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Problems: Non-Reproducibility in Biomedical Science

Borrowed from: Berger, 2012, “Reproducibility of Science: P-values and Multiplicity”

Bayer Healthcare: 67 attempts at replicating published research findings
I Fewer than 1/4 were viewed as replicated.
I Over 2/3 had major inconsistencies leading to project termination.

Arrowsmith (2011, Nat.Rev.Drug Discovery 10): Drug trial success rates ↓
I Phase II: 28% in 2005, 18% in 2010
I Phase III: 80% in 2000, 50% in 2010
I Phase III cancer drugs: 30%

The NIH funded randomized clinical trials to follow up exciting results
from 20 observational studies: Only one was replicated.

Ioannidis (JAMA-2005, 218-28):
I 5 of 6 highly cited nonrandomized studies were contradicted or had found

stronger effects than were established by later studies.
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Most Empirical Findings Are False

Bombshell in Biomedical Science:

“Why Most Published Research Findings Are False”
by Ioannidis (2005, PLOS Medicine)

Demonstrates the combined influences of: Pre-study (true/false) odds R,
Type I error α, power β, bias u (!), # independent similar studies n.

Famous corollaries:
I the smaller the study sizes,
I the smaller the effect sizes,
I the greater the number of tested relationships,
I the greater the flexibility in design, definitions, outcomes, techniques,
I the greater the financial and professional interests,
I the hotter the field,

the less likely the research findings are to be true.

Note: “bias” due to “manipulation in the analysis”, “selective reporting”
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Problems: “False-Positive” Social Sciences

Bombshell in psychological research:

“False Positive Psychology: Undisclosed Flexiblity in Data
Collection and Analysis allows Presenting Anything as Significant”
by Simmons, Nelson, Simonsohn (2011, Psychological Science)

New concept: “Researcher Degrees of Freedom”

I “In the course of collecting and analyzing data, researchers have many
decisions to make: Should more data be collected? Should some
observations be excluded? Which conditions should be combined and which
ones compared? Which control variables should be considered? Should
specific measures be combined or transformed or both?”

I Elaboration of what Ioannidis could have meant with “bias”.

Soul-searching in social science journals:

I disclosure requirements, emphasis on replication, ...

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximations 2016/04/20 4 / 38



Problem: “False-Positive” Social Sciences (contd.)

From Simmons, Nelson, Simonsohn (2011):
False-Positive Psychology 1361

pay. The researcher can test whether the manipulation affected 
liking, whether the manipulation affected willingness to pay, 
and whether the manipulation affected a combination of these 
two variables. The likelihood that one of these tests produces 
a significant result is at least somewhat higher than .05. We 
conducted 15,000 simulations of this scenario (and other sce-
narios) to estimate the size of “somewhat.”2

We report the results of our simulations in Table 1. The  
first row shows that flexibility in analyzing two dependent 
variables (correlated at r = .50) nearly doubles the probability 
of obtaining a false-positive finding.3

The second row of Table 1 shows the results of a researcher 
who collects 20 observations per condition and then tests for 
significance. If the result is significant, the researcher stops 
collecting data and reports the result. If the result is nonsignifi-
cant, the researcher collects 10 additional observations per 
condition, and then again tests for significance. This seem-
ingly small degree of freedom increases the false-positive rate 
by approximately 50%.

The third row of Table 1 shows the effect of flexibility in 
controlling for gender or for an interaction between gender 
and the independent variable.4 Such flexibility leads to a false-
positive rate of 11.7%. The fourth row of Table 1 shows that 
running three conditions (e.g., low, medium, high) and report-
ing the results for any two or all three (e.g., low vs. medium, 
low vs. high, medium vs. high, low vs. medium vs. high) gen-
erates a false-positive rate of 12.6%.

The bottom three rows of Table 1 show results for combi-
nations of the situations described in the top four rows, with 
the bottom row reporting the false-positive rate if the 
researcher uses all of these degrees of freedom, a practice 
that would lead to a stunning 61% false-positive rate! A 
researcher is more likely than not to falsely detect a signifi-
cant effect by just using these four common researcher 
degrees of freedom.

As high as these estimates are, they may actually be conser-
vative. We did not consider many other degrees of freedom 
that researchers commonly use, including testing and choos-
ing among more than two dependent variables (and the various 
ways to combine them), testing and choosing among more 
than one covariate (and the various ways to combine them), 
excluding subsets of participants or trials, flexibility in decid-
ing whether early data were part of a pilot study or part of the 
experiment proper, and so on.

A closer look at flexibility in sample size
Researchers often decide when to stop data collection on the 
basis of interim data analysis. Notably, a recent survey of 
behavioral scientists found that approximately 70% admitted 
to having done so (John, Loewenstein, & Prelec, 2011). In 
conversations with colleagues, we have learned that many 
believe this practice exerts no more than a trivial influence on 
false-positive rates.

Table 1. Likelihood of Obtaining a False-Positive Result

Significance level

Researcher degrees of freedom p < .1 p < .05 p < .01

Situation A: two dependent variables (r = .50) 17.8% 9.5% 2.2%
Situation B: addition of 10 more observations 

per cell
14.5% 7.7% 1.6%

Situation C: controlling for gender or interaction 
of gender with treatment

21.6% 11.7% 2.7%

Situation D: dropping (or not dropping) one of 
three conditions

23.2% 12.6% 2.8%

Combine Situations A and B 26.0% 14.4% 3.3%
Combine Situations A, B, and C 50.9% 30.9% 8.4%
Combine Situations A, B, C, and D 81.5% 60.7% 21.5%

Note: The table reports the percentage of 15,000 simulated samples in which at least one of a 
set of analyses was significant. Observations were drawn independently from a normal distribu-
tion. Baseline is a two-condition design with 20 observations per cell. Results for Situation A were 
obtained by conducting three t tests, one on each of two dependent variables and a third on the 
average of these two variables. Results for Situation B were obtained by conducting one t test after 
collecting 20 observations per cell and another after collecting an additional 10 observations per 
cell. Results for Situation C were obtained by conducting a t test, an analysis of covariance with a 
gender main effect, and an analysis of covariance with a gender interaction (each observation was 
assigned a 50% probability of being female). We report a significant effect if the effect of condition 
was significant in any of these analyses or if the Gender × Condition interaction was significant. 
Results for Situation D were obtained by conducting t tests for each of the three possible pairings 
of conditions and an ordinary least squares regression for the linear trend of all three conditions 
(coding: low =  –1, medium = 0, high = 1).

 by Joseph Simmons on November 8, 2011pss.sagepub.comDownloaded from 
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Statistical Biases – One Among Several

Consider now one cause of statistical bias:
an absence of accounting for model/variable selection.

Model selection is done on several levels:
I formal selection: stepwise, all-subsets with AIC, BIC,...; Lasso; Dantzig;...
I informal selection: residual plots, influence diagnostics, ...
I post hoc selection: “This predictor is too costly given its effect size.”

Suspicions:
I All three modes of model selection may be used in much empirical research.
I Ironically, the most thorough and competent data analysts may also be the

ones who produce the most spurious findings.
I Post-selection inference for “adaptive Lasso”, say, won’t solve the problem:

Few empirical researchers commit themselves
a priori to one formal selection method and nothing else.
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Linear Model Inference and Variable Selection

Y = Xβ + ε

X = fixed design matrix, N × p, N > p, full rank.

ε ∼ NN
(
0, σ2IN

)
In textbooks:

1 Variables selected
2 Data seen
3 Inference produced

In common practice:
1 Data seen
2 Variables selected
3 Inference produced

Is this inference valid?
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Evidence from a Simulation

Marginal Distribution of Post-Selection t-statistics:

t X
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The overall coverage probability of the conventional post-selection CI is
83.5% < 95%.

For p = 30, the coverage probability can be as low as 39%.
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For p = 30, the coverage probability can be as low as 39%.
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The PoSI Procedure — Rough Outline

We propose to construct Post Selection Inference (PoSI) with guarantees
for the coverage of CIs and Type I errors of tests.

We widen CIs and retention intervals to achieve correct/conservative
post-selection coverage probabilities. This is the price we have to pay.

The approach is a reduction of PoSI to simultaneous inference.

Simultaneity is across all submodels and all slopes in them.

As a result, we obtain

valid PoSI for all variable selection procedures!

But first we need make sense of

Targets of Inference in Approximate Models
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Incorrect Submodels — What Is Being Estimated?

Denote a submodel by integers M = {j1, j2, ..., jm}:

XM =
(
Xj1 ,Xj2 , ...,Xjm

)
∈ IRN×m.

OLS coefficient estimates in the submodel M:

β̂M =
(
XT
MXM

)−1XT
M Y ∈ IRm

Q: What does β̂M estimate, not assuming the truth of M?

A: Its expectation!

µ := E[Y] ∈ IRN arbitrary!!

βM := E[β̂M] =
(
XT
MXM

)−1XT
M µ

We do not assume that the submodel is correct: µ 6= XMβM allowed!

But XMβM is the best approximation to µ.
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Adjustment, Estimates, Parameters, t-Statistics

Notation and facts for the components of β̂M and βM, assuming j ∈ M:

Let Xj•M be the predictor Xj adjusted for the other predictors in M:

Xj•M :=
(
I− HMr{j}

)
Xj ⊥ Xk ∀k ∈ Mr {j}.

Let β̂j•M be the slope estimate and βj•M be the parameter for Xj in M:

β̂j•M :=
〈Xj•M, Y 〉
‖Xj•M‖2 , βj•M :=

〈Xj•M, E[Y] 〉
‖Xj•M‖2 .

Let tj•M be the t-statistic for β̂j•M and βj•M:

tj•M :=
β̂j•M − βj•M

σ̂/‖Xj•M‖
=

1
σ̂
〈

XT
j•M

‖Xj•M‖
, Y− E[Y] 〉.
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Parameters One More Time

Important: If the predictors are partly collinear (non-orthogonal) then

M 6= M′, j ∈ M ∩M ′ ⇒ βj•M 6= βj•M′

in value and in meaning!

Rule: A difference in adjustment implies a difference in parameters.

Number of parameters βj•M: p 2p−1
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Geometry of Adjustment

x 1

x 2

x 2.1

x 1.2

φφ0
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●

Column space
of X for p =2
predictors,
partly collinear
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Error Estimates σ̂: One for All Submodels

Critical Point: To enable simultaneous inference for all tj•M,
use one error estimate σ̂ for all submodels.

I Do not use /////σ̂M !
I Use σ̂ = σ̂Full instead for all submodels M.
I tj•M will have a t-distribution with the same dfs ∀M, ∀j ∈ M.

Q: What if even the full model is 1st order wrong?

A: σ̂Full will be inflated and inference will be conservative.

A better σ̂ is available if ...
I exact replicates exist: use σ̂ from the 1-way ANOVA of replicates;
I a larger than the full model can be assumed 1st order correct: use σ̂Large;
I a previous dataset provided a valid estimate: use σ̂previous;
I nonparametric estimates are available: use σ̂nonpar (Hall and Carroll 1989).
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Statistical Inference under First Order Incorrectness

Same correct inference across all submodels M and all βj•M:

I If r = dfs in σ̂ and K = t1−α/2,r , then the “almost usual” interval

CIj•M(K ) := [ β̂j•M ± K σ̂/‖Xj•M‖ ]

satisfies: P[βj•M ∈ CIj•M(K ) ] = 1−α ∀M, ∀j ∈ M

Correct inference in a mean-misspecified homoskedastic model:

Y = µ+ ε, ε ∼ NN
(
0, σ2I

)
I Permitted: µ 6= Xβ, XMβM ∀M

I A single valid σ̂ with known dfs across all submodels
enables simultaneous inference across submodels.
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Variable Selection

What is a variable selection procedure?

A map Y 7→ M̂ = M̂(Y), IRN → P({1, ...p})
I M̂ divides the response space IRN into up to 2p subsets.

I In a fixed-predictor framework, selection purely based on X does not
invalidate inference (example: deselect predictors based on VIF, H, ...).

Candidates for meaningful coverage probabilities:
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I In a fixed-predictor framework, selection purely based on X does not
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Candidates for meaningful coverage probabilities:
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Variable Selection

What is a variable selection procedure?

A map Y 7→ M̂ = M̂(Y), IRN → P({1, ...p})
I M̂ divides the response space IRN into up to 2p subsets.
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Reduction to Simultaneous Inference

Lemma
For any variable selection procedure M̂ = M̂(Y), we have the following
“significant triviality bound”:

max
j∈M̂
|tj•M̂| ≤ max

M

max
j∈M
|tj•M| ∀Y,µ ∈ IRN .

Theorem
Let K be the 1−α quantile of the “max-max-|t |” statistic of the lemma:

P
[

max
M

max
j∈M
|tj•M| ≤ K

] (≥)
= 1− α.

Then we have the following universal PoSI guarantee:

P
[
βj•M̂ ∈ CIj•M̂(K ) ∀j ∈ M̂

]
≥ 1− α ∀M̂.
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PoSI Geometry — Simultaneity

x 1

x 2

x 2.1

x 1.2

φφ0

O

P1

P2

●

PoSI polytope
= intersection
of all t-bands.
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Computing PoSI

The simultaneity challenge: #{|tj•M|} = p 2p−1

p 3 4 5 6 7 8 9 10 11
#|t| 12 32 80 192 448 1, 024 2, 304 5, 120 11, 264
p 12 13 14 15 16 17 18 19 20
#|t| 24, 576 53, 248 114, 688 245, 760 524, 288 1, 114, 112 2, 359, 296 4, 980, 736 10, 485, 760

Computations: (for R Code, search “Buja Wharton”)
I Computational cost is linear in N, exponential in p.
I Off-the-shelf R software works up to p ≈ 7.
I Custom semi-MC-approximation in R works up to p ≈ 20.
I Sparse PoSI: Limit search to models of size ≤ m; permit N<p,m≤N.

Example: PoSI for p = 50 and m = 5 requires #{|tj•M|} = 11,576,300.

Large-p Asymptotics: based on sequences of structured designs X
I Worst-case: K (p) ∈ √p · [0.78, 0.866...]
I Best-case : K (p) ∼

√
2 log(p)
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PoSI Benefits

PoSI protection may seem conservative, but

PoSI inference will be valid even if one...

... tries several formal selection methods and picks the “best”;

... uses informal model diagnostics to reject models;

... performs “significance hunting”, i.e., selects the model with the most
significant effects on preferred predictors;

... steps forward/backward till all selected predictors are “significant”;

... analyzes clinical trial data in post-hoc “data mining”.

Andreas Buja (Wharton, UPenn) Post-Selection Inference for Models that are Approximations 2016/04/20 20 / 38



PoSI from Split Samples

Very different “obvious” approach: Split the data into

a model selection sample and

an estimation & inference sample.

Pros:

Valid inference for the
selected model.

Flexibility in models:
GLIMs!

Less conservative
inference than PoSI.

Cons:

Artificial randomness from a
single split.

Reduced effective sample size.

More model selection uncertainty.

More estimation uncertainty.

Loss of conditionality on X.
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Fixed X versus Random X

With split-sampling we break the fixed-X paradigm.

Why do many statisticians believe in conditioning on X?
Answer: Fisher’s ancillarity argument for X.

Scenario: Y = error-free but nonlinear response

X = random predictor

⇒ Y |X has no randomness for fixed X

Demo: Execute the following line in R.

source("http://stat.wharton.upenn.edu/ buja/src-conspiracy-animation2.R")

Nonlinearity of Y and randomness of X conspire
to create sampling variability in the estimates.

Consequence: Ancillarity of X is invalid if the model is an approximation.
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Inference for Random X

Fact: Econometricians do not condition on X.
They use an alternative form of inference based on the

Sandwich Estimate of Standard Error.
Eicker-Huber-White

PJH, “THE BEHAVIOR OF MAXIMUM LIKELIHOOD ESTIMATES

UNDER NONSTANDARD CONDITIONS”, Berkeley Symp. 1967

Do statisticians know regression inference that is not conditional on X?
Yes, we do: the Pairs Bootstrap
to be distinguished from the Residual Bootstrap (which is fixed-X).

Fact: The Sandwich estimate of Standard Error is the limit of the
M-of-N bootstrap as M →∞.
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The Pairs Bootstrap for Regression

Assumptions: (xi , yi ) ∼ P(dx,dy) i.i.d.,
P(dx) non-degenerate: E[xx′] > 0, + technicalities for CLTs of estimates.

There is no regression model, but we apply regression anyway, OLS, say:
β̂ = (X′X)-1X′y

The nonparametric pairs bootstrap applies:
Resample (xi , yi ) pairs → (x∗i , y

∗
i ) → β̂

∗
.

Note: Militant conditionalists would reject this; they would bootstrap residuals.

Estimate SE(β̂j ) by ŜEboot(β̂j ) = SD∗(β∗j ).

Question: Letting ŜElin(β̂j ) = σ̂
‖xj•‖ , is the following always true?

ŜEboot(β̂j)
?
≈ ŜElin(β̂j)
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Conventional vs Bootstrap Std Errors: Can they differ?

Compare conventional and bootstrap standard errors:

Boston Housing Data (no groans, please! Caveat...)
Response: MEDV of single residences in a census tract, N = 506
R2 ≈ 0.74, residual dfs = 487

β̂j SElin SEboot SEboot/SElin t lin
CRIM -0.099 0.031 0.033 1.074 -3.261

ZN 0.121 0.035 0.035 1.004 3.508

INDUS 0.017 0.046 0.038 0.843 0.382

CHAS 0.074 0.024 0.036 1.503 3.152

NOX -0.224 0.048 0.048 1.003 -4.687

RM 0.290 0.032 0.065 2.049 9.149

AGE 0.002 0.040 0.050 1.236 0.044

DIS -0.344 0.045 0.048 1.068 -7.598

RAD 0.288 0.062 0.060 0.958 4.620

TAX -0.233 0.068 0.051 0.740 -3.409

PTRATIO -0.218 0.031 0.026 0.865 -7.126

B 0.092 0.026 0.027 1.036 3.467

LSTAT -0.413 0.039 0.078 1.995 -10.558
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Conventional vs Bootstrap Std Errors (contd.)

Compare conventional and bootstrap standard errors:

LA Homeless Data (Richard Berk, UPenn)
Response: StreetTotal of homeless in a census tract, N = 505
R2 ≈ 0.13, residual dfs = 498

β̂j SElin SEboot SEboot/SElin tlin
MedianInc -4.241 4.342 2.651 0.611 -0.977

PropVacant 18.476 3.595 5.553 1.545 5.140

PropMinority 2.759 3.935 3.750 0.953 0.701

PerResidential -1.249 4.275 2.776 0.649 -0.292

PerCommercial 10.603 3.927 5.702 1.452 2.700

PerIndustrial 11.663 4.139 7.550 1.824 2.818

Which standard errors are we to believe?
What is the reason for the discrepancy?
Is the pairs bootstrap a failure?
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First Reason for SEboot 6= SElin: Nonlinearity

Recall the demo: A noise-free nonlinearity yi = µ(xi ) ∼ x2
i , xi i.i.d.

fitted by a straight line.
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Nonlinearity + randomness of X = sampling variability.

Hal White†2012 (1980), “Using Least Squares to Approximate Unknown Regression Functions,”

International Economic Review
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Second Reason for SEboot 6= SElin: Heteroskedasticity

Which has the smallest/largest true SE(β̂)? (
∑
σ2

i are the same.)
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Heteroskedasticity can invalidate Linear Model SEs.
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Second Reason for SEboot 6= SElin: Heteroskedasticity

Which has the smallest/largest true SE(β̂)? (
∑
σ2

i are the same.)
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Heteroskedasticity can invalidate Linear Model SEs.

Hinkley (1977) “Jackknifing in Unbalanced Situations,” Technometrics

Wu (1986) “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis,” AoS

Hal White†2012 (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test
for Heteroskedasticity,” Econometrica (1980)
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Second Reason for SEboot 6= SElin: Heteroskedasticity

Which has the smallest/largest true SE(β̂)? (
∑
σ2

i are the same.)
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Heteroskedasticity can invalidate Linear Model SEs.

Hinkley (1977) “Jackknifing in Unbalanced Situations,” Technometrics

Wu (1986) “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis,” AoS

Hal White†2012 (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test
for Heteroskedasticity,” Econometrica (1980)
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But Why Would Anyone Use an “Incorrect” Model?

Often we don’t know that the model is violated by the data.
=⇒ An argument in favor of diligent model diagnostics...

The problem persists even if we use basis expansion
but miss the nature of the nonlinearity: curves, jaggies, jumps, ...

Linear models provide low-df approximations which may be all that is
feasible when p is large compared to n.

Even when the model is only an approximation, the slopes contain
information about the direction of the association.

∃ interpretations of slopes w/o assuming a correct model:

weighted averages of “case slopes”

β̂ =
∑

i=1...n

wi β̂i , β̂i =
yi − ȳ
xi − x̄

, wi =
(xi − x̄)2∑

k=1..n(xk − x̄)2 .
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Redefining the Population and the Parameters

Joint distribution, i.i.d. sampling: (xi , yi ) ∼ P(dx,dy)

Assume properties sufficient to grant CLTs for estimates of interest.

No assumptions on µ(x) = E[ y |x ], σ2(x) = V[ y |x ].

Define a population OLS parameter:

β := argminβ̃ E
[(

y − β̃
′
x
)2
]

= E[ x x′]-1 E[ x y ]

This is the target of inference: β = β(P)

Thus β is a statistical functional, not a generative parameter.

=⇒ “Statistical Functional View of OLS”
(�Random X Theory�)
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The LS Population Parameter

X

Y

Y = µ(X)

X
Y

Y = µ(X)

If µ(x) is nonlinear, β(P) depends on the x-distribution P(dx)!
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The LS Estimator and its Target

Data: X = (x1, ...,xN)′, y = (y1, ..., yN)′,

Target of estimation and inference in linear models theory:

β(X) = E[β̂|X] = (X′X)−1X′ E[y|X]

When µ(x) = E[y |x] is nonlinear, then β(X) is a random vector.

x

y

●
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●
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●
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x

y
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Linear Models Theory versus Econometrics

Consider the simplest case of a single predictor, no intercept,
and define the conditional MSE by m2(x) := E[(Y − β′x)2|x ]

The correct asymptotic variance of β̂ is

AVsand =
E[m2(x)x2]

E[x2]2
.

If we were to use standard errors from linear models theory,
the following incorrect asymptotic variance is implied:

AVlin =
E[m2(x)]

E[x2]

Define the “Ratio of Asymptotic Variances” or RAV:

RAV :=
AVsand

AVlin
=

E[m2(x)x2]

E[m2(x)] E[x2]
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Linear Models Theory versus Econometrics (contd.)

RAV =
AVsand

AVlin
=

E[m2(x)x2]

E[m2(x)]E[x2]

Fact:
max

m
RAV = ∞, min

m
RAV = 0

Conclusion: Asymptotically the discrepancy between SEsand and SElin

can be arbitrarily large in either direction.

In practice, RAV > 1 is more frequent and more dangerous because it
invalidates conventional linear models inference.
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Next Steps, in Outline only

The discrepancy between SElin and SEsand can be turned into a
diagnostic test.

A robustness problem:
I Asymptotic variance is a 4th order functional.
⇒ SEsand is even less robust than SElin.

I The robustness problem is equally present in SEsand and SEboot .

A new PoSI technology can be based on asymptotic normality and
estimates of AV:

I Sandwich/bootstrap PoSI computations become slightly more expensive:
Initial reduction is to (p+1)p/2 rather than p dimensions.

I Sandwich/bootstrap PoSI allows us to protect against selection of a finite
dictionary of transformations in addition to selection of predictors.
(g(Y ), f1(X1), ..., fp(Xp)) is no different than (Y ,X1, ...,Xp).
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Some Take-Home Points about Approximate Models

Robustness should include not just misspecification of error distributions
but of 1st and 2nd order misspecifications as well.
⇒ Sandwich or pairs-bootstrap estimates of standard error

Beware of the ancillarity fallacy: Ancillarity arguments are invalidated by
1st order model misspecifications.

Fixed-X standard errors SElin can be substantial underestimates of true
sampling variation; the opposite can occur, too, but less often.

In any regression, not all predictors are equally affected by standard error
discrepancies.
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Back to the Big Picture: Reproducibility

Contributing factor to non-reproducibility:
Unaccounted data-analytic activities such as

I selection of predictor variables∗

I selection of outcome variables∗

I selection of data transformations∗∗

I informal EDA before formal model selection∗

I informal diagnostics after formal model selection∗

I meta-selection of selection methods∗

∗ solved by fixed-X PoSI under 1st order misspecific. & homoskedasticity.

From a fixed-X to a random-X framework:
I Correct inference under minimal assumptions: (yi , xi) ∼ iid
I Accounts for nonlinearity and heteroskedasticity.
I Permits PoSI for selection of transformations; solves ∗∗.
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THANKS
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