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Abstract

Bagging is a device intended for reducing the prediction error of learning algorithms.
In its simplest form, bagging draws bootstrap samples from the training sample, ap-
plies the learning algorithm to each bootstrap sample, and then averages the resulting
prediction rules.

We investigate bagging in a simplified situation: the prediction rule produced by a
learning algorithm is replaced by a simple real-valued statistic of i.i.d. data. We extend
the definition of bagging from statistics (defined on samples) to statistical functionals
(defined on distributions), and we study the von Mises expansion of bagged statistical
functionals. We show that a bagged functional is smooth in the sense that the von
Mises expansion is finite of length 1 + resample size M . The resample size may be
different from the original sample size N ; it acts as a smoothing parameter, where
smaller M means more smoothing.

We then study the effects of bagging on U-statistics. U-statistics of high order can
describe complex dependencies, and yet they admit a rigorous asymptotic analysis.
We show that bagging U-statistics often but not always decreases variance, whereas it
always increases bias.

The most striking finding, however, is an equivalence between bagging based on re-
sampling with and without replacement: the respective resample sizes Mwith = αwithN
and Mw/o = αw/oN produce very similar bagged statistics if αwith = αw/o/(1 − αw/o).
While our derivation is limited to U-statistics, the equivalence seems to be universal.
We illustrate this point in simulations where bagging is applied to cart trees.
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1 Introduction

Bagging, short for “bootstrap aggregation”, was introduced by Breiman (1996) as a device
for reducing the prediction error of learning algorithms. Bagging is performed by drawing
bootstrap samples from the training sample, applying the learning algorithm to each boot-
strap sample, and averaging/aggregating the resulting prediction rules, that is, averaging or
otherwise aggregating the predicted values for test observations. Breiman presents empirical
evidence that bagging can indeed reduce prediction error. It appears to be most effective
for cart trees (Breiman et al. 1984). Breiman’s heuristic explanation is that cart trees
are highly unstable functions of the data — a small change in the training sample can result
in a very different tree — and that averaging over bootstrap samples reduces the variance
component of the prediction error.

In this article we investigate bagging in a simplified situation: the prediction rule produced
by a learning algorithm is replaced by a simple real-valued statistic of i.i.d. data. While this
simplification does not capture some characteristics of function fitting, it still enables us, for
example, to analyze the conditions under which variance reduction occurs. The claim that
bagging always reduces variance is in fact not true.

We start by describing bagging in operational terms. Bagging a statistics θ(X1, . . . , XN) is
defined as averaging it over bootstrap samples X∗

1 , . . . , X
∗
N :

θB(X1, . . . , XN) = aveX∗
1 ,...,X∗

N
θB(X∗

1 , . . . , X
∗
N) .

where the observations X∗
i in the bootstrap samples are i.i.d. draws from {X1, . . . , XN }.

The bagged statistic can also be written as

θB(X1, . . . , XN) =
1

NN

∑
i1,...,iN

θB(Xi1 , . . . , XiN )

because there are NN sets of bootstrap samples, each having probability 1/NN . For realistic
sample sizes N , the NN sets cannot be enumerated in actual computations, hence one resorts
to sampling a smaller number, often as few as 50.

In the literature one sometimes finds a slight generalization of bagging in which the bootstrap
resample size is permitted to be different from the sample size N . That is, one permits
averaging over resamples {X∗

1 , . . . , X
∗
M} of arbitrary size M . We call the resulting procedure

M-bagging and denote the M-bagged statistic by

θB
M (X1, . . . , XN) = ave θB(X∗

1 , . . . , X
∗
M) .

The resample size M is typically N or less. We will, however, have reason to consider
resampling sizes M greater than N as well.

A goal of the present article is to contribute to the theoretical understanding of bagging. In
a first step, we extend the notion of bagging to statistical functionals, that is, functions of
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distributions. Most statistics can be derived from statistical functionals, for example, means
of samples from expectations, or medians of samples from medians of distributions. We
will denote statistical functionals by θ(F ), where the argument F is a general distribution.
The link between statistics θ(X1, . . . , XN) and statistical functionals θ(F ) is provided by the
interpretation of i.i.d. samples X1, . . . , XN as empirical distributions:

FN =
1

N

∑
i=1,...,N

δXi
,

where δx denotes a unit point mass distribution at x. The specialization of statistical func-
tionals to empirical distributions yields statistics:

θ(FN ) = θ(X1, . . . , XN) .

In order to extend bagging to statistical functionals, we cast it in terms of empirical distribu-
tions. Just like FN is the empirical distribution corresponding to an i.i.d. sample X1, . . . , XN

from F , we let F ∗
M be the empirical distribution of an i.i.d. bootstrap sample X∗

1 , . . . , X
∗
M

from FN . We write FN ∼ F and F ∗
M ∼ FN . With these conventions, an M-bagged statistic

can be written as
θB

M (FN) = E FN
θ(F ∗

M) ,

where E FN
is the expectation referring to F ∗

M ∼ FN . The extension of bagging to statis-
tical functionals is now obtained by permitting arbitrary distributions F where empirical
distributions FN have appeared so far. We define the bagged functional θB

M(F ) by

θB
M (F ) = E Fθ(F

∗
M) .

Alternatively, the right hand side can also be written as an intergral if one writes θ(F ∗
M) as

θ(x∗1, . . . , x
∗
M):

θB
M(F ) =

∫
θ(x∗1, . . . , x

∗
M) dF (x∗1) . . .dF (x∗M)

The primary motivation for formulating a definition of bagged functionals is the availability
of a potent technical tool for the analysis of statistical functionals, namely, the von Mises
expansion. This is a kind of Taylor expansion and allows a similar interpretation.

It turns out that (i) bagged functionals have finite von Mises expansions, and (ii) the length of
the expansions is given by the resample size M . This simple finding may well bolster the case
in favor of the above definition of bagged functionals. For one thing, it yields an extremely
simple characterization of the role of the resample size M as a smoothing parameter: the
smaller M , the smoother the bagged functional.

The von Mises expansion of a functional is typically used to derive asymptotic properties of
the corresponding statistic. The von Mises expansion of an M-bagged functional, however,
leads to asymptotics that are open to criticism: Asymptotics with fixed resample size M and
N → ∞ is unrealistic; M should be a fixed fraction of M , or at least M → ∞ albeit at a
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slower rate than N . While these types of asymptotics should certainly be pursued (as we will
later in this article), asymptotics based on fixed resample size M should not be discarded out
of hand. We will, in fact, give an example where this type of asymptotics produces excellent
approximations to finite sample variances for realistic values of M and N .

The above definition of a bagged statistical functional has a blind spot: It would be in-
teresting to consider both conventional bootstrap sampling with replacement as well as
subsampling without replacement (as in Friedman and Hall (2000), and Buhlmann and Yu
(2000), for example). If the bootstrap is extended to infinite populations, however, the
difference between sampling with and without replacement disappears. Thus, in order to
study both sampling modes, we have to work with finite samples and statistics as opposed
to distributions and statistical functionals. This is in fact what we do in the second part of
the article.

The class of statistics we consider is that of finite sums of U-statistics. We obtain such sums
by applying functionals with finite von Mises expansion to empirical distributions. While
they do not capture the statistical properties of cart trees, U-statistics can model complex
interactions and yet they allow for a rigorous second order analysis. (For an approach tailored
to tree-based methods, see Buhlmann and Yu (2003).)

The most striking effect we observe, both theoretically and in simulations, is a correspondence
between bagging based on resampling with and without replacement: the two modes of
resampling produce very similar bagged statistics if resampling without replacement is done
with a fraction αw/o = Mw/o/N of the sample size N , and resampling with replacement with
a multiple αwith = Mwith/N of the sample size, where

αwith =
αw/o

1 − αw/o

, or equivalently:
1

αwith
=

1

αw/o

− 1 .

This equivalence holds to order N−2 under regularity assumptions. The equivalence is im-
plicit in one form or another in previous work: Friedman and Hall (2000, sec. 2.6) notice it for
a type of polynomial expansions, but they do not make use of it other than noting that half-
sampling without replacement (αw/o = 1/2) and standard bootstrap sampling (αwith = 1)
yield very similar bagged statistics. Knight and Bassett (2002, sec. 4) note the equivalence
for half-sampling and bootstrap in the case of quantile estimators. In the present article
we show the equivalence for U-statistics of fixed but arbitrary order. We also illustrate it
in simulations for bagged trees where it holds with surprising accuracy, hinting at a much
greater range of validity.

Other observations about the effects of bagging concern the variance, squared bias, and mean
squared error (MSE) of bagged U-statistics. Similar to Chen and Hall (2002) and Knight
and Bassett (2002), we obtain effects that are only of order O(N−2). We also find that, with
decreasing resample size, squared bias always increases and variance often but not always
decreases. More precisely, the difference between bagged and unbagged for the squared bias
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is an increasing quadratic function of

g :=
1

αwith

=
1

αw/o

− 1 ,

and for the variance it is an often but not always decreasing linear function of g. There-
fore, the only possible beneficial effect of bagging stems from variance reduction. In those
situations where variance is reduced, the combined effect of bagging is to reduce the MSE
in an interval of g near zero; equivalently, the MSE is reduced for αwith near infinity and
correspondingly for αw/o near 1. For the standard values αwith = 1 and αw/o = 1/2, improve-
ments in MSE are obtained only if the resample sizes falls in the respective critical intervals.
However, there can arise odd situations in which the MSE is improved only for αwith > 1
and αw/o > 1/2. Details are given in Section 8.3.

We finish this article with some illustrative simulations of bagged cart trees. A purpose of
these illustrations is to gain some understanding of the peculiarities of trees in light of the
fact that bagging often shows dramatic improvements that apparently go beyond the effects
described by O(N−2) asymptotics. An important point to keep in mind is that the notion
of bias for simple statistics differs from the notion of bias for fitted functions:

E θ(FN ) − θ(F ) versus E θ(x|FN) − f(x) ,

where, as usual in non-parametric fitting, θN (x|FN) is a function of N not only through FN .
This point applies to the present theory of bagged U-statistics, Chen and Hall’s (2002) theory
of bagging estimating equations, as well as Knight and Bassett’s (2002) theory of bagged
quantiles. This point even applies to Buhlmann and Yu’s (2003) treatment of bagged stumps
and trees because their notion of bias refers not to the true underlying function but to the
optimal asymptotic target, that is, the asymptotically best fitting stump or tree. Their
theory therefore explains bagging’s effect on the variance of stumps and trees (better than
any of the other theories, including ours), but it, too, has nothing to say about bias in the
usual sense of function fitting. An interesting observation we make in the simulations is that
for smooth underlying f(x) bagging not only decreases variance, but it can reduce fitting bias
as well. This should not be too surprising because according to Buhlmann and Yu’s theory
the effect of bagging is essentially to replace fitting a stump with fitting a stump convolved
with a narrow-bandwidth kernel. The convolved stump is smooth and has a chance to reduce
fitting bias when the underlying f(x) is smooth.

2 Preliminaries 1: The von Mises Expansion of a Sta-

tistical Functional

The von Mises expansion of a functional θ around a distribution F is an expansion of the
form

θ(G) = θ(F ) +
∫
ψ1(x) d(G− F )(x) +

1

2

∫
ψ2(x1, x2) d(G− F )⊗ 2 + · · ·
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= θ(F ) +
∞∑

k=1

1

k!

∫
ψk(x1, . . . , xk) d(G− F )⊗ k .

It can be interpreted as the Taylor expansion of θ((1−s)F+sG) = θ(F+s(G−F )) evaluated
at s = 1. The first term in the sum is a linear functional, the second term is a quadratic
functional, etc. There is of course no guarantee that the expansion exists. Reeds (1976) gives
a discussion of conditions under which this expansion is meaningful in terms of remainders
and convergence. We are not concerned with technical difficulties because the expansions
we encounter below are finite and exact. See also Serfling (1980, chap. 6).

The functions ψk are not uniquely determined. We can choose them such that all the integrals
w.r.t. F vanish, that is,

0 =
∫
ψ1(x) dF

0 =
∫
ψ2(x1, x2) dF (x1) =

∫
ψ2(x1, x2) dF (x2) ,

and so on. The von Mises expansion then simplifies to

θ(G) = θ(F ) + E G ψ1(X) +
1

2
E G ψ2(X1, X2) + . . .

= θ(F ) +
∞∑

k=1

1

k!
E G ψk(X1, . . . , Xk) .

The function ψ1(x) is also known as the influence function of θ, but we will similarly call
ψk(x1, . . . , xk) the k-th order influence function. Influence functions of any order are permu-
tation symmetric in their arguments.

Assuming sufficient smoothness of the functional, ψk can be obtained by differentiation:

ψk(x1, . . . , xk) =
d

ds1

∣∣∣∣∣
s1=0

. . .
d

dsk

∣∣∣∣∣
sk=0

θ((1 −∑
si)F +

∑
siδxi

) .

3 Preliminaries 2: The ANOVA Expansion of a Statis-

tic

Efron and Stein (1981) introduced an ANOVA-type expansion for statistics that are functions
of independent random variables X1, . . . , XM . Because we are only interested in symmetric
functions of i.i.d. data as they arise from evaluating statistical functionals on empirical
distributions, we use an earlier simplified version of the expansion which can be found for
example in Serfling (1980). Define partial expectations

µ0 = E F θ(X1, . . . , XM)
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µ1(x1) = E F θ(x1, X2 . . . , XM)

µ2(x1, x2) = E F θ(x1, x2, X3 . . . , XM)

. . .

µk(x1, . . . , xk) = EF θ(x1, . . . , xk, Xk+1, . . . , XM)

. . .

µM(x1, . . . , xM) = θ(x1, . . . , xM) .

Permutation symmetry of θ(x1, . . . , xM) implies that the free arguments xj could be in any
position, a fact that will be used extensively below.

Define ANOVA terms

α0 = µ0

α1(x1) = µ1(x1) − µ0

α2(x1, x2) = µ2(x1, x2) − µ1(x1) − µ1(x2) + µ0

. . .

αk(x1, . . . , xk) =
k∑

ν=0

(−1)k−ν
∑

1≤i1<...<iν≤k

µν(xi1 , . . . , xiν )

. . .

αM(x1, . . . , xM) =
M∑

ν=0

(−1)M−ν
∑

1≤i1<...<iν≤M

µν(xi1 , . . . , xiν) .

Then the ANOVA expansion of θ(x1, . . . , xM) is

θ(x1, . . . , xM) = α0 +
M∑

j=1

α1(xj) +
∑

1≤j1<j2≤M

α2(xj1 , xj2) + . . .

=
M∑

k=0

∑
1≤j1<...<jk≤M

αk(xj1 , . . . , xjk
) .

This expansion is tautological and holds without assumptions other than permutation sym-
metry of θ(x1, . . . , xM) in its arguments. The proof is by showing that the partial expecta-
tions implicit in the ANOVA terms cancel each other except for µM = θ(x1, . . . , xM).

If one assumes that the variables X1, . . . , XM are i.i.d., then the terms αk have vanishing
marginals in all arguments:

E F αk(x1, . . . , xj−1, Xj, xj+1, . . . , xk) = 0 .

As a consequence, all terms in the ANOVA expansion are pairwise uncorrelated.

Note that all functions µk and αk are implicitly dependent on M because they derive from
a statistic of M arguments, θ(x1, . . . , xM). If necessary we make the dependence explicit by
writing µM

k and αM
k . By contrast, the influence functions ψk in the von Mises expansion are

independent of any sample size because this expansion is centered at F as opposed to FM .
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The zero-th term αM
0 = µM

0 is also called the “grand mean”, and the first term αM
1 (x)

the “main effect” function or the “additive component” of θ. Correspondingly we call
αM

k (x1, . . . , xk) the k-th order “interaction” function.

4 The von Mises Expansion of a Bagged Functional

4.1 A Warm-Up Exercise: The Additive Term

Before deriving a general formula for the terms of the von Mises expansion of θB
M , we calculate

the additive term to illustrate the idea. The influence function will be denoted ψB
1 (x) as a

reminder that it belongs to the bagged functional:

ψB
1 (x) =

d

ds

∣∣∣∣∣
s=0

θB
M((1 − s)F + sδx)

=
d

ds

∣∣∣∣∣
s=0

E (1−s)F+sδx θ(X1, . . . , XM) .

The expectation E (1−s)F+sδx θ(X1, . . . , XM) is a polynomial of degree M in s and hence
arbitrarily differentiable. We expand it by applying the mixture (1 − s)F + sδx to each
argument Xi, resulting in 2M terms. These terms in turn can be bundled according to the
number of times δx occurs:

E (1−s)F+sδx θ(X1, . . . , XM)

= (1 − s)M E F θ(X1, . . . , XM)

+ (1 − s)M−1 s M E F θ(x,X2, . . . , XM)

+ (1 − s)M−2 s2 M(M − 1)

2
E F θ(x, x,X3, . . . , XM)

+ O(s3) .

In this rearrangement we also used permutation symmetry; it implies, for example, that

E F θ(. . . , Xj−1, x,Xj+1, . . .) = E F θ(x,X2, . . . , XM) .

When we differentiate w.r.t. s at s = 0, only the first two terms make a contribution:

ψB
1 (x) = M [−E F θ(X1, . . . , XM) + E F θ(X1, . . . , XM−1, x) ] = M αM

1 (x) ,

where as above αM
1 is the main effect function in the ANOVA expansion of the unbagged

statistic θ(FM).
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Suppose we have an i.i.d. sample x1, . . . , xN of size N from F with empirical distribution
FN = 1

N

∑
δxi

. The first order von Mises approximation to the plug-in estimate θB
M(FN ) of

θB
M(F ) is

θB
M (FN) ≈ θB

M(F ) +
1

N

N∑
i=1

ψB
1 (xi) = µM

0 +
M

N

N∑
i=1

αM
1 (xi) .

For M = N this is exactly the first order ANOVA expansion of θ(FN ).

4.2 The Full von Mises Expansion of a Bagged Functional

More generally we have the following theorem whose proof can be found in Subsection 11.1
of the appendix.

Theorem: The k-th order influence function ψB
k of an M-bagged functional θB

M(F ) is pro-
portional to the k-th order interaction function αM

k of the statistic θ(FM):

ψB
k (x1, . . . , xk) =




M !

(M − k)!
αM

k (x1, . . . , xk) for k ≤M ,

0 for k > M .

It is now a simple matter to write down the full von Mises expansion of an M-bagged
functional:

θB
M (G) = θB

M(F ) +
∑
k≥1

1

k!
E G ψk(X1, . . . , Xk)

= αM
0 +

M∑
k=1

(
M
k

)
E G α

M
k (X1, . . . , Xk) .

We summarize:

Theorem: Bagged functionals are smooth in the sense that the von Mises expansion exists
and is of finite length M + 1:

θB
M (G) =

M∑
k=0

(
M
k

)
E G α

M
k (X1, . . . , Xk) .

Because the von Mises expansion is effectively a Taylor expansion, it is natural for exact
finite expansions to use their length as an inverse measure of smoothness: the shorter the
expansion the smoother the functional. With this interpretation and in light of the theorem,
bagging performs more smoothing for smaller M .
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Suppose now we have an i.i.d. sample y1, . . . , yN of size N from the distribution F .

The von Mises expansion of θB
M around F evaluated at FN = 1

N

∑N
1 δyj

is

θB
M(FN ) =

M∑
k=0

(
M
k

)
1

Nk

∑
1≤j1,...,jk≤N

αM
k (yj1, . . . , yjk

) .

The bagging parameter M is independent of the sample size N , which raises the question of
criteria for its choice. This is just another instance of the problem of smoothing parameter
selection.

For the conventional choice M = N one obtains an interesting comparison with the ANOVA
expansion of θ(FN ):

Theorem: The terms in the von Mises expansion of the conventional N-bagged statistic
θB

N (FN) form a superset of the terms in the ANOVA expansion of θ(FN ).

θB
N (FN) =

N∑
k=0

(
N
k

)
1

Nk

∑
1≤j1,...,jk≤N

αN
k (yj1, . . . , yjk

) ,

θ(FN) =
N∑

k=0

∑
1≤j1<...<jk≤N

αN
k (yj1, . . . , yjk

) .

The inner sums in the first and the second line have Nk and (
N
k) terms, respectively, the

difference being that the first inner sum runs over unconstrained indices, the second over
strictly ordered indices. The ratio (

N
k)/Nk downweights the inner sum in the first line to

match the smaller number of terms in the second line. The difference between the unbagged
and the N -bagged statistic is that the latter includes “diagonal” terms such as αN

2 (y1, y1),
arising from sampling with replacement in the bootstrap procedure.

4.3 Asymptotic Variances of Bagged Medians

The first order von Mises expansion of a statistical functional is frequently used to estimate
the variance of the corresponding statistic: if

θ(FN ) ≈ θ(F ) +
1

N

∑
ψ1(Xi)

then

VarF (θ(FN)) ≈ 1

N
E F (ψ2

1(X)) .

We use this approach to estimate the variances of bagged versions of the sample median
for a range of resample sizes. The purpose of the exercise is to show that these estimates,
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obtained using the von Mises expansions of bagged medians, are close to the true variances,
thereby supporting our claim that such expansions indeed can accurately reflect reality.

For our experiment we chose standard gaussian F , sample size N = 50 and resample sizes
M = 5, 20, and 80. For each resample size we computed the influence function of the
M-bagged median, i.e., M times the main effect function in the ANOVA decomposition of
median(X1, . . . , XM), on a grid, using Monte Carlo quadrature. We then evaluated E Fψ

2
1(X)

using Simpson’s rule. The table below gives the estimated variances of the bagged median
for the three resample sizes and the “true” variances calculated by simple Monte Carlo. The
results show that the variance of a bagged median decreases with decreasing resample size,
and that this fact is accurately reflected in the asymptotic results.

M 5 20 80
True variance 0.0212 0.0247 0.0270
Est. variance 0.0215 0.0254 0.0277

5 From von Mises Expansions to U-Statistics

If θ(F ) is a statistical functional with a finite von Mises expansion of length K,

θ(G) = θ(F ) +
K∑

k=1

1

k!
E G ψk(X1, . . . , Xk)

= θ(F ) +
∫
ψ1(x) dG(x) +

1

2

∫
ψ2(x1, x2) dG⊗2(x1, x2)

+
1

6

∫
ψ3(x1, x2, x3) dG⊗3(x1, x2, x3) + · · · ,

then the plug-in estimate for θ from an i.i.d. sample X1, X2, . . . , XN is a U-statistic:

θ(FN ) = θ(F ) +
1

N

N∑
i=1

ψ1(Xi) +
1

2

1

N2

N∑
i,j=1

ψ2(Xi, Xj)

+
1

6

1

N3

N∑
i,j,k=1

ψ3(Xi, Xj, Xk) + · · · .

We now adopt the conventional notation for U-statistics:

U =
1

N

∑
i

AXi
+

1

N2

∑
i,j

BXi,Xj
+

1

N3

∑
i,j,k

CXi,Xj ,Xk
+ . . . ,

where the constant corresponding to θ(F ) is absorbed in the other terms. The “kernels” B,
C,... are permutation symmetric in their arguments. We put the arguments in subscripts in
order to avoid the clutter caused by frequent parentheses.
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Strictly speaking, only the off-diagonal sums such as
∑

i<j BXi,Xj
and

∑
i<j<k CXi,Xj ,Xk

are
proper U-statistics. Unrestricted sums that include the diagonal terms are usually called
V-statistics or von Mises statistics (Serfling 1980, Sec. 5.1.2). However, we use the better
known term “U-statistics” anyway. Our problem with U-statistics in the traditional sense is
that they are not plug-in estimates of statistical functionals. — In another slight deviation
from common usage, we often refer not only to the terms in U as U-statistics, but to the
sum U as well.

6 Resampling U-Statistics

It is possible to explicitly calculate the bagged version U bag of a sum of U-statistics U . We
can allow bagging based on resampling with and without replacement as well as arbitrary
resample sizes.

Let W = W1 . . . ,WN ≥ 0 be integer-valued random variables counting the multiplicities of
X1, . . . , XN in a resample.

• For resampling with replacement, that is, bootstrap, the distribution of W is
Multinomial(1/N, . . . , 1/N ;M). Conventional bootstrap is for M = N , but we allow
M to range between 1 and ∞. Although M > N is computationally undesirable,
infinity is the conceptually plausible upper bound on M : for M = ∞ no averaging
takes place because with an “infinite resample” one has F ∗

M = FN .

• For resampling without replacement, that is, subsampling, the distribution of W is
Hypergeometric(M,N). Half-sampling, for example, is for M = N/2, but the resample
size M can range between 1 and N . For the upper bound M = N no averaging takes
place because the resample is just a permutation of the data.

With these facts we can write down the resampled and the bagged version of a U explicitly.
We illustrate this for a statistic U with kernels AXi

and BXi,Xj
. For a resample of M with

multiplicities W1, . . . ,WN , the value of U is

U resample =
1

M

∑
Wi AXi

+
1

M2

∑
WiWj BXi,Xj

.

The bagged version of U under either mode of resampling is the expected value with respect
to W:

U bag = E W

[
1

M

∑
Wi AXi

+
1

M2

∑
WiWj BXi,Xj

]

=
1

M

∑
E [Wi] AXi

+
1

M2

∑
E [WiWj ] BXi,Xj

.
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From the form of U bag it is apparent that the only relevant quantities are moments of W:

EWi =
M

N
with and w/o

EW 2
i =

{
with: M

N
+ M(M−1)

N2

w/o: M
N

EWiWj =


 with: M(M−1)

N2

w/o: M(M−1)
N(N−1)

(i �= j)

The bagged functional can now be written down explicitly. It is necessary to distinguish
between the two resampling modes: we denote U bag by Uwith and Uw/o for resampling with
and without replacement, respectively. In this notation we suppress the dependence on M .

Uwith =
1

N

∑
i

(
AXi

+
1

M
BXi,Xi

)
+

1

N2

∑
i,j

(
1 − 1

M

)
BXi,Xj

,

Uw/o =
1

N

∑
i

(
AXi

+

(
1 − M

N

1 − 1
N

)
1

M
BXi,Xi

)
+

1

N2

∑
i,j

(
1 − 1

M

1 − 1
N

)
BXi,Xj

.

Analogous calculations can be carried out for statistics with U-terms of orders higher than
two. We summarize:

Proposition 1: A bagged sum of U-statistics is also a sum of U-statistics. For a statistic
with kernels Ax and Bx,y only, the bagged terms Awith

x , Bwith
x,y and Aw/o

x , Bw/o
x,y , respectively,

depend on Ax and Bx,y as follows:

Awith
x = Ax +

1

M
Bx,x , Bwith

x,y =
(
1 − 1

M

)
Bx,y ,

Aw/o
x = Ax +

(
1 − M

N

1 − 1
N

)
1

M
Bx,x , Bw/o

x,y =

(
1 − 1

M

1 − 1
N

)
Bx,y .

For U-statistics with terms of first and second order, the proposition is a direct result of
the preceding calculations. For general U-statistics of arbitrary order, the proposition is a
consequence of the proofs in the appendix (Section 11).

We see from the proposition that the effect of bagging is to remove mass from the proper
U-part of B (

∑
i�=j) and shift it to the diagonal (

∑
i=j), thus increasing the importance of

the additive part. Similar effects take place in higher orders where variability is shifted to
lower orders.
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7 Equivalence of Resampling With and Without Re-

placement in Bagging

Proposition 1 yields a heuristic for an important fact: bagging based on resampling with
replacement yields results very similar to bagging based on resampling without replacement
if the resample sizes Mwith and Mw/o are suitably matched up. The required correspondence
can be derived by equating Awith = Aw/o and/or Bwith = Bw/o in Proposition 1; both
equations yield the identical condition:

Corollary: Bagging a sum of U-statistics of first and second order yields identical results
under the two resampling modes if

N − 1

Mwith
=

N

Mw/o
− 1 .

For a general finite sum of U-statistics of arbitrary order, we do not obtain an identity but
an approximate equivalence:

Proposition: 2 Bagging a finite sum of U-statistics of arbitrary order under either resam-
pling mode yields the same results up to order O(N−2) if

N

Mwith

=
N

Mw/o

− 1 ,

assuming the kernels are bounded. If the kernels are not bounded but have moments of

order q, the approximation is to order O(N− 2
p ), where 1

p
+ 1

q
= 1.

The proof is in Subsection 11.5 of the appendix.

We will similarly see that variance, squared bias and hence MSE of bagged U-statistics all
agree in the N−2 term in the two resampling modes under corresponding resample sizes.

The correspondence between the two resampling modes is more intuitive if one expresses the
resample sizes Mwith and Mw/o as fractions/multiples of the sample size N :

αwith =
Mwith

N
(> 0, <∞) and αw/o =

Mw/o

N
(> 0, < 1).

The condition of Proposition 2 above is equivalent to

αwith =
αw/o

1 − αw/o

.

It equates, for example, half-sampling without replacement, αw/o = 1/2, with conventional
bootstrap, αwith = 1. Subsampling without replacement with αw/o > 1/2 corresponds to
bootstrap with αwith > 1, that is, bootstrap resamples larger than the original sample. The
correspondence also maps αw/o = 1 to αwith = ∞, both of which mean that the bagged and
the unbagged statistic are identical.
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8 The Effect of Bagging on Variance, Bias and MSE

We need some notation: For U-statistics CX,Y,Z,... of any order we denote partial conditional
expectations by

CX = E [CX,Y,Z,W,...|X ] , CX,Y = E [CX,Y,Z,W,...|X, Y ] , CX,Y,Z = E [CX,Y,Z,W,...|X, Y, Z ] .

Under the assumption of independent variables, one can re-express them as partial marginal
expectations (Serfling, 1980, Sec. 5.1.5):

Cx = E [Cx,Y,Z,W,...] , Cx,y = E [Cx,y,Z,W,...] , Cx,y,z = E [Cx,y,z,W,...] .

It will turn out that for variance and bias calculations to order N−2 these three partial
conditional expectations are the only information needed about a U-statistic of any order.
We will use simple facts such as the following without further mention:

Cov(BX,Y,Z,..., CX,Y ′,Z′,...) = Cov(BX , CX) ,

Cov(CX,Y,Z,..., CX,Y ′,Z′,...) = Var(CX) ,

where X, Y , Z, Y ′, Z ′ are independent.

8.1 Variance

Variances of U-statistics can be calculated explicitly. For example, for a statistic that has
only terms AX and BX,Y , the variance is

Var(U) = N−1 Var(AX + 2BX)

+ N−2 (2Cov(AX , BX,X) + 4Cov(BX,X , BX) − 4Cov(AX , BX)

+2Var(BX,Y ) − 12Var(BX))

+ N−3 (Var(BX,X) − 2Var(BX,Y ) + 8Var(BX) − 4Cov(BX,X , BX))

We are, however, primarily interested not in variances but differences between variances of
bagged and unbagged statistics:

Proposition 3: Let g = N
M

for sampling with replacement and g = N
M

− 1 for sampling
without replacement. Assume g is fixed and 0 < g < ∞ as N → ∞. Let U be a finite sum
of U-statistics of arbitrary order; then:

Var(U bag) − Var(U) =
1

N2
· 2SVar · g + O(

1

N3
) ,

for both sampling with and without replacement. If U has only terms AX and BX,Y , then:

SVar = Cov(AX + 2BX , BX,X − BX) .
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The effect of bagging on variance is of order O(N−2). The proof is in Subsection 11.7 of
the appendix; Subsection 11.6 shows how to calculate SVar for statistics with U-terms of any
order.

The assumption about g is essential. If it is not satisfied, the order of the asymptotics will
be affected. The jackknife is a case in point: It is obtained for M = N − 1 and resampling
without replacement. This implies g → 0, which violates the assumption of the proposition.
It would be easy to cover this type of asymptotics because the calculations can be performed
exactly.

There exist situations in which bagging increases the variance, namely, when SVar > 0. If
SVar < 0, variance is reduced, and the beneficial effect becomes the more pronounced the
smaller the resample size. Therefore, the fact that bagging may reduce variance cannot
be the whole story: if variance were the only criterion of interest, one should choose the
resample size M as low as operationally feasible for maximal variance reduction. Obviously,
one has to take into account bias as well.

8.2 Bias

We show that bagging U-statistics always increases squared bias. Recall that the statistic
U = U(FN ) is the plug-in estimator for the functional U(F ), so the bias is E U(FN )−U(F ).

Proposition 4: Under the same assumptions as in Proposition 3, we have:

Bias 2(U bag) − Bias 2(U) =
1

N2
(g2 + 2g)SBias + O(

1

N3
) ,

for both sampling with and without replacement. If U has only terms AX and BX,Y , then

SBias = (EBX,X −EBX,Y )2 .

Subsection 11.8 of the appendix has proofs and a general formula for SBias for statistics with
U-terms of any order.

Just as in the comparison of variances, sampling with and without replacement agree in the
N−2 term modulo differing interpretation of g in the two resampling modes.

8.3 Mean Squared Error

The mean squared error of U = U(FN ) is

MSE(U) = E
(
[U(FN ) − U(F )]2

)
= Var(U) + Bias (U)2 .
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Bias^2

0

Figure 1: Dependence of Variance, Squared Bias and MSE on g. The graph shows the
situation for SVar/SBias = −4. Bagging is beneficial for g < 6, that is, for resample sizes
Mwith > N/6 and Mw/o > N/7. Optimal is g = 3, that is, Mwith = N/3 and Mw/o = N/4.

The difference between MSEs of bagged and unbagged functionals is as follows:

Proposition 5: Under the same assumptions as in Propositions 3 and 4, we have:

MSE(U bag
M (FN)) −MSE(U(FN )) =

1

N2

(
SBias g

2 + (SVar + SBias ) 2g
)

+ O(
1

N3
) .

for both sampling with and without replacement.

8.4 Choice of Resample Size

In some situations one may obtain a reduction in MSE for some resample sizes M but not
for others, while in other situations bagging may never lead to an improvement. The critical
factor is the dependence of the MSE difference on g:

SBias g
2 + 2 (SVar + SBias ) g .
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One immediately reads off the following condition for MSE improvement:

Corollary 5: There exist resample sizes for which bagging improves the MSE to order N−2

iff
SVar + SBias < 0 .

Under this condition the range of beneficial resample sizes is characterized by

g < −2
(
SVar

SBias
+ 1

)
.

The resample size with optimal MSE improvement is

gopt = −
(
SVar

SBias
+ 1

)
.

Conventional bootstrap, Mwith = N , and half-sampling, Mw/o = N/2, (both characterized by
g = 1) are beneficial iff

SVar

SBias
< −3

2
,

and they are optimal iff
SVar

SBias
= −2 .

Recall from Proposition 3 that the resample sizes Mwith and Mw/o are expressed in terms
of gwith = N/Mwith and gw/o = N/Mw/o − 1. The corollary therefore prescribes a minimum
resample size to achieve MSE reduction. See Figure 1 for an illustration.

The intuition that the benefits of bagging arise from variance reduction is thus correct,
although it must be qualified: Bagging is not always beneficial, but if it is, the reduction in
MSE is due to reduction in variance. This follows from the fact that SBias is always positive,
hence bagging always increases bias, but if the variance dips sufficiently strongly, an overall
benefit results.

Recall that the above statements should be limited to values of g bounded away from zero
and infinity. Near either boundary a different type of asymptotics sets in.

8.5 An Example: Quadratic Functionals

Consider as a concrete example of U-statistics the case of quadratic functions: AX = a ·X2

and BX,Y = b ·XY , that is,

U = a · 1

N

∑
X2

i + b · ( 1

N

∑
Xi)

2 .
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In order to determine the terms SVar and SBias , we need the first four moments of X: Let
µ = EX, σ2 = E [(X − µ)2], γ = E [(X − µ)3)]/σ3 and κ = E [(X − µ)4]/σ4 be expectation,
variance, skewness and kurtosis, respectively. Then:

SVar = (2µγσ3 + (κ− 1)σ4) ab + 2µγσ3 b2

and
SBias = b2 σ4 .

It is convenient to write the criterion for the existence of resample sizes with beneficial effect
on the MSE as SVar/SBias + 1 < 0:(

2
µ

σ
γ + (κ− 1)

)
a

b
+

(
2
µ

σ
γ + 1

)
< 0 .

If µ = 0 or γ = 0, this simplifies to

(κ− 1)
a

b
+ 1 < 0 .

Since κ > 1 for all distributions except a balanced 2-point mass, the condition becomes

a

b
< − 1

κ− 1
.

For a = 1, b = −1, that is, the empirical variance U = mean(X2) − mean(X)2, beneficial
effects of bagging exist iff κ > 2. For a = 0, that is, the squared mean U = mean(X)2, no
beneficial effects exist.

9 Simulation Experiment

The prinicipal purpose of the experiments presented here is is to demonstrate the correspon-
dence between resampling with and without replacement in the non-trivial setting of bagging
cart trees.

Scenarios. We consider four scenarios, differing in the size N of the training sample, the
dimension p of the predictor space, the noise variance σ2, and the number K of leaves of the
cart tree, and the true regression function f . The scenarios are adapted from Friedman
and Hall 2000.

Scenario N p X σ2 K f(x)
1 800 1 U [0, 1] 1 2 I(x > 0.5)
2 800 1 U [0, 1] 1 2 f(x) = x
3 8000 10 U [0, 1]10 0.25 50

∏5
i=1 I(xi > 0.13)

4 8000 10 U [0, 1]10 0.25 50
∑5

i=1 i xi

We grew all trees in Scenarios 3 and 4 in a stagewise forward manner without pruning; at
each stage we split the node that resulted in the largest reduction of the residual sum of
squares, till the desired number of leaves was reached.
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Performance Measures. Let Tw/o
α (·;L) be the bagged tree obtained by averaging cart

trees grown on resamples of size αn drawn without replacement from a training sample
L = (x1, y1), . . . , (xn, yn), and let Twi

α (·;L) be the bagged tree obtained by averaging over
resamples of size αn/(1 − α) drawn with replacement. The mean squared error (MSE) of
Tw/o

α is

MSE (Tw/o
α ) = E X [E L((Tw/o

α (X;L) − f(X))2)]

= E X [E L((Tw/o
α (X;L) − E L(Tw/o

α (X;L)))2)]

+E X [ (E L(Tw/o
α (X;L) − f(X)))2]

= Var(Tw/o
α ) + Bias 2

regr(T
w/o
α ) .

The MSE of Twi
α is defined analogously.

Note that the definition of bias used here — expected difference between the estimated
regression function for a finite sample size and the true regression function — is different
from the definition used in the earlier sections of the article, where we took bias to mean the
expected difference between the value of a statistic for a finite sample size and its value for
infinite sample size, i.e., for the underlying distribution. We refer to the former as regression
bias and to the latter as estimation bias. cart trees with a fixed number of leaves and their
bagging averages are not in general consistent estimates of the true regression function, and
in cases where they are not, as in scenarios (2) and (4) above, the two notions of bias differ.

Operational details of the experiment. We estimated regression bias, estimation bias,
variance, and MSE for α = 0.1, 0.2, . . . , 0.9, 0.95, 0.99, 1; α = 1 corresponds to unbagged
cart. Estimates were obtained by averaging over 100 training samples and 10, 000 test
observations.

We approximated the bagged trees Tw/o
α (·;L) and Twi

α (·;L) by averaging over 50 resamples.
A finite number of resamples adds a significant variance component to the Monte Carlo esti-
mates of Var(Tw/o

α ) and Var(Twi
α ). We adjusted the estimates by removing this component.

The influence on bias is of smaller order.

To calculate the estimation bias we need to know the cart tree for infinite training sample
size. In Scenarios 1 and 3 this is not a problem because the trees are consistent estimates
for the true regression functions. In Scenarios 2 and 4 we approximated the tree for infinite
training sample size by a tree grown on a training sample of size n = 100, 000.

Simulation results. Figure 2 summarizes the simulation results for Scenario 1. The top
panels show variance, squared estimation bias, and squared regression bias as functions of
the resampling fraction α, for resampling with and without replacement. The bottom panel
shows the MSE for both resampling modes, and variance and squared regression bias for
sampling with replacement only. To make the tick mark labels more readable, vertical scales
in all the panels are relative to the MSE of the unbagged tree.
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We note that variance decreases monotonically with decreasing resampling fraction, which
confirms the intuition that smaller resample size means more averaging. Regression bias
and estimation bias agree because a tree with two leaves is a consistent estimate for the
true regression function, which in this scenario is a step function. Squared estimation bias
increases with decreasing resampling fraction, as predicted by the theory presented in Sec-
tions 8.1 through 8.3.

Figure 3 shows the corresponding results for Scenario 2. Again, variance is decreasing with
decreasing resampling fraction, and squared estimation bias is increasing, as predicted by
the theory. Squared regression bias, however, is decreasing with decreasing resampling frac-
tion. Bagging therefore conveys a double benefit, decreasing both variance and squared
(regression) bias. The explanation is simple: A bagged cart tree is smoother than the cor-
responding unbagged tree, because bagging smoothes out the discontinuities of a piecewise
constant model. If the true regression function is smooth, smoothing the estimate can be
expected to be beneficial. Admittedly, the scenario considered here is highly unrealistic, but
the beneficial effect can also be expected in more realistic situations, like Scenario 4 discussed
below.

Scenario 3 is analogous to Scenario 1, with 10-dimensional instead of one-dimensional pre-
dictor space. The true regression function is piecewise constant and can be consistently
estimated by a cart tree with 50 leaves. The results, shown in Figure 4, parallel those for
Scenario 1.

The results for Scenario 4, shown in Figure 5, closely parallel those for Scenario 2. Again,
both variance and squared (regression) bias decrease with decreasing resampling fraction.

The experiments confirm the agreement between bagging with and without replacement
predicted by the theory developed in Section 7: Bagging without replacement with resample
size N α gives almost the same results in terms of bias, variance, and MSE as bagging with
replacement with resample size N α/(1 − α).

The experiments also confirm that bagging does increase squared estimation bias. However,
the relevant quantity in a regression context is regression bias — the expected difference
between the estimated and the true regression function. If the true regression function is
smooth, bagging can in fact reduce regression bias as well as variance and therefore yield a
double benefit.
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Figure 2: Simulation results for Scenario 1. Top panels: Variance, squared estimation bias,
and squared regression bias for resampling with and without replacement. Bottom panel:
MSE for both resampling modes, and variance and squared regression bias for resampling
with replacement.
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Figure 3: Simulation results for Scenario 2. Top panels: Variance, squared estimation bias,
and squared regression bias for resampling with and without replacement. Bottom panel:
MSE for both resampling modes, and variance and squared regression bias for resampling
with replacement.
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Figure 4: Simulation results for Scenario 3. Top panels: Variance, squared estimation bias,
and squared regression bias for resampling with and without replacement. Bottom panel:
MSE for both resampling modes, and variance and squared regression bias for resampling
with replacement.
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Figure 5: Simulation results for Scenario 4. Top panels: Variance, squared estimation bias,
and squared regression bias for resampling with and without replacement. Bottom panel:
MSE for both resampling modes, and variance and squared regression bias for resampling
with replacement.
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10 Summary and Conclusions

Here is a summary of what we take to be the main contributions of our article:

Bagging statistical functionals. We extend the definition of bagging from statistics (de-
fined on samples) to statistical functionals (defined on distributions), and we study the von
Mises expansion of bagged statistical functionals. The von Mises expansion of a statistical
functional is a generalized Taylor expansion and allows for a similar interpretation. We show
the following:

• The von Mises expansion of a bagged functional is related to the Efron-Stein ANOVA
expansion of the corresponding unbagged statistic. In particular, the first von Mises
term is proportional to the additive term in the Efron-Stein expansion.

• A bagged functional is always smooth in the sense that the von Mises expansion is
finite of length 1 + resample size M . This holds even if the unbagged functional is
rough or unstable.

These results support the intuitive notion that bagging is a smoothing operation and that
resample size plays the role of the smoothing parameter — smaller resample size means more
smoothing.

Bagging U-statistics U-statistics may be regarded as a generalization of polynomials.
They can describe complex dependencies, and yet the effect of bagging on U-statistics is
amenable to a rigorous asymptotic analysis. The analysis suggests that bagging always
increases (estimation) bias — another fact that is borne out by our experiments — and
demonstrates that bagging does not always decrease variance and MSE.

Our most striking finding is an equivalence between bagging based on resampling with and
without replacement: resample sizes Mwith = αwithN and Mw/o = αw/oN (for resampling
with and without replacement, respectively) produce very similar bagged statistics if αwith =
αw/o/(1 − αw/o). This approximate equality holds for each sample, not just on the average
over samples. While our derivation is limited to U-statistics, the equivalence seems to hold
more widely, as illustrated by our limited experiments with bagging cart trees.

While we believe that our article provides valid, and valuable, insights into the nature and
effects of bagging, it does not explain the often striking improvements seen when bagging
trees. In fact, our experiments show that bagging can reduce both variance and bias. This
observation, however, does not contradict the theory: the notion of bias used above for
U-statistics is different from the notion of bias used in function fitting.
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11 Appendix

11.1 Derivation of the von Mises Expansion of a Bagged Func-
tional

We prove the theorem of Section 4:

Theorem: The k-th order influence function ψB
k of an M-bagged functional θB

M(F ) is pro-
portional to the k-th order interaction function αM

k of the statistic θ(FM):

ψB
k (x1, . . . , xk) =




M !

(M − k)!
αM

k (x1, . . . , xk) for k ≤M ,

0 for k > M .

Proof: We now calculate the k-th order influence function. To this end let

F̃k = (1 −
k∑
1

si)F +
k∑
1

siδxi
.

By definition,

ψB
k (x1, . . . , xk) =

∂k

∂s1 · · ·∂sk

∣∣∣∣∣
s1,...,sk=0

θB
M (F̃k) .

Again we note that θB
M (F̃k) = E F̃ θ(X1, . . . , XM) is effectively a polynomial of degree M in

s. Expanding it into (k+ 1)M summands, bundling the summands according to the number
of δxi

’s they contain, and using permutation symmetry, we get:

θB
M (F̃k) = E F̃k

θ(X1, . . . , XM)

= (1 −
k∑

i=1

si)
M E F θ(X1, . . . , XM)

+
k∑

j=1

(1 −
k∑

i=1

si)
M−1 sj M E F θ(xj , X2, . . . , XM)

+
∑

1≤j1<j2≤k

(1 −
k∑

i=1

si)
M−2 sj1 sj2 M (M − 1)E F θ(xj1 , xj2, X3, . . . , XM)

+ . . .

+ O(s2
1, . . . , s

2
k)

Terms containing a second or higher power of any sj have vanishing derivatives at zero and
hence will disappear in what follows. This is why the summation on the fourth line can
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run over index pairs j1 �= j2 only, the omitted summands being summarily lumped into
O(s2

1, . . . , s
2
k). Thus, with the abbreviated notation for partial expectations:

θB
M(F̃k) =

min(k,M)∑
ν=0

∑
1≤j1<···<jν≤k

(1 −
k∑

i=1

si)
M−νsj1 · · · sjν

M !

(M − ν)!
µM

ν (xj1 , . . . , xjν)

+ O(s2
1, . . . , s

2
k) .

Note that the outer sum extends to min(k,M) only. As the derivatives can be pulled inside
the double sum, we have to calculate

∂k

∂s1 · · ·∂sk

∣∣∣∣∣
s1,...,sk=0

[
(1 −

k∑
i=1

si)
M−ν sj1 · · · sjν

]
.

We first take partial derivatives w.r.t. sj1 , . . . , sjν in turn:

∂

∂sj1

∣∣∣∣∣
sj1

=0

[
(1 −∑

si)
M−ν sj1 · · · sjν

]

=
[
(M − ν)(1 −∑

si)
M−ν−1(−1) sj1 · · · sjν + (1 −∑

si)
M−ν sj2 · · · sjν

]∣∣∣
sj1

=0

= (1 −∑
si)

M−ν sj2 · · · sjν .

Repeating this process we obtain:

∂ν

∂sj1 · · ·∂sjν

∣∣∣∣∣
s1,...,sk=0

[
(1 −∑

si)
M−ν sj1 · · · sjν

]
= (1 −∑

si)
M−ν .

We still have to take the derivatives w.r.t. indices not among j1, . . . , jν . Pick one such index
l:

∂

∂sl

∣∣∣∣∣
sl=0

[
(1 −∑

si)
M−ν

]
= (M − ν)(1 −∑

si)
M−ν−1(−1)

Repeating for all such l we get:

∂k

∂s1 · · ·∂sk

∣∣∣∣∣
s1,...,sk=0

[
(1 −∑

si)
M−ν sj1 · · · sjν

]

=




(M − ν)(M − ν − 1) · · · (M − k + 1) (−1)k−ν =
(M − ν)!

(M − k)!
(−1)k−ν for k ≤M ,

0 for k > M .

Putting everything together, we get first of all

ψB
k (x1, . . . , xk) = 0 for k > M .
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For k ≤M we get

ψB
k (x1, . . . , xk) =

M !

(M − k)!

k∑
ν=0

(−1)k−ν
∑

1≤j1<···<jν≤k

µM
ν (xj1, . . . , xjν)

=
M !

(M − k)!
αM

k (x1, . . . , xk)

This completes the proof.

11.2 Summation Patterns for U-Statistics

The calculations for U-statistics in this and the following sections are reminiscent of those
found in Hoeffding (1948). We introduce notation for statistical functionals that are inter-
actions of order J and K, respectively:

B =
1

NJ

∑
µ

Bµ , C =
1

NK

∑
ν

Cν ,

where
µ = (µ1, . . . , µJ) ∈ {1, . . . , N}J , Bµ = BXµ1 ,...,XµJ

,

ν = (ν1, . . . , νK) ∈ {1, . . . , N}K , Cν = CXν1 ,...,XνK
.

We assume the functions Bx1,...,xJ
and Cy1,...,yK

to be permutation symmetric in their argu-
ments, the random variables X1, . . . , XN to be i.i.d., and the second moments of Bµ and Cν

to exist for all µ and ν. As is usual in the context of von Mises expansions, we do not limit
the summations to distinct indices as is usual in the context of U-statistics. One reason
is that we wish B and C to be plug-in estimates of the functionals EB1,...,J and EC1,...,K .
Another reason is that bagging produces lower order interactions from higher order, as we
will see.

In what follows we will need to partition sums such as σµ according to how many indexes
appear multiple times in µ = (µ1, . . . , µJ). To this end, we introduce t(µ) as the numbers of
“essential ties” in µ:

t(µ) = #{ (i, j) | i < j, µi = µj , µi �= µ1, . . . , µi−1 } .

The sub-index i marks the first appearance of the index µi, and all other µj equal to µi

are counted relative to i. For example, µ = (1, 1, 2, 1, 2) has three essential ties: µ1 = µ2,
µ1 = µ4, and µ3 = µ5; the tie µ2 = µ4 is inessential because it can be inferred from the
essential ties.
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An important observation concerns the counts of indexes with a given number of essential
ties. The following will be used repeatedly:

#{ µ | t(µ) = 0} =

[
N
J

]
= O(NJ) ,

#{ µ | t(µ) = 1} =

[
N
J

](
J
2

)
= O(NJ−1) ,

#{ µ | t(µ) = 0} = O(NJ−2) .

Another notation we need is for the number c(µ, ν) of essential cross-ties between µ and ν:

c(µ, ν) = #{ (i, j) | µi = νj , µi �= µ1, . . . , µi−1 , νj �= ν1, . . . , νj−1 } .

We exclude inessential cross-ties that can be inferred from the ties within µ and ν. For
example, for µ = (1, 2, 1) and ν = (3, 1) the only essential cross-tie is µ1 = ν2 = 1; the
remaining inessential cross-tie µ3 = ν2 can be inferred from the essential tie µ1 = µ3 within
µ.

With these definitions we have the following fact for the number of essential ties of the
concatenated sequence (µ, ν):

t((µ, ν)) = t(µ) + t(ν) + c(µ, ν) .

11.3 Covariance of General Interactions

In expanding the covariance between B and C, we note that the terms with zero cross-ties
between µ and ν vanish due to independence. Thus:

Cov(B,C) =
1

NJ+K

∑
c(µ,ν)>0

Cov(Bµ, Cν) .

Because #{(µ, ν) | c(µ, ν) > 0 } is of order O(NJ+K−1) (a crude upper bound is JKNJ+K−1),
it follows that Cov(B,C) is of order O(N−1), as it should.

We now show that in order to capture terms of order N−1 and N−2 in Cov(B,C) it is
sufficient to limit the summation to those (µ, ν) that satisfy either

• t(µ) = 0, t(ν) = 0 and c(µ, ν) = 1, or

• t(µ) = 1, t(ν) = 0 and c(µ, ν) = 1, or

• t(µ) = 0, t(ν) = 1 and c(µ, ν) = 1,
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or t(µ)+ t(ν) = 0, 1 and c(µ, ν) = 1 for short. To this end, we note that the number of terms
with t(µ) + t(ν) ≥ 2 and c(µ, ν) ≥ 1 is of order NJ+K−3. This is seen from the following
crude upper bound:

#{ (µ, ν) | t(µ) + t(ν) ≥ 2 , c(µ, ν) ≥ 1 }
≤ #{ (µ, ν) | t((µ, ν)) ≥ 3 }
≤

((
K + J

4, K + J − 4

)
+

(
K + J

3, 2, K + J − 5

)
+

(
J +K

2, 2, 2, J +K − 6

))
·NJ+K−3 ,

where the “choose” terms arise from choosing the index patterns (1, 1, 1, 1), (1, 1, 1, 2, 2) and
(1, 1, 2, 2, 3, 3) in all possible ways in a sequence (µ, ν) of length K + J ; these three patterns
are necessary and sufficient for t((µ, ν)) ≥ 3. Using NJ+K−3 instead of N(N − 1) . . . (N −
(J +K − 4)) makes this an upper bound.

With the assumption of finite second moments of Bµ and Cν for all µ and ν, it follows that
the sum of terms with t(µ) + t(ν) ≥ 2 and c(µ, ν) ≥ 1 is of order O(N−3). Abbreviating[

N
L

]
=

N !

(N − L)!
= N(N − 1) . . . (N − (L− 1))

we have:

Cov(B,C)

=
1

NJ+K

∑
t(µ)+t(ν)=0,1; c(µ,ν)=1

Cov(Bµ, Cν) + O(N−3)

=
1

NJ+K

∑
t(µ)=0, t(ν)=0, c(µ,ν)=1

Cov(Bµ, Cν)

+
1

NJ+K

∑
t(µ)=1, t(ν)=0, c(µ,ν)=1

Cov(Bµ, Cν)

+
1

NJ+K

∑
t(µ)=0, t(ν)=1, c(µ,ν)=1

Cov(Bµ, Cν)

+ O(N−3)

=
1

NJ+K
JK

[
N

J +K − 1

]
· Cov(B(1,...), C(1,...))

+
1

NJ+K

(
J
2

)
KN

[
N

J +K − 3

]
·
(
Cov(B(1,1,...), C(1,...)) + Cov(B(1,1,2,...), C(2,...))

)

+
1

NJ+K
J

(
K
2

)
N

[
N

J +K − 3

]
·
(
Cov(B(1,...), C(1,1,...)) + Cov(B(2,...,J), C(1,1,2,...))

)

+ O(N−3) ,

where “. . .” inside a covariance stands for as many distinct other indices as necessary. Using[
N
L

]
= NL −

(
L
2

)
NL−1 +O(NL−2)
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we obtain

Cov(B,C)

=

(
N−1 −

(
J +K − 1

2

)
N−2 +O(N−3)

)
JK · Cov(B(1,...), C(1,...))

+
(
N−2 +O(N−3)

) (
J
2

)
K ·

(
Cov(B(1,1,...), C(1,...)) + Cov(B(1,1,2,...), C(2,...))

)

+
(
N−2 +O(N−3)

)
J

(
K
2

)
·
(
Cov(B(1,...), C(1,1,...)) + Cov(B(2,...), C(1,1,2...))

)

+ O(N−3) .

Collecting terms O(N−3), the above can be written in a more sightly manner as

Cov(B,C)

=

(
N−1 −

(
J +K − 1

2

)
N−2

)
JK · Cov(BX , CX)

+ N−2

(
J
2

)
K · (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ N−2 J

(
K
2

)
· (Cov(BX , CX,X) + Cov(BX , CX,Y,Y ))

+ O(N−3)

= a ·N−1 + b ·N−2 +O(N−3) .

11.4 Moments of Resampling Coefficients

We consider sampling in terms of M draws from N objects {1, . . . , N} with and with-
out replacement. The draws are M exchangeable random variables R1, . . . , RM , where
Ri ∈ {1, . . . , N}. Each draw is equally likely: P [Ri = n] = N−1, but for sampling with
replacement the draws are independent; for sampling w/o replacement they are dependent

and the joint probabilities are P [R1 = n1, R2 = n2, . . . , RJ = nJ ] =

[
M
J

]
/

[
N
J

]
for distinct

ni’s, and = 0 if ties exist among the ni’s.

For resampling one is interested in the count variables

Wn,M,N = Wn =
∑

µ=1,...,M

1[Rµ=n] ,

where we drop M and N from the subscripts if they are fixed. We let W = WM,N =
(W1, . . . ,WN) and recall:
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• For resampling with replacement: W ∼ Multinomial(1/N, . . . , 1/N ;M).

• For resampling w/o replacement: W ∼ Hypergeometric(M,N).

For bagging one needs the moments of W. Because of exchangeability of W for fixed M
and N , it is sufficient to consider moments of the form

E [W i1
n=1,M,N W i2

n=2,M,N · · ·W iL
n=L,M,N ] .

The following recursion formulae hold for il ≥ 1:

E [W i1
n=1,M,N W i2

n=2,M,N · · ·W iL
n=L,M,N ]

=




with : M
N

E [(Wn=1,M−1,N + 1)i1−1 W i2
n=2,M−1,N · · ·W iL

n=L,M−1,N ] ,

w/o : M
N

E [W i2
n=2,M−1,N−1 · · ·W iL

n=L,M−1,N−1] .

From these we derive the moments that will be needed below. Recall α = M/N , and g = 1
α

for resampling with, g = 1
α
− 1 for resampling without, replacement. Using repeatedly

approximations such as

[
N
L

]
= NL −

(
L
2

)
NL−1 + O(NL−2) ,

we obtain:

E [W i1
1 W i2

2 · · ·W iL
L ] = O(1)

E [W1 W2 · · ·WL]

=




with :

[
M
L

]
/NL

w/o :

[
M
L

]
/

[
N
L

]

=




with : αL − αL

(
L
2

)
1
α
N−1 + O(N−2)

w/o : αL − αL

(
L
2

)(
1
α
− 1

)
N−1 + O(N−2)

32



= αL

(
1 −

(
L
2

)
g N−1

)
+ O(N−2)

E [W 2
1 W2 · · ·WL−1]

=




with :

[
M
L

]
/NL +

[
M

L− 1

]
/NL−1

w/o :

[
M

L− 1

]
/

[
N

L− 1

]

=

{
with : αL + αL−1 + O(N−1)
w/o : αL−1 + O(N−1)

= αL (g + 1) + O(N−1) .

11.5 Equivalence of Resampling With and Without Replacement

We show the equivalence of resampling with and without replacement to order N−2. To
this end we need to distinguish between the resampling sizes Mwith and Mw/o, and the
corresponding resampling fractions αwith = Mwith/N and αw/o = Mw/o/N . The equivalence
holds under the condition

1

αwith
=

1

αw/o

− 1 (=: g) .

The two types of bagged U-statistics are denoted, respectively, by

Bwith =
1

MJ
with

∑
µ

E
[
Wwith

µ1
· · ·Wwith

µJ

]
· Bµ ,

Bw/o =
1

MJ
w/o

∑
µ

E
[
Ww/o

µ1
· · ·Ww/o

µJ

]
·Bµ .

Bagging differentially reweights the parts of a general interaction in terms of moments of the
resampling vector W. The result of bagging is no longer a pure interaction but a general
U-statistic because bagging creates lower-order interactions from higher orders.

Recall two facts about the bagging weights, that is, the moments of W: 1) They depend on
the structure of the ties in the index vectors µ = (µ1, ..., µJ) only; for example, µ = (1, 1, 2)
and µ = (3, 2, 3) have the same weights, E [W 2

1W2] = E [W 2
3W2] due to exchangeability.

2) The moments of W are of order O(1) in N (Subsection 11.4) and hence preserve the
orders O(N−1), O(N−2), O(N−3) of the terms considered in Subsection 11.2.
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We derive a crude bound on their difference using Bbound = maxµ |Bµ|. We assume the above
condition on αwith and αw/o and obtain:

|Bwith −Bw/o| ≤ ∑
µ

∣∣∣∣∣∣
1

MJ
with

E
[
Wwith

µ1
· · ·Wwith

µJ

]
− 1

MJ
w/o

E
[
Ww/o

µ1
· · ·Ww/o

µJ

] ∣∣∣∣∣∣ · Bbound

=


 ∑

t(µ)=0

+
∑

t(µ)=1

+
∑

t(µ)>1


 | ... | · Bbound

=
∑

t(µ)=0

∣∣∣∣∣ 1

MJ
with

[
αJ

with

(
1 −

(
J
2

)
g N−1

)
+ O(N−2)

]

− 1

MJ
w/o

[
αJ

w/o

(
1 −

(
J
2

)
g N−1

)
+ O(N−2)

] ∣∣∣∣∣∣ · Bbound

+
∑

t(µ)=1

∣∣∣∣∣ 1

MJ
with

[
αJ

with (g + 1) + O(N−1)
]

− 1

MJ
w/o

[
αJ

w/o (g + 1) + O(N−1)
] ∣∣∣∣∣∣ ·Bbound

+
∑

t(µ)>1

∣∣∣∣∣∣
1

MJ
with

[O(1) ] − 1

MJ
w/o

[O(1) ]

∣∣∣∣∣∣ · Bbound

=
1

NJ


 ∑

t(µ)=0

O(N−2) +
∑

t(µ)=1

O(N−1) +
∑

t(µ)>1

O(1)


 · Bbound

=
1

NJ

[ [
N
J

]
O(N−2) +

[
N

J − 1

] (
J
2

)
O(N−1)

+

(
NJ −

[
N
J

]
−
[
N

J − 1

] (
J
2

))
O(1)

]
· Bbound

=
1

NJ

[
O(NJ)O(N−2) + O(NJ−1)O(N−1) + O(NJ−2)O(1)

]
· Bbound

= O(N−2) · Bbound

This proves the per-sample equivalence of bagging based on resampling with and without
replacement up to order O(N−2). The result is somewhat unsatisfactory because the bound
depends on the extremes of the U-terms Bµ, which tend to infinity for N → ∞, unless Bµ

is bounded. Other bounds at a weaker rate can be obtained with the Hölder inequality:

|Bwith − Bw/o| ≤ O
(
N− 2

p

) ( 1

NJ

∑
µ

|Bµ|q
) 1

q

for
1

p
+

1

q
= 1 .

This specializes to the previously derived bound when p = 1 and q = ∞, for which the best
rate of O(N−2) is obtained, albeit under the strongest assumptions on Bµ.
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11.6 Covariances of Bagged Interactions

Resuming calculations begun in Subsection 11.3 for covariances of unbagged interaction
terms, we now derive the covariance of their M-bagged versions:

Bbag =
1

MJ

∑
µ

E [Wµ1 · · ·WµJ
] · Bµ , Cbag =

1

MK

∑
ν

E [Wν1 · · ·WνK
] · Cν .

The moment calculations of Subsection 11.4 yield the following:

Cov(Bbag,Cbag)

=
1

MJ+K

∑
t(µ)+t(ν)=0,1; c(µ,ν)=1

E [Wµ1 · · ·WµJ
] E [Wν1 · · ·WνK

] Cov(Bµ, Cν)

+ O(N−3)

=
1

MJ+K

∑
t(µ)=0, t(ν)=0, c(µ,ν)=1

E [Wµ1 · · ·WµJ
] E [Wν1 · · ·WνK

] Cov(Bµ, Cν)

+
1

MJ+K

∑
t(µ)=1, t(ν)=0, c(µ,ν)=1

E [Wµ1Wµ2 · · ·WµJ
] E [Wν1 · · ·WνK

] Cov(Bµ, Cν)

+
1

MJ+K

∑
t(µ)=0, t(ν)=1, c(µ,ν)=1

E [Wµ1Wµ2 · · ·WµJ
] E [Wν1Wν2 · · ·WνK

] Cov(Bµ, Cν)

+ O(N−3)

=
1

NJ+KαJ+K
JK

[
N

J +K − 1

]

· E [W1 · · ·WJ ] E [W1 · · ·WK ] Cov(B(1,...), C(1,...))

+
1

NJ+KαJ+K

(
J
2

)
KN

[
N

J +K − 3

]

· E [W 2
1W2 · · ·WJ−1] E [W1 · · ·WK ]

(
Cov(B(1,1,...), C(1,...)) + Cov(B(1,1,2,...), C(2,...))

)

+
1

NJ+KαJ+K
J

(
K
2

)
N

[
N

J +K − 3

]

· E [W1 · · ·WJ ] E [W 2
1W2 · · ·WK−1]

(
Cov(B(1,...), C(1,1,...)) + Cov(B(2,...), C(1,1,2,...))

)
+ O(N−3)

= JK

(
N−1 −

(
J +K − 1

2

)
N−2

)(
1 −

(
J
2

)
g N−1

)

·
(

1 −
(
K
2

)
g N−1

)
Cov(BX , CX)
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+

(
J
2

)
K N−2 (g + 1) (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ J

(
K
2

)
N−2 (g + 1) (Cov(BX , CX,X) + Cov(BX , CX,Y,Y )) + O(N−3)

=

(
N−1 −N−2

(
J +K − 1

2

)
− N−2

((
J
2

)
+

(
K
2

))
g

)
JK Cov(BX , CX)

+ N−2

(
J
2

)
K (g + 1) (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ N−2 J

(
K
2

)
(g + 1) (Cov(BX , CX,X) + Cov(BX , CX,Y,Y )) + O(N−3)

The last three lines form the final result of these calculations.

11.7 Difference Between Variances of Bagged and Unbagged

Comparing the results of the Sections 11.3 and 11.6, we get:

Cov(Bbag,Cbag) − Cov(B,C)

= −N−2

((
J
2

)
+

(
K
2

))
g JK Cov(BX , CX)

+ N−2

(
J
2

)
K g (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ N−2 J

(
K
2

)
g (Cov(BX , CX,X) + Cov(BX , CX,Y,Y )) + O(N−3)

= N−2 g

(
−
((
J
2

)
+

(
K
2

))
JK Cov(BX , CX)

+

(
J
2

)
K (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ J

(
K
2

)
(Cov(BX , CX,X) + Cov(BX , CX,Y,Y ))

)
+ O(N−3)

= N−2 g 2 SVar(B,C) + O(N−3) ,

where

SVar(B,C) =
1

2

((
J
2

)
K Cov(CX , BX,X +BX,Y,Y − JBX)
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+

(
K
2

)
J Cov(BX , CX,X + CX,Y,Y −KCX)

)
.

The expression for SVar(B,C) remains correct for J and K as low as 1, in which case one

interprets

(
J
2

)
= 0 and BX,X = 0 when J = 1, and BX,Y,Y = 0 when J ≤ 2, and similar for

C when K =1 or 2.

The result generalizes to arbitrary finite sums of interactions

U = A + B + C + . . .

=
1

N

∑
i

Ai +
1

N2

∑
i,j

Bi,j +
1

N3

∑
i,j,k

Ci,j,k + . . . .

Because SVar(B,C) is a bilinear form in its arguments, the corresponding constant SVar(U)
for sums of U-statistics can be expanded as follows:

SVar(U) = SVar(A,A) + 2SVar(A,B) + SVar(B,B)

+ 2SVar(A,C) + 2SVar(B,C) + SVar(C,C) + . . . ,

so that
Var(U bag) − Var(U) = N−2 g 2SVar(U) + O(N−3) .

For example a functional consisting of first and second order terms,

U = A + B =
1

N

∑
i

Ai +
1

N2

∑
i,j

Bi,j ,

yields

SVar(U) = SVar(A,A) + 2SVar(A,B) + SVar(B,B)

= Cov(AX , BX,X − 2BX) + 2 Cov(BX , BX,X − 2BX)

= Cov(AX + 2BX , BX,X − 2BX) .

Note that SVar(A,A) = 0 because bagging leaves additive statistics unchanged.

11.8 Difference between Squared Bias of Bagged and Unbagged

We consider a single K-th order interaction first, with functional and plug-in statistic

U(F ) = E C(1,2,...,K) ,

U(FN ) =
1

NK

N∑
ν1,...,νK=1

C(ν1,...,νK) .
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[Recall that Cν and C(ν1,...,νK) are short for CXν1 ,...,XνK
.] The functional U(F ) plays the role

of the parameter to be estimated by the statistic U = U(FN ), so that the notion of bias
applies.

We first calculate the bias for the unbagged statistic U and second for the bagged statistic
U bag. Note that ECX = E C1,...,K = U(F ).

E [U(FN )] =
1

NK

∑
ν1,...,νK

E C(ν1,...,νK)

=
1

NK

( [
N
K

]
E C(1,...,K) +

(
K
2

)[
N

K − 1

]
E C(1,1,2,...,K−1) + O(NK−2)

)

= U(F ) + N−1

(
K
2

)
(E CX,X − E CX ) + O(N−2) .

Now for the bias of the bagged statistic:

E U bag =
1

MK

N∑
ν1,...,νk=1

E [Wν1 · · ·WνK
] E C(ν1,...,νK)

=
1

NKαK


 ∑

t(ν)=0

+
∑

t(ν)=1

+ O(NK−2)




=
1

NKαK

([
N
K

]
E [W1 · · ·WK ]E C(1,...,K)

+

(
K
2

)[
N

K − 1

]
E [W 2

1W2 · · ·WK−1]E C(1,1,2,...,K−1)

)

+ O(N−2)

=

(
1 −

(
K
2

)
N−1

) (
1 −

(
K
2

)
g N−1

)
E C(1,...,K)

+ N−1

(
K
2

)
(g + 1) E C(1,1,2,...,K−1)

+ O(N−2)

= U(F ) − N−1

(
K
2

)
(g + 1) E C(1,...,K)

+ N−1

(
K
2

)
(g + 1) E C(1,1,2,...,K−1) + O(N−2)

= U(F ) + N−1

(
K
2

)
(g + 1) (E CX,X − E CX) + O(N−2)

Thus:

Bias (U bag) = N−1

(
K
2

)
(g + 1) (E CX,X − E CX) + O(N−2)
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As for variances, we can now consider more general statistics that are finite sums of interac-
tions:

U = A + B + C + . . .

b =
1

N

∑
Ai +

1

N2

∑
Bi,j +

1

N3

∑
Ci,j,k + . . .

The final result is:

Bias 2(U bag) − Bias 2(U)

= N−2
(
(g + 1)2 − 1

)((2
2

)
(E BX,X − E BX) +

(
3
2

)
(E CX,X − E CX) + . . .

)2

+ O(N−3) .

As usual, g = 1
α

for sampling with, and g = 1
α
− 1 for sampling w/o, replacement.

39



References

[1] L. Breiman. Bagging predictors. Machine Learning, 26:123–140, 1996.

[2] L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, Belmont, California, 1984.

[3] P. Buhlmann and B. Yu. Analyzing bagging. Ann. of Statist., 30:927–961, 2002.

[4] S. X. Chen and P. Hall. Effects of bagging and bias correction on estimators defined by
estimating equations. Statistica Sinica, 2003. (to appear).

[5] B. Efron and C. Stein. The jackknife estimate of variance. Ann. of Statist., 9:586–596,
1981.

[6] J.H. Friedman and O. Hall. On bagging and nonlinear estimation. Can be downloaded
from http://www-stat.stanford.edu/˜jhf/#reports, May 2000.

[7] W. Hoeffding. A class of statistics with asymptotically normal distribution. Ann. Math.
Statist., 19:293–325, 1948.

[8] K. Knight and Jr. G. W. Bassett. Second order improvements of sample quantiles using
subsamples. 2002.

[9] J. A. Reeds. On the definition of von mises functionals. (Ph.D. Dissertation, Harvard
University, Cambridge), 1976.

[10] R. J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, New York,
1980.

40


