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ABSTRACT
This paper is concerned with the construction of regression
and classification trees that are more adapted to data mining
applications than conventional trees. To this end, we pro-
pose new splitting criteria for growing trees. Conventional
splitting criteria attempt to perform well on both sides of a
split by attempting a compromise in the quality of fit be-
tween the left and the right side. By contrast, we adopt a
data mining point of view by proposing criteria that search
for interesting subsets of the data, as opposed to model-
ing all of the data equally well. The new criteria do not
split based on a compromise between the left and the right
bucket; they effectively pick the more interesting bucket and
ignore the other.
As expected, the result is often a simpler characterization

of interesting subsets of the data. Less expected is that
the new criteria often yield whole trees that provide more
interpretable data descriptions. Surprisingly, it is a “flaw”
that works to their advantage: The new criteria have an
increased tendency to accept splits near the boundaries of
the predictor ranges. This so-called “end-cut problem” leads
to the repeated peeling of small layers of data and results
in very unbalanced but highly expressive and interpretable
trees.

Keywords
CART, splitting criteria, Boston Housing data, Pima Indi-
ans Diabetes data

1. INTRODUCTION
We assume familiarity with the basics of classification and

regression trees. A standard reference is Breiman et al. [3],
hereafter referred to as CART; a concise introduction can be
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found in Venables and Ripley [10], and a more theoretical
one in Ripley [8].
Readers should know that tree construction consists of a

greedy growing phase driven by a binary splitting criterion,
followed by a pruning phase based on cost-complexity mea-
sures and/or estimates of generalization error. The growing
phase yields the discoveries, the pruning phase the statisti-
cal protection against random structure. With the pruning
phase in mind, the growing phase is free to overgrow the
tree.
We are here concerned only with the growing phase, and

hence with the splitting criteria that drive it. A typical
criterion measures the quality of a proposed split in terms of
a size-weighted sum of losses or impurities of the left and the
right side of the split: crit(splitL,R) = wL lossL +wR lossR.
Such weighted sums constitute a compromise between the
two sides. By contrast, the new splitting criteria proposed
here combine the impurities of the left and right buckets of
a split in such a way that low impurity of just one bucket
results in a low value of the splitting criterion. These criteria
need to be developed for regression and classification trees
separately. Section 3 deals with regression, and Section 4
with classification.
This work originated in the course of a marketing study

at AT&T in which the first author was involved. Due to
the proprietary nature of the original marketing data, we
demonstrate our proposals instead on public datasets from
the UC Irvine Machine Learning Repository [6]. Because
interpretability is the focus of this paper, we present these
datasets in greater detail than usual. For the same reason
we also include a larger number of tree displays than usual.

2. SIMPLICITY AND INTERPRETABILITY
OF TREES

We state the intent and some of the main points of the
present work:

• Data mining, in contrast to traditional statistics, is not
concerned with modeling all of the data. Data mining
involves the search for interesting parts of the data.
Therefore:

• The goal is not to achieve superior performance in
terms of global performance measures such as resid-
ual sums of squares, misclassification rates, and their
out-of-sample versions. (The R2 values and misclassi-
fication rates reported in the examples are only given
for general interest.)



• The aspects of trees with which we experimented —
simplicity and interpretability — are not easily quan-
tifiable. We leave it as an open problem to find quan-
tifications of these intuitive notions. Note that sim-
plicity is not identical with size of a tree. This is a
corollary of the example discussed next:

• The splitting criteria proposed here often generate highly
unbalanced trees. Against a perception that more bal-
anced trees are more interpretable, we argue that bal-
ance and interpretability are largely independent. In
fact, there exists a type of maximally unbalanced tree
that is highly interpretable, namely, those with cascad-
ing splits on the same variable, as illustrated in Fig-
ure 1. The simplicity of these trees stems from the fact
that all nodes can be described by one or two clauses,
regardless of tree depth. In Figure 1, it is apparent
from the mean values in the nodes that the response
shows a monotone increasing dependence on the pre-
dictor x. In the examples below we will show that tree
fragments similar to the one shown in Figure 1 occur
quite convincingly in real data.

• The original intent that started the present work was
to develop a datamining version of trees that produces
in effect simple rules for interesting subsets. In so far,
the intent was not much different from that of the rule-
induction literature (see for example [4]). We found,
however, that our proposals produced not only locally
interesting nuggets but globally more interpretable trees
than conventional tree-growing methods. Therefore,
the present proposals compete with trees more than
with rules.
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Figure 1: An artificial example of a simple and in-
terpretable yet unbalanced tree

3. REGRESSION TREES
In regression, the impurity measure for buckets is the vari-

ance of the response values, and the splitting criterion is a
compromise between left and right side bucket in terms of a
weighted average of the variances:

critLR =
1

NL +NR

(

NL σ̂
2
L +NR σ̂

2
R

)

, (1)

where we used the following notations for size, mean and
variance of buckets:

NL = #{n|xn ≤ c} , NR = #{n|xn > c} ,
µ̂L =

1
NL

∑

n∈L
yn , µ̂R =

1
NR

∑

n∈R
yn ,

σ̂2L =
1
NL

∑

n∈L
(yn − µ̂L)

2 , σ̂2R =
1
NR

∑

n∈R
(yn − µ̂R)

2 ,

x being the splitting variable and c the splitting value.
The new splitting criteria will do away with the compro-

mise and respond to the presence of just one interesting
bucket. “Interesting” could mean high purity in terms of
small variance of the response, or it could mean a high or
a low mean value of the response. Thus we wish to iden-
tify pure buckets (σ̂2 small) or extreme buckets (µ̂ extreme)
as quickly as possible. This leads us to the following two
criteria:

• Criterion R1: One-sided purity

In order to find a single pure bucket, we replace the
weighted average of left and right variances by their
minimum:

critLR = min(σ̂2L, σ̂
2
R)

By minimizing this criterion over all possible splits,
we find a split whose left or right side is the sin-
gle bucket with smallest variance (purity). Note that
for subsequent splits, both the high-purity bucket and
the ignored bucket are candidates for further splitting.
Thus, ignored buckets get a chance to have further
high-purity buckets split off later on. Typically, a high-
purity bucket is less likely to be split again.

• Criterion R2: One-sided extremes

In order to find one single bucket with a high mean,
use the mean as the criterion value and pick the larger
of the two:

critLR = max(µ̂L, µ̂R)

Implicitly one of the bucket with the lower mean is
ignored. By maximizing this criterion over all possible
splits, we find a split whose left or right side is the
single bucket with the highest mean. — An obvious
dual for finding buckets with low means is:

critLR = min(µ̂L, µ̂R)

These criteria are a more radical departure from con-
ventional approaches because they dispense with the
notion of purity altogether. The notion of purity seems
to have been large unquestioned in the tree literature.
Mean values have not been thought of as splitting cri-
teria although they are often of more immediate in-
terest than variances. From the present point of view,
minimizing a variance-based criterion is a circuitous
route to take when searching for extreme means.

At this point, a natural criticism of the new criteria may
arise: their potentially excessive greediness. The suspicion
is that they capture spurious groups on the periphery of the
variable ranges, thus exacerbating the so-called “end cut
problem” (CART, p. 313). not in the conclusion. First,
the end cut problem exists but it can be controlled with
a minimum bucket size requirement or a penalty for small
bucket size. Second, there is an argument that the criteria
for one-sided extremes may have a chance of succeeding in
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One-sided purity min(σ̂2L, σ̂
2
R) min(p0L p

1
L, p

0
R p

1
R)

One-sided extreme max(µ̂L, µ̂R) max(p1L, p
1
R)

Table 1: Synopsis of the new regression and classification criteria.

many situations: in real data the dependence of the mean
response on the predictor variables is often monotone; hence
extreme response values are often found on the periphery of
variable ranges, just the kind of situations to which the cri-
teria for one-sided extremes would respond. Finally, recall
that the present goal is not to achieve superior fit but en-
hanced interpretability.

4. TWO-CLASS CLASSIFICATION TREES
We consider only the two-class situation and leave more

than two classes as an open problem. The class labels are
denoted 0 and 1. Given a split into left and right buckets,
let p0L+ p

1
L = 1, p

0
R + p

1
R = 1 be the probabilities of 0 and 1

on the left and on the right, respectively. Here are some of
the conventional measures of loss or impurity, expressed for
the left bucket:

• Misclassification rate: min(p0L, p
1
L). Implicitly one as-

signs the bucket to a class by majority vote and esti-
mates the misclassification rate by the proportion of
the other class.

• Entropy: −p0L log p
0
L − p

1
L log p

1
L. This can also be

interpreted as the expected value of the minimized
negative log-likelihood of the Bernoulli model for Y ∈
{0, 1}, n ∈ L.

• The Gini index: p0L p
1
L. It can be interpreted as the

Mean Squared Error (MSE) when fitting the mean,
p1L, to the Bernoulli variable Y ∈ {0, 1}, n ∈ L: MSEL =
EL(Y − p

1
L)
2 = p0L p

1
L.

These impurity criteria for buckets are conventionally blended
into compromise criteria for splits by forming weighted sums
of the left and right buckets. Denoting with pL+pR = 1 the
marginal probabilities of the left and the right bucket given
the mother bucket, the compromise takes this form:

misclassification rate :
pL min(p

0
L, p

1
L) + pR min(p

0
R, p

1
R)

entropy :
pL (−p

0
L log p

0
L − p

1
L log p

1
L)

+ pR (−p
0
R log p

0
R − p

1
R log p

1
R)

Gini index :
pL p

0
L p
1
L + pR p

0
R p

1
R

These impurity functions are the smaller the stronger the
majority of either label is. Misclassification rate is problem-
atic because it may lead to many indistinguishable splits,
some of which may be intuitively more desirable than oth-
ers. The problem is illustrated, for example, in (CART,
p.96). One therefore uses entropy or the Gini index instead,
both of which avoid the problem. CART uses the Gini index,
while C4.5 Quinlan [7] and S-Plus (Statsci [9], or Venables
and Ripley [10]) use entropy. For two classes there does not
seem to exist a clear difference in performance between en-
tropy and the Gini index. In the multi-class case, however,
Breiman [2] has brought to light significant differences.

We now approach two-class classification the same way as
regression by attempting to identify pure or extreme buck-
ets as quickly as possible. While the criteria for regression
trees are based on variances or means, the criteria for clas-
sification trees are only based on the probabilities of class 0
and 1. For one-sided purity, the goal can be restated as
finding splits with just one bucket that has a clear majority
label. Another approach is to select a class of interest, 1,
say, and look for buckets that are very purely class 1. For ex-
ample, in a medical context, one might want to quickly find
buckets that show high rates of mortality, or high rates of
treatment effect. As in Section 3, we introduce two criteria
for splitting, corresponding to the two approaches:

• Criterion C1: One-sided purity

In order to find a single pure bucket, regardless of its
class, we replace the weighted average with the mini-
mum:

critLR = min(p
0
L, p

1
L, p

0
R, p

1
R) ,

which is equivalent to

critLR = min(p
0
L p
1
L, p

0
R p

1
R)

because min(p0L, p
1
L) and p

0
L p
1
L are monotone transfor-

mations of each other. The criteria are also equivalent
to

critLR = max(p
0
L, p

1
L, p

0
R, p

1
R)

because if one of p0L, p
1
L is maximum, the other is min-

imum. This latter criterion expresses the idea of pure
buckets more directly.

• Criterion C2: One-sided extremes

Having chosen class 1, say, as the class of interest, the
criterion that searches for a pure class 1 bucket among
L and R is

critLR = min(p
0
L, p

0
R) ,

which is equivalent to the more intuitive form

critLR = max(p
1
L, p

1
R) .

Table 3 shows a synopsis of the new criteria for regression
and two-class classification.

5. AN EXAMPLE OF REGRESSION TREES:
THE BOSTON HOUSING DATA

Following CART, we demonstrate the application of the
new splitting criteria on the Boston Housing data. These
well-known data were originally created by Harrison and
Rubinfeld [5], and they were popularized by Belsley, Kuh
and Welsch [1]. Data files are available from the UC Irvine
Machine Learning Repository [6].
Harrison and Rubinfeld’s main interest in the data was to

investigate how air pollution concentration (NOX) affects



the value of single family homes in the suburbs of Boston.
Although NOX turned out to be a minor factor if any, the
data have been frequently used to demonstrate new regres-
sion methods. These data are such well-treaded ground that
if anything new is found in them, it should be remarkable.
The data contain the median housing values as a response,
and 13 predictor variables for 506 census tracts in the Boston
area; see Table 2 for details.
We constructed several trees based on both CART and

the new criteria. To facilitate comparisons, all trees were
generated with equal size, namely, 16 terminal nodes. A
minimum bucket size of 23 was chosen, which is about 5%
of the overall sample size (506). The resulting trees are
displayed in Figures 3 through 6. For each node, the mean
response (m) and the size (sz) is given. Here is a summary
of the main features of these trees:

1. CART, Figure 3
Somewhat balanced tree of depth 6. The major vari-
ables are RM (3x, = 3 times) and above all LSTAT (6x).
Minor variables appearing once each are NOX, CRIM,
B, PTRATIO, DIS, INDUS, with splits mostly in the
expected directions. Two of the top splits act on the
size of the homes (RM), and below it, especially for
areas with smaller homes, an monotone decreasing de-
pendence on the fraction of lower status population
(LSTAT) is apparent. Except for the peeling on RM
at the top and the subsequent peeling on LSTAT, the
tree is not simple.

2. One-sided purity, Figure 4
Unbalanced tree of depth 9. The minor variable PTRA-
TIO (1x) is allowed the first split with a small bucket
of size 9%; apparently a cluster of school districts has
significantly worse pupil-to-teacher ratios than the ma-
jority. Crime-infested neighborhoods are peeled off
next in a small bucket of size 5% (CRIM, 1x) with ex-
tremely low mean. NOX makes surprisingly 3 appear-
ances, which would have made Harrison and Rubinfeld
happy. In the third split from the top, NOX breaks off
12% of highly polluted areas with a low bucket mean
of 16, as compared to 25 for the rest. LSTAT (3x) cre-
ates next a powerful split into buckets of size 41% and
34%, with means of 30 and 19, respectively. RM (2x)
plays a role only in “high-status” neighborhoods.

3. One-sided extremes: high mean, Figure 5
An extremely unbalanced tree. There are no single
powerful splits, only peeling splits with small buckets
on one side. The repeated appearance of just two vari-
ables, RM (2x, levels 1 and 3) and LSTAT (8x), how-
ever, tells a powerful story: For highest housing prices
(bucket mean 45), the size of homes (RM > 7.59)
is the only variable that matters. For RM < 7.08, a
persistent monotone decreasing dependence on LSTAT
takes over, down to a median housing value of about
17. This simple interplay between RM and LSTAT
lends striking interpretability to the tree and tells a
simple but convincing story. At the bottom, crime
(CRIM, 2x) and pollution (NOX, 1x) show some re-
maining smaller effects in the expected directions.

4. One-sided extremes: low mean, Figure 6
Again an extremely unbalanced tree. It tells a simi-
lar story as the previous one, but greater precision is

achieved for low housing values, because this is where
the criterion looks first. The first peeling split sets
aside a 5% bucket of crime-infested neighborhoods with
lowest housing values around 10. The second lowest
mean bucket (B < 100) consists of 5% census tracts
with high African-American population (63%±32%;
due to an arcane transformation). Thereafter, mono-
tone decreasing dependence on LSTAT takes over in
the form of six peeling splits, followed by monotone in-
creasing dependence on RM in the form of five peeling
splits. These two successive monotone dependencies
are essentially the same as in the previous tree, which
found them in reverse order due to peeling from high
to low housing values.

After perusing the last two trees and their crisp stories,
it is worthwhile to return to the CART tree of Figure 3 and
apply the lessons learnt. We see in retrospect that the CART
tree tries to tell the same story of monotone dependence on
LSTAT and RM, but because of its favoring of balanced
splits, it is incapable of clearly layering the data: The split
on LSTAT at the second level divides into buckets of size
51% and 34%, of which only the left bucket further divides
on LSTAT. By comparison, the high means criterion creates
at level 3 a split on LSTAT with buckets of sizes 9% and
77%, clearly indicating that the left bucket is only the first
of a half dozen “tree rings” in ascending order of LSTAT
and descending order of housing price.
In summary, it appears that, in spite of the highest R2

value, the CART tree is considerably harder to interpret
compared to the extreme means trees. Even the one-sided
purity criterion has certain advantages for “data mining” in
that it is better able to find interesting small buckets. Iron-
ically the greater end-cut problem of the new criteria works
in their favor. Conversely, CART’s end-cut problem is not
sufficiently strong to allow it to clearly detect monotone de-
pendencies and express them in terms of highly unbalanced
layering trees.
After a tree-based analysis that resulted in an interpretable

tree, it is plausible to re-express the tree in terms of linear
models by describing monotone dependencies with linear or
additive terms and localizing them with suitable dummy
variables. For example, the tree generated with the low
means criterion might suggest a linear model of the follow-
ing form:

MEDVAL = βCRIM ∗ 1[CRIM>15.79]

+ βB ∗ 1[B≤100.08] ∗ 1[CRIM≤15.79]

+ βLSTAT ∗ LSTAT ∗ 1[LSTAT>10.14]

∗ 1[B>100.08] ∗ 1[CRIM≤15.79]

+ βRM ∗RM ∗ 1[LSTAT≤10.14] ∗ 1[B>100.08]

∗ 1[CRIM≤15.79]

+ ERROR

This type of exercise shows the power of adaptive model
building that is implicit in interpretable trees.

6. AN EXAMPLE OF CLASSIFICATION
TREES: PIMA INDIANS DIABETES

We demonstrate the application of the new criteria for
classification trees with the Pima Indians Diabetes data
(Pima data, for short). These data were originally owned



Variable description

CRIM crime rate

ZN proportion of residential land zoned for lots over 25,000 sq. ft

INDUS proportion of non-retail business acres

CHAS Charles River dummy variable (=1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration, pphm

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centers

RAD index of accessibility to radial highways

TAX full-value property tax rate per $10,000

PTRATIO pupil teacher ratio

B 1000 ∗ (Bk− 0.63)2 where Bk is the proportion of blacks

LSTAT percent lower status population

response median value of owner occupied homes in $1000’s

Table 2: Predictor Variables for the Boston Housing Data.

by the “National Institute of Diabetes and Digestive and
Kidney Diseases,” but they are now available from the UC
Irvine Machine Learning Repository [6].
The class labels of the Pima data are 1 for diabetes and 0

otherwise. There are 8 predictor variables for 768 patients,
all females, at least 21 years of age, and of Pima Indian
heritage near Phoenix, AZ. Among the 768 patients, 268
tested positive for diabetes (class 1). For details see Table 3
and the documentation at the UC Irvine Repository.
We constructed four trees based on entropy and the new

criteria. A minimum bucket size of 35 was imposed, amount-
ing to about 5% of the overall sample size (768). The re-
sulting trees are shown in Figures 7 through 10. For each
node, the proportion (p) of each class and the size (sz) are
given. Here is a summary of the trees:

1. Entropy, Figure 7
Typical balanced tree of depth 6. The strongest vari-
able is PLASMA (5x), which creates a very successful
split at the top. BODY (3x) is the next important
variable, but much less so, followed by PEDIGREE
(3x) and AGE (2x). The class ratios in the terminal
buckets range from 1.00:0.00 on the left to 0.16:0.84
on the right. All splits are in the expected direction.
Overall, the tree is plausible but does not have a simple
interpretation.

2. One-sided purity, Figure 8
Extremely unbalanced tree of depth 12. In spite of
the depth of the tree, its overall structure is simple:
As the tree moves to the right, layers high in class 0
(no diabetes) are being shaved off, and, conversely, as
the tree steps left, layers high in class 1 (diabetes) are
shaved off (with the exception of the BP split near the
bottom). The top of the tree is dominated by BODY
and PLASMA, while AGE and PEDIGREE play a role
in the lower parts of the tree, where the large rest
bucket gets harder and harder to classify.

3. One-sided extremes: high class 0, Figure 9
Extremely unbalanced tree with simple structure: Be-
cause the criterion searches for layers high in class 0

(no diabetes), the tree keeps stepping to the right.
In order to describe conditions under which class 0 is
prevalent, it appears that only BODY and PLASMA
matter. The tree shows a sequence of interleaved splits
on these two variables, indicating a combined mono-
tone dependence on them. See below for an investiga-
tion of this behavior. For interpretability, this tree is
the most successful one.

4. One-sided extremes: high class 1, Figure 10
Another extremely unbalanced tree with simple struc-
ture: The criterion searches for layers high in class 1
(diabetes), which causes the tree to step to the left.
The top split on PLASMA identifies a 0.86 diabetic
bucket of size 9.9%. BODY refines it to 90%. This
is the major story because the remaining cascade to
the left works off a bucket with a fraction 0.71 non-
diabetics, obviously with only mild success.

From the trees and the summary, it becomes clear that
PLASMA is the most powerful predictor, followed by BODY.
In particular the third tree is almost completely dominated
by these two variables. Their interleaved appearance down
this tree suggests a combined monotone dependence which
should be studied more carefully. Figure 2 shows how the
third tree in Figure 9 tries to approximate the class probabil-
ity surface with a step function on axes-aligned rectangular
tiles.



Variable description

PRGN number of times pregnant

PLASMA plasma glucose concentration at two hours in an oral

glucose tolerance test

BP diastolic blood pressure (mm Hg)

THICK Triceps skin fold thickness (mm)

INSULIN two hour serum insulin (µ U/ml)

BODY body mass index (weight in kg/(height in m)2)

PEDIGREE diabetes pedigree function

AGE age (years)

RESPONSE class variable (=1 if diabetes; 0 otherwise)

Table 3: Predictor Variables for the Pima Indians Diabetes Data.
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Figure 2: The Pima Diabetes Data, BODY against
PLASMA. The plain is tiled according to the buck-
ets of the tree in Figure 9. Open squares: no dia-
betes (class 0), filled circles: diabetes (class 1).

7. SUMMARY
The following are a few conclusions from our experiments:

• Hyper-greedy data mining criteria can produce highly
interpretable trees.

• Highly unbalanced trees can reveal monotone depen-
dence.

• The end-cut “problem” can turn into a virtue.

• If trees are grown for interpretation, global measures
for quality of fit are not very informative.

The following are a few topics that merit further research:

• Develop quality measures for interpretability and sim-
plicity of trees.

• Extend the new 2-class criteria to more than two classes.

• Develop more sophisticated methods to control bucket
size.
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Figure 3: The Boston Housing Data, Regression Tree 1, CART Criterion.
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Figure 4: The Boston Housing Data, Regression Tree 2, One-Sided Purity Criterion.
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Figure 5: The Boston Housing Data, Regression Tree 3, High Means Criterion.
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Figure 6: The Boston Housing Data, Regression Tree 4, Low Means Criterion.
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Figure 7: The Pima Indian Diabetes Data, Tree 1, Entropy.
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Figure 8: The Pima Indian Diabetes Data, Tree 2, One-Sided Purity.
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Figure 9: The Pima Indian Diabetes Data, Tree 3, One-Sided Extremes, Class 0.
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Figure 10: The Pima Indian Diabetes Data, Tree 4, One-Sided Extremes, Class 1.


