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Abstract

In recent years there has been a resurgence of interest in nonlinear dimension reduc-

tion methods. Among new proposals are so-called “Local Linear Embedding” (LLE)

and “Isomap”. Both use local neighborhood information to construct a global low-

dimensional embedding of a hypothetical manifold near which the data fall.

In this paper we introduce a family of new nonlinear dimension reduction methods

called “Local Multidimensional Scaling” or LMDS. Like LLE and Isomap, LMDS only

uses local information from user-chosen neighborhoods, but it differs from them in that

it uses ideas from the area of “graph layout”. A common paradigm in graph layout is

to achieve desirable drawings of graphs by minimizing energy functions that balance

attractive forces between near points and repulsive forces between non-near points

against each other. We approach the force paradigm by proposing a parametrized

family of stress or energy functions inspired by Box-Cox power transformations. This

family provides users with considerable flexibility for achieving desirable embeddings,

and it comprises most energy functions proposed in the past.

Facing an embarrassment of riches of energy functions, however, one needs a method

for selecting viable energy functions. We solve this problem by proposing a meta-

criterion that measures how well the sets of K-nearest neighbors agree between the

original high-dimensional space and the low-dimensional embedding space. This meta-

criterion has intuitive appeal, and it performs well in creating faithful embeddings. The

meta-criterion not only solves the problem of choice of energy function but also pro-

vides a measure for comparing embeddings generated by arbitrary dimension reduction

methods, including principal components, LLE and Isomap. Lastly, the meta-criterion
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can be used pointwise as a diagnostic tool for measuring the local adequacy of embed-

dings.

Our methods generally do a superior job in flattening the well-known Swiss roll and

some of the other illustrative datasets used in the LLE and Isomap papers. Our work

contributes to, and ties together, three areas: nonlinear dimension reduction, graph

layout, and proximity analysis.

Key words and phrases: MDS, Local Linear Embedding, LLE, Isomap, Principal Com-

ponents, PCA, Energy Functions, Force-Directed Layout, Cluster Analysis, Unsuper-

vised Learning

1 INTRODUCTION

A well-chosen picture provides instant insight. This is why exploratory data analysis

(EDA) and data visualization (DV) are such powerful data-analytic tools, and why

they have been playing an increasing role in many areas of science. Since the human

visual system only possesses the ability to see two- and three-dimensional shapes but

many scientific data are intrinsically high-dimensional, visual understanding of data

fundamentally involves dimension reduction, that is, the art of flattening data that fall

near an intrinsically low dimensional manifold in high dimensional data space. High

dimensionality of data is really one of two possible aspects of largeness of data: it

simply means that the data have a large number of variables/attributes, as opposed

to a large number of objects/cases. Such high-dimensional data have arisen naturally

in recent times as one has moved from the analysis of single images or single signals

to the analysis of whole databases of images and signals. Images and signals are then

considered as objects/cases, and their pixels in different locations or amplitudes at

different time points are then the variables. The correlations between nearby pixels or

amplitudes make it plausible that the collections of images and signals are intrinsically

low-dimensional, and this is where dimension reduction comes into its own.

In what follows we briefly describe common as well as newer dimension reduction

methods, which will segue to our own proposals.

PCA The most well-known dimension reduction method is principal component anal-

ysis. Suppose we have multivariate data x1, ...,xN ∈ IRp and stack them as rows

of an N × p matrix X. Each column of X is called a feature/attribute/variable.

PCA consists of finding linear combinations of the features that can capture most
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variation of the data, that is, PCA emphasizes the dimensions that have large

variances and ignores the dimensions that have small variances.

MDS Unlike PCA, multidimensional scaling (MDS) aims to preserve the pairwise dis-

tances between the data points. MDS was originally invented to study the prox-

imity structure between pairs of objects when the data were not multivariate

features of the objects, but similarities or dissimilarities (proximities) of pairs

of objects. Given measurements of proximities, MDS maps the objects to low-

dimensional points that best represent the proximities (similarities or dissimilari-

ties). For the purpose of dimension reduction, the dissimilarities are the distances

between the high-dimensional data points (p large), and, using only their pair-

wise distances, MDS maps them into low dimensional space (d = 2 or 3). There

are two main approaches to MDS: classical scaling (Torgerson 1952) and distance

scaling (Kruskal 1964a,b). Even though distance scaling has become the leading

version of MDS, classical scaling is still frequently used because it can be solved

with a simple eigendecomposition. In the situation where the distance matrix

D contains Euclidean distances derived from an n × p matrix X, classical scal-

ing can be shown to be equivalent to principal component analysis and hence

amounts to a linear dimension reduction method. Distance scaling, however, is a

genuine nonlinear dimension reduction technique. It is computed by minimizing

a so-called “stress function” that measures the discrepancy between the distances

in high-dimensional space and those in the reduced dimensions. More details will

be given in the following section.

Isomap This method makes the assumption that the data concentrate around a low dimen-

sional manifold in high-dimensional data space. The (artificial) standard example

is the well-known “Swiss Roll” (Figure 1), a two-dimensional manifold which is

usually shown in three-dimensional space but could be embedded in arbitrarily

high dimensions. Intuitively speaking, the goal of Isomap is to “flatten” such

manifold data, thus eliminating the dimensions that are used up by curvature.

If successful, a flattened manifold requires only a reduced number of dimensions

equal to its intrinsic dimension. This, however, cannot be achieved with PCA

and MDS: these methods try to preserve global structure and do not allow the

kind of local deformation needed for successful flattening of a curved and intrin-

sically low-dimensional manifold. The interesting property of the “Swiss Roll” is

that points far apart on the underlying manifold, as measured by their geodesic

distances, may appear deceptively close in the high-dimensional input space, as

measured by their straight-line or chordal distances.
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Figure 1: Swiss Roll: The configuration from PCA (middle) does not recover the underlying

2D manifold (right).

“Isometric feature mapping” or Isomap (Tenenbaum et al. 2000) tries to solve

the problem of flattening a curved manifold by building on classical multidimen-

sional scaling but aims to recover the intrinsic geometry of the data by preserv-

ing geodesic distance within the manifold. That is, Isomap is classical scaling in

which the distances have been replaced by estimates of intrinsic geodesic distance.

In practice, this is done as follows: for nearby points the geodesic distances are

approximated by Euclidean distances; for distant points the geodesic distances

are approximated by the length of the shortest path in a graph with edges con-

necting nearby points. Finally, Isomap applies classical scaling to the matrix of

graph distances to obtain a representation of the data in low dimensions.

LLE Local linear embedding (Roweis and Saul, 2000) represents an entirely new idea.

Like Isomap it uses localization, but unlike Isomap it does not attempt to match

low-dimensional and high-dimensional distances. Instead, LLE attempts to pre-

serve local affine structure. Assuming that each data point lies on a locally lin-

ear patch of a manifold, LLE characterizes local geometry by representing each

data point as an approximate affine mixture of its neighbor points. LLE then

achieves dimension reduction by constructing a point scatter in low dimensions

that preserves as best as possible the affine mixture coefficients obtained in high-

dimensional data space. — Saul and Roweis (2003, Sec. 5.1) also developed

a version of LLE that takes local distances as inputs. The underlying idea is

analogous to a localized version of classical scaling whereby inner products are

reconstructed from squared Euclidean distances.
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Local MDS, our new proposal that competes with Isomap and LLE, can be seen as a

derivative of MDS on the one hand, and as method for graph layout on the other hand.

As graph layout plays an important role in what follows, we introduce the customary

definitions: A graph G(V,E) is a pair consisting of a vertex set V and an edge set E.

A graph is called “distance-weighted” if the edges are assigned real numbers that are

interpreted as distances. An unweighted graph is the special case where each edge has

the same weight, 1, say. Graphs are abstract structures that are used to model the idea

of objects partially connected to each other. In practice, graphs are visualized as points

connected by lines in what is called a “graph layout”. Graph layout methods form an

important specialty in the scientific visualization of relational data (Di Battista et al.,

1999; Kaufmann and Wagner, 2001; Michailidis and de Leeuw, 2001). Though graph

layout methods do not seem immediately related to dimension reduction due to the

different type of data, there exist natural links:

• The idea of localization used by Isomap and LLE naturally generates a non-trivial

graph consisting of those edges that correspond to local distances.

• Graph layout is similar to MDS in that most of its approaches rely on the mini-

mization of an analog of stress functions, called “energy functions.”

• In fact, MDS has been used early on as a graph layout method by defining

distances between vertices in terms of shortest path lengths within the graph

(Kruskal and Seery, 1980; Kamada and Kawai, 1989; Gansner et al., 2004). There-

fore, Isomap is MDS-based graph layout using shortest path lengths computed

from a distance-weighted graph of local edges.

Our approach to dimension reduction differs from Isomap in that it does not complete

the graph of local distances; instead, it uses a physical paradigm common in graph

layout, namely, the minimization of energy functions that decompose into “attractive

forces” between local objects and “repulsive forces” between distant objects. [For

general introductions to “force-directed” graph layout, see Di Battista et al. (1999,

chap. 10), and Brandes (2001). Our critical reference, however, is Noack (2003).]

Localization has a history in MDS, albeit an unsuccessful one: Removing large

distances from the stress function has probably been tried many times since Kruskal’s

seminal papers (1964a, 1964b). In distance scaling it is a rather obvious idea to remove

those terms from the stress function that correspond to the large dissimilarities, in the

hope that the small dissimilarities somehow add up to a globally meaningful configura-

tion. This hope was dashed in a widely cited study by Graef and Spence (1979), who

reported about simulations in which they removed the largest third and the smallest

third of the dissimilarities from the stress function. While removal of the smallest third
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was relatively benign, removal of the largest third had calamitous effects. Since then

the received wisdom in MDS has been that the stability of MDS configurations stems

from the large dissimilarities while the small dissimilarities are relatively unimportant.

In this light, localized MDS does not appear to be a viable approach.

One way out of the problem is of course the imputation of large distances from

local distances by replacing them with shortest-path lengths in a near-neighbor graph,

as practiced by Isomap and much earlier by Kruskal and Seery (1980). Imputation

with shortest-path lengths has problems, however: in our experience shortest paths

in graphs zig-zag considerably in areas where the nearest neighbors are widely spread

out. As a result, shortest-path lengths may accumulate a considerable degree of noise.

In view of the fact that MDS relies mostly on large distances, Isomap may be driven

largely by the noisy shortest-path extensions of the local distances, while the actual

local distances themselves may play only a very minor direct role in the stress func-

tions. A general tendency to noisiness is indeed visible in some embeddings generated

by Isomap, especially compared to those generated by other nonlinear methods such as

LLE or LMDS. Isomap embeddings tend to be fuzzier while LLE and LMDS embed-

dings tend to be crisper. The crispness of the latter may come at a cost: they may be

systematically distorted in ways that Isomap avoids. The trade-off then may be one of

classical bias versus variance: Isomap may suffer from more variance, LLE and LMDS

from more bias.

We note, however, that LMDS has tuning parameters that allow us to generate a

gamut of embeddings from very noisy with presumably less bias to very crisp with pre-

sumably more bias. In fact, we propose a new parametrized family of energy functions

that has four parameters and that contains as special cases several previously proposed

energy functions for graph layouts. Each parameter can be thought of as contributing

a particular bias in the energy-minimizing configurations. For example, one parame-

ter controls the balance of attractive and repulsive force, while another controls the

tendency to show clusters crisply. The availability of four parameters to control con-

figurations provides great flexibility on the one hand, but it also creates a quandary:

how does one select appropriate parameters? In general, how does a practitioner know

which among several configurations is most faithful to the underlying high-dimensional

structure?

One way to answer this question is to propose measures of faithfulness other than the

stress functions themselves. If such measures could be agreed on, they could be used to

select viable configurations. Such measures would have to be fundamental and simple

to be convincing. We propose one such measure, or family of measures: the average size

of the overlap of K-nearest neighborhoods in low-dimensional configuration and in the
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original high-dimensional space. This is a family of measures as there is one measure

for every K. We call it the “Local Continuity” or “LC” meta-criterion. It is obviously

simple, and it turns out to be practically useful for selecting good configurations.

With the LC meta-criterion in hand, we can draw an analogy of nonlinear dimen-

sion reduction to classification: In classification, the main measure of interest is the

misclassification rate, yet classifiers are constructed as minimizers of surrogate criteria

such as logistic loss or exponential loss. Similarly, in nonlinear dimension reduction, the

main measure of interest is the LC meta-criterion, yet configurations are constructed as

minimizers of energy functions. Similar to the surrogate criterion, energy functions are

smooth and lend themselves for optimization, and similar to misclassfication rate, the

LC meta-criterion is not smooth, hence difficult to optimize, yet of primary interest.

The article proceeds as follows. We first derive LMDS from Kruskal’s distance scal-

ing (Section 2). We then introduce the LC meta-criterion and its variants (Section 3),

followed by illustrations of LMDS and the LC meta-criterion with two image datasets

(Section 4). Next we introduce a rich four-parameter family of energy functions that

vastly expands the search for desirable configurations (Section 5 and 6). Finally, we

theorize about LMDS in particular cases that are analytically accessible (Section 7),

and we give a few pointers to the minimization of energy functions with gradient de-

scent and majorization (see the Appendix).

We conclude by noting that casting nonlinear dimension reduction as a graph layout

problem for distance-weighted graphs entails a beneficial generality. The present work

not only contributes to dimension reduction but also to graph layout. Furthermore,

it contributes to “proximity analysis,” the original target of MDS. Proximity analysis

is concerned with mapping objects whose data consist of similarity or dissimilarity

values for pairs of objects, and as such proximity analysis has had a long history

in psychometrics. Our work contributes to proximity analysis as well by localizing

multidimensional scaling and bringing graph layout ideas to bear on it.

Straddling three areas, we make liberal use of terminology from all three. In general,

though, we adopt the term “configuration” from proximity analysis even though “em-

bedding” or “graph layout” may be more appropriate depending on the context. We

also adopt the term “dissimilarities” from proximity analysis to mean distances between

high-dimensional feature vectors in the case of dimension reduction, and shortest-path-

length distances in the case of graph layout. A correspondence of terminology between

the three areas is given in Table 5 at the end of the article.
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2 LOCAL MULTIDIMENSIONAL SCALING

2.1 Localization of MDS

The goal of MDS as a tool of proximity analysis is to map objects i = 1, ...,N to

“configuration” points x1, ...,xN ∈ IRk in such a way that the given dissimilarities Di,j

between pairs of objects are well-approximated by the distances ‖xi−xj‖. In so-called

“metric distance scaling,” one defines a measure of lack of fit, called “Stress,” between

dissimilarities Di,j and the configuration distances ‖xi − xj‖. In the simplest case,

Stress is a residual sum of squares:

MDSD(x1, ...,xN ) =
∑

i,j=1...N

(Di,j − ‖xi − xj‖)2 . (1)

We conceive of local MDS as a version of weighted metric distance scaling with a

criterion of the form

LMDSD(x1, ...,xN ) =
∑

i,j=1...N

wi,j (Di,j − ‖xi − xj‖)2 .

For localization, let N be a symmetric set of nearby pairs (i, j). For example, N could

be the symmetrized version of K-nearest neighbor pairs: a pair (i, j) is in N if object

j is among the K nearest neighbors of object i, or object i is among the K nearest

neighbors of object j (note that neither implies the other). Our proposal for a localized

version of MDS is to use the dissimilarities Di,j for pairs in N with full weight wi,j = 1

and replace the dissimilarities by a very large value D∞ for all other pairs, but with

small weight w:

LMDSD
N (x1, ...,xN ) =

∑

(i,j)∈N

(Di,j − ‖xi − xj‖)2 (2)

+
∑

(i,j)/∈N

w · (D∞ − ‖xi − xj‖)2 . (3)

The idea is to describe the “local fabric” of a graph or of a high-dimensional manifold

in terms of the neighborhood set of pairs N and the corresponding small dissimilarities,

and at the same time to introduce a bias for non-neighboring pairs of points by imput-

ing them with a large dissimilarity with small weight. This bias should avoid the typical

problem of MDS when the large dissimilarities are eliminated from the Stress: crum-

pling up of the configuration to a jumble. Crumpling means that non-near points are

placed close together because of ignoring large distances; the imputation of a very large

distance introduces a pervasive repulsive force throughout the configuration, similar to

electric static that attempts to push points away from each other. The imputation of a
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single large dissimilarity D∞ is likely to introduce less noise than replacement of large

dissimilarities with shortest-path estimates, as done by Isomap. In return, we accept

a degree of bias to stabilize the configuration.

We call the above sum over N the “local stress” and the sum over the complement

of N the “repulsion.” The question is how to choose the weight w for the repulsion in

relation to the imputed large dissimilarity D∞. Our experience is that the weight w

should be on the order of 1/D∞:

LMDSD
N (x1, ...,xN ) =

∑

(i,j)∈N

(Di,j − ‖xi − xj‖)2

+
∑

(i,j)/∈N

c

D∞
(D∞ − ‖xi − xj‖)2

The constant c is a tuning parameter that adjusts the strength of the repulsion. In the

following subsection we give a limiting argument that shows why w should indeed be

on the order of 1/D∞.

2.2 The Final Proposal of a Local MDS Criterion

In the tentative local MDS criterion (2) - (3) introduced in the previous subsection,

there is still a question of how to choose D∞. For an answer, we revert back to the

stress with weight w shown in the repulsion term (3). We expand this term, ignoring

pure functions of the dissimilarities that do not affect the minimization problem:

LMDSD
N (x1, ...,xN ) ∼

∑

(i,j)∈N

(Di,j − ‖xi − xj‖)2 (4)

−2wD∞

∑

(i,j)/∈N

‖xi − xj‖ (5)

+w
∑

(i,j)/∈N

‖xi − xj‖2 (6)

Now, as D∞ goes to infinity, w must go to zero at least on the order of 1/D∞ in order to

prevent term (5) from blowing up. The weight w cannot go to zero faster than 1/D∞,

though, because otherwise both terms (5) and (6) vanish. This leaves w ∼ 1/D∞

as the only non-trivial choice. In this case, however, term (6) will disappear, which

amounts to a simplification. In summary, it makes sense to pass to the limit D∞ → ∞
constraining w, for example, by w = t/2D∞, where t is a fixed constant:

LMDSD
N (x1, ...,xN ) =

∑

(i,j)∈N

(Di,j − ||xi − xj||)2 − t
∑

(i,j)/∈N

||xi − xj || (7)
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An obvious benefit of passing to the limit with a constraint is the replacement of two

parameters (w and D∞) with a single parameter t. In addition, the two remaining

terms in (7) have intuitive meaning:

• ∑(i,j)∈N (Di,j − ‖xi − xj‖)2: This term correlates ‖xi −xj‖ with Di,j for (i, j) ∈
N and is responsible for preserving the intended local structure.

• ∑(i,j)/∈N ‖xi −xj‖: This term contributes repulsion outside N and is responsible

for pushing points away from each other if they are not locally linked.

The local stress (7) attempts to preserve the local fabric by driving down
∑

(i,j)∈N (Di,j−
||xi − xj||)2, while at the same time spreading the configuration out by driving up
∑

(i,j)/∈N ||xi − xj ||. The relative strength of the two forces against each other is bal-

anced by the tuning parameter t. Adjusting this parameter allows users to search for

the most meaningful configurations.

A note on notation: We write LMDSD
N when we allow a general graph N , but we

may write LMDSD
K when the graph N is a symmetrized K-nearest neighbor graph.

2.3 Invariance Requirements for the LMDS Criterion

The tuning parameter t is unsatisfactory in some ways as the following discussion shows.

The problems have to do with a lack of invariance under desirable transformations.

These problems can be easily corrected, however, resulting in the final form of the

tuning parameter.

• Invariance under change of units: If the measurement units of the dissimilarities

Di,j are changed, then t needs to change along because it has the same units as

Di,j . One can eliminate the units of t by replacing it with t = medianN (Di,j)t
′,

for example, where the new parameter t′ is unit free.

• Transformation of t under change of K in K-nearest neighbors: The size of the

first sum in (7) is |N |, which is of the order of KN ; the size of the second sum is

about N2/2, assuming K ≪ N . This imbalance in the number of terms suggests

that it may be useful to balance the repulsive force and the local stress by making

t′ a suitable function of K and N . A plausible proposal is t′ = K
N t′′. The new

parameter t′′ is expected to have comparable effects across different choices of the

neighbor set size K.

These two considerations can be brought under one roof by reparametrizing the tuning

constant t as follows:

t =
K

N
· medianN (Di,j) · τ , (8)
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where τ is unit free and scales along with K. In our experience, a generally suc-

cessful strategy is to start with a relatively high value τ = 1 in order to obtain a

stable configuration, and lower τ successively as far as 0.01, depending on stability and

interpretability of the resulting configurations.

There remains, though, the natural question of how to choose tuning parameters

such as τ and, more generally, how to compare configurations obtained from different

methods. This is the topic of the following subsection.

3 THE LC META-CRITERION FOR

MEASURING LOCAL CONTINUITY

3.1 Motivation and Definition

Experimentation with tuning parameters such as τ has an element of subjectivity:

whether an embedding is judged as meaningful may depend on the user. Subjective

choices could be avoided if it were possible to propose a criterion that quantifies clearly

desirable properties of configurations. Such properties would have to be rather mini-

mal so as to grant a consensus among users. In general terms the intended criterion

would have to measure some aspect of faithfulness of the embedding vis-à-vis the high-

dimensional structure. In light of the earlier discussions, a particular aspect that is

desirable here is local truthfulness of the configurations. The critical step we now take

is to interpret the intuitive notion of local truthfulness to mean preservation of neigh-

borhoods. That is, neighbors of an object in terms of the target dissimilarities Di,j

should be mapped to neighbors of the object in the configuration. This formulation

is of course reminiscent of the definition of continuity of maps in topology. Achieving

continuity of mapping is a fundamental goal of localization, the principle shared by

LLE, Isomap, and LMDS. Measuring the degree of continuity in terms of preserva-

tion of neighborhoods is the purpose of the LC meta-criterion to be introduced here.

It provides an independent yardstick for judging the success of preserving the local

fabric.

We now give the definition of a first version of the LC meta-criterion: For the

i’th point we form the set ND
K (i) of K nearest neighbors with regard to the target

dissimilarities Di,j; similarly, for the i’th point we form the set NX
K (i) of K nearest

neighbors with regard to the configuration distances ‖xi − xj‖. The LC meta-criterion

proposed here measures the preservation of local structure in terms of the overlap

between ND
K (i) and NX

K (i). Ideally, NX
K (i) would coincide with ND

K (i), but this is
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not usually achievable with d-dimensional configurations {xi}i=1,...,N . It is therefore

sensible to measure the local preservation of K-nearest neighbor structure at the point

i by | ND
K (i) ∩ NX

K (i) |, the cardinality of the overlap:

NK(i) = | ND
K (i) ∩ NX

K (i) | (9)

This quantity is a function of the i’th point and represents therefore the pointwise

version of the LC meta-criterion. The pointwise quantities are turned into a global

version of the LC meta-criterion by averaging over the sample:

NK =
1

N

∑

i

NK(i) (10)

Both the local quantity NK(i) and global quantity NK are bounded by K, and NK = K

would therefore mean maximal faithfulness: NK(i) = K for all i, meaning perfect

identity of K-nearest neighborhoods in terms of the data Di,j and in terms of the

configuration.

As stated above, the main purpose of the LC meta-criterion is to guide the search

for configurations that faithfully render local structure. It is not meant as a direct

optimization criterion; this is the role of the local stress introduced above and more

generally the local energy functions to be introduced below. The meta-criterion is not

smooth and therefore difficult and unstable to optimize; by comparison, stress and

energy functions are smooth and amenable to direct optimization. Given, however, a

collection of configurations obtained from the optimization of various smooth criteria,

one can use the LC meta-criterion to select among these configurations. It can be

used to select among configurations obtained from the same method but with different

values of tuning parameters, or from different methods altogether. Selection based on

the LC meta-criterion can be quite effective, as will be illustrated in the next section.

A successful example of its use is shown in Figure 5 where a trace of NK is shown as a

function of the repulsion parameter τ . A single global maximum points to a particular

choice of τ that makes the corresponding configuration most successful in terms of

rendering K-nearest neighborhoods. (Details for this particular data example will be

given in the next section.)

We conclude this introduction by noting that the device of a meta-criterion is not

uncommon in statistics; in fact, it has many precedents. In classification, for example,

one optimizes smooth loss functions such as logistic loss (in logistic regression) or

exponential loss (in boosting); for ultimate performance measurement, however, one

uses misclassification error, which is a non-smooth and unstable meta-criterion and

not generally used for optimization. Another large area that uses meta-criteria is
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model selection: One fits models by optimizing likelihoods but selects among models

by penalizing the likelihood with terms that measure the cost of model complexity. In

a similar vein, smoothing splines are fitted with penalized likelihoods, but the size of

the penalty may be selected with a generalized cross-validation criterion. The meta-

criterion proposed here should be seen in the context of these widely accepted statistical

approaches.

3.2 Normalization and Adjustment for Baselines

The LC meta-criterion NK is useful for selecting a tuning parameter when it has been

decided that the goal is faithfulness in terms of K-nearest neighborhoods. One may,

however, want to compare LC meta-criteria for different values of K. If so, one may

want to take advantage of the fact that NK has K as an upper bound and normalize

the LC meta-criterion to the 0-1 interval:

MK =
1

K
NK (11)

In this form the LC meta-criterion expresses average overlap of ND
K (i) and NX

K (i) as a

fraction of K. Thus an overlap of 3 for K = 4 would be compared with an overlap of

15 for K = 20. However one may feel about such equalization, it has the benefit that

it rids a plot of MK against K of the uninformative ascent that the non-normalized

count version NK would show. An example of an MK trace is shown in Figure 6 (black

curve). The shape of this trace makes it clear, however, that there is a problem with

comparisons of fractional overlap because of its behavior for K near N : MN−1 = 1.

This version of the LC meta-criterion is therefore not useful for large K.

In principle we could leave this problem with the recommendation that MK be

used only for K small relative to N . Yet, it may be worthwhile to pursue a solution

by gauging MK against some baseline that could be subtracted from MK . An example

could be derived from the idea of random overlap: if one assumed that the configuration

were absolutely random and reflected nothing of the true K-nearest neighborhoods

according to the dissimilarities Di,j, there would still exist an overlap due to chance

alone. In fact, its expected value is K ·K/(N−1), and its fractional version is K/(N−1)

(the denominator being N−1 because the center point is not part of the randomization).

It therefore makes sense to use the adjusted LC meta-criterion

Madj
K = MK − K

N − 1
. (12)

An example of an adjusted trace is also shown in Figure 6 (red curve). As that example

shows, it succeeds in that it creates a single absolute maximum of the trace. The
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adjusted version of the LC meta-criterion can therefore be used to select a sensible

value of K as well.

In practice, selection may work as follows: First, one chooses a stress or energy func-

tion for optimization; this function may have tuning parameters such as the relative

weight of the attractive and repulsive forces. Second, one generates several configura-

tions for different values of the tuning parameters. Third, one selects that configuration

which generates the highest value of the meta-criterion MK . Fourth, one repeats this

procedure for various values of the neighborhood size K and selects the K that gener-

ates the highest value of the adjusted meta-criterion Madj
K .

The selection procedure just described makes the implicit assumption that a config-

uration generated with LMDS with a K-nearest neighborhood graph should be judged

by the LC meta-criterion corresponding to the same K. In other words, the K in

LMDSD
K is the same as the K in MK . However, nothing prevents us from judging an

LMDS configuration obtained as a minimizer of LMDSD
K0

with an LC meta-criterion

Madj
K for K 6= K0. In fact, it might be informative to draw a trace of K 7→ Madj

K , where

K runs through a relatively dense gird of values. If it were the case that a trace of

one configuration dominated the trace of another configuration globally, one could say

that the latter is an inadmissible configuration. An impression of such traces can be

obtained from Figure 7, which shows both raw and equivalent adjusted traces (details

to be given in the next section). The adjusted traces can be used to select an optimal

nearest neighborhood size K0, which in this case is for about K0 = 8 (green trace).

As we will see, adjustment of MK with random overlap as the baseline may not

be sufficient. Other, more stringent baselines might be called for. For example, one

could use configurations obtained from regular MDS (LMDS with K0 = N − 1) as

the baseline and subtract its trace K 7→ MK from any other trace. The idea of this

approach is that localization (K0 ≪ N − 1) should produce benefits over non-localized

MDS in terms of MK for smaller K. An example of adjustment with the MDS baseline

is shown in Figure 13 (again, see the next section for details).

3.3 The Pointwise LC Meta-Criterion and

Its Use for Diagnostics

We intentionally divided the introduction of the meta-criterion into two steps: a point-

wise and a global version. While we just explained the use of the global version, it is

quite evident that the pointwise version has merit also. In fact, the values NK(i) can

be used to judge the local faithfulness of a configuration. We note that it is entirely

conceivable that a configuration excels in faithfully rendering the local fabric for a ma-

14



jority of the objects but fails to do so for a minority. Detecting the existence of this

minority and identifying it is of obvious importance. It can be achieved, for example,

by making graphical use of the values NK(i) by coloring configuration points according

to high and low values of NK(i). Illustrations of this procedure will be given below

(for example, Figure 8). In summary, with the pointwise version of the meta-criterion

we avail ourselves of a potentially powerful diagnostic tool for local faithfulness of

configurations.

4 EXAMPLES

4.1 Highly Structured Facial Images

In this section we apply Local MDS to two sets of facial image data. We are interested

in this kind of data for two reasons: First, facial image data are often intrinsically

low-dimensional and hence promising for dimension reduction. We will discuss the

details of this aspect below. Second, facial image data have been widely used in the

recent literature on nonlinear dimension reduction. It is then of interest to compare

the performance of LMDS with those of competing methods on the same data sets.

Images are essentially arrays of pixels. In the simplest case the pixels describe light

intensities, that is, values on a grey scale. By treating each pixel as one dimension,

an image becomes a single data point in a very high dimensional space, called image

space. For example, an image of size 64×64 pixels is an element of a 4096-dimensional

image space. These many dimensions, however, are highly redundant. Two sources of

redundancy are as follows: First, in most images a majority of nearby pixel pairs have

nearly equal light intensities; this fact translates to considerable correlations between

the dimensions. Second, there are often far fewer degrees of freedom when a collection

of images shows different aspects of the same object. The degrees of freedom in the fa-

cial image datasets we consider below include postures, facial expressions and lighting

direction. For example, the dataset considered in the next subsection will have only

three degrees of freedom: left-right pose, up-down pose and lighting direction (Fig-

ure 2). These intrinsic degrees of freedom should be found by any successful dimension

reduction method.

4.2 Example 1: Sculpture Face Data

This data set includes 698 images of size 64× 64 of a sculpture face and was originally

published in the Isomap paper (Tenenbaum et al. 2000). For comparison, we use the
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Figure 2: Sculpture Face Data

same size of neighborhoods, K = 6, as these authors, based on Euclidean distances in

image space. This choice will be used both for LMDS and LLE.

Figure 3 shows that the 3-D configuration generated by Local MDS is close to a

hyperrectangle. We selected a few points and labeled them in both views with the

corresponding images. On the widest dimension (drawn horizontally) the images show

the transition of the left-right pose. The second widest dimension (vertical axis of

the upper view) shows the transition of the up-down pose, and the third dimension

(vertical axis of the lower view) shows the transition of the lighting direction.

A nice feature of this data set is that the three obvious dimensions were measured

physically and added to the data. Thus each image has three angular parameters

attached for, respectively, the left-right pose, up-down pose, and lighting direction. We

used these angles to color the data points of the configurations with yellow, orange and

red. Such coloring would let us see the transitions if the dimension reduction method

uncovered it in its configurations. Colored configurations for PCA, MDS, Isomap, LLE

and LMDS are shown in Figure 4, with the 3-D configurations rotated to best reveal

the color separations. We note that the three colors overlap in some of the plots;

in particular the up-down transition is not well-captured by PCA, MDS and LLE.

Interesting is also a wrap-around structure in the PCA configuration. The meeting
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Figure 3: Sculpture Face Data: 3-D LMDS configuration, K = 6 with optimized τ .
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PCA MDS Isomap LLE LMDS

2.6 3.1 4.5 2.8 5.2

Table 1: Sculpture Face Data: The meta-criterion NK .

of the extremes (yellow and red) visible in the frame of PCA and ’Left-right Pose’ is

probably caused by the darkness of images showing the extreme left and extreme right

poses. The LLE configuration shows characteristic spikes which we observed in most

applications: LLE is prone to linear artifacts in its configurations. It may be the case

that LLE is more difficult to fine-tune for competitive performance than Isomap and

LMDS.

The Isomap and LMDS configurations in Figure 4 look quite similar and show clear

color separations, which shows that they successfully find the nonlinear structure in

this data set and map it to surprisingly straight directions in the configurations. Of

the two, LMDS shows crisper boundaries in the configuration, which in our experience

is a general observation that applies to other datasets as well. The fuzziness in the

Isomap configurations can be explained by the noise that is inherent when adding up

local edges in the calculation of shortest paths across the near-neighbor graph.

We also compared these methods according to the LC meta-criterion. Table 1 shows

NK . We see that Isomap and LMDS generate better configurations in terms of this

criterion, with LMDS winning out by a small margin.

A remark on the optimization of the LMDS criterion: As we generate a configu-

ration, we usually start with relatively large weight for the repulsion, say, τ = 1, and

lower it to values as small as τ = 0.01. When we performed experiments with τ by

trying a wider range of τ and decreasing τ by smaller stepsizes, we observed that the

LC meta-criterion NK(τ) first ascends and then descends, with a clear peak for a spe-

cific value of τ , as reflected in Figure 5. In this particular data example, the peak is

achieved at τ = 0.006, where the count meta-criterion is as high as 5.2 out of 6-nearest

neighbors. The decrease of the meta-criterion to the left of the peak indicates that too

weak a repulsion allows the local stress to take over and let the configuration degen-

erate into noise. Therefore, repulsion is essential for the stability of the optimization

and for the quality of the configurations.

For comparison purposes, we used the same number of neighbors K = 6 as in the

Isomap paper where the data set was originally published. The authors of this paper

gave no discussion of the choice of K, though. Presumably they used trial-and-error

to find a useful configuration. We can be more systematic in this regard as we can
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Figure 4: Sculpture Face Data: 3-D configurations from five methods.
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Figure 5: Sculpture Face Data: Trace of the LC meta-criterion as a function of τ , the weight

parameter for the repulsive force.

use the meta-criterion to choose K. We tried a number of K’s in the range of 4 to

650 by increasing K in increments of 2 in the lower range (4-20), 25 in the middle

range (25-200), and 50 in the higher range (250-650). For each K, we optimized the

meta-criterion over the repulsion weight τ , and we used this optimized value of MK

as the criterion for selecting K. As a side note, for different K’s the highest MK is

achieved at different values of τ , and larger K usually requires a larger τ .

In Figure 6 we plot the relation between K and the τ -optimized value of MK (black)

and the adjusted Madj
K = MK − K/(N − 1). The parameter K plays the role of both

the K-nearest neighborhood size used in the LMDS stress and in the meta-criterion.

The graphs show an unexpected shape: there are two local maxima at K = 8 and

K = 16, the latter being quite minor; after these peaks, the unadjusted trace dips

before it ascends to very high values, with a final upper limit of MK = 1 and Madj
K = 0

for K = N −1. It is obvious that the high values of MK for K larger than 200, say, are
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Figure 6: Sculpture Face Data: Raw (black) and adjusted (red) traces of the LC meta-

criterion. The horizontal axis represents the size parameter K for the K-nearest neighborhood

in both the LMDS stress and the LC meta-criterion. Adjustment in the red trace is by

subtracting the expected size of random overlap of K-nearest neighborhoods.

not meaningful: K this large does not reflect local structure. Adjustment for random

overlap has the desired effect of creating a single absolute maximum at K = 8. It

seems therefore that the Isomap authors’ choice K = 6 is not far from the maximum.

In the next exercise with the LC meta-criterion, we unlink the choice K0 for the

nearest neighbor graph in LMDSD
K0

from the K in the LC meta-criterion MK . In

Figure 7, we plot the relations between K and MK for a number of τ -optimized config-

urations generated from LMDSD
K0

, both raw (left) and adjusted (right). Interestingly,

the MK traces reach their maxima at or near K = K0. This fact may lend support

to the practice of equating the K’s of LMDSD
K and MK . This fact also lends general

support to the fundamental premise that LMDSD
K is a suitable optimization criterion

for getting local structure right as measured by MK .
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Figure 7: Sculpture Face Data: Traces of the LC meta-criterion, raw (left) and adjusted

(right). Each trace corresponds to one configuration obtained with LMDS for a given size

parameter K0 used in the LMDS stress. Each trace shows the values of the LC meta-criterion

as a function of its own neighborhood size K, chosen independently of the neighborhood size

of the LMDS stress.

Finally, we use the pointwise version N6(i) of the LC meta-criterion as a diagnostic

by color coding the configurations from PCA, Isomap, LLE and LMDS. The result is

shown in Figure 8. The overall impression of the coloring reflects the average level

of N6(i), namely, N6. Correspondingly, the lower quality configurations from PCA

and LLE are overall more red, those from Isomap and LMDS more green. It appears

that Isomap’s configuration is of lesser quality in the left and right extremes where

the color is more densely orange, while LMDS’ configuration is of lesser quality in the

center where again orange color is more concentrated.

4.3 Example 2: Frey Face Data

This data set, from the LLE paper (Roweis and Saul 2000), includes 1965 images of

the face of a single person, Brendan Frey, taken as sequential frames from a short

piece of video footage. The size of the images is 20x28 and hence the image space is

22



−15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

3D PCA (N6=2.6)

−2 −1 0 1 2
−

2
−

1
0

1
2

3D ISOMAP (N6=4.5)

−0.05 0.00 0.05

−
0.

05
0.

00
0.

05

3D LLE (N6=2.8)

−50 0 50

−
50

0
50

3D LMDS (N6=5.2)
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to color code the configuration points. Shown are 2-D views of 3-D configurations from four
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560-dimensional.

As with the sculpture face data, we applied PCA, MDS, Isomap, LLE and LMDS

to this data set. For the localized methods, nearest neighbor computations were based

on plain Euclidean distances in 560-dimensional image space. We used K = 12 as

in the LLE paper. With visualization in mind we chose again a reduction to three

dimensions. The results are shown in Figures 9, 10, and 11, the last with two LMDS

configurations, one from K = 12 and one from K = 4. For interpretation, we labeled a

selection of points with the images themselves. The coloring of the points is the same

in all plots; it is based on painting the clusters and substructures visible in the LMDS

configuration for K = 12, which may be the most articulated of the six configurations.

The joint coloring allows us to compare subsets of interest across configurations. The

2-D projection of each 3-D configuration was interactively chosen to reveal the most

structure and the best color separations.

The overall impression is that the configurations generated by LMDS show more

structure compared to the configurations generated by the other methods. In the

LMDS configurations we can see two major clusters (top and bottom of each plot),

some smaller sub-clusters and transition paths between clusters. As the labeling shows,

the main clusters correspond to, respectively, smiling faces (top) and serious faces

(bottom). This main division is visible in all configurations. A second feature shared

by all configurations is the existence of a dimensions that correponds roughly to the

left-right pose. All six plots were rotated within the projection to line up the serious-

smiling division with the vertical dimension and the left-right pose with the horizontal

dimension.

The aspect where the six configurations show differences the most is in the degree

to which the major divisions are divided into subclusters and linked by transitions

between them. While the PCA and MDS configurations show essentially only the two

base dimensions described in the previous paragraph, they give virtually no indication

of further subdivisions. By comparison, LLE produces a configuration that is quite

structured, but it suffers again from a tendency to spikiness which is most likely arti-

factual. While Isomap comes closest to LMDS in regard to subclusters and transitions,

its noisiness obscures in particular transitions between clusters. Finally, the LMDS

configurations show transitions between subclusters that can be shown to be real. Our

confidence in this statement is based on the fact that these images stem from video

footage that has an underlying timeline. We therefore connected the points with lines

according to the time order of the images, as in Figure 12. The LMDS configurations

make it clear that there exist essentially four transitions between smiling faces at the

top and serious faces at the bottom. One transition links the gray cluster below and the
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Figure 9: Frey Face Data: Configurations from PCA and MDS.
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Figure 10: Frey Face Data: Configurations from Isomap and LLE.
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Figure 11: Frey Face Data: Configurations from LMDS for K0 = 12 and K0 = 4.
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Figure 12: Frey Face Data: The six configurations with connecting lines that reflect the time

order of the video footage.
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green cluster above. Another transition is a near-jump between the purple cluster at

the top and the gray and yellow striations at the bottom. Furthermore, there exists one

transition through the red cluster (which contains the faces with protruding tongue;

see Figure 11). The transitions are even more clearly distinguishable in the LMDS

configuration for K0 = 4 than for K0 = 12, although the former’s spikiness would

have raised suspicions that it suffers from the same problem as the LLE configurations.

The connecting lines, however, show that the spikes describe indeed paths taken by

the video footage. This is most clearly visible in the red cluster which is beautifully

articulated in a way that guides the paths of the video footage. The main bias of the

LMDS configuration for K0 = 4 is most likely in the extent to which it attempts to

separate the serious and smiling faces; the “true” separations are most likely better

reflected in the cruder configurations from PCA, MDS and Isomap.

PCA MDS Isomap LLE LMDS12 LMDS4

3.6 4.8 4.2 3.2 4.6 5.1

Table 2: Frey Face Data: The LC meta-criterion N12 for five methods.

We now compare the five methods according to the LC meta-criterion. The values

of N12 for the six methods are shown in Table 2. Interestingly LMDS4 is at the top,

but LMDS12 is dominated by regular MDS. Of course, from the point of view of wealth

of structure revealed, MDS is not a serious competitor of LMDS12. We have here

an indication that the LC meta-criterion should not be taken as the sole arbiter of

quality of configurations; as important or even more so is the informal degree to which

configurations are interpretable. Then again, as biased as the LMDS4 configuration

appears with its vertical elongation, it is the most congenial for the video path, and

the meta-criterion appropriately singles it out.

We next consider MK -traces for τ -optimized LMDS configurations for various choices

of K0 of the neighborhood graph in LMDSD
K0

. Such traces, both raw and adjusted, are

shown in Figure 13. The unadjusted traces in the right hand plot show a qualitatively

different behavior from similar traces for the sculpture face data. All raw traces are

ascending, hence no realistic maximization is possible. Even adjustment for random

overlap is insufficient as it barely affects the traces in the range of K’s shown here (4 to

150, out of N − 1 = 1964). We therefore chose a more drastic adjustment, with MDS

as the baseline, as shown in the right hand plot of Figure 13, where the horizontal

line at level zero marks MDS. It turns out that K0 = 4 performs best in terms of

MDS-adjusted Madj
K for K up to 8, whereas K0 = 8 and K0 = 12 perform quite badly,
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Figure 13: Frey Face Data: Traces of the LC meta-criterion MK for various choices of K0

in the local stress LMDSD
K0

.

being beaten even by MDS. Again, this contrasts with the qualitative wealth of the

LMDSD
12 configuration compared to the plain MDS configuration. We note, however,

that the overall level of the raw MK is low for small K, in the order of 0.25 to 0.40.

At this point one may wonder whether averaging of the pointwise values NK(i) may

be concealing local uneveness in the quality of the configurations. We therefore plot

the configurations with color codes that show brackets of N12(i) values, as in Figure 14.

It appears that in terms of this criterion the weak spots in the configuration for K0 = 4

are in the centers of the heavy clusters, mostly of the serious faces at the bottom (red

color). By contrast, some of the transitions and extreme spikes show excellent quality

(blue color). Thus, in contrast to the LLE configuration, the spikes in the LMDSD
4

configuration are real. One may now wonder whether increasing the dimension might

allow LMDS to recover further detail inside the heavy clusters which seem to suffer

from congestion, possibly caused by a lack of sufficient dimensions.

We conclude by mentioning a standard diagnostic in MDS: the so-called Shepard

plot, which is a scatterplot of the configuration distances di,j against the configuration

distances di,j . As an illustration we show a sub-sampled version of the Shepard plot

of the LMDS configuration for K0 = 12 in Figure 15. Sub-sampling is necessary

because the number of pairs of points is nearly two million, which would result in

serious overplotting even with the smallest of point glyphs. Note that the Shepard plot

uses the reverse convention of the statistical “whole model plot” where the response
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Figure 14: Frey Face Data: The pointwise LC meta-criterion N12(i) as a diagnostic. Color

coding: red ∼ 0 to 3; orange ∼ 4 to 6; green ∼ 7 to 9; blue ∼ 10 to 12. The most faithfully

rendered parts are blue.
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values are on the vertical axis and the predictions on the horizontal axis; di,j is the

prediction, and Di,j is the response. Just the same, the Shepard plot provides a

qualitative assessment of the goodness of fit. In MDS, we look for a roughly linear

relation between di,j and Di,j . In local MDS, however, we must allow deviations

from linearity due to the repulsion among non-neighboring points. Just the same, in

light of Figure 15 we may wonder whether a log transformation of the dissimilarities

Di,j wouldn’t have been beneficial. On the other hand, this is not an MDS but an

LMDS configuration for which one expects that the unfolding of the high-dimensional

shape into three dimensions causes some tearing of chordal distances, reminiscent of

the “Swiss Roll” whose intrinsic large distances are also much larger than the chordal

distances. In light of these considerations, a convex and monotone increasing trend

should exactly be the expected pattern.

The only anomalous feature in Figure 15 is then the oval cluster above the plot

center. In order to gain some insight into the nature of this cluster, we identified the

most extreme cases by placing a red rectangle in the top left. As each point in the

plot corresponds to a pair of points in the configuration, we produced another view

of the configuration in Figure 16 but with a subset of these point pairs connected

by lines (again, an overplotting problem with the full 1500 lines forced us to show

only a subsample of 200 lines). From these lines it becomes apparent that the oval

cluster in the Shepard plot corresponds to distances between the two main features

of all configurations: the two clusters for the smiling (top) and the serious (bottom)

faces. Clearly, the LMDS configuration places these two main clusters too far apart

compared to their chordal distances in image space. As suggested earlier, the PCA and

MDS configurations give a more faithful view of the true distance between smiling and

serious faces, but this prevents both methods from showing local detail when flattening

the structure into a low-dimensional configuration.

32



200 400 600 800 1000 1200 1400 1600

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

Shepard Plot

D_ij

d_
ij

Figure 15: Frey Face Data: Diagnostic plot for 200,000 pairs of dij vs Dij, sub-sampled from

a total of about 2 million pairs. The red rectangle in the top left contains point pairs that

have small dissimilarities but fairly large distances in the configuration.
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Figure 16: Frey Face Data: The lines are linking a subset of 200 point pairs in the red

rectangle of Figure 15.
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5 ENERGY FUNCTIONS BASED ON

BOX-COX TRANSFORMATIONS

In this section, we introduce the energy model for graph layout and propose a large

parametrized family of energy functions that comprises not only LMDS but also many

energy functions previously proposed in the graph layout literature. A major theme is

the “clustering postulate” proposed by Noack (2003) for determining the strength with

which graph layouts respond to clustering in the form of loosely connected near-cliques.

Noack intended his postulate as a desideratum that all good graph layout techniques

should satisfy. We soften up his postulate by embedding it in a parametrized family

of postulates where the parameter is an objective measure of clustering strength. This

family of postulates in turn motivates a family of energy functions that are basically

power laws but best expressed with Box-Cox transformations to include logarithmic

energy functions.

5.1 Graph Layout with Energy Functions

Let G = (V,E) be a graph consisting of vertices V and edges E. The goal of graph

layout is to draw a low-dimensional picture of points (vertices) and lines (edges) to

best visualize the relational information in a graph.

Although the present narrative reads like a piece of work in pure graph layout,

it should be kept in mind that the application to nonlinear dimension reduction and

proximity analysis is immediate once the energy function framework is extended to

distance-weighted graphs. In either of these applications the graph is a symmetrized

K-nearest neighbor graph N and hence a special case of the general graph layout

problem.

A widely used method for graph layout is force-directed placement. The idea can

be best explained with Eades’ metaphor (Eades 1984):

To embed [lay out] a graph we replace the vertices by steel rings and replace

each edge with a spring to form a mechanical system... The vertices are

placed in some initial layout and let go so that the spring forces on the rings

move the system to a minimal energy state.

Based on the heuristic of such physical systems, investigators in graph layout have pro-

posed a fair number of algorithms. In Table 3 we list a few popular examples. Perusing

this table, it is not a priori clear what the advantage would be of one proposal over

the others. The last example was recently proposed by Noack based on his “clustering
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postulate,” which will be the starting point for our own proposals.

Eades (1984) U =
∑

E di,j ·
(

log(di,j) − 1 − di,j
−2
)

+
∑

V 2 di,j
−1

Fruchterman and Reingold (1991) U =
∑

E di,j
3/3 − ∑

V 2 log(di,j)

Davidson and Harel (1996) U =
∑

E di,j
2 +

∑

V 2 di,j
−2

Noack (2003) U =
∑

E di,j − ∑

V 2 log(di,j)

Table 3: Some well-known energy functions U for graph layout.

We note that each energy function U is a function U = U(G,X) of a graph G

and a configuration X = (xi)i=1...N . Minimization of an energy function over all

configurations produces the best layout as measured by the particular energy function.

A commonality of the examples listed in Table 3 is the assumption that attractive

forces exist among the vertices connected by edges, while repulsive forces exist between

all vertices. Energy functions are written in a common form where the first term

corresponds to the energy from attraction and the second term to the energy from

repulsion:

U =
∑

(i,j)∈E

f(di,j) −
∑

(i,j)∈V 2

g(di,j) (13)

The symbol V 2 is shorthand for the full graph. Both f(d) and g(d) are monotone

increasing to do justice to the terms “attraction” and “repulsion”: as di,j decreases,

the attraction term decreases, and as di,j increases, the repulsion term decreases. The

idea is once again to balance graph structure implicit in the attractive force with a

tendency to spread out implicit in the repulsive force. The above form of energy

function is for unweighted graphs and therefore does not contain MDS or LMDS as

special cases. To this end, one will have to allow the attraction terms f() to be functions

of dissimilarities Di,j as well.

5.2 Noack’s Clustering Postulate

We now discuss a clustering postulate proposed by Noack (2003). This postulate derives

from the consideration of an idealized two-cluster situation that is so simple that it

lends itself to analytical treatment, yet is sufficiently general that it lends insight into

the response of energy functions to clusters in graphs. Noack laid down his postulate

as a precise requirement on how strongly energy functions should attempt to separate

clusters. We find his requirement too rigid, however, which is why we soften it up
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to describe an infinite range of responses to clustering. In essence, we propose a one-

parameter power family of postulates where the parameter is a measure of clustering

strength.

n1
ne

n2

Figure 17: Noack’s simple graph with two subgraphs that have n1 and n2 internal vertices

and ne connecting edges.

In the details, this works out as follows: According to Noack (2003), we consider

an idealized graph consisting of two subgraphs, to be called “clusters.” To justify

this term, we assume the vertices highly connected within each cluster and loosely

connected between them. As depicted in Figure 17, we assume n1 and n2 vertices in

the two graphs and ne edges between them. To simplify the model, we assume all the

vertices of one cluster are drawn at the same position. As we are only interested in

the distance between clusters, we omit the energy within clusters and only consider

the energy between them. The relevant energy then simplifies to the following form,

where d is the distance between the two clusters:

U(d) = nef(d) − n1n2 g(d)

The minimal energy distance d = dmin is achieved when

U ′(d) = nef
′(d) − n1n2 g′(d) = 0 , that is, f ′(d) =

n1n2

ne
g′(d) . (14)

At this point Noack introduces the concept of “coupling strength” to measure how

strongly the two clusters are connected. He defines coupling strength C as the ratio of

the number of existing edges to the number of all possible edges between the clusters.

For the graph of Figure 17 this is

C =
ne

n1n2
.

This quantity is always between 0 and 1, with larger C implying stronger coupling

strength. The minimum energy condition becomes

f ′(d) =
1

C
g′(d) . (15)
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This minimum condition hints that there should exist constraints between the attrac-

tive and repulsive forces, but because the coupling strength is an unknown quantity,

the constraint expressed by (15) is not actionable. Noack’s next step is to link the

minimizing distance d and the coupling strength C in his coupling postulate, thereby

creating an actionable constraint between f() and g(). He proposes the

Weak Clustering Postulate: More strongly coupled clusters should be placed closer

to each other.

This implies that the energy-minimizing distance d in (15) should be a monotone

descreasing function of the coupling strength C. He required more specifically that the

minimizing distance be the reciprocal of C:

Strong Clustering Postulate: d = 1
C

As this should hold for all values C ≤ 1 and > 0, the minimal energy condition (15)

results in the following constraint between attractive and repulsive forces:

Strong Clustering Constraint:

f ′(x) = x · g′(x) ∀x ≥ 1 (16)

This is a powerful condition that reduces the arbitrariness in the choice of energy

functions: if either the attractive or the repulsive force is given, the other force is

essentially determined by (16).

Noack applies the constraint to two special cases: g(x) = ln(x) and g(x) = x. The

first case results in what he calls the LinLog energy:

ULinLog =
∑

(i,j)∈E

di,j −
∑

(i,j)∈V 2

ln di,j ,

the second case in what he calls the QuadLin energy:

UQuadLin =
∑

(i,j)∈E

1

2
di,j

2 −
∑

(i,j)∈V 2

di,j .

This second example is reminiscent of the LMDS stress criterion, but it lacks distance-

weighting. Motivated by the LinLog energy, Noack goes one step further and considers

a one-parameter family of “PolyLog” energy functions:

UPolyLog =
∑

(i,j)∈E

di,j
r −

∑

(i,j)∈V 2

ln di,j .

where r ≥ 1. He notes that in the idealized two-cluster situation they attain their

minimum energy distance at

d =

(

1

C

)1/r

,

thereby allowing for weaker clustering strengths for increasing r.
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5.3 The B-C Family of Energy Functions for Unweighted

Graphs

We take Noack’s work as the starting point for an extended clustering postulate by re-

quiring the distance between two clusters to be a power function of the inverse coupling

strength:

Power Clustering Postulate: d =
(

1
C

)λ
(λ > 0)

As before, a constraint between attractive and repulsive forces results. The minimum

energy condition (15) specializes to the following:

Power Clustering Constraint:

f ′(x) = x
1

λ · g′(x) ∀x ≥ 1 (17)

The parameter λ is a measure of the strength of the clustering effect: the larger λ, the

more loosely coupled clusters will be separated from each other. As λ goes to zero, the

clustering effect tends to zero. We therefore call λ the “clustering power.”

In Table 3, the energy functions by Fruchterman and Reingold (1991) and Davidson

and Harel (1996) both satisfy the power clustering constraint with the clustering powers

λ = 1
3 and 1

4 , respectively. This fact explains why these energy functions have a weaker

clustering effect than the LinLog and QuadLin energy functions, which both have the

clustering power λ = 1 (compare Noack 2003, Table 3)

We now introduce a power family of energy functions, but because we wish to in-

clude logarithmic functions we use Box-Cox transformations instead of raw powers. A

secondary benefit of Box-Cox transformations is that even negative powers are mono-

tone increasing and hence qualify as attractive and repulsive forces. See Figure 18 for

an illustration of Box-Cox transformations.

We also assume a power clustering constraint with a given clustering power λ. As

a result, if either f() or g() is of the Box-Cox variety, the other will be, too. Thus,

denoting the Box-Cox power by µ, we obtain the following matched pairs of repulsive

and attractive energies:

g(d) =

{

dµ−1
µ (µ 6= 0)

ln(d) (µ = 0)
(18)

f(d) =







dµ+ 1
λ −1

1

λ
+µ

(µ + 1
λ 6= 0)

ln(d) (µ + 1
λ = 0)

(19)

Thus µ is the power law of repulsion, µ + 1
λ the power law of attraction, while λ is the
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Figure 18: Box-Cox Transformations: y = xµ−1
µ

clustering power. The full energy function is therefore:

U =
∑

(i,j)∈E

di,j
µ+ 1

λ − 1

µ + 1
λ

−
∑

(i,j)∈V 2

di,j
µ − 1

µ
, (20)

with logarithmic fill-in when either µ or µ + 1/λ is zero. This is the preliminary form

of what we call the B-C family of energy functions. It includes the LinLog and

QuadLin energy functions as special cases for λ = 1, µ = 0 and λ = 1, µ = 1,

respectively.

We restate that the Box-Cox power µ is unconstrained in principle: f() and g() are

increasing for all µ ∈ IR. If physical analogies were relevant, though, one would wonder

about repulsive forces that get stronger as the distance gets larger. The Coulomb

force between equal charges, for example, has energy potential 1/d and repulsive force

−1/d2, which decays with greater distance. Energy power laws g(d) ∼ dµ with decaying

force are those with monotone decreasing g′(d), that is, µ < 1. The QuadLin energy is

therefore not physically motivated as it is a limiting case with a repulsive force that is

constant irrespective of distance.
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Just the same, we are currently exploring the counter-physical case of a repulsive

power energy with µ = 2 because it would be attractive from a computational point of

view. Its total repulsive energy is
∑

i<j di,j
2 = 2N

∑

i ‖xi‖2. This algebraic identity

implies that the force can be computed at a cost proportional to N as opposed to

N(N−1)/2. The total cost of force computations is therefore no longer driven by the N2

cost of the repulsive force but by the cost of the attractive force, which is proportional

to the size of the graph. Thus, if the repulsive energy for µ = 2 produce viable

configurations, the computational savings would be considerable for sparse graphs.

5.4 The B-C Family of Energy Functions for Distance-

Weighted Graphs

The graphs we have considered so far have uniform edge length 1. For dimension

reduction and proximity analysis, however, we need distance weighted graphs, where

the edges have lengths given by dissimilarities Di,j . A natural way to extend the

clustering postulate to distance-weighted graphs is to require that in Noack’s two-

cluster paradigm the minimum energy distance between clusters be achieved at the

target dissimilarity D times the clustering factor ( 1
C )λ:

Power Clustering Postulate with Distance Weighting:

d = D ·
(

1

C

)λ

(21)

We note that in the special case of two connected points (each cluster containing

just one point), we have ne = n1 = n2 = 1 and hence C = 1. Therefore, the energy-

minimizing distance is d = D. In other words, the energy balance between connected

vertices is such that two connected points i and j attempt to be placed at a distance

di,j = Di,j from each other.

Combined with the minimum energy condition (15) the new postulate (21) results

in the following constraint between attraction and repulsion:

Power Clustering Constraint with Distance Weighting:

f ′(d) =

(

d

D

) 1

λ

g′(d) (22)

We can again prescribe g(d) and obtain f(d) from (22). The proposal for g(d) we make
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here is basically a (18), but multiplied with a power of the target D:

g(d) = Dν

{

dµ−1
µ (µ 6= 0)

ln(d) (µ = 0)
(23)

f(d) = Dν− 1

λ







dµ+ 1
λ −1

1

λ
+µ

(µ + 1
λ 6= 0)

ln(d) (µ + 1
λ = 0)

(24)

The immediate problem with this attempt is that it produces only terms that apply

to edges of the graph for which a target distance D exists. We therefore arrive only at

an energy function for the full graph, that is, at a stress function:

U =
∑

(i,j)∈V 2

Di,j
ν

(

Di,j
− 1

λ
di,j

µ+ 1

λ − 1

µ + 1
λ

− di,j
µ − 1

µ

)

(25)

We call this the B-C family of stress functions. (As always, we assume logarithmic

fill-in for µ = 0 and µ + 1/λ = 0.) In order to arrive at energy functions for non-full

graphs, we avail ourselves of the localization device that produced LMDS from MDS.

We replace again the dissimilarities Di,j for (i, j) /∈ E with a single large dissimilarity

D∞ that goes to infinity. We downweight these terms with a weight w in such a way

that wD∞
ν = t is constant:

U =
∑

(i,j)∈E

Di,j
ν

(

Di,j
− 1

λ
di,j

µ+ 1

λ − 1

µ + 1
λ

− di,j
µ − 1

µ

)

+ w
∑

(i,j)/∈E

D∞
ν

(

D∞
− 1

λ
di,j

µ+ 1

λ − 1

µ + 1
λ

− di,j
µ − 1

µ

)

As D∞ → ∞, we have D∞
−1/λ → 0, hence in the limit we obtain what we now call

the B-C family of energy functions:

U =
∑

(i,j)∈E

Di,j
ν

(

Di,j
− 1

λ
di,j

µ+ 1

λ − 1

µ + 1
λ

− di,j
µ − 1

µ

)

− t
∑

(i,j)/∈E

di,j
µ − 1

µ
(26)

(Again, we assume logarithmic fill-in for µ = 0 and µ + 1/λ = 0.) We have thus

weighted the terms within the graph by Di,j
ν and the terms not in the graph by t.

The parameter t plays the same role as in the LMDS stress function for balancing

the relative strength of the combined attraction and repulsion inside the graph with

the repulsion outside the graph. For completeness, we list the assumed ranges of the

parameters:

t ≥ 0 , λ > 0 , −∞ < µ < ∞ , −∞ < ν < ∞ .
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The B-C families contain both MDS and LMDS as special cases: When µ = λ =

ν = 1, (25) becomes the Kruskal-Shepard MDS stress function (1) and (26) the LMDS

energy function (7). For other choices of parameter values, one obtains several energy

functions previously proposed in the graph layout literature. Table 4 gives a summary.

Isomap could be listed in the MDS row if Kruskal-Shepard distance scaling were used

instead of Tenenbaum’s et al. (2000) choice of classical scaling. The table shows that

Noack’s (2003) QuadLin is the specialization of LMDS to unweighted graphs with unit

repulsion weight t = 1. The sense in which Noack’s (2003) PolyLog power family is a

subset of the B-C family will be explained in Subsection 5.5.

Choice of Parameters Special Cases

E = V 2, λ = µ = ν = 1 MDS (Kruskal 1964; Kruskal & Seery 1980)

E = V 2, λ = µ = 1, ν = −1 Kamada & Kawai (1989); Sammon (1969)

λ = µ = ν = 1 LMDS

λ = 1/3, µ = ν = 0, Di,j = 1, t = 1 Fruchterman & Reingold (1991)

λ = 1/4, µ = −2, ν = 0, Di,j = 1, t = 1 Davidson & Harel (1996)

λ = 1, µ = ν = 0, Di,j = 1, t = 1 Noack’s LinLog (2003)

λ = µ = ν = 1, Di,j = 1, t = 1 Noack’s QuadLin (2003)

λ > 0, µ = ν = 0, Di,j = 1, t = 1 Noack’s PolyLog family (2003; his r = 1/λ)

Table 4: Some special cases of energy functions.

5.5 An Irrelevant Constant: Weighting the Attraction

Noack (2003, Sec. 5.5) observed that for his LinLog energy function the relative weight-

ing of the attractive energy relative to the repulsive energy is irrelevant in the sense

that such weighting would only change the scale of the minimizing layout but not the

shape. A similar statement can be made for all members of the B-C family of energy

functions. To demonstrate this effect, we introduce B-C energies whose attraction is

weighted by a factor a
1

λ where a > 0:

Ua(d) =
∑

(i,j)∈E

Di,j
ν

(

a
1

λ Di,j
− 1

λ
di,j

µ+ 1

λ − 1

µ + 1
λ

− di,j
µ − 1

µ

)

− t
∑

(i,j)/∈E

di,j
µ − 1

µ

We denote by d = (di,j) the set of all configuration distances for all edges (i, j), in-

cluding those not in the graph E. Note that the repulsion terms are still differentially
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weighted depending on whether (i, j) is an edge of the graph E or not, which is in

contrast to most energy functions proposed in the graph layout literature where invari-

ably t = 1. — In analogy to Noack’s argument, we observe the following form of scale

invariance:

U1(a d) = aµ Ua(d) + const (27)

This relation holds also for µ = 0 (logarithmic repulsion) and µ+1/λ = 0 (logarithmic

attraction). As a consequence, if d is a minimizing set of configuration distances for

Ua(·), then the distances a d of the configuration scaled by a factor a minimize the

original unweighted B-C energy U1(·). This makes sense as an example shows: for

λ = 1 and a = 2, a set of configuration distances d is minimal for Ua(·) iff 2d is

minimal for U1(·), that is, the increased attraction of Ua(·) shrinks the solution by a

factor of a = 2 compared to U1(·).
It is in this sense that Noack’s PolyLog family of energies can be considered as a

special case of the B-C family: PolyLog energies agree with B-C energies for µ = ν = 0

and t = 1 up to a multiplicative factor of the attractive force.

5.6 Scale Invariant Forms of the Repulsion Weight

The remarks of Section 2.3 on invariance requirements on t apply here as well, and

possible reparametrizations look similar:

t =
|E|

|V 2| − |E| ·
(

median(i,j)∈E Di,j

)ν · τ , (28)

where τ is now a unit free tuning parameter. We have made a modification by replacing

K-nearest neighbor graphs with general graphs with edge sets E. In order to balance

the different numbers of terms in the two sums of (26), we reweight the second term by

a factor |E|/(|V 2| − |E|) where the numerator and denominator are the exact counts

of terms in the first and the second sum, respectively. For K-nearest neighbor graphs,

this ratio is approximately K/N when K is small compared to N , reducing to (8).

The median of the values Di,j can obviously be replaced by any other symmetric

first order homogeneous function of the values, including the mean and any order

statistic.

The repulsion weight τ (or t) plays a special role in the optimization of the B-C

energy functions because larger values produce more stable minima. Therefore, as

earlier with LMDS, we start minimization with larger values of τ to spread out the

vertices and achieve stability, and then we lower τ to obtain more truthfulness to the

local structure.
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5.7 Clustering Properties of the B-C Family

A consequence of the manipulations of Subsection 5.4 is that we violated the power

clustering postulate. We can, however, examine how the B-C family of energy functions

performs in Noack’s two-cluster paradigm, and this will lead to some insights. The

inter-cluster energy for a B-C energy function is:

U = ne Dν

(

D−1/λ dµ+1/λ − 1

µ + 1/λ
− dµ − 1

µ

)

− (n1n2 − ne) t
dµ − 1

µ

Given a target dissimilarity D, the energy-minimizing distance d satisfies the following

stationarity condition:

0 = ne Dν
(

D−1/λ dµ+1/λ−1 − dµ−1
)

− (n1n2 − ne) t dµ−1

This can be solved for d:

d = D

(

1 +
t

Dν

(

1

C
− 1

))λ

As always, C = ne/(n1n2) is the coupling strength. In spite of the convoluted appear-

ance of this solution, it is basically simple:

• For maximal coupling strength, as for a simple connected pair (n1 = n2 = ne = 1),

the clusters are placed at a distance that matches the target dissimilarity:

C = 1 ⇒ d = D.

• As the coupling strength decreases, the clusters are placed farther apart:

C ց 0 ⇒ d ր ∞, assuming t > 0.

• As the repulsion weight increases, the clusters are placed farther apart:

t ր ∞ ⇒ d ր ∞, assuming C < 1.

• For vanishing repulsion weight, the distance of the clusters matches the target

dissimilarity:

t = 0 ⇒ d = D.

• As the clustering power increases, the clusters are placed farther apart:

λ ր ∞ ⇒ d ր ∞, assuming C < 1 and t > 0.

• The power law parameter µ does not affect clustering properties.

• Consideration of the weight power ν requires the invariant version τ of the repul-

sion weight (28) and the assumption that the two-cluster graph is part of a larger

graph E with median dissimilarity m = median(i,j)∈EDi,j. Then the effect of ν

depends on (m/D)ν . For example:

ν ր ∞ ⇒ d ց D if D > m, assuming C < 0 and τ > 0.
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5.8 Interpretation of the B-C Energy Functions

The previous subsection explains much of the role of the parameters of the B-C energy

family. We summarize their roles in general terms as follows.

λ The clustering power λ adjusts the clustering effect in the graph. The larger λ,

the more strength there is for coupling to come into play and hence the stronger

the clustering effect is in the graph.

µ The parameter µ describes the power law of the repulsive energy, and in combi-

nation with λ also the power law of the attractive energy. The larger µ is, the

more sensitive the energy is to increases in configuration distances di,j .

ν The term Dν describes the relative weight with which the edges of the graph

contribute to total energy as a function of Di,j. In particular, when ν > 0, large

dissimilarities want to be matched more strongly; when ν < 0, small dissimilarities

want to be matched more strongly.

t The parameter t adjusts the strength of repulsion outside the graph. The reparametriza-

ton (28) maps t to a unit free tuning parameter τ whose meaning is invariant under

unit changes of the data Di,j.

6 B-C ENERGIES APPLIED

6.1 Olivetti Faces Data

This dataset, published on Sam Roweis’ website, has facial images of 40 persons. There

are 10 images for each of them and a total of 400 images in the dataset (see Figure 19).

Each image is of size 64 by 64. Again for visualization purposes we reduce the dimen-

sion from 4096 to 3. As the 40 faces form natural groups, we would expect effective

dimension reduction methods to show clusters in their configurations. If this expec-

tation is correct, then this dataset provides an excellent test bed for the effect of the

clustering power λ.

Figure 20 shows 2D projections of 3D configurations generated by different energy

functions (26) for different clustering powers, λ = 0.25, 0.5, 1, 1.5, while the other

parameters are fixed at µ = ν = 1 and τ = 0.01. We colored the data points according

to the last configuration with λ = 1.5. With small λ, we see fussy clusters and as

λ increases the clusters become clearer. These clusters are not artifactual but real,

representing the images of the same person. In fact, the configurations produced

fewer than the known number of 40 clusters: the big grey cluster in the center lumps
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Figure 19: Olivetti Faces
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Figure 20: Olivetti Faces: Configurations for four choices from the B-C family of energy

functions.
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Figure 21: Olivetti Faces: Configurations from PCA, MDS, Isomap and LLE.

facial images of different persons together. The reason that these images are not

distinguishable might be the crudeness of the Euclidean distance measure applied to the

pixel dimensions. One should expect that some pixel dimensions are more informative

than others; for example, the grey scale in the corner areas of an image does not change

much and therefore contains less information, yet we treated these dimensions equally

with the other more informative dimensions.

Figure 21 shows 2D projections of 3D configurations generated from the other four

methods: PCA, MDS, Isomap and LLE. PCA and MDS did not find any clusters.

Isomap did find a couple of clusters, but not as many nor as clearly as LMDS. LLE is

quite successful on this dataset. It found even more clusters than LMDS (see the grey

dots separated from the large grey part). The data points within each cluster collapse

into one point, hence the colored points are in fact overplotted multiple points.
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Figure 22: Original Configuration

6.2 Simulated Data

We introduced four parameters in the B-C energy functions, namely λ, µ, ν and t, and

we tried to interpret them according to physical intuition. In this subsection, we will

see how these parameters influence the configurations in an artificial example. The

data set (Figure 22) has 80 data points that are equally spaced on a rectangular grid of

4 rows by 20 columns. The distance between adjacent points is 1. Since this is a small

data set, for each data point we only define its adjacent points as its neighbors, that

is, we use metric neighborhoods with radius 1. For interior points, this amounts to 4

nearest neighbors, for corner points 2 nearest neighbors, and for the other peripheral

points 3 nearest neighbors.

Parameter λ: We set µ, ν and t equal to 1 and let λ vary to examine its effect. The

configurations for λ = 0.01, 0.2, 0.5, 1, 1.5 and 3 are shown in Figure 23. Both small

and large λ’s fail to give reasonable results. When λ = 0.2, 0.5 and 1, the rectangular

shape is recovered, but there is over-stretching on the long side: the larger λ, the more

severe the over-stretching is. This observation is consistent with the interpretation

of λ as the coupling strength, that is, the power on the coupling ne

n1n2
. Image we

split the 80 points into two groups in two ways, along the center of the long side and

along the center of the short side, respectively. For both splits, n1 = n2 = 40 but

ne = 4 in the first case and ne = 20 in the second case. This means that coupling

is weaker in the direction of the long side, implying that the long side will experience

much greater stretching than the short side, and this effect will increase as λ increases.

A similar argument using splitting the long side on different locations explains the

unequally spaced layout along the long side: points are more spread out around the

center because this is where coupling is weaker compared to the extremes.

Parameter µ: In Figure 24, we examine the effect of varying µ as λ, ν and t are set

to 1. Negative and small positive values of µ do not yield reasonable configurations. It

appears that µ ≥ 1 is a good choice. We can explain this phenomenon with a property

of Box-Cox transformations: Figure 18 shows that as µ decreases, the curve beyond

1 becomes flatter, implying that a change in configuration distance d affects the total
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Figure 23: Configurations with λ = 0.01, 0.2, 0.5, 1, 1.5 and 3. (The axes are not to scale.)

energy very little. In other words, with small µ, the points are subject to very weak

forces and are therefore more easily trapped to the local minima. Interestingly, in the

quite reasonable configurations with µ = 1, 2, 3, larger values of µ reduced the stretch

bias in the direction of the long side. For example, with µ = 3, the points are almost

equally spaced. We will make the same observation in a one-dimensional problem.

Parameter ν: To see the effect of ν, we need to expand the neighborhood so

that the distances between neighboring points are not all equal (ν has no differential

effect when all Di,j are equal). We set the metric threshold to be
√

2 so the distances

between neighboring points can be either 1 or
√

2. From (26), we know that larger

values of ν give more weight to match larger distances between connected points. The

configurations in Figure 25 give evidence in favor of this argument. The larger ν, the

smaller scale is the configuration.

Parameter t: This is the parameter for adjusting the strength of the repulsive

force between non-connected pairs of points. From Figure 26 we see that the larger

t, the larger is the overall scale of the configuration. Since a larger number of points

introduces more repulsive force in the direction of the long side, the ratio of the width

to the height increases as t increases.
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Figure 24: Configurations with µ = −2,−1.1,−0.1, 1, 2 and 3. (The axes are not to scale.)
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Figure 25: Configurations with ν = −2,−1, 0, 1, 2 and 3. (The axes are not to scale.)
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Figure 26: Configurations with t = 0.1, 0.5, 1, 2, 5 and 10. (The axes are not to scale.)

7 SOME THEORY

7.1 Four Equispaced Points on a Line

To explore further the meaning of the parameters of the B-C energy functions, we

consider a simple one-dimensional problem with four equispaced points. For simplicity

but without loss of generality, we assume the distance between two adjacent points is

one. We define the neighborhood of each point to be the adjacent points, which makes

this a 2-nearest neighborhood for the inside points and a 1-nearest neighborhood for

the extreme points. Then the B-C energy functions become:

U(d12, d23, d34) =
d

µ+ 1

λ
12 + d

µ+ 1

λ
23 + d

µ+ 1

λ
34

µ + 1
λ

− dµ
12 + dµ

23 + dµ
34

µ

− t
(d12 + d23)

µ + (d23 + d34)
µ + (d12 + d23 + d34)

µ

µ
(29)

Due to the symmetric structure of the original data, we expect d12 = d34 in the

configuration and therefore the energy (29) function simplifies to

U(d12, d23) =
2d

µ+ 1

λ
12 + d

µ+ 1

λ
23

µ + 1
λ

− 2dµ
12 + dµ

23

µ
− t

2(d12 + d23)
µ + (2d12 + d23)

µ

µ
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Figure 27: The six curves in each panel correspond to different λ’s. Top to bottom: λ =

0.010, 0.201, 0.495, 0.903, 1.646, 3.000.

In this form of the energy function one can optimize the size of the configuration:

U∗(d12, d23) = min
s>0

U(s · d12, s · d23)

=

(

1

µ + 1
λ

− 1

µ

)

(2dµ
12 + dµ

23 + 2t (d12 + d23)
µ + t (d23 + 2d12)

µ)µλ+1

(2d
µ+ 1

λ
12 + d

µ+ 1

λ
23 )µλ

(30)

Equation (30) is a scale-invariant version of energy, and it can be written as a function

of the length ratio of the end segment to middle segment x = d12

d23
by dividing both the

numerator and the denominator by dµ2λ+µ
23 :

U∗(x) =

(

1

µ + 1
λ

− 1

µ

)

(2xµ + 1 + 2t(x + 1)µ + t(1 + 2x)µ)µλ+1

(2xµ+ 1

λ + 1)µλ

Minimizing U∗(x) over x in the range from 0 to 1 gives the length ratio of the end

segment to the middle segment from the optimal configuration.

Figure 27 shows the relation between the optimal ratio x and the power law of

repulsion µ for six different values of repulsion weights t from 0.5 to 3 in increments of

0.5. The ratio x is in the range between 0 and 1 and the closer x is to 1, the smaller the
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configuration bias is compared to the target dissimilarities. We experimented with µ’s

from -2 to 2 with 18 values in between. In each panel, six curves correspond to six values

of the clustering power λ, from top to bottom, λ = 0.01, 0.20, 0.50, 0.90, 1.65, 3.00.

Here are the relevant comparisons:

• The six panels show the same pattern in λ: larger values of λ lower x and hence

move the two middle points toward the ends, which is consistent with the function

of λ as the clustering power.

• Consider x as a function of µ as t and λ are fixed. For smaller clustering power

λ, say λ < 1, the largest bias is found when µ is between -1 and 0. The bias

decreases (x increases) when µ moves towards both ends and it decreases faster

towards the positive end. For larger λ, x drops fast from 1 to 0 as µ moves from

2 to around 0 and it does not go up but stays near 0 as µ moves from 0 to -2.

• When we compare six curves with the same value of λ but different values of t,

we find they move down in parallel, indicating larger t does introduce more bias.

We note that bias (here: low values of x) is not bad in itself. Often bias is beneficial

in order to show local detail. Yet it is interesting to understand what combinations of

parameter values in the B-C family cause low or high bias.

7.2 Equispaced Points on a Line, N → ∞
We now consider a more general one-dimensional problem. Suppose we have N + 1

equispaced points on a line of length 1. The distance between two adjacent points is

1/N . The neighborhood is set as adjacent points. Assuming that the configuration

is also of length 1, we consider the limit as N → ∞. In the limit, the configuration

can be described as a density function f(s), s ∈ [0, 1]. To this end we write ||xi −
xi+1|| = 1

N f(si) for si = i
N . The energy function in this setup is:

U =
N
∑

i=1

(

(

1

N

)ν− 1

λ (f(si)
1
N )µ+ 1

λ

µ + 1
λ

−
(

1

N

)ν (f(si)
1
N )µ

µ

)

− tν





N
∑

i=1

N
∑

j=i

(
∑j

k=i
1
N f(sk))

µ

µ
−

N
∑

i=1

( 1
N f(si))

µ

µ





≈ 1

µ + 1
λ

(

1

N

)µ+ν−1 ∫ 1

0
fµ + 1

λ (s) ds − 1

µ

(

1

N

)µ+ν−1 ∫ 1

0
fµ(s) ds

− tν

µ
N2

∫ 1

0

∫ 1

y

(∫ z

y
f(s) ds

)µ

dz dy +
tν

µ

(

1

N

)µ−1 ∫ 1

0
fµ(s) ds (31)

For simplicity we assume µ > −1 since the fourth term in (31) is dominated by the

third term and hence can be neglected as N → ∞. We next make the first three terms
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comparable by requiring

tν N2 = cν

(

1

N

)µ+ν−1

, (32)

where c is a constant that can be interpreted as an asymptotic repulsion weight. This

interpretation becomes more evident if the condition (32) is rewritten as follows:

t = c

(

1

N

)
µ+ν+1

ν

(33)

This condition together with the assumption µ > −1 entails that the first three terms

in (31) are of the same order in N . Hence in the limit the energy function becomes an

energy functional as follows:

U ∝ µ

µ + 1
λ

∫ 1

0
fµ+ 1

λ (s) ds −
∫ 1

0
fµ(s) ds

− cν

∫ 1

0

∫ 1

y

(∫ z

y
f(s) ds

)µ

dz dy (34)

We should note the interesting fact that for such asymptotics to hold, the repulsion

weight t has to shrink according to (33) as a function N .

Minimization of the functional (34) over f(s) is a variational problem. If we let

F (s) =
∫ s
0 f(r), s ∈ [0, 1], be the length of the configuration corresponding to the

original segment [0, r ], the energy functional (34) can be rewritten as follows:

U ∝ µ

µ + 1
λ

∫ 1

0
F ′µ+ 1

λ (s) ds −
∫ 1

0
F ′µ(s) ds

− cν

∫ 1

0

∫ 1

y
(F (z) − F (y))µ dz dy (35)

By definition F (0) = 0. If we constrain the length of the configuration to be 1, we

have F (1) = 1. In this case minimization of (35) becomes a two-boundary variational

problem. For the special case µ = 1, we can solve this problem by applying Euler’s

equation:

f(s) = (cνs(1 − s) + C1)
λ (36)

The constant C1 > 0 is chosen such that
∫ 1
0 f(s) ds = 1. The form of (36) indicates

the configuration is symmetric about 1
2 and spreads out more in the center.

So far we have solved the problem under the constraint F (1) = 1. To loosen the

constraint but still apply Euler’s equation, we introduce a scale parameter a. That is,

the configuration is described by F̃ (r) = aF (r), r ∈ [0, 1], which has two parts: a > 0

describes the scale of the configuration, while F (r), normalized to F (1) = 1, describes

the shape of the configuration. With these assumptions the energy functional can be
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rewritten as follows:

U(F, a) =
µ

µ + 1
λ

aµ+ 1

λ

∫ 1

0
F ′1+ 1

λ (s) ds − aµ

∫ 1

0
F ′µ(s) ds

− cνaµ

∫ 1

0

∫ 1

y
(F (z) − F (y))µdz dy

The energy functional should be minimized over both the scale a and the shape function

F (s), s ∈ [0, 1]. This setup allows us to maintain the constraint F (1) = 1 without loss

of generality. Again, we know how to solve this problem when µ = 1. First we minimize

the energy functional over a: The optimal solution a∗ for fixed F (s) is

a∗ =

(

cν
∫ 1
0 F (s)(2s − 1)ds + 1
∫ 1
0 F ′µ+ 1

λ (s)ds

)λ

.

Then we get the solution for f(s) by applying Euler’s equation,

f(s) = (a
− 1

λ
∗ cνs(1 − s) + C1)

λ (37)

where C1 is chosen such that
∫ 1
0 f(s) ds = 1. By comparing (36) and (37), we see that

the shape of the configuration does not change much by allowing the arbitrary scale.

8 DISCUSSION AND CONCLUSIONS

We conclude by discussing non-linear dimension reduction, graph layout and proximity

analysis with the benefit of hindsight of the ideas presented in this work. We will distill

some general principles, describe our contribution, and point to opportunities for future

research. We start with a discussion of dimension reduction.

8.1 From Non-Linear Dimension Reduction to Graphs:

Contiguity, Distances, and Localization

Nonlinear dimension reduction has the general goal to map high-dimensional data to

low dimensions in such a way that contiguity between data points is preserved as best

as possible. Obviously this goal can be attained the better the lower the intrinsic di-

mensionality of the high-dimensional data. Ideally, dimension reduction would amount

to flattening of a curved sheet with little distortion. Realistically, though, dimension

reduction will have to contend with non-linearity that cannot be flattened without dis-

tortion, with higher intrinsic dimension than provided in the reduction, and with noise

in high dimensions. This latter difficulty — noise — seems especially formidable be-

cause with increasing dimension of the dataspace noise may drown out any systematic
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structure. This consideration may be at the root of statisticians’ general scepticism

towards reduction of data spaces whose dimension is in the thousands. Yet, as the

image data examples of the machine learning literature show, there do exist very high-

dimensional datasets that are so highly structured that noise is not really an issue and

nonlinear dimension reduction is successful.

When we named preservation of contiguity as central to dimension reduction, we

only described half of the goal. A simple example illustrates the point: a bent sheet of

paper in three dimensions can be flattened by crumpling it and pressing it on a table

(without tearing it), thus preserving contiguity: nearby points on the sheet remain

nearby. Crumpling, however, introduces contiguities that did not exist in the original

dataspace. Therefore, dimension reduction should also preserve non-contiguity. We will

refer to this second requirement below, and we note here that preserving non-contiguity

can be interpreted in a lax manner: distant pairs of objects should be mapped to distant

pairs of points, but exactly how distant is not much of a concern.

In order to judge contiguity, most dimension reduction methods rely on measures of

distance or dissimilarity between pairs of high-dimensional objects as well as between

pairs of their low-dimensional counterparts.1 The task of dimension reduction can then

be seen as finding maps of the objects in low dimensions that reflect the distances of

the high-dimensional objects as best as possible, which us just the task of proximity

analysis. Distilling high-dimensional objects in inter-object distances can be criticized

on various grounds. For one thing, there is great leeway in forming distances and

dissimilarities, and the use of simple Euclidean or Lp distances seems crude and ripe

for innovation. At a minimum, future research should investigate variable selection

and variable scaling in the formation of distances.

Yet, the use of distances is natural for nonlinear dimension reduction because dis-

tances give quantitative meaning to the notion of contiguity. One could define pairs of

points to be contiguous when their distance is below a fixed threshold or if at least one

of the two points is among the K-th nearest neighbors of the other. The importance

of contiguity for nonlinear dimension reduction is that typical approaches attempt to

reconstruct only local structure between contiguous points — following what we call

the principle of localization. Such localization in effect generates a distance-weighted

graph consisting of the pairs of contiguous points as edges and the interpoint distances

as weights, what we may call the “local graph”.

The success of any dimension reduction depends on getting localization right. As

1This interpretation applies even to LLE as inner products and Euclidean distances are largely inter-

changeable.
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the Swiss roll example illustrates, choosing localization parameters too large may cause

the local graph to contain cordal bridges between parts of the manifold that are distant

in terms of intrinsic topology. On the other hand, choosing the localization parameters

too small may introduce tears in the local fabric of the manifold. These problems call

for research into “sufficiency” of the local graph for the underlying manifold. A truly

convincing methodology would give principled guidance for choosing the parameters

of the local graph. Future research might also investigate whether local choice of

the neighborhood size would allow more faithful representation of local structure (for

example, the K for K-nearest neighborhoods might be chosen locally). Finally, it would

be useful to find ways of estimating local intrinsic dimension. For these problems it

might be necessary to draw on current research into applied algebraic topology.

8.2 Graph Layout: Two Fundamental Approaches

By reducing high-dimensional data to a local graph and assuming that the local graph

is a faithful description of the local intrinsic fabric of the data, we can now conceive

of nonlinear dimension reduction as a graph layout problem. Just like dimension re-

duction, graph layout has the twin goals of preserving contiguity and non-contiguity

(in a lax manner), where contiguity is now represented by the graph’s edges and dis-

tance weights. Approaches to graph layout differ as much in how they deal with

non-contiguity as with contiguity. Preservation of non-contiguity has been approached

in at least three ways:

a) do nothing,

b) complete the distance weights to the full graph with a shortest-path-length algo-

rithm so as to estimate large intrinsic distances, or

c) apply repulsive forces to pairs of points that are not edges.

Approach a) was tried and dismissed in MDS, but it has surprisingly resurfaced in

LLE.2 Approach b) goes back as far as Kruskal and Seery (1980) and is now the

distinguishing feature of Isomap (Tenenbaum et al. 2000). Approach c) is standard

in graph layout based on energy functions. Approaches b) and c) could be combined

by filling in shortest-path-distances only partly, for paths two, three or five edges out,

say, and applying repulsive forces to the remaining pairs of points. Such combinations

2LLE seems to avoid the crumpling problem by reconstructing locally affine as opposed to locally metric

structure while entirely ignoring non-contiguity. In light of the failure of naively localized MDS the relative

success of LLE poses something of a riddle. On the other hand, one might wonder whether the apparent

tendency of LLE to create linear artifacts could be mitigated with a non-contiguity penalty. These questions

are obviously material for future research.
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would allow new trade-offs between the biases (and variances) of either approach, but

their merits are unknown and should be investigated in future research. At this point

we note that we contribute both to approaches b) and c): we propose a parametrized

family of stress functions for use on complete distance matrices as well as a related

parametrized family of energy functions for use on proper distance-weighted graphs.

Graph layout with energy functions has a long tradition, and many proposals can

be found in the literature. The wealth of proposed energy functions poses problems,

however. First, there is a need to systematize energy functions and describe their

properties. Second, there is a need for criteria in choosing among energy functions.

For both problems we proposed solutions: we systematized energy functions with a

multi-parameter family that contains a number of previously proposed energy func-

tions as special cases, and we proposed a method for selecting energy functions based

on a data-driven meta-criterion. The latter proposal is based on the fact that there

does not exist a single best energy function for all datasets simultaneously; instead,

one needs to evaluate the performance of energy functions on any given dataset with a

meta-criterion, that is, with a loss function that is not itself part of the energy functions

used for optimization. Assuming that the meta-criterion measures desirable features of

layouts, one then hopes that the proposed multi-parameter family of energy functions

povides a search space for the meta-criterion that is sufficiently rich to produce satisfac-

tory solutions for a large class of data problems. The two questions are therefore how

rich the class of energy functions is and how desirable and practical the meta-criterion

is. We discuss each question in turn.

8.3 B-C Energy and Stress Functions

The parametrized family of energy functions proposed here applies in its general form to

distance-weighted graphs, that is, edges are assigned target distances or dissimilarities.

Like most proposals in the literature, our energy functions are sums of terms that

create attractive and repulsive forces between pairs of points. For a pair that is an

edge of the graph, the two forces cancel out when the distance of the two points in the

layout matches the target distance for that edge. For a pair that is not an edge, there

exists only repulsive force, that is, there does not exist a finite proper placement of

the two points. In what follows, we discuss the case of energy functions for a proper

graph, but some of the discussion applies to the case of stress functions for full graphs

as well.

While most proposals in the literature assume that the repulsive forces are the

same in pairs that are edges and in pairs that are not, we only assume that repulsion
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for graph-external pairs (non-edges) is of the same form but that it may differ by

a weighting factor. This differential treatment of graph-internal and -external pairs

may break metaphors of physics, but it moves us closer to paradigms of statistics:

Consider a graph for which there exists a layout that perfectly matches the target

distances in the given dimension; if the weighting factor for graph-external repulsion is

zero, then this layout will have minimum energy (attractive and repulsive forces in the

graph cancel out as all target distances are matched). Thus, vanishing graph-external

repulsion is somewhat akin to unbiased or consistent estimation. By comparison, non-

vanishing graph-external repulsion is analogous to Ridge penalties in linear regression:

while a Ridge penalty biases an estimator to zero, graph-external repulsion pulls non-

connected pairs of points toward infinite distance from each other, a bias one may call

“stretching” in analogy to Ridge’s “shrinking”. In this view, allowing only identical and

equally weighted repulsion externally and internally to the graph is akin to allowing

only Ridge penalties with a unit coefficient. From a statistical point of view such a

limitation is clearly unsatisfactory as data-dependent control of bias is an essential

device in any complex estimation problem.

A major consideration in graph layout is the stability of optimization, as exemplified

by the failure of MDS after removal of large target distances and the success of our

local MDS after the addition of a repulsive energy. Thus “stretching” introduces a bias

that makes stable layouts possible in the first place.

The weighting factor for graph-external repulsion is the first of several parameters

in our parametrized family of energy functions. A second parameter was inspired by

Noack’s (2003) work on clustering properties of energy functions. In a qualitative for-

mulation his clustering postulate says that clusters formed by tight subgraphs should

be placed the farther apart the fewer the edges that connect them. A measure of con-

nectedness is the so-called coupling strength, a number between 0 and 1 corresponding

to, respectively, a zero and a maximal number of edges between the subgraphs. Noack’s

strict clustering postulate asks that target distances between clusters be upwardly bi-

ased by the reciprocal of the coupling constant, a fact that has him favor very specific

energies. Even he, though, introduces for illustration a larger family of energies that

differ in the degree of their upward bias. In a similar vein, we allow the upward bias

to be any positive power of the reciprocal coupling strength, and it is this power that

constitutes the second parameter of our family of energies. By controlling this power

one can obtain layouts that vary in the crispness with which they show clustering:

the larger the parameter value, the tighter the clusters are laid out in relation to the

distance from each other.

Two more parameters complete the parametrization of our family of energies: a
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power parameter for the layout distances and a power parameter for the target dis-

tances. The former parametrizes the power law of repulsion in the sense of physics,

and the latter assigns a weight to each edge as a function of the target distance. In

statistical terms, these parameters control the robustness to large and small layout

distances and large and small target distances, respectively. A need for power laws as

well as logarithmic laws motivated our use of Box-Cox transformations rather than raw

powers. The convenient logarithmic fill-in and the fact that Box-Cox transformations

are always ascending enriches our family of energies in such a way that numerous pre-

viously proposed energies become special cases: full-graph energies such as Kruskal’s

(1964) stress function and Sammon’s (1969) method which coincides with Kamada

and Kawai’s (1989), as well as proper graph energies such as our newly proposed stress

for local MDS and energy functions by Fruchterman and Reingold (1991), Davidson

and Harel (1996, after some simplification), and finally all of Noack’s (2003) proposals,

including his LinLog, QuadLin and PolyLog energies.

In a sense there exists a further parameter, both in graph layout and dimension

reduction: essentially, the size of the graph. In graph layout one may partly extend

graphs by adding edges with the shortest-path-length algorithm (as mentioned above),

and in dimension reduction one may size the neighborhood graph for example by choos-

ing the number of nearest neighbors. Thus, the relevant graph is rarely a given; it is

constructed. In general one can say: the more connected the graph, the more stable is

the layout problem and the less stretching bias is needed.

8.4 The Selection Problem: LC Meta-Criteria

With this wealth of energy functions, we have a promising domain in which to search

for useful and insightful graph layouts and dimension reductions, but without further

help the search would remain an art rather than a science. Our remaining step is

therefore the construction of a meaningful meta-criterion for data-dependent selection

of energies. The inspiration for the meta-criterion stems from topology and its notion

of continuity: nearby should be mapped to nearby. There are many ways in which

agreement of nearness can be measured, but in general terms they will boil down to

this: compute for each object two types of neighborhood, one in terms of the graph or

the high-dimensional data, and one in terms of the layout or embedding; then tally the

overlap of the two types of neighborhoods and average the result over all objects. This

general concept can be realized both for graphs and for high-dimensional data. In our

execution we worked largely in the framework of non-linear dimension reduction, but

the underlying assumption of a complete distance matrix is available for graphs as well
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(as always through shortest-path-length completion). The result is a local continuity

or LC meta-criterion.

The plausibility of such a meta-criterion cannot be contested as it measures a min-

imal requirement of local faithfulness of layouts and embeddings vis-à-vis the data,

be it a distance-weighted graph, a dissimilarity matrix, or high-dimensional data. The

practical success in selecting layouts and embeddings is another matter. It is a theoret-

ical possibility that LC meta-criteria give high ratings to layouts of most methods and

do not usefully discriminate among them. That this is not so is shown empirically in

our work: different layout methods do fare differently on different data examples, and

LC meta-criteria do provide useful yardsticks for telling those that are locally faithful

from those that are not in a collection of layouts or embeddings. As LC meta-criteria

embody minimal requirements and are not smooth functions of the layout or embed-

ding, they cannot be directly optimized and cannot replace energy functions, but they

can serve as selection criteria.

Proximity Analysis Energy-Based Dimension

Graph Layout Reduction

Data full matrix distance-weighted full matrix of

of target distances/ proper graph high-dimensional

dissimilarities target distances

Output configuration layout embedding

Criteria stress energy either

Family of 3-parameter B-C 4-parameter B-C with either

Criteria graph-external repulsion

Selection LC meta-criteria

Potential completion of localization either

Pre- distance matrix with by removing edges

Processing shortest-path-lengths with large distances

Table 5: An overview of terminology and correspondences between proximity analysis, graph

layout and non-linear dimension reduction. The last row describes potential pre-processing

steps that may be needed before proximity analysis or graph layout can be applied.
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8.5 Summary

The toolbox for graph-based non-linear dimension reduction, for energy-based graph

layout, and for stress-based proximity analysis is summarized in Table 5. The connec-

tions between the three are simple, but the tools are rich and the present work barely

touches their wealth of possibilities. What it contributes is briefly summarized in this

final list:

• We exploited a uniform framework of proximity analysis and graph layout that

includes MDS-style stress functions for complete distance/dissimilarity matrices

and repulsion-based energy functions for proper distance-weighted graphs.

• We constructed parametrized families of energy and stress functions that serve

as search spaces for useful layouts, configurations, embeddings.

• The parameters common to energy and stress functions are two power parameters

for robustness to small and large distances in the data and in the embeddings,

and a clustering parameter that controls cluster separations (Noack 2003).

• The parameter specific to energy functions is a weight factor for graph-external

repulsion. It controls the stretching bias needed for stable energy minimization.

• The instability problem of localizing MDS by removing large distances is solved

with the derivation of a weighted repulsive energy.

• The proposed families of stress and energy functions contain many previously

proposed cases, including stresses by Kruskal (1964), Sammon (1969), Kamada

and Kaway (1989), and energies by Fruchterman and Reingold (1991), Davidson

and Harel (1996, after some simplification), Noack (2003, all proposals).

• In all cases we replaced the trial-and-error method of selecting one of the published

energy or stress functions with a principled method for selecting parameters with

meta-criteria for local faithfulness.

• In addition, the meta-criteria yield graphical diagnostics for local faithfulness.

• Non-linear dimension reduction can be cast as graph layout of a graph of local

edges, or as proximity analysis of a distance matrix obtained with shortest-path-

length completion. An example of the former is LMDS proposed here, and an

example of the latter is Isomap (Tenenbaum et al. 2000) if classical MDS is

replaced with Kruskal-Shepard MDS.
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APPENDIX: ENERGY MINIMIZATION

8.6 Gradient Descent

Let the n × d matrix X = (x1, · · · , xn)T represent the set of points in d dimensions.

The Dij ’s are the target dissimilarities. The B-C energy function is

U(x1, · · · , xn) =
∑

(i,j)∈E

(

D
ν− 1

λ

ij

‖ xi − xj ‖µ+ 1

λ −1

(µ + 1
λ)

− Dν
ij

‖ xi − xj ‖µ −1

µ

)

− t
∑

(i,j)∈EC

‖ xi − xj ‖µ −1

µ
(38)

Let ▽U = (▽1, · · · ,▽n) be the gradient of the energy function with respect to X:

▽i =
∂U

∂xi
=
∑

j∈N(i)

(

Dij
ν− 1

λ ||xi − xj||µ+ 1

λ
−2 − Dij

ν ||xi − xj ||µ−2
)

(xi − xj)

− t
∑

j∈Nc(i)

||xi − xj ||µ−2(xi − xj)

Define a N × N matrix M as follows:

Mji =

{

Dij
ν− 1

λ ||xi − xj||µ+ 1

λ
−2 − Dij

ν ||xi − xj ||µ−2 if j ∈ N(i)

−t||xi − xj||µ−2 if j /∈ N(i)

Note that M is symmetric. The gradient can be simplified to

▽i =
∂U

∂xi
=
∑

j

Mji(xi − xj)

= (
∑

j

Mji)xi −
∑

j

Mjixj ,

and

▽U = X ∗ (E · M) − X · M ,

where E is a d × n matrix with all elements being 1. The symbol ’∗’ represents

elementwise multiplication of the two matrices, and the symbol ’·’ stands for regular

matrix multiplication

8.7 Majorization

Equation (38) can be written as follows:

U =
∑

(i,j)∈E

D
ν− 1

λ

ij

‖ xi − xj ‖µ+ 1

λ −1

µ + 1
λ

−
∑

(i,j)∈V 2

D̃ν
ij

‖ xi − xj ‖µ −1

µ
(39)
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where D̃ij = Dij if (i, j) ∈ N , D̃ij = t1/ν if (i, j) ∈ N c. First we consider the majorizing

functions for

fα(x) =
xα − 1

α
, x > 0 .

When α ≤ 2, it can be majorized by a quadratic function,

fa(x) ≤aα(z)x2 + cα(z)

aα(z) =
1

2
αzα−2

cα(z) =
zα − 1

α
− 1

2
αzα

Now we consider the majorizing function for

fµ(x) = −xµ, µ > 0, x > 0 ,

when µ ≥ 1, −xµ ≤ −x. When 0 < µ < 1,

fµ(x) ≤ b(z)x2 + d(z)x

b(z) = (1 − µ)zµ−2

d(z) = (µ − 2)zµ−1

Hence (39) is majorized by
∑

(i,j)∈E

D
ν− 1

λ

ij

(

aµ+ 1

λ
(||zi − zj ||)||xi − xj ||2 + cµ+ 1

λ
(||zi − zj||)

)

−
∑

(i,j)∈V 2

D̃ν
ij

1

µ
||xi − xj||

when µ ≥ 1, and by

∑

(i,j)∈E

D
ν− 1

λ

ij

(

aµ+ 1

λ
(||zi − zj ||)||xi − xj ||2 + cµ+ 1

λ
(||zi − zj ||)

)

+
∑

(i,j)∈V 2

D̃ν
ij

1

µ

(

b(||zi − zj||)||xi − xj ||2 + d(||zi − zj ||)||xi − xj||)
)

when 0 < µ < 1. For computational simplicity, we vectorize the above majoring

functions. As functions of the n × d matrix X, the terms are either in the form of

∑

(i,j)

wij ||xi − xj||2 = tr(XT AX)

where A =
∑

(i,j) wij(ei − ej)(ei − ej)
T , or in the form of

−
∑

(i,j)

wij ||xi − xj || ≤ −
∑

(i,j)

wij
1

||zi − zj ||
< zi − zj,xi − xj >

= −tr(ZT BX) ,

where B =
∑

(i,j)
wij

||zi−zj ||
(ei − ej)(ei − ej)

T . Since ∂tr(XT AX)
∂X = 2AX and ∂tr(ZT BX)

∂X =

BTZ, the minimized X∗ can be obtained by solving a linear system, but the calculation

involves the inverse of a n × n matrix which is extremely computationally expensive.
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