Why Do Statisticians Treat Predictors as Fixed? A Conspiracy Theory

Andreas Buja

joint with the PoSI Group:

Richard Berk, Lawrence Brown, Linda Zhao, Kai Zhang Ed George, Mikhail Traskin, Emil Pitkin, Dan McCarthy

Mostly at the Department of Statistics, The Wharton School University of Pennsylvania

WHOA-PSI - 2016/10/02

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Outline

A list of mind puzzlers:

- Why are we treating regressors X as fixed?
- Why is the justification for conditioning on X wrong?
- Can we treat regressors as random?
- Degrees of misspecification are universal.
- Errors are not the only source of sampling variation.
- Model-trusting standard errors can be wrong.
- What is the meaning of regression parameters when the model is wrong?
- There exists a notion of well-specification without models.

Principle: Models, yes, but do Not Believe in Them!

Models are useful ...

- to think about data,
- to imagine generative mechanisms,
- to formalize quantities of interest (in the form of parameters),
- to guide us toward inference (testing, CIs), and
- to specify ideal conditions for inference.

Principle: Models, yes, but do Not Believe in Them!

Models are useful ...

- to think about data,
- to imagine generative mechanisms,
- to formalize quantities of interest (in the form of parameters),
- to guide us toward inference (testing, CIs), and
- to specify ideal conditions for inference.

Traditions of not believing in model correctness:

- G.E.P. Box: "....."
- Cox (1995): "The very word model implies simplification and idealization."
- A modern reason: Models are obtained by model selection.

(Model selection makes good compromises, but does not find "truth".)

3/20

To be shown: Lip service to these maxims is not enough;

there are serious consequences.

PoSI, just briefly

- PoSI: Reduction of post-selection inference to simultaneous inference
- Computational cost: exponential in p, linear in N
 - PoSI covering all submodels feasible for $p \approx 20$.
 - Sparse PoSI for $|M| \le 5$, e.g., feasible for $p \approx 60$.
- Coverage guarantees are marginal, not conditional.
- Statistical practice is minimally changed:
 - Use a single $\hat{\sigma}$ across all submodels *M*.
 - For PoSI-valid CIs, enlarge the multiplier of $SE[\hat{\beta}_{j \bullet M}]$ suitably.
- PoSI covers for formal, informal, and post-hoc selection.
- PoSI solves the circularity problem of selective inference: Selecting regressors with PoSI tests does not invalidate the tests.
- PoSI is possible for response and transformation selection.
- Current PoSI uses fixed-X theory, allows 1st order misspecification, but assumes normality, homoskedasticity and a valid *ô*.

・ 同 ト ・ ヨ ト ・ ヨ ト

From Fixed-X to Random-X Regression

A different but "obvious" solution: Data Splitting Split the data into

- a model selection sample and
- an estimation & inference sample.

From Fixed-X to Random-X Regression

A different but "obvious" solution: Data Splitting Split the data into

- a model selection sample and
- an estimation & inference sample.

Pros:

- Valid inference for the selected model.
- Works for any model
- Often less conservative than PoSI.

From Fixed-X to Random-X Regression

A different but "obvious" solution: Data Splitting Split the data into

- a model selection sample and
- an estimation & inference sample.

Pros:

- Valid inference for the selected model.
- Works for any model
- Often less conservative than PoSI.

Cons:

- Randomness from single split
- Reduced effective sample size
- More model selection uncertainty
- More estimation uncertainty
- Loss of conditionality on X

• With split-sampling and CV we break the fixed-X paradigm.

- With split-sampling and CV we break the fixed-X paradigm.
- What is the justification for conditioning on X, i.e., treating X as fixed?

- With split-sampling and CV we break the fixed-**X** paradigm.
- What is the justification for conditioning on X, i.e., treating X as fixed? Answer: Fisher's ancillarity argument for X.

$$\frac{p(y,x;\beta^{(1)})}{p(y,x;\beta^{(0)})} = \frac{p(y|x;\beta^{(1)})p(x)}{p(y|x;\beta^{(0)})p(x)} = \frac{p(y|x;\beta^{(1)})}{p(y|x;\beta^{(0)})}$$

- With split-sampling and CV we break the fixed-**X** paradigm.
- What is the justification for conditioning on **X**, i.e., treating **X** as fixed? Answer: Fisher's ancillarity argument for **X**.

$$\frac{p(y,x;\beta^{(1)})}{p(y,x;\beta^{(0)})} = \frac{p(y|x;\beta^{(1)})p(x)}{p(y|x;\beta^{(0)})p(x)} = \frac{p(y|x;\beta^{(1)})}{p(y|x;\beta^{(0)})}$$

- Important! The ancillarity argument assumes correctness of the model.
- Refutation of Regressor Ancillarity under Misspecification:
 - Assume x_i random, $y_i = f(x_i)$ nonlinear deterministic, no errors. (There could be error, but this is not relevant.)
 - Fit a linear function $\hat{y}_i = \beta_0 + \beta_1 x_i$.
 - \Rightarrow A situation with misspecification, but no errors.
 - \Rightarrow Conditional on x_i , estimates $\hat{\beta}_j$ have no sampling variability.

- With split-sampling and CV we break the fixed-**X** paradigm.
- What is the justification for conditioning on **X**, i.e., treating **X** as fixed? Answer: Fisher's ancillarity argument for **X**.

$$\frac{p(y,x;\beta^{(1)})}{p(y,x;\beta^{(0)})} = \frac{p(y|x;\beta^{(1)})p(x)}{p(y|x;\beta^{(0)})p(x)} = \frac{p(y|x;\beta^{(1)})}{p(y|x;\beta^{(0)})}$$

- Important! The ancillarity argument assumes correctness of the model.
- Refutation of Regressor Ancillarity under Misspecification:
 - Assume x_i random, $y_i = f(x_i)$ nonlinear deterministic, no errors. (There could be error, but this is not relevant.)
 - Fit a linear function $\hat{y}_i = \beta_0 + \beta_1 x_i$.
 - \Rightarrow A situation with misspecification, but no errors.
 - \Rightarrow Conditional on x_i , estimates $\hat{\beta}_j$ have no sampling variability.

However, watch "The Unconditional Movie"!

source("http://stat.wharton.upenn.edu/~buja/src-conspiracy-animation2.R")

Random X and Misspecification

Randomness of *X* and misspecification conspire to create sampling variability in the estimates.

- Consequence: Under misspecification, conditioning on **X** is wrong.
- Source 1 of model-robust & unconditional inference:

Asymptotic inference based on Eicker/Huber/White's

Sandwich Estimator of Standard Error.

$$\mathbf{V}[\hat{\boldsymbol{\beta}}] = \mathbf{E}[\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}']^{-1} \mathbf{E}[(\boldsymbol{Y}-\vec{\boldsymbol{X}}'\boldsymbol{\beta})\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}'] \mathbf{E}[\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}']^{-1}.$$

Source 2 of model-robust & unconditional inference:

the Pairs or x-y Bootstrap (not the residual bootstrap)

• Validity of inference is in an assumption-lean/model-robust framework...

An Assumption-Lean Framework

• \exists joint distribution, i.i.d. sampling: $(y_i, \vec{x}_i) \sim P(dy, d\vec{x}) = P_{Y, \vec{X}}$

Assume properties sufficient to grant CLTs for estimates of interest.

- !!! No assumptions on $\mu(\vec{x}) = \mathbf{E}[Y|\vec{X} = \vec{x}], \ \sigma^2(\vec{x}) = \mathbf{V}[Y|\vec{X} = \vec{x}]$!!!
- Define a population OLS parameter:

$$\boldsymbol{\beta} := \operatorname{argmin}_{\tilde{\boldsymbol{\beta}}} \mathbf{E}\left[\left(\boldsymbol{Y} - \tilde{\boldsymbol{\beta}}' \, \boldsymbol{\vec{X}}\right)^2\right] = \mathbf{E}[\, \boldsymbol{\vec{X}} \, \boldsymbol{\vec{X}}'\,]^{-1} \, \mathbf{E}[\, \boldsymbol{\vec{X}} \, \boldsymbol{Y}\,]$$

- This is the target of inference: $\beta = \beta(P)$
 - $\Rightarrow \beta$ is a statistical functional a "Regression Functional".

"Statistical Functional" View of Regression ("Random X Theory")

Implication 1 of Misspecification/Model-Robustness

Under misspecification parameters depend on the \vec{X} distribution:

 $\boldsymbol{\beta}(\mathbf{P}_{\mathbf{Y},\vec{\mathbf{X}}}) = \boldsymbol{\beta}(\mathbf{P}_{\mathbf{Y}|\vec{\mathbf{X}}}, \mathbf{P}_{\vec{\mathbf{X}}}) \qquad \boldsymbol{\beta}(\mathbf{P}_{\mathbf{Y},\vec{\mathbf{X}}}) = \boldsymbol{\beta}(\mathbf{P}_{\mathbf{Y}|\vec{\mathbf{X}}})$

Upside down: "Ancillarity = parameters do not affect the distribution." Upside up: "Ancillarity = the parameters are not affected by the distribution."

Implication 2 of Misspecification/Model-Robustness

Recall "the unconditional movie."

Mis/Well-Specification of Regression Functionals

A powerful extension of the idea of mis/well-specification:

- Write a regression functional as $\beta(P) = \beta(P_{Y|\vec{X}}, P_{\vec{X}})$.
- Definition: A regression functional $\beta(P)$ is well-specified for $P_{\gamma|\vec{X}}$ if

 $\boldsymbol{\beta}(\mathbf{P}_{\boldsymbol{Y}|\boldsymbol{X}},\mathbf{P}_{\boldsymbol{X}}) = \boldsymbol{\beta}(\mathbf{P}_{\boldsymbol{Y}|\boldsymbol{X}})$

- Under well-specification ...
 - $\beta(P)$ does not depend on the \vec{X} distribution, and
 - $\mathbf{E}[\hat{\boldsymbol{\beta}}|\mathbf{X}]$ does not have sampling variability due to conspiracy.
 - \Rightarrow A new form of regressor ancillarity
- OLS: $\beta(P)$ is well-specified for P iff $\mathbf{E}[Y|\vec{X} = \vec{x}] = \beta' \vec{x}$.

Sampling Variability of Regression Functionals

Plug-in estimates $\hat{\beta} = \beta(\hat{P})$ of regression functionals (such as OLS estimators) have two sources of variability:

- the conditional distribution of **y**|**X**,
- the marginal distribution of **X** combined with misspecification.

This can be expressed with the formula

 $\mathsf{V}[\hat{\boldsymbol{\beta}}] \ = \ \mathsf{E}[\,\mathsf{V}[\hat{\boldsymbol{\beta}}|\mathsf{X}]\,] \ + \ \mathsf{V}[\,\mathsf{E}[\hat{\boldsymbol{\beta}}|\mathsf{X}]\,].$

 $V[\hat{\beta} | X]$: The only source of sampling variability in linear models theory.

 $\mathbf{E}[\hat{\boldsymbol{\beta}} | \mathbf{X}]$: The target of estimation in linear models theory, but really a random variable under misspecification, hence a source of sampling variability.

⇒ V[$\mathbf{E}[\hat{\beta} | \mathbf{X}]$ is the "**conspiracy** part of sampling variability, caused by a synergy of randomness of **X** and misspecification.

CLTs under Misspecification: Sandwich Form

$$\begin{split} \sqrt{N} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}(\mathbf{P}) \right) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N} \left(\mathbf{0}, \mathbf{E}[\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}']^{-1} \mathbf{E}[\,m^2(\vec{\boldsymbol{X}})\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}'] \, \mathbf{E}[\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}']^{-1} \right) \\ \sqrt{N} \left(\hat{\boldsymbol{\beta}} - \mathbf{E}[\hat{\boldsymbol{\beta}}|\mathbf{X}] \right) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N} \left(\mathbf{0}, \mathbf{E}[\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}']^{-1} \, \mathbf{E}[\,\sigma^2(\vec{\boldsymbol{X}})\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}'] \, \mathbf{E}[\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}']^{-1} \right) \\ \sqrt{N} \left(\mathbf{E}[\hat{\boldsymbol{\beta}}|\mathbf{X}] - \boldsymbol{\beta}(\mathbf{P}) \right) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N} \left(\mathbf{0}, \mathbf{E}[\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}']^{-1} \, \mathbf{E}[\,\eta^2(\vec{\boldsymbol{X}})\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}'] \, \mathbf{E}[\vec{\boldsymbol{X}}\vec{\boldsymbol{X}}']^{-1} \right) \end{split}$$

$$\begin{split} \mu(\vec{X}) &= \mathbf{E}[Y|\vec{X}] \\ \eta(\vec{X}) &= \mu(\vec{X}) - \beta(\mathbf{P})' \, \vec{X} \\ \sigma^2(\vec{X}) &= \mathbf{V}[Y|\vec{X}] \\ \epsilon &= Y - \mu(\vec{X}), \\ \delta &= Y - \beta(\mathbf{P})' \, \vec{X} \\ m^2(\vec{X}) &= \mathbf{E}[\,\delta^2 \,|\, \vec{X}] \\ \end{split}$$

response surface nonlinearity conditional noise variance noise population residual conditional MSE

イロト イヨト イヨト イヨト

The x-y Bootstrap for Regression

• Model-robust framework: The nonparametric *x*-*y* bootstrap applies.

- Let $\hat{SE}_{lin}(\hat{\beta}_j) = \frac{\hat{\sigma}}{\|\mathbf{x}_{j\bullet}\|}$ be the usual standard error erstimate of linear models theory.
- Question: Is the following always true?

 $\widehat{\operatorname{SE}}_{\operatorname{boot}}(\widehat{\beta}_j) \stackrel{?}{\approx} \widehat{\operatorname{SE}}_{\operatorname{lin}}(\widehat{\beta}_j)$

14/20

Compare conventional and bootstrap standard errors empirically...

Conventional vs Bootstrap Std Errors

- LA Homeless Data (Richard Berk, UPenn)
- Response: StreetTotal of homeless in a census tract, N = 505
- $R^2 \approx 0.13$, residual dfs = 498

	$\hat{\beta}_j$	$\mathrm{SE}_{\mathrm{lin}}$	$\rm SE_{boot}$	$\rm SE_{boot}/SE_{lin}$	$t_{ m lin}$
MedianInc	-4.241	4.342	2.651	0.611	-0.977
PropVacant	18.476	3.595	5.553	1.545	5.140
PropMinority	2.759	3.935	3.750	0.953	0.701
PerResidential	-1.249	4.275	2.776	0.649	-0.292
PerCommercial	10.603	3.927	5.702	1.452	2.700
PerIndustrial	11.663	4.139	7.550	1.824	2.818

• Reason for the discrepancy: misspecification.

Reason 1 for $SE_{boot} \neq SE_{lin}$: Nonlinearity

Which has the smallest/largest true $SE(\hat{\beta})$?

2016/10/02 16 / 20

Reason 2 for $SE_{boot} \neq SE_{lin}$: Heteroskedasticity

Which has the smallest/largest true $SE(\hat{\beta})$?

2016/10/02 17 / 20

Sandwich and *x*-*y* Bootstrap Estimators

- The *x*-*y* bootstrap is asymptotically correct in the assumption-lean/model-robust framework, and so is the sandwich estimator of standard error.
- There exists a connection, based on the *M*-of-*N* bootstrap: Resample datasets of size *M* out of *N* with replacement and rescale $\hat{SE}_{M:N}[\hat{\beta}_j] := (M/N)^{1/2} SD^*[\hat{\beta}_j^*]$

Proposition: $\hat{SE}_{M:N}[\hat{\beta}_j] \rightarrow \hat{SE}_{sand}[\hat{\beta}_j] \quad (M \rightarrow \infty)$

I.e., the sandwich estimator is the limit of the *M*-of-*N* boostrap estimator.

- This holds for all sandwich estimators, not just those of OLS.
- Bootstrap estimators for small *M* may have advantages.

The Meaning of Slopes under Misspecification

Allowing misspecification messes up our regression practice: What is the meaning of slopes under misspecification?

Case-wise slopes: $\hat{\beta} = \sum_{i} w_{i} b_{i}$, $b_{i} := \frac{y_{i}}{x_{i}}$, $w_{i} := \frac{x_{i}^{2}}{\sum_{i'} x_{i'}^{2}}$ Pairwise slopes: $\hat{\beta} = \sum_{ik} w_{ik} b_{ik}$, $b_{ik} := \frac{y_{i} - y_{k}}{x_{i} - x_{k}}$, $w_{ik} := \frac{(x_{i} - x_{k})^{2}}{\sum_{i'k'} (x_{i'} - x_{k'})^{2}}$

Conclusions

- Use models, but don't believe in them.
- Main use of models: Defining parameters.
- Extend the parameters beyond the model \rightarrow regression functionals.
- There is a new notion of well-specification for regression functionals.
- Random X & model misspecification generate sampling variability.
- Use inference that does not assume model correctness.
- Outlook: PoSI under complete misspecification

Conclusions

- Use models, but don't believe in them.
- Main use of models: Defining parameters.
- Extend the parameters beyond the model \rightarrow regression functionals.
- There is a new notion of well-specification for regression functionals.
- Random X & model misspecification generate sampling variability.
- Use inference that does not assume model correctness.
- Outlook: PoSI under complete misspecification

THANKS!