The Effects of Sharp Selection under Gaussian Assumptions

Assume X, X' i.i.d. N(0, 1). Then for 0 < c < 1 let $s = (1 - c^2)^{1/2}$ and define

$$U = X , \qquad B = cX + sX' ,$$

so that $U, B \sim N(0, 1)$ are jointly normal, and $c = \operatorname{cor}(U, B)$ as well as $V[B|U] = s^2$. Think of U and B as unilateralism and bilateralism. Assume survival occurs exactly for B > U. Thus we consider $(U_s, B_s) \sim \mathcal{L}(U, B | B > U)$. We wish to find the post-selection $\operatorname{cor}(U_s, B_s)$ as a function of the pre-selection correlation $c = \operatorname{cor}(U, B)$. To this end we derive the covariance and variances of U_s and B_s . We first go after the covariance and deal with the variances later. We obtain the covariance from the variances of $B_s - U_s, B_s + U_s$, which in turn are obtained from their first and second moments. To this end we observe the following:

• $B_s + U_s \sim B + U \sim N(0, (1+c)^2 + s^2) = N(0, 2(1+c))$ because the truncation is on B - U which is orthogonal to B + U.

•
$$B_s - U_s \sim N^+(0, (1-c)^2 + s^2) \sim N^+(0, 2(1-c))^{-1}$$
.

• $B_s + U_s$ and $B_s - U_s$ are stochastically independent.

Thus we know the moments of $B_s + U_s$. For the moments of $B_s - U_s$, let $Z \sim N(0, 2(1-c))$:

$$E[B_s - U_s] = E[Z|Z > 0] = E[|Z|] = (2/\pi)^{1/2} (2(1-c))^{1/2} = \frac{2}{\pi^{1/2}} (1-c)^{1/2}$$
$$E[(B_s - U_s)^2] = E[Z^2|Z > 0] = E[Z^2] = 2(1-c)$$

For the first moment we used the following fact: $E[X|X > 0] = E[|X|] = (2/\pi)^{1/2}$, which scales up by the standard deviation. — The variances and hence covariance are:

$$V[B_s + U_s] = 2(1+c)$$

$$V[B_s - U_s] = E[(B_s - U_s)^2] - (E[B_s - U_s])^2 = \left(2 - \frac{4}{\pi}\right)(1-c)$$

$$C[U_s, B_s] = (V[B_s + U_s] - V[B_s - U_s])/4 = \frac{1}{\pi} + \left(1 - \frac{1}{\pi}\right)c$$

¹Notation: $N^+(0, \sigma^2)$ is the conditional distribution of $Z \sim N(0, \sigma^2)$ given Z > 0.

To get $cor(U_s, B_s)$, we need the variances of U_s and B_s . The first and second moments are:

$$E[B_s] = (E[B_s + U_s] + E[B_s - U_s])/2 = \left(0 + \frac{2}{\pi^{1/2}}(1-c)^{1/2}\right)/2 = + \left(\frac{1-c}{\pi}\right)^{1/2}$$
$$E[U_s] = (E[B_s + U_s] - E[B_s - U_s])/2 = \left(0 - \frac{2}{\pi^{1/2}}(1-c)^{1/2}\right)/2 = -\left(\frac{1-c}{\pi}\right)^{1/2}$$

$$E[B_s^2 + U_s^2] = (E[(B_s + U_s)^2] + E[(B_s - U_s)^2])/2 = (2(1+c) + 2(1-c))/2 = 2$$

$$E[B_s^2 - U_s^2] = E[(B_s + U_s)(B_s - U_s)] = 0$$
 (from independence)

$$E[B_s^2] = E[U_s^2] = 1$$

$$V[B_s] = V[U_s] = 1 - \frac{1-c}{\pi} = \left(1 - \frac{1}{\pi}\right) + \frac{1}{\pi}c$$

Thus the correlation is

$$c_s = \operatorname{cor}[B_s, U_s] = \frac{\frac{1}{\pi} + \left(1 - \frac{1}{\pi}\right)c}{\left(1 - \frac{1}{\pi}\right) + \frac{1}{\pi}c} = \frac{1 + (\pi - 1)c}{(\pi - 1) + c}$$

Examples:

- If c = 0 (independence) before selection, then $c_s = 1/(\pi 1) = 0.467$ after selection.
- The correlation after selection is positive, $c_s > 0$, iff $c > -1/(\pi 1) = -0.467$.
- The maximum lift due to selection, $c_s c = \max_c$, is at $c = ((\pi 1)^2 1)^{1/2} (\pi 1) = -0.2478083$. The maximal lift is $c_s c = -2c = 0.4956166$.

Conditional Expectation and Variance

Preparations: For conditional expectations and variances under selection we need the following definite integrals:

$$\int_{t}^{\infty} \phi(s)ds = 1 - \Phi(t)$$
$$\int_{t}^{\infty} s\phi(s)ds = \phi(t)$$
$$\int_{t}^{\infty} s^{2}\phi(s)ds = t\phi(t) + 1 - \Phi(t)$$

These can be verified using $\phi' = -s\phi$. From these we derive the conditional means and variances after selection. The following expression will be needed repeatedly:

$$\psi(t) = \frac{\phi(t)}{1 - \Phi(t)}$$

This function has the following properties:

$$\psi'(t) = \psi(t) (\psi(t) - t) \quad (\forall t) , \qquad t < \psi(t) < t + \frac{1}{t} \quad (\forall t > 0)$$

Non-trivial are only the inequalities. The first follows with partial integration from this:

$$0 < \int_{t}^{\infty} (1 - \Phi(s)) ds = -t(1 - \Phi(t)) + \int_{t}^{\infty} s\phi(s) ds = -t(1 - \Phi(t)) + \phi(t)$$

With this in place, we have $1 - \Phi(t) < \phi(t)/t$, so we get the second inequality:

$$\int_t^\infty (1 - \Phi(s)) ds < \int_t^\infty \frac{\phi(s)}{s} ds < \frac{1}{t} \int_t^\infty \phi(s) ds = \frac{1 - \Phi(t)}{t}$$

From the first inequality we see that $\psi(t) - t > 0$, which holds for all t, not just positive ones, because $\psi(t) > 0$ always but then t < 0. Hence $\psi'(t) > 0$, which means $\psi(t)$ is strictly ascending.

Now we also want to show that $\psi'(t)$ is strictly ascending, which implies that $\psi(t)$ is strictly convex. It will follow that $\psi'(t)$ is in fact a c.d.f. because of its limit behavior near $\pm \infty$.

The reason for introducing $\psi(t)$ is that it will repeatedly be used for the following conditional expectations:

$$\mathbf{E}[X' | X' > t] = \psi(t) , \qquad \mathbf{E}[X'^2 | X' > t] = t\psi(t) + 1$$

The conditional moments of Y after selection:

$$\begin{split} \mathrm{E}[Y \,|\, X = x, \, Y > x] &= \mathrm{E}[cx + sX' | \, cx + sX' > x] \\ &= cx + s \, \mathrm{E}[X' \,|\, X' > \frac{1 - c}{s} x] \\ &= cx + s \, \psi \left(\frac{1 - c}{s} x\right) \\ \mathrm{E}[Y^2 \,|\, X = x, \, Y > x] &= \mathrm{E}[(cx + sX')^2 \,|\, cx + sX' > x] \\ &= \mathrm{E}[c^2 x^2 + 2csx \, X' + s^2 X'^2 \,|\, cx + sX' > x] \\ &= c^2 x^2 + 2csx \, \mathrm{E}[X' \,|\, cx + sX' > x] + s^2 \, \mathrm{E}[X'^2 \,|\, cx + sX' > x] \\ &= c^2 x^2 + 2csx \, \psi \left(\frac{1 - c}{s} x\right) + s^2 \left(\frac{1 - c}{s} x\psi \left(\frac{1 - c}{s} x\right) + 1\right) \\ &= c^2 x^2 + 2csx \, \psi \left(\frac{1 - c}{s} x\right) + s(1 - c)x \, \psi \left(\frac{1 - c}{s} x\right) + s^2 \\ &= c^2 x^2 + s^2 + (1 + c)sx \, \psi \left(\frac{1 - c}{s} x\right) \\ \mathrm{V}[Y \,|\, X = x, \, Y > x] &= \mathrm{E}[Y^2 \,|\, X = x, \, Y > x] - (\mathrm{E}[Y \,|\, X = x, \, Y > x])^2 \\ &= c^2 x^2 + s^2 + (1 + c)sx \, \psi \left(\frac{1 - c}{s} x\right) - \left(cx + s \, \psi \left(\frac{1 - c}{s} x\right)\right)^2 \\ &= s^2 + (1 - c)sx \, \psi \left(\frac{1 - c}{s} x\right) - s^2 \, \psi \left(\frac{1 - c}{s} x\right)^2 \\ &= s^2 \left(1 + \frac{1 - c}{s} x \, \psi \left(\frac{1 - c}{s} x\right) - \psi \left(\frac{1 - c}{s} x\right)^2\right) \end{split}$$

Observations:

- The conditional mean after selection bends upwards, from E[Y | X = x] = cx near $-\infty$ to x near $+\infty$. Reason: $\psi(t) = 0$ near $-\infty$; $\psi(t) \approx t$ near $+\infty$.²
- The conditional variance before selection is $V[Y | X = x] = s^2 (\forall x)$. Because $t \mapsto \psi(t)^2 t\psi(t)$ is a c.d.f., the conditional variance after selection, V[Y | X = x, Y > x], is s^2 near $-\infty$ and descends to 0 near $+\infty$.

²We let the angle run from 0 to π , so that c runs from +1 to 0 to -1, and s swings from 0 to +1 to 0. Thus s is always positive and biases the mean upwards ever more the closer x is to + ∞ .

Figure 1: Effects of selection according to B > U on association and conditional variance. Left: Correlation between B (degree of bilateralism) and U (degree of unilateralism), before and after selection. The graph shows the lift of the correlation caused by selection. Right: Graph of the conditional standard deviation of B given U = u and B > u (selection) for $\rho = +0.5, 0, -0.5$.

Figure 2: Effects of selection according to B > U conditional variance. Same graph as right hand of previous graph, except that the vertical axis is not in multiples of $\sigma = (1 - \rho^2)^{1/2}$ but in absolute terms.