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Fig. 1. One of these plots doesn’t belong. These six plots show choropleth maps of cancer deaths in Texas, where darker colors =
more deaths. Can you spot which of the six plots is made from a real dataset and not simulated under the null hypothesis of spatial
independence? If so, you’ve provided formal statistical evidence that deaths from cancer have spatial dependence. See Section 8 for
the answer.

Abstract— How do we know if what we see is really there? When visualizing data, how do we avoid falling into the trap of apophenia
where we see patterns in random noise? Traditionally, infovis has been concerned with discovering new relationships, and statistics
with preventing spurious relationships from being reported. We pull these opposing poles closer with two new techniques for rigorous
statistical inference of visual discoveries. The “Rorschach” helps the analyst calibrate their understanding of uncertainty and the “line-
up” provides a protocol for assessing the significance of visual discoveries, protecting against the discovery of spurious structure.

Index Terms—Statistics, visual testing, permutation tests, null hypotheses, data plots.

1 INTRODUCTION

What is the role of statistics in infovis? In this paper we try and an-
swer that question by framing the answer as a compromise between
curiosity and skepticism. Infovis provides tools to uncover new rela-
tionships, tools of curiosity, and much research in infovis focuses on
making the chance of finding relationships as high as possible. On the
other hand, most statistical methods provide tools to check whether a
relationship really exists: they are tools of skepticism. Most statistics
research focuses on making sure to minimize the chance of finding a
relationship that does not exist. Neither extreme is good: unfettered
curiosity results in findings that disappear when others attempt to ver-
ify them, while rampant skepticism prevents anything new from being
discovered.

Graphical inference bridges these two conflicting drives to provide
a tool for skepticism that can be applied in a curiosity-driven context.
It allows us to uncover new findings, while controlling for apophenia,
the innate human ability to see pattern in noise. Graphical inference
helps us answer the question “Is what we see really there?”

The supporting statistical concepts of graphical inference are devel-
oped in [1]. This paper motivates the use of these methods for infovis
and shows how they can be used with common graphics to provide
users with a toolkit to avoid false positives. Heuristic formulations of
these methods have been in use for some time. An early precursor
is [2], who evaluated new models for galaxy distribution by gener-
ating samples from those models and comparing them to the photo-
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graphic plates of actual galaxies. This was a particularly impressive
achievement for its time: models had to be simulated based on tables
of random values and plots drawn by hand. As personal computers be-
came available, such examples became more common.[3] compared
computer generated Mondrian paintings with paintings by the true
artist, [4] provides 40 pages of null plots, [5] cautions against over-
interpreting random visual stimuli, and [6] recommends overlaying
normal probability plots with lines generated from random samples of
the data. The early visualization system Dataviewer [7] implemented
some of these ideas.

The structure of our paper is as follows. Section 2 revises the basics
of statistical inference and shows how they can be adapted to work
visually. Section 3 describes the two protocols of graphical inference,
the Rorschach and the line-up, that we have developed so far. Section 4
discusses selected visualizations in terms of their purpose and associ-
ated null distributions. The selection includes some traditional statisti-
cal graphics and popular information visualization methods. Section 5
briefly discusses the power of these graphical tests. Section 8 tells you
which panel is the real one for all the graphics, and gives you some
hints to help you see why. Section 7 summarizes the paper, suggests
directions for further research, and briefly discusses some of the ethi-
cal implications.

2 WHAT IS INFERENCE AND WHY DO WE NEED IT?

The goal of many statistical methods is to perform inference, to draw
conclusions about the population that the data sample came from. This
is why statistics is useful: we don’t want our conclusions to apply only
to a convenient sample of undergraduates, but to a large fraction of
humanity. There are two components to statistical inference: testing
(is there a difference?) and estimation (how big is the difference?). In
this paper we focus on testing. For graphics, we want to address the
question “Is what we see really there?” More precisely, is what we see
in a plot of the sample an accurate reflection of the entire population?
The rest of this section shows how to answer this question by providing
a short refresher of statistical hypothesis testing, and describes how
testing can be adapted to work visually instead of numerically.

Hypothesis testing is perhaps best understood with an analogy to
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the criminal justice system. The accused (data set) will be judged
guilty or innocent based on the results of a trial (statistical test). Each
trial has a defense (advocating for the null hypothesis) and a prosecu-
tion (advocating for the alternative hypothesis). On the basis of how
evidence (the test statistic) compares to a standard (the p-value), the
judge makes a decision to convict (reject the null) or acquit (fail to
reject the null hypothesis).

Unlike the criminal justice system, in the statistical justice system
(SJS) evidence is based on the similarity between the accused and
known innocents, using a specific metric defined by the test statistic.
The population of innocents, called the null distribution, is generated
by the combination of null hypothesis and test statistic. To determine
the guilt of the accused we compute the proportion of innocents who
look more guilty than the accused. This is the p-value, the probability
that the accused would look this guilty if they actually were innocent.

There are two types of mistakes we can make in our decision: we
can acquit a guilty dataset (a type II error, or false negative), or falsely
convict an innocent dataset (a type I error, or false positive). Just as
in the criminal justice system, the costs of these two mistakes are not
equal and vary based on the severity of the consequences (the risk of
letting a guilty shoplifter go free is not equal to the risk of letting a
guilty axe-murderer go free). Typically, as the consequences of our
decisions become bigger, we want to become more cautious, and re-
quire more evidence to convict: an early-stage exploratory analysis is
free to make a few wrong decisions, but it is very important not to ap-
prove a possibly dangerous drug after a late-stage clinical trial. It is up
to the analyst to calculate and calibrate these costs.

To demonstrate these principles we use a small simulated example,
based on an experiment designed to compare the accuracy of condition
one vs. condition two in a usability study. Here, the defense argues
that there is no difference between the two groups, and the prosecution
argues that they are different. Statistical theory tells us to use the dif-
ference of the group means divided by the pooled standard deviation
as the measure of guilt (the test statistic), and that under this measure
the population of innocents will have (approximately) a t-distribution.
Figure 2 shows this distribution for a sample of 10,000 innocents, a
one-side two-sample t-test. The value of the observed test statistic is
represented as a vertical line on the histogram. Since we have no a-
priori notion of whether the difference between groups will be positive
or negative, it is better to compare the accused to the absolute value of
the innocents, as shown in the bottom plot, a one-sided two-sample t-
test. As you can see, there are few innocents (about 3%) who appear as
guilty as (or more guilty than) the accused and so the decision would
be to convict.

These principles remain the same with visual testing, except for two
aspects: the test statistic, and the mechanism of computing similarity.
The test statistic is now a plot of the data, and instead of a mathemati-
cal measurement of difference, we use a human judge, or even jury.

Figure 3 illustrates a graphical alternative to the traditional t-test.
The accused, a plot of the real data, is hidden among eight innocents,
plots of data generated from the null distribution. We need some new
terminology to make this description more concise: A null dataset
is a sample from the null distribution, i.e. an example of an innocent
dataset, and a null plot is a plot of a null dataset, showing what an
innocent might look like. So Figure 3 hides the real plot amongst eight
null plots. Can you spot the suspect? If so, then there is some evidence
that the accused is different from the innocents, and we might move to
convict. (See Section 8 for the solution.)

This example shows the analogy between a traditional numerical
test and a new visual test, but the purpose of this work is not to sup-
plant traditional tests. Traditional statistical tests are well studied,
well-formulated and work best when data is well-behaved, following
a known distribution in relatively simple scenarios. But as researchers
in infovis have no doubt experienced, traditional statistical tests do not
cover all of the complexities that arise when exploring data. The ben-
efit of visual inference is that it can be used in complex data analysis
settings that do not have corresponding numerical tests.

Fig. 2. (Top) Distribution of group means under null-hypothesis (distribu-
tion of innocents). Vertical line indicates value of observed test statistic.
This is a one-sided two-sample t-test. (Bottom) Distribution of abso-
lute value of group means. This is more appropriate comparison for the
two-sided test, where magnitude of difference is more important than
direction of difference. This is a two-sided two-sample t-test.

Fig. 3. A visual t-test. For each data set, the observations are shown
as points and the group means as crosses. The accused is hidden
amongst eight innocents. Can you spot him?
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3 PROTOCOLS OF GRAPHICAL INFERENCE

This section introduces two new rigorous protocols for graphical infer-
ence: the “Rorschach” and the “line-up”. The Rorschach is a calibra-
tor, helping the analyst become accustomed to the vagaries of random
data, while the line-up provides a simple inferential process to produce
a valid p-value for a data plot. We describe the protocols and show ex-
amples of how they can be used, and refer the reader to [1] for more
detail.

3.1 Rorschach
The Rorschach protocol is named after the Rorschach test, in which
subjects interpret abstract ink blots. The purpose is similar: readers
are asked to report what they see in null plots. We use this protocol to
calibrate our vision to the natural variability in plots in which the data
is generated from scenarios consistent with the null hypothesis. Our
intuition about variability is often bad, and this protocol allows us to
reduce our sensitivity to structure due purely to random variability.

Figure 4 illustrates the Rorschach protocol. These nine histograms
summarize the accuracy at which 500 participants perform nine tasks.
What do you see? Does it look like the distribution of accuracies is
the same for all of the tasks? How many of the histograms show an
interesting pattern? Take a moment to study these plots before you
continue reading.

Fig. 4. Nine histograms summarizing the accuracy at which 500 partici-
pants perform nine tasks. What do you see?

It is easy to tell stories about this data: in task 7 accuracy peaks
around 70% and drops off; in task 5, few people are 20-30% accu-
rate; in task 9, many people are 60-70% accurate. But these stories
are all misleading. It may come as a surprise, but these results are
all simulations from a uniform distribution, that is, the distribution of
accuracy for all tasks is uniform between 0 and 1. When we display
a histogram of uniform noise, our expectation is that it should be flat.
We do not expect it to be perfectly flat (because we know it should
be a little different every time), but our intuition substantially under-
estimates the true variability in heights from one bar to the next. It is
fairly simple to work out the expected variability algebraically (using
a normal approximation): with 10 observations per bin, the bins will
have a standard error of 30%, with 100 observations 19% and 1000,
observations 6%. However, working through the math does not give
the visceral effect of seeing plots of null data.

To perform the Rorschach protocol an administrator produces null
plots, shows them to the analyst, and asks them what they see. To keep
the analyst on their toes and avoid the complacency that may arise if
they know all plots are null plots [8] the administrator might slip in
a plot of the real data. For similar reasons, airport x-ray scanners
randomly insert pictures of bags containing guns, knives or bombs.
Typically, the administrator and participant will be different people,
and neither should know what the real data looks like (a double-
blinded scenario). However, with careful handling, it is possible to

self-administer such a test, particularly with appropriate software sup-
port, as described in Section 6.

Even when not administrated in a rigorous manner, this protocol is
still useful as a self-teaching tool to help learn which random features
we might spuriously identify. It is particularly useful when teaching
data analysis, as an important characteristic of a good analyst is their
ability to discriminate signal from noise.

3.2 Line-up
The SJS convicts based on difference between the accused and a set of
known innocents. Traditionally the similarity is measured numerically,
and the set of known innocents are described by a probability distri-
bution. The line-up protocol adapts this to work visually: an impartial
observer is used to measure similarity with a small set of innocents.

The line-up protocol works like a police line-up: the suspect (test
statistic plot) is hidden in a set of decoys. If the observer, who has not
seen the suspect, can pick it out as being noticeably different, there is
evidence that it is not innocent. Note that the converse does not apply
in the SJS: failing to pick the suspect out does not provide evidence
they are innocent. This is related to the convoluted phraseology of
statistics: we “fail to reject the null” rather than “accepting the alter-
native”.

The basic protocol of the line up is simple:

• Generate n−1 decoys (null data sets).

• Make plots of the decoys, and randomly position a plot of the
true data.

• Show to an impartial observer. Can they spot the real data?

In practice, we would typically set n = 19, so that if the accused is
innocent, the probability of picking the accused by chance is 1/20 =
0.05, the traditional boundary for statistical significance. Comparing
20 plots is also reasonably feasible for a human observer. (The use of
smaller numbers of n in this paper is purely for brevity.) More plots
would yield a smaller p-value, but this needs to be weighed against
increased viewer fatigue. Another way of generating more precise p-
values is to use a jury instead of a judge. If we recruit K jurors and
k of them spot the real data, then the combined p-value is P(X ≤ k),
where X has a binomial distribution B(K, p = 1/20). It can be as small
as 0.05K if all jurors spot the real data (k = K).

Like the Rorschach, we want the experiment to be double-blind -
neither the person showing the plots or the person seeing them should
know which is the true plot. The protocol can be self-administered,
provided that it is the first time you’ve seen the data. After a first
viewing of the data, a test might still be useful, but it will not be in-
ferentially valid because you are likely to have learned some of the
features of the data set and are more likely to recognize it. To main-
tain inferential validity once you have seen the data, you need to recruit
an independent observer.

The following section shows some examples of the line-up in use,
with some discussion of how to identify the appropriate null hypoth-
esis for a specific type of plot and figure out a method of generating
samples from the appropriate null distribution.

4 EXAMPLES

To use the line-up protocol, we need to:

• Identify the question the plot is trying to answer.

• Characterize the null-hypothesis (the position of the defense).

• Figure out how to generate null datasets.

This section shows how to approach each of these tasks, and then
demonstrates the process in more detail for two examples. Section 4.1
shows a line-up of a tag cloud used to explore the frequency distribu-
tion of words in Darwin’s “Origin of Species” and Section 4.2 shows a
line-up of a scatterplot used to explore the spatial distribution of three
point throws in basketball.
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Table 1. A selection of common statistical and infovis plots and the
question that they might have been created to answer. Each plot maybe
be used to answer multiple questions and each question has a matching
null hypothesis.

Plot Question

Chloropleth maps Is there a spatial trend?
Tag cloud Is this document the same as that docu-

ment?
Tag cloud Is this document unusual?
Treemap Does the distribution of sizes follow a

power law?
Treemap Is the distribution within higher-level cate-

gories the same?
Histogram Is the underlying distribution smooth?
Histogram Is the underlying distribution uniform (or

normal or ...)?
QQPlot Do the points lie along the line? (i.e. does

the data match the distribution?)
Residual plot Are residuals normally distributed?
Scatterplot Are the two variables associated?
Scatterplot with
points colored

Are points clustered by colour?

Facetted plots Is the distribution of the data the same in all
facets?

Time series Does the mean change over time?
Time series Does the variability change over time?

It’s usually easy to identify the question a plot is trying to answer,
because certain types of plots are used for specific tasks and for a par-
ticular data set the analyst typically chooses to make a plot with a
question in mind. Table 1 lists the questions associated with some
common plots. Note that some plots can be used to answer multiple
questions, and so there may be different null hypotheses depending on
the circumstances.

The null hypothesis is the least interesting answer to a question,
that is, an answer which is “what we see is really nothing”. In the lan-
guage of the criminal justice system, the null hypothesis is the argu-
ment of the defense, that the suspect is innocent and nothing untoward
occurred. If we are using a scatterplot to answer the question “is there
a relationship between x and y?”, then the null hypothesis is that there
is no relationship, or that the two variables are independent. We only
change our minds if we have evidence to the contrary.

The next step of the process is to determine how to generate null
datasets from the null hypothesis. There are two techniques that apply
in many circumstances:

• Resampling. This is how null samples are generated for permu-
tation tests [9; 10] and similarly for confidence intervals using
bootstrap samples [6]. In designed experiments it entails recre-
ating the same randomization performed in the experiment. This
technique is used in Section 4.1.

• Simulation. We might be interested in a more specific set of hy-
pothesis: does time increase linearly with distance from target?
Does accuracy decrease exponentially as number of distractors
increases? In those cases we have a probabilistic model and we
can generate null data sets by sampling from the distribution im-
plied by the model. This approach is used in Section 4.2.

4.1 Tag clouds
A tag cloud (or text cloud) can be used to visualize frequency of
words in a document (typically with common “stop” words removed).
Words are arranged in various ways, often alphabetically, with size
proportional to their frequency. Tag clouds are primarily descrip-
tive, but if we look closely we can discover some inferential uses.

Firstly, there is an implicit question when we look at a tag cloud -
are there any unusually frequent (or infrequent) words? This ques-
tion carries with it some notion of “usual” frequency distribution.
Secondly, tag clouds are also used for comparison. For example,
http://chir.ag/projects/preztags/ has a tag cloud for
each major presidential speech, with the implication that we can use
the tag clouds to spot the differences between speeches. Manyeyes
[11] has an explicit comparison tool.

When comparing two texts with a tag cloud, we can imagine the
data as two columns (word and source) with a row for every word. In
the rawest form words are repeated reflecting their frequency. The null
hypothesis for a comparison tag cloud is that the two documents are
equivalent, the frequency of words is the same in each document. In
other words, the word and source column are independent. It is simple
to generate new datasets under this null: we just randomly permute one
of the columns. Figure 5 uses this technique to compare the 1st and
6th editions of Darwin’s “Origin of Species” (selected words displayed
due to space constraints). Word frequencies from the two editions are
displayed side-by-side, distinguished by colour (red = 1st ed, blue =
6th ed). Can you spot the accused? (See Section 8 for the solution.)

Permutation of a single column can be used to address questions
about independence in other types of plots. The elegant feature of this
approach to generating null data is that the marginal distribution of
each variable is preserved while breaking any dependence. Here are
some common examples:

• If we are interested in the spatial trend in a data map, then the null
hypothesis might be that location and value are independent. To
generate null datasets we permute the value column. This is how
Figure 1 was generated.

• In a scatterplot, an initial hypothesis might be that there is no
relationship between x and y. We can generate null hypotheses
by permuting either the x or y variables.

• If we have clustered the data and are displaying the results with a
coloured scatterplot, we might be interested to know if the clus-
ters are well separated. Hence the null hypothesis is that cluster
membership and position are independent, and we can generate
null datasets by permuting the cluster id column.

4.2 Scatterplot

A scatterplot displays the relationship between two continuous vari-
ables, and answers the question: are x and y related in some way? The
scatterplot can reveal many different types of relationships, e.g., linear
trends, non-linear relationships and clustering. A strong null hypoth-
esis is that there is no relationship x and y variables, that is, they are
independent.

In many cases the assumption of independence is too strong: it is
obvious that the two variables are related, and we want to investigate
a specific functional form. For example, we might believe that three
point attempts in basketball follow a quadratic distribution in space:
as the angle between the player and basket increases the player moves
closer to ensure success.

Figure 6 tests this hypothesis using data on all three pointers at-
tempted by the Los Angeles Lakers in the 2008/09 season (data from
http://www.basketballgeek.com/). Can you spot the real
data? (See Section 8 for the solution.) It is embedded among null plots
generated under the hypothesis that the relationship really is quadratic.
These datasets are constructed by fitting the model, producing predic-
tions and residuals, then adding rotated residuals [12] back on to the
predictions.

For more statistically-minded audiences, we could instead display
the residuals from the model. From the model definition, we expect
the residuals to be distributed normally with mean 0 and standard de-
viation 1, which makes null datasets easy to generate: sample from the
standard normal distribution. Figure 7 shows the results of this proce-
dure. Is it easier or harder to spot the suspect compared to the previous
figure?
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Fig. 5. Five tag clouds of selected words from the 1st (red) and 6th (blue) editions of Darwin’s “Origin of Species”. Four of the tag clouds were
generated under the null hypothesis of no difference between editions, and one is the true data. Can you spot it?

Fig. 6. Scatterplot of distance vs. angle for three pointers by the LA Lakers. True data is concealed in line-up of nine plots generated under the null
hypothesis that there is a quadratic relationship between angle and distance.

Fig. 7. Scatterplot of model residuals vs. angle for three point attempts by the LA Lakers. True data is concealed in line-up of nine plots generated
under the null hypothesis of standard normally distributed residuals.
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Figures 6 and 7 both test the same null hypothesis. Which should
we use? The next section discusses the issue of power (the probability
of spotting a real difference) in more detail.

5 POWER

The power of a statistical test is the probability of correctly convicting
a guilty data set. The capacity to detect specific structure in plots can
depend on many things, including an appropriate choice of plot, which
is where the psychology of perception is very important. Existing re-
search [13; 14] provides good suggestions on how to map variables to
perceptual properties to maximize the reader’s chances of accurately
interpreting structure. For example, we should map our most impor-
tant continuous variables to position along a common scale, and to use
pre-attentive attributes, such as color, to represent categorical informa-
tion like groups.

For large datasets, aggregation can make a big difference. Fig-
ure 8 displays a line-up for examining the relationship between
arrival delays and wind direction at Phoenix airport (data from
http://stat-computing.org/dataexpo/2009). The top
plot is a “natural” and elegant plot of the raw data, mapping wind di-
rection to angle and arrival delay to radius. The bottom plot displays
the same data, but in the much aggregated form of a boxplot. It is
much easier to spot the plot that is different from the others (panel 4),
which, indeed, corresponds to the real data: unusually high delays at
Phoenix airport are significantly associated with SW winds. One of
the reasons making the real data difficult to detect in the first plotis
that focus is on the outliers rather than the “hole” in the SW direction.

6 USE

To semi-automate the protocols we have created a
new R [15] package called nullabor, available from
http://github.com/hadley/nullabor. It operates
simply. The user specifies how many decoy plots to create, and a
mechanism to generate null datasets. For the line-up, nullabor
generates the decoys, labelled with a new .sample variable, appends
them to the real data set, and randomly chooses a position for the
accused. The Rorschach protocol is similar, but the true data is
only included with small probability. The package is bundled with
methods to generate null datasets from common null hypotheses
(independence, specified model, and specified distribution), while
also allowing the user to add their own.

The following code shows two examples of nullabor in use. The
first line specifies the type of plot, in this case a scatterplot for both.
The second line specifies the protocol, the line-up, and the mechanism
for generating null datasets: permutation in the first example, and sim-
ulation from a model in the second. By default, the line-up will gener-
ate a plot with 20 panels, but this can be specified by the n argument
to the lineup function. The third line specifies the grid layout of the
decoys. The position of the true data is encrypted and output to the
screen so that the user can later decrypt the message and learn which
panel shows the true data.

qplot(radius, angle, data = threept) %+%
lineup(permute("response"), threept, n = 9) +
facet_wrap(˜ .sample)

qplot(radius, angle, data = threept) %+%
lineup(model_null(radius ˜ angle), threept) +
facet_wrap(˜ .sample)

This package makes it convenient for R users to administer the
protocols as a normal step in their data analyses. We started with a
command-line user interface because it is what many statisticians are
most comfortable with, but it is not suitable for most analysts. We hope
that others will integrate graphical inference in to their tools, using the
open-source nullabor code to aid implementation.

This package enables the analyst to be the uninvolved observer,
making inferentially valid judgements on the structure that is present
in the real data plot by automatically generating a line-up before the

analyst has seen the real data plot. At times the analyst will need to
engage the services of an uninvolved observer. Services like Amazon
Mechanical Turk [16] might be useful here. This problem requires a
keen pair of human eyes to evaluate the line-ups, and the Turk offers a
supply of workers who might even enjoy this type of task.

7 CONCLUSION

This paper has described two protocols to bring rigorous statistical in-
ference to freeform data exploration. Both techniques center around
identifying a null hypothesis, which then generates null datasets and
null plots. The Rorschach provides a tool for calibrating our expec-
tations of null data, while the line-up brings the techniques of formal
statistical hypothesis testing to visualization.

Graphical inference is important because it helps us to avoid (or at
least calibrate the rate of) false convictions, when we decide a rela-
tionship is significant, when it is actually an artifact of our sampling
or experimental process. These tools seem particularly important for
visualizations used in the VAST community, because the consequences
of false conviction of data can be so severe for the people involved.

We have provided a reference implementation of these ideas in the
R package nullabor. We hope others can build upon this work to
make tools that can be used in a wide variety of analytic settings.

8 SOLUTIONS

These are the solutions to each of the line-ups shown in the paper.

• Figure 1: the real data is in panel 3. The features that might clue
the reader in to this plot being different include spatial clustering,
clumps of dark and light, and the prevalence of light polygons in
the south-west edge of the state. In the other plots the dark and
light coloring is scattered throughout the state.

• Figure 3: the real data is in panel 3. Features that the reader
might pick up include bigger differences between the means, and
fairly consistent but shifted spread from one group to another.

• Figure 5: the real data is second from the right. Hint: look at
believe, variations, view and very.

• Figure 6: the real data is panel 5. More outliers from center court
give the data away.

• Figure 7: the real data is panel 6. A few large outliers make this
plot different from the others.
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