Y,\vec{X}})$

Just What is Regression?

Is the previous slide all there is to regression?

Just What is Regression?

Is the previous slide all there is to regression? There's more:

- Regression is the asymmetric analysis of association between Y and \vec{X} .
- Motivation: Causation and Prediction
- Interest focuses on the conditional response distribution:

$$Y|ec{m{X}}\sim m{P}_{\!Y|ec{m{X}}}$$

- The goal/hope is that $\theta(\mathbf{P})$ is a property of $\mathbf{P}_{Y|\vec{X}}$ alone, not of $\mathbf{P}_{\vec{X}}$.
- Useful notation: $\mathbf{P}_{\mathbf{Y},\vec{\mathbf{X}}} = \mathbf{P}_{\mathbf{Y}|\vec{\mathbf{X}}} \otimes \mathbf{P}_{\vec{\mathbf{X}}}$

Just What is Regression?

Is the previous slide all there is to regression? There's more:

- Regression is the asymmetric analysis of association between Y and \vec{X} .
- Motivation: Causation and Prediction
- Interest focuses on the conditional response distribution:

$$Y|ec{m{X}}\sim m{P}_{\!Y|ec{m{X}}}$$

- The goal/hope is that $\theta(\mathbf{P})$ is a property of $\mathbf{P}_{Y|\vec{X}}$ alone, not of $\mathbf{P}_{\vec{X}}$.
- Useful notation: $\mathbf{P}_{\mathbf{Y},\vec{\mathbf{X}}} = \mathbf{P}_{\mathbf{Y}|\vec{\mathbf{X}}} \otimes \mathbf{P}_{\vec{\mathbf{X}}}$

Definition: $\theta(\mathsf{P})$ is "well-specified" for $\mathsf{P}_{Y|\vec{X}}$ if " $\theta(\mathsf{P}_{Y|\vec{X}} \otimes \mathsf{P}_{\vec{X}}) = \theta(\mathsf{P}_{Y|\vec{X}})$."

(a form of ancillarity requirement for $\mathbf{P}_{\vec{X}}$)

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Well-Specification of Regression Functionals

Well-specification ...

- ... means in mathy terms: $\theta(\mathbf{P}_{Y|\vec{X}} \otimes \mathbf{P}_{\vec{X}}') = \theta(\mathbf{P}_{Y|\vec{X}} \otimes \mathbf{P}_{\vec{X}}'') \quad \forall \mathbf{P}_{\vec{X}}', \mathbf{P}_{\vec{X}}'';$
- ... means in practice: the quantity of interest, θ(·), does not depend on where the data fall in regressor space;
- ... is a joint property of θ(·) and P_{Y|X̄};
 θ(·) will be well-specified for some P_{Y|X̄} but not for others;
- ... of ML functionals, $\theta(\mathbf{P}) = \operatorname{argmin}_{\theta} \mathbf{E}_{\mathbf{P}}[-\log(q(Y|\vec{\mathbf{X}};\theta))]$?

・ロン ・四 と ・ 回 と ・ 日 と

Well-Specification of Regression Functionals

Well-specification ...

- ... means in mathy terms: $\theta(\mathbf{P}_{Y|\vec{X}} \otimes \mathbf{P}_{\vec{X}}') = \theta(\mathbf{P}_{Y|\vec{X}} \otimes \mathbf{P}_{\vec{X}}'') \quad \forall \mathbf{P}_{\vec{X}}', \mathbf{P}_{\vec{X}}'';$
- ... means in practice: the quantity of interest, θ(·), does not depend on where the data fall in regressor space;
- ... is a joint property of $\theta(\cdot)$ and $\mathbf{P}_{Y|\vec{X}}$; $\theta(\cdot)$ will be well-specified for some $\mathbf{P}_{Y|\vec{X}}$ but not for others;
- ... of ML functionals, θ(P) = argmin_θ E_P[-log(q(Y|X; θ))] ?
 Yes, if the model is correctly specified: P_{Y|X} = q(y|X; θ₀) for some θ₀; in which case θ(P) = θ₀.
- ...: Can an ML functional be well-specified for $\mathbf{P}_{Y|\vec{x}} \notin \{q(y|\vec{x};\theta)\}_{\theta}$? Indeed, see next.

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

イロト イヨト イヨト イヨト

- Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$
 - Q: When is **E**_P[Y] well-specified?

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

• Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{\mathbf{X}}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{\mathbf{X}})]$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

- Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{\mathbf{X}}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{\mathbf{X}})]$.
- Q: When is $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[YX]/\mathbf{E}_{\mathbf{P}}[X^2]$ well-specified (X univariate)?

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

- Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{\mathbf{X}}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{\mathbf{X}})]$.
- Q: When is $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[YX]/\mathbf{E}_{\mathbf{P}}[X^2]$ well-specified (X univariate)? A: Iff $\mu(X) = \theta_0 X$.

・ロン ・回 と ・ 回 と

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

- Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{\mathbf{X}}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{\mathbf{X}})]$.
- Q: When is $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[YX]/\mathbf{E}_{\mathbf{P}}[X^2]$ well-specified (X univariate)? A: Iff $\mu(X) = \theta_0 X$.
- Q: When is $\theta(\mathbf{P}) = \operatorname{cor}(Y, X) \neq 0$ well-specified?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

- Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{X}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{X})]$.
- Q: When is $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[YX]/\mathbf{E}_{\mathbf{P}}[X^2]$ well-specified (X univariate)? A: Iff $\mu(X) = \theta_0 X$.
- Q: When is $\theta(\mathbf{P}) = \operatorname{cor}(Y, X) \neq 0$ well-specified? A: Never

・ロン ・四 と ・ 回 と ・ 日 と

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

- Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{X}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{X})]$.
- Q: When is $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[YX]/\mathbf{E}_{\mathbf{P}}[X^2]$ well-specified (X univariate)? A: Iff $\mu(X) = \theta_0 X$.
- Q: When is $\theta(\mathbf{P}) = \operatorname{cor}(Y, X) \neq 0$ well-specified? A: Never
- Q: When is linear OLS well-specified? $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[\vec{\mathbf{X}}\vec{\mathbf{X}}']^{-1}\mathbf{E}_{\mathbf{P}}[\vec{\mathbf{X}}\mu(\vec{\mathbf{X}})]$

イロト イポト イヨト イヨト 二日

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

- Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{X}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{X})]$.
- Q: When is $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[YX]/\mathbf{E}_{\mathbf{P}}[X^2]$ well-specified (X univariate)? A: Iff $\mu(X) = \theta_0 X$.
- Q: When is $\theta(\mathbf{P}) = \operatorname{cor}(Y, X) \neq 0$ well-specified? A: Never
- Q: When is linear OLS well-specified? $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[\vec{\mathbf{X}}\vec{\mathbf{X}}']^{-1}\mathbf{E}_{\mathbf{P}}[\vec{\mathbf{X}}\mu(\vec{\mathbf{X}})]$ A: Iff $\mu(\vec{\mathbf{X}}) = \theta'_{0}\vec{\mathbf{X}}$, regardless of heteroskedasticity, non-Gaussianity. Well-specification of OLS slopes is weaker than the full linear model!

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

- Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{\mathbf{X}}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{\mathbf{X}})]$.
- Q: When is $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[YX]/\mathbf{E}_{\mathbf{P}}[X^2]$ well-specified (X univariate)? A: Iff $\mu(X) = \theta_0 X$.
- Q: When is $\theta(\mathbf{P}) = cor(Y, X) \neq 0$ well-specified? A: Never
- Q: When is linear OLS well-specified? $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[\vec{X}\vec{X}']^{-1}\mathbf{E}_{\mathbf{P}}[\vec{X}\mu(\vec{X})]$ A: Iff $\mu(\vec{X}) = \theta'_{0}\vec{X}$, regardless of heteroskedasticity, non-Gaussianity. Well-specification of OLS slopes is weaker than the full linear model!
- Q: When is ridge well-specified? $\theta(P) = (\mathbf{E}_{\mathbf{P}}[\vec{X}\vec{X}'] + \Omega)^{-1}\mathbf{E}_{\mathbf{P}}[\vec{X}\mu(\vec{X})]$

Let $\mu(\vec{X}) = \mathbf{E}_{\mathbf{P}}[Y | \vec{X}].$

- Q: When is $\mathbf{E}_{\mathbf{P}}[Y]$ well-specified? A: Iff $\mu(\vec{X}) = \text{const}$ because $\mathbf{E}_{\mathbf{P}}[Y] = \mathbf{E}_{\mathbf{P}}[\mu(\vec{X})]$.
- Q: When is $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[YX]/\mathbf{E}_{\mathbf{P}}[X^2]$ well-specified (X univariate)? A: Iff $\mu(X) = \theta_0 X$.
- Q: When is $\theta(\mathbf{P}) = cor(Y, X) \neq 0$ well-specified? A: Never
- Q: When is linear OLS well-specified? $\theta(\mathbf{P}) = \mathbf{E}_{\mathbf{P}}[\vec{X}\vec{X}']^{-1}\mathbf{E}_{\mathbf{P}}[\vec{X}\mu(\vec{X})]$ A: Iff $\mu(\vec{X}) = \theta'_{0}\vec{X}$, regardless of heteroskedasticity, non-Gaussianity. Well-specification of OLS slopes is weaker than the full linear model!
- Q: When is ridge well-specified? $\theta(P) = (\mathbf{E}_{\mathbf{P}}[\vec{X}\vec{X}'] + \Omega)^{-1}\mathbf{E}_{\mathbf{P}}[\vec{X}\mu(\vec{X})]$ A: $\Omega = c \mathbf{E}[\vec{X}\vec{X}']$ and $\mu(\vec{X}) = \theta'_{0}\vec{X}$, hence $\theta(P) = \theta_{0}/(1+c)$.

Well-Specification and Causality

- DAG theory of causality provides criteria to select regressors \vec{X} for an outcome Y to correctly infer causal effects.
- The causal mechanism $\vec{X} \to Y$ is described by $\mathbf{P}_{Y|\vec{X}}$.
- For \vec{X} to be causal, it must not matter how \vec{X} is manipulated or sampled. The transmission of the causal effect is always through $\mathbf{P}_{Y|\vec{X}}$.
- Now we want to describe properties of P_{Y|X̄}, regardless of P_{X̄}.
 ⇒ Use regression functionals θ(·) that are well-specified for P_{Y|X̄}.
- Peters, Bühlmann, Meinshausen (2016) propose a scheme for finding causal associations from multiple data sources with same variables.
 Idea: If P_{Y|X̄} is causal for some X̄, it will be shared across data sources.
 Interpretation: They are selecting for well-specification, not causation.

A Well-Specification Diagnostic: Reweighting

- Q: Can we detect misspecification of regression functionals empirically?
 A: Yes, with reweighting.
- If $w(\vec{x}) > 0$ is a weight function, of \vec{x} alone, define (density notation) $p^{(w)}(y, \vec{x}) = w(\vec{x}) p(y, \vec{x})$ ($\mathbb{E}_{P} w(\vec{X}) = 1$)
- Facts: $p^{(w)}(y|\vec{x}) = p(y|\vec{x})$ and $p^{(w)}(\vec{x}) = w(\vec{x})p(\vec{x})$
- Corollary: If $\theta(\cdot)$ is well-specified for $\mathbf{P}_{Y|\vec{X}}$, then $\theta(\mathbf{P}^{(w)}) = \theta(\mathbf{P})$
- Conversely: If $\theta(\mathbf{P}^{(w)}) \neq \theta(\mathbf{P})$, then $\theta(\cdot)$ is misspecified for $\mathbf{P}_{Y|\vec{X}}$.
- Methodology: Let w_ξ(**x**) = w(x_j − ξ) be a weight function of x_j alone, centered at ξ. Plot ξ → θ(P^(w_ξ)).
- LA Homeless Data: $\theta(\mathbf{P}) = \beta_{PercVacant}(\mathbf{P})$ OLS slope of interest

・ロン ・回 と ・ ヨ と ・ ヨ ・

LA Homeless Data, $\theta(\cdot) =$ Slope of PercVacant

Andreas Buja (Wharton, UPenn)

A Model-Free Theory of Parametric Regression

Reweighting of Slopes on Own Regressors

Andreas Buja (Wharton, UPenn)

A Model-Free Theory of Parametric Regression

2018/12/01 14/16

ъ

Misspecification and Random $\vec{X} \rightarrow$ Sampling Variability

• If $\theta(\mathbf{P}) = \theta(\mathbf{P}_{Y|\vec{X}} \otimes \mathbf{P}_{\vec{X}})$ is misspecified, it depends on $\mathbf{P}_{\vec{X}}$. Hence the following object has sampling variability:

$$heta({f P}_{Yert {m X}}\otimes \widehat{m P}_{m X})$$

- Compare: Linear OLS, $V[\hat{\theta}] = E[V[\hat{\theta} | \vec{X}]] + V[E[\hat{\theta} | \vec{X}]]$
- The "Conspiracy Movie": Misspecification and random \vec{X} conspiring source("http://stat.wharton.upenn.edu/~buja/src-conspiracy-animation2.R")

Thank you, Larry !

