The Effect of Bagging on Variance, Bias, and
Mean Squared Error

Andreas Buja! Werner Stuetzle?

October 19, 2000

Abstract

Bagging is a device intended for reducing the prediction error of learning
algorithms. Bagging consists of drawing bootstrap samples from the training
sample, applying the learning algorithm to each bootstrap sample, and averag-
ing the resulting prediction rules. Heuristically, the averaging process should
reduce the variance component of the prediction error. We study the effects
of bagging for U-statistics of any order and finite sums thereof. U-statistics
of high order can describe complex data dependences and yet they admit a
rigorous asymptotic analysis. The following are some findings:

e The effects of bagging on variance, squared bias and mean squared error
are of order N~2. (The following statements are all meant to second
order.)

e If one allows boostrap samples with or without replacement and arbi-
trary resample sizes, then bagging based on “sampling with” for resample
size Myt is equivalent to “sampling without” for resample size M, /, if
N/Mwith = N/Mw/o —1l—=g (> 0, < OO)

e Var(bagged)—Var(raw) is a linear function of g; bagging improves variance
if the slope is negative.

e Bias ?(bagged) — Bias ?(raw) is a positive quadratic function of g; bagging
hence always increases squared bias.

e MSE ?(bagged) — MSE ?(raw) is a quadratic function of g; bagging may or
may not improve mean squared error, and if it does, it is for sufficiently
small g, that is, sufficiently large resample sizes M.
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1 Introduction

Bagging, short for “bootstrap aggregation”, was introduced by Breiman (1996) as a
device for reducing the prediction error of learning algorithms. Bagging is performed
by drawing bootstrap samples from the training sample, applying the learning algo-
rithm to each bootstrap sample, and averaging/aggregating the resulting prediction
rules, that is, averaging or otherwise aggregating the predicted values for test observa-
tions. Breiman presents empirical evidence that bagging can indeed reduce prediction
error. It appears to be most effective for CART trees (Breiman et al. 1984). Breiman’s
heuristic explanation is that CART trees are highly unstable functions of the data —
a small change in the training sample can result in a very different tree — and that
averaging over bootstrap samples reduces the variance component of the prediction
€rror.

In a recent report, Friedman and Hall (2000) present an asymptotic analysis of bagging
purporting to explain its effects for very general statistics. The generality of their
results comes at the cost of reduced transparency. One purpose of this note is to
understand what Friedman and Hall could have meant.

We study the effects of bagging for the class of U-statistics of any order and finite
sums thereof. While these do not capture the statistical properties of CART trees
(see Buhlmann and Yu (2000) for a more realistic approach), U-statistics can capture
complex interactions and yet a rigorous second order analysis is possible.

Like Friedman and Hall’s, our analysis covers several variations on bagging. Instead
of averaging the values of a statistic over bootstrap samples of the same size N
as the original sample, we may choose the resample size M to be smaller, or even
larger, than N. Another alternative covered by our analysis is resampling without
replacement. We show that there exists a correspondence between resample sizes for
sampling with and without replacement that renders the two sampling modes second
order equivalent. We give theoretical conditions under which bagging improves the
variance or the MSE of sums of U-statistics. Furthermore, under these conditions we
give the range of resample sizes for which bagging yields improvements.

The correspondence between resample sizes for sampling with and without replace-
ment for the variance is present in Section 2.6 of Friedman and Hall (2000), but it

is not made use of except for the second order equivalence of conventional bootstrap
(Myitn = N) and half-sampling (M,,/, = N/2).



2 Resampling for U-Statistics

Let X1, X5,..., Xy be i.i.d. random variables. We consider statistics of Xi,..., Xy
that are finite sums

1 1 1
1 1,7 1,75

of U-statistics B, C,... that are permutation symmetric in their arguments. [We put
the arguments in subscripts in order to avoid the clutter caused by frequent parenthe-
ses.| The normalizations of the sums are such that under common assumptions limits
for N — oo exist. Strictly speaking, only the off-diagonal part >°;,; Bx, x, (e.,g.) is
a proper U-statistic. Because we include the diagonal ¢ = j in the double sum, this
is strictly speaking a V-statistic (Serfling 1980), but we use the better known term
“U-statistic” anyway. The reason for including the diagonal is that only in this way
can U be interpreted as the plug-in estimate U(Fy) of a statistical functional

UF) = EAx + EBxy + ECxys +

where X, Y, Z.... are i.i.d. Knowing what the statistic U estimates is a necessity for
bias calculations. A second reason for including the diagonal is that bagging has the
effect of introducing terms such as By, x,, so we may as well include such terms from
the outset.

It is possible to explicitly calculate the bagged version of the statistic U, denoted U%%9.
To this end, let W = W; ..., Wy > 0 be integer valued random variables counting
the multiplicities of X1,..., Xy in a resample. We allow both resampling with and
without replacement, and we also allow the resample size M to be arbitrary:

e For resampling with replacement, that is, bootstrap, the distribution of W is
Multinomial(1/N,...,1/N; M). Conventional bootstrap is for M = N, but we
allow M to range between 1 and oco. Although M > N is computationally
undesirable, infinity is the conceptually plausible upper bound on M: for M =
oo no resampling takes place because with an “infinite resample” one knows the
resampling distribution.

e For sampling without replacement, that is, subsampling, the distribution of W
is Hypergeometric(M, N). Half-sampling, for example, is for M = N/2, but the
resample size M can range between 1 and N. For the upper bound M = N
no resampling takes place because the subsample is just a permutation of the
data.

With these facts we can write down the resampled and the bagged version of a U-
statistic explicitly. We illustrate this for statistics with terms Ax, and By, x;:

1 1
Uboot _ Mzm AXq; + WZVVzW] BXZ-,X]- .
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The bagged version of U under either mode of resampling is the expected value with
respect to W:

Ubag — EW [izm AXZ + LZVV;W BXZ,X]
_ —ZE ] Ax, + —ZE [(WiW;| Bx, x; -

From the form of U it is apparent that the only relevant quantities are moments
of W:

M

EW, = Y with and w/o
EW? — { with: % (1 + %)
W/O N
with: MM-1)
EW, W, = MO -1 (i #7)
’ { w/o: NEN 1))

The required moments are of the same order as the order of the U-statistic. The
bagged functional can now be written down explicitly. It is necessary to distinguish
between the two resampling modes: we denote U by U¥#" and U*/° for resampling
with and without replacement, respectively.

1

) 1 1 1
with
U — N ; (AXz + MBXi,Xi) + m ; <1 - M) BXq',,Xj )
w/o 1 1— M\ 1 1 1— L
U/ — NZ<AX1+<]_—%>MBX“XZ> + FZ(]___)BXZ:XJ‘
[ %]

Such calculations can be extended to statustics with U-terms of higher order than
two. We summarize:

Proposition 1: A bagged sum of U-statistics is also a sum of U-statistics. For a
statistic with terms A and B only, the bagged terms AYh, Bw’th and Av/°, B;f?/lo,
respectively, depend on A, and By, as follows:

| 1 1
with __ wzth .
AT — A, + B, B @ M)m%

w/o 1_% 1 w/o 1_%
A:E :A$+ 1_% MBCL‘,J) ) Baf;,y - 1_% Bl':y .

We see that the effect of bagging is to remove mass from the proper U-part of B
(i) and shift it to the diagonal (3,_;), thus increasing the importance of the




additive part. Similar effects take place in higher orders where variability is shifted
to lower orders.

Notation: For U-statistics C'xy,z,.. of any order we denote partial conditional ex-
pectations by

Cx =E[Cxyzw..

X} ’ CX,Y =E [CX,Y,Z,VV,...

X,Y] ) C’X,Y,Z =E [CX,Y,Z,W,...

X, Y, 7Z].
Equivalently one could introduce them as partial marginal expectations:
Oac =E [Cx,Y,Z,W,...] 5 Cx,y =E [Oac,y,Z,W,...] y Oac,y,z =E [C:c,y,z,W,...] .

It will turn out that for variance and bias calculations to order N 2 these three partial
conditional expectations are the only information needed about a U-statistic of any
order. We will use simple facts such as the following without further mention:

Cov(Bxyyz. ,Cxy z..) = Cov(Bx,Cx),
Cov(Cxyv,z,..,Cxy z,.) = Var(Cx) .

3 Variance

Variances of finite sums of U-statistics can be calculated explicitly. For example, for
a statistic that has only terms A and B, the variance is

Var(U) = N ' Var(Ax + 2Bx)
+ N7? (2Cov(Ax, Bx.x) + 4Cov(Bx x, Bx) — 4Cov(Ax, Bx)
+2Var(Byxy) — 12Var(Bx))
+ N7% (Var(Bx.x) — 2Var(Bxy) + 8Var(Bx) — 4Cov(Bx x, Bx))

What matters here, though, are not variances, but differences between variances of
bagged and raw statistics:

o . . . N . . _ N .
Proposition 2: Let g = 1; for sampling with replacement and g = 7; —1 for sampling
without replacement. Assume that these quantities stay bounded away from zero and
infinity as N — oo. Let U be a finite sum of U-statistics, then:

bag 1 1
Var(U**) — Var(U) = WQTVM'Q + O(ﬁ) :
for both sampling with and without replacement. If U has only terms Ax and Bxy,
then.:

Tyver = Cov(Ax +2Bx,Bx x — Bx) .



The proof is in the appendix, sections A1-A4. Section A4 shows how to calculate Ty,
for statistics with U-terms of any order.

The assumption about ¢ is essential. If it is not satisfied, the order of terms in
powers of N1 will be affected. The jackknife is a case in point: it is obtained for
M = N —1 and sampling without replacement, which does not satisfy the assumption
of the proposition. It would be easy to cover such cases because the calculations we
performed can be performed exact although we report them only to N 2.

In bagged and unbagged functionals, the terms of order % are identical and cancel
out (Friedman and Hall 2000), hence bagging has no effect on the variance to order
%. Surprisingly, the terms of order N=2 are identical for sampling with and without
replacement modulo differing interpretations of g, a fact that will be observed again

for squared bias and hence MSE as well.

There exist situations in which bagging is detrimental for the variance: Ty, > 0.
Bagging reduces variance iff Ty,, < 0. Under this condition, the variance is reduced
the more the larger g and hence the smaller the resample size M is. Therefore, the
fact that bagging may reduce variance cannot be the whole story: if variance were the
criterion of interest, one should choose the resample size M always as low as possible
for maximal variance reduction. Obviously, one has to take into account bias as well.

4 Bias

The result of this section is that bagging always increases squared bias for sums of
U-statistics. Recall that the statistic U = U(Fy) is the plug-in estimator for the
functional U(F’), so the bias is E U(Fy) — U(F).

Proposition 3: With the same assumptions as in Proposition 2, we have:

; a . 1
BlaS2(Ub g) o Bla‘SQ(U) = m (92 + 29) TBias + O(m) )
for both sampling with and without replacement. If U has only terms Ax and Bxy,
then

Thies = (EBxx —EBxy) .

The appendix, section A5, has proofs and a general formula for Tg;,s for statistics
with U-terms of any order.

Just as in the comparison of variances, sampling with and without replacement agree
in the N=2 term modulo differing interpretation of ¢ in the two resampling modes.



5 Mean Squared Error

The mean squared error of U = U(Fy) is
MSE(U) = E ([U(Fy) - U(F)]?) = Var(U) + Bias (U)* .

The difference between MSEs of bagged and raw functionals is as follows:

Proposition 4: With the same notations and assumptions as tn Propositions 2 and
3, we have:

. 1 1
MSE(U (Fy)) = MSE(U(Fy)) = 775 (Toias 8 + (Tvar + Toias) 29) + Ol555) -

for both sampling with and without replacement.

6 Comparison of Sampling With and Without Re-
placement

Variance, squared bias and hence MSE of bagged sums of U-statistics all agree in
the N=2 term under the correspondence guih = Gw /o, Where gyiun = N/Myu, and
Gwjo = N, /M, /o — 1. This correspondence is more intuitive if one expresses the
resample sizes M, and M, /, as fractions of the sample size N:

MUH' Mwo
Quith = Nth (>0, <o0) and Q= N/ (>0, <1).

The condition gwitn = guw/o 1S equivalent to

Qy/o
Qith = 7 -
1 — g/
It equates, for example, half-sampling w/o replacement, o/, = 1/2, with conven-
tional bootstrap, au,u, = 1. Subsampling w/o replacement would be natural with
Quy/o > 1/2 also, but it corresponds to bootstrap with au, > 1, i.e., bootstrap sam-
ples larger than the data sample. While this may be computationally not viable,
it is natural to allow for this possibility if only to complete the range for bootstrap
samples corresponding to subsample sizes M,,,, > N/2. The correspondence maps
Qi /o = 1 t0 Quin = 00, both of which mean that no resampling takes place.
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Figure 1: Dependence of Variance, Squared Bias and MSE on g. The graph shows the
situation for Tya./Trias = —4. Bagging is beneficial for g < 6, that is, for resample
sizes Myun > N/6 and M, > N/7. Optimal is g = 3, that is, My, = N/3 and
My, = N/4.

7 Choice of Resample Size

In some situations one may obtain a gain in MSE for some resample sizes M but
not for others, while in other situations one obtains no gain for any resample size.
Critical is the dependence of the N=2 term of the MSE difference on g:

TBias 92 + 2 (TVa.r + TBia.s) g .
One immediately reads off the following condition for MSE improvement:
Corollary 5: There exist resample sizes for which bagging improves the MSE to order

N=2iff
TVar + TBias <0.



Under this condition the range of beneficial resample sizes is characterized by
TVar
oo (B ).
J TBias
The resample size with optimal MSE improvement is
T
opt __ Var
— n 1) .
g <TBias

Conventional bootstrap, My, = N, and half-sampling, M,,;, = N/2, (both charac-
terized by g = 1) are beneficial iff

TV 3
Var _ 9 ’
TBia.s 2
and they are optimal iff
TVar
=-2.
TBias

Recall from Proposition 2 that the resample sizes M, and M,,/, are expressed in
terms of gyiun = N/Myun and gy = N/M,,, — 1. The corollary therefore prescribes
a minimum resample size in order to achieve MSE improvement. See Figure 1 for an
illustration.

The intuition that the benefits of bagging arise from variance reduction is thus correct,
although it must be qualified: Bagging is not always beneficial, but if it is, the
reduction in MSE is due to reduction in variance. This follows from the fact that
Thias is always positive, hence bagging always increases bias, but if the variance dips
sufficiently strongly, an overall benefit results.

Recall that strictly speaking the above statements should be limited to areas bounded
away from zero and infinity. Near either boundary a different type of asymptotics
sets in.

8 An Example

Consider as a concrete example of U-statistics the case of quadratic functions: Ax =
a-X? and BX,Y =b- XY, i.e.,

I D e WA ot
U=a- 53 X +b- (5 XX

In order to determine the terms Ty, and T, we need the first four moments of X:
Let p =EX, 0 =E[(X — p)’], v = E[(X — p)*)]/0® and k = E[(X — p)"]/o" be
expectation, variance, skewness and kurtosis, respectively. Then:

Tar = (2uyo® + (k—1)o*)ab + 2uyo®b?

8



and
2 4
TBia.s = b g .

It is convenient to write the criterion for the existence of resample sizes with beneficial
effect as Tvar/Thias + 1 < O:

<2ﬁ7+(n—1)> 25 (237+1> <0.
o b o

If p =0 or v = 0, this simplifies to
(k—1) % +1<0.
Since k > 1 for all distributions except a balanced 2-point mass, the condition becomes

< 1
b k—1"

Fora=1, b = —1, i.e., the empirical variance U = mean(X?) —mean(X)?, beneficial
effects of bagging exist iff K > 2. For a = 0, i.e., the squared mean U = mean(X)?,

no beneficial effects exist.

9 Conclusions

The major factual conclusions are stated in the abstract and do not need to be
repeated here. There remains the question of what the facts mean.

Friedman and Hall (2000) seem to imply that a more general conclusion can be
drawn for variance reduction. They argue that in situations with many parameters
the typical effect is that bagging reduces the variance of higher order terms of a
polynomial approximation to the statistic of interest; they imply that this reduction
is by a full order to N—3. Based on the calculations above, we are unable to confirm
these conclusions. According to Proposition 1 above, the reduction in the second order
U-term is minimal: from B to B%Y = (1 — %) B. The same holds for higher order
U-terms. Instead, we see the reduction in variance, if any, arise from an interplay
between various terms, as in the quantity

Tyer = Cov(Ax + 2Bx,Bx x — Bx) ,

whose sign (Tva, < 0) determines the presence of variance reduction for U = Y Ax, +
> Bx, x;- Even when variance is reduced, it is not by a change in the order of the
variance of anything.

Variance cannot be the only criterion of performance: if it were, one would choose the
resample size for bagging extremely small. Variance, however, is counterbalanced by



bias (squared), which is always increased by bagging. Any beneficial effect of bagging
on variance has to first make up for the detrimental effect on bias. The detriment
becomes the greater the smaller the resample size is. Because squared bias increases
quadratically in g and variance decreases linearly in g (if at all), bias detriment will
overcome any variance benefit for small resample sizes. Thus, if an overall improve-
ment in MSE takes place, it is for resample sizes M whose g is sufficiently close to
zero, that is, M, sufficiently close to oo or M,,/, sufficiently close to N. The strange
situation can arise where beneficial resample sizes M,;, can be found only above a
threshold that is larger than N.
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Appendix

We derive the results in steps:

A1l. Covariance of General Interactions

We introduce notation for statistical functionals that are interactions of order J and
K, respectively:

1 1
BZW;B/‘7 C:WZV:OV’

where
M:(Mla"')ﬂJ)e{la"'vN}J ) B# - BXMU""XMJ ’
UV = (Vl,. . .,I/K) € {1, .. ,N}K s Cy = CXul,---,X

We assume the functions B,, ., and Cy, . to be permutation symmetric in their
arguments, the random variables Xi,..., Xy to be i.i.d., and the second moments
of B, and C, to exist for all 4 and v. As is usual in the context of von Mises
expansions, we do not limit the summations to distinct indices as is usual in the
context of U-statistics. The reason is that we wish B and C to be plug-in estimates
of the functionals EB; _; and EC; k.

v

We are interested in calculating the covariance between B and C to order N~! and
N~2. To this end, we need some additional notation for index calculations: Let ¢(1u)
and t(v) be the number of essential ties in p and v, respectively, as follows:

t(:u) - #{ (27])|2<]7 Mi = My Mi?é,ulw-'aﬂi—l}-

The index 7 marks the first appearance of the value y;, and all other p; equal to p; are
counted relative to 7. For example, u = (1, 1,2, 1,2) has three essential ties: pu; = po,
1 = pg, and pz = ps; the tie o = py is inessential because it can be inferred from
the essential ties.

Another notation we need is for the number ¢(u,v) of essential cross-ties between p
and v:
c(pv) = #{G4) [ wi=vy, a7 g, v # 01,050 b

We exclude inessential cross-ties that can be inferred from the ties within p and v. For
example, for p = (1,2,1) and v = (3, 1) the only essential cross-tie is u; = v = 1; the
remaining inessential cross-tie 3 = v5 can be inferred from the essential tie pu; = s
within p.

With these definitions we have the following fact for the number of essential ties of
the concatenated sequence (u, v):

t((,v)) = tp) +tv) +c(p,v) .

11



In expanding the covariance between B and C, we note that the terms with zero
cross-ties between p and v vanish due to independence. Thus:
1
c(uv)>0
Because #{(u,v) | c(u,v) > 0 } is of order O(N/T%~1) (a crude upper bound is
JKN7+HE-1) it follows that Cov(B, C) is of order O(N 1), as it should.

We now show that in order to capture terms of order N~! and N2 in Cov(B, C) it
is sufficient to limit the summation to those (u, ) that satisfy either

or t(p) +t(r) = 0,1 and ¢(u,v) = 1 for short. To this end, we note that the number
of terms with ¢(u) + t(v) > 2 and c(u,v) > 1 is of order N7*5=3. This is seen from
the following crude upper bound:

#H () | tp) +1(v) =2 2, c(p,v) = 1}
#H () | t((p,v)) = 3}

K+J \, ( EK+J 1\, J+ K | NIHE-3
4L K+J—4) 32Kk +7-5) (2,22, +K—-6 ’

where the “choose” terms arise from choosing the index patterns (1,1,1,1), (1,1, 1,2, 2)
and (1,1,2,2,3,3) in all possible ways in a sequence (u,v) of length K + J; these
three patterns are necessary and sufficient for ¢((u,v)) > 3. Using N/T573 instead
of N(N —1)...(N — (J + K —4)) makes this an upper bound.

With the assumption of finite second moments of B, and C, for all 4 and v, it follows
that the sum of terms with #(u) + t(v) > 2 and c(u,v) > 1 is of order O(N73).
Abbreviating

IN

VAN

lN] _ N N(N —=1)...(N — (L —1))

L L!
we have:
Cov(B, C)
1 _
= YR Z Cov(B,,C,) + O(N %)
t(1)+t(1)=0,1; c(u,v)=1
1
= E > Cov(B,,C,)

t(pn)=0, t(v)=0, c(p,v)=1

12



1

+ W Z COV(BN, C,,)
t(p)=1, t(v)=0, c(p,v)=1
1
+ W COV(BM, O,,)
t(p)=0, t(v)=1, c(p,v)=1
+ O(N73)
1 N
- NI+EK JK [J%—K _ 1] ‘COV(B(L...),C(L...))

1 J N
+ NITE <2> KN L] LK 3] : (COV(B(LL...), Ca,.)) + COV(B(1,1,2,...)7C(2,...))>

1 K N
T NTIK J (2 ) N L,JFK _ 31 : (COV(B(L...),0(1,1,...)) + Cov(B,..., J),O(1,1,2,...)))

+ O(N7?),

where “...”

Using

inside a covariance stands for as many distinct other indices as necessary.

m = NI — (’;) NE1 4L O(NE?)

we obtain

Cov(B, C)

_ (N—l _ (J + f; - 1) N2 4 O(N—3)> JK - Cov(Bg...),Cri..y)

J
+ (N2+ 0N (2) (Cov(Bu,.) Ca,.)) + Cov(Bua,.), Cea,.))

(N +O(N73) ( ) COV (Ba,. )70(1,1,...))+COV(B(2,...):0(1,1,2...)))
+ O(N7?).

Collecting terms O(N3), the above can be written in a more sightly manner as
Cov(B, C)

. (N—l - (J”;_ 1) N‘2> JK - Cov(Bx, Cx)

+N? <g> K - (Cov(Bx,x,Cx) + Cov(Bx xy, Cy))

+ N2J <I2{> - (Cov(Bx, Cx x) + Cov(Bx,Cxyy))
+ O(N7?)
=a-N'+b-N2+O(N3).

13



A2. Moments of Resampling Coefficients

We consider sampling in terms of M draws from N objects {1,..., N} with and
without replacement. The draws are M exchangeable random variables Sy, ..., Sy,
where S; € {1,...,N}. Each draw is equally likely: P[S; = n| = N!, but for
sampling with replacement the draws are independent; for sampling w/o replacement
they are dependent and the joint probabilities are P[S; = ny, Sy = na, ..., Sy =ny| =

M N . e .
[J 1 / [J] for distinct n;’s, and = 0 if ties exist among the n;’s.
For resampling one is interested in the count variables
Wn,M,N = W, = Z 1[Su=n} >
pn=1,...M

where we drop M and N from the subscripts if they are fixed. We let W = W, y =
(W1, ..., Wy) and recall:

e For resampling with replacement: W ~ Multinomial(1/N, ..., 1/N; M).

e For resampling w/o replacement: W ~ Hypergeometric(M, N).

For bagging one needs the moments of W. Because of exchangeability of W for fixed
M and N, it is sufficient to consider moments of the form

11 12 Z.L
E [anl,M,N Wn:2,M,N U n:I,M,N} :

The bagged interactions of the previous Subsection Al are:

a 1 al
B = W Z E[Wul"'WuJ] B/ﬂ (1)
Ky g =1
CPa9 ! ivj EW, ---W,]C (2)
MK . V1 VK 13
| Z N V=

The following recursion formulae hold for i; > 1:

i1 12 i,
E [anl,M,N Wn:2,M,N e Wn:I,M,N]
: . M i1—1 12 iL
with : N E [(anl,M—l,N +1) Wn:2,M—1,N o 'Wn:L,M—l,N )

w/o: X E [W22=2’M_1,N—1 e inLzL,M—l,N—l] :

14



From these one obtains the following results, all of which will be used below (a =
M/N):

E[W Wy Wi = O(1)

E[W, Ws---W,]
with : ]\I/:[ /NE

E[W? Wy W]

M L M
with : _L]/N + [L—

M N
-1/ L1
with: ol + of' + O(N )

- {W/o: a7t + O(NTY)
=al(g+1) + O(NTY,

1] /NL—l

where as always g = é for sampling with, and g = é — 1 for sampling w/o, replace-
ment.

15



A3. Covariances of Bagged Interactions

With this preparations, we can approach the covariance of the M-bagged version of
general interactions:

a 1 1
Bbw — EW[WZ Wm"'Wm‘B/L] :WZE[WM...WW}.BM,
"

m

a 1 1
Cl — EW[WZ W,,l---WVK-C’V] = W;E[Wm---ww]-cy.

Bagging differentially reweights the parts of an interaction, and the result is not a
pure interaction anymore but a general U-statistic. The effect of bagging is to create
lower-order interactions from higher orders.

Note two facts about the moments of W which act as weights: 1) They depend on
the structure of the ties of the indices only; for example, u = (1,1,2) and p = (3,2, 3)
have the same weights, E [W2W,] = E [W2W,] due to exchangeability. 2) The mo-
ments of W are of order O(1) in N (Appendix A2) and hence preserve the orders
O(N™', O(N72, O(N—3 of the terms considered in Appendix Al. These consider-
ations allow us to extend the covariance calculations of Appendix Al from raw to
bagged interactions:

Cov (B, Cbas)

1
= SE > EW.-- W] E[W,---W,,] Cov(B,.C,)
t(1)+t(1)=0,1; c(u,v)=1
+ O(N73)
1
- MI+E Z E [Wul T Ww] E [Wm T WVK] COV(B;“ C,,)
t(lu’)=07 t(y):O, c(tuﬂj):l
1
+ MI+E Z E [Wul W, - 'Ww] EW, - -W,/] COV(B/M C,)
t(n)=1, t(r)=0, c(u,v)=1
1
+ MI+K E [Wul Wuz U WuJ] E [WV1WV2 U WVK} COV(B/_U Cu)
t(n)=0, t(v)=1, c(u,v)=1
+ O(N73)

1 N
T NITK K JK lJ+K_ 1]
E[W, W, E[W, - W] Cov(Ba..), Ca..)
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1 J N
+NJ+KaJ+K <2>KN _(]+K_3

geon

EW Wy W4 E[W;--- W] (COV(B(1 1,.0:Ca,..)) + Cov(B12,.), 0(2,...)))

1 K N
+NJ+KQJ+KJ<2>N J+K -3

CE[Wy- W] EWiWy - Wg_] (COV(B(L...), Caa,.)) + Cov(Be,.. .0, Caiz,.)

+ O(N73)

(1 )
-(1 - (f) gN_1> Cov(Bx, Cx)

+ <L2]> K N72 (g —+ 1) (COV(BX,X, Ox) + COV(BX,X’y, Cy))

+ J <I2(> N_2 (g+ 1) (COV(B)(,CX,X) +COV(BX70X,Y7Y)) + O(N—?))

C (e Y s (0) 4 (5))) ok ot

N (f; ) (g+1) (Cov(Bx,Cxx)+ Cov(Bx,Cxyy)) + O(N

A4. Difference Between Bagged and Raw Variances

Comparing the results of the Sections A3 and A1, we get:

Cov(B%, C*) — Cov(B,C)

- -2 ((5)+ (5 )) g JK Cov(By,Cx)

+ N2 ( )K (Cov(Bx,x, Cx) + Cov(Bx,x,v, Cy))

+ N2 J( > COV BX,Cxx)+COV(Bx,nyy)) + O(N_3)
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v (((2) (5)) 9K o

+ (g) K (COV(BX’X, Cx) + COV(BX,X’y, Cy))

+J<I2( ) (Cov(Bx, Cx x) + Cov(Bx, Cxyy)) ) + O(N?)
— N2 g2 Tyu(B,C) + O(N9)

where

1 J
Tvar(B,C) = 5 <<2>KCOV(C)(, BX,X—l—BX,y,y—JBX)

+ <I2(> J COV(B)(, CX,X + OX,Y,Y — KOX) ) .

The expression for Ty, (B, C) remains correct for J and K as low as 1, in which case

one interprets =0and Bx x =0 when J =1, and Bxyy = 0 when J < 2, and

2
similar for C' when K =1 or 2.

The result generalizes to arbitrary finite sums of interactions

U = A+B+C+...
1 1 1
1 1,7

i’j’k

Because Ty, (B, C) is a bilinear form in its arguments, the corresponding constant
Tvar(U) for sums of U-statistics can be expanded as follows:

TVar(U) = TVar(Aa A) + 2TVar(Aa B) + TVar(BaB)
+ 2Tva(A,C) + 2Tvar(B,C) + Tya(C,C) + ...
so that
Var(U"9) — Var(U) = N 2g2Tv.(U) + O(N73).

For example a functional consisting of first and second order terms,

1 1
UZA'FBZ NZAi—i_mZBi’j’
[ 1,]

TVar(U) - TVar(A;A) + QTVar(A,B) + TVar(ByB)
= COV(A)(, BX,X — 2Bx) + 2COV(B)(, BX,X — QB)()
COV(AX + ZB)(,BX,X — QB)() .

Note that Ty, (A, A) = 0 because bagging leaves additive statistics unchanged.
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A5. Difference between Bagged and Raw Squared Bias
We consider a single Kth order interaction first, with functional and plug-in statistic

UF) = ECup, K,

U(FN) — W Z O(Vl ..... VK) .

[Recall that C, and C(y, ... are short for Cx, ... X,,K.] The functional U(F') plays
the role of the parameter to be estimated by the statistic U = U(Fy), so that the
notion of bias applies.

We first calculate the bias for the raw statistic U and second for the bagged statistic
Ubag' Note that EC’X:EC’l K:U(F)

.....

1 (N K\[ N
- NK ( [K] ECu. .0 + <2> lK _ 1] E Cuap,.. k-1 + O(NKT?) >

)(E Cxx — ECx) + O(N72).

a 1 N
BUM — — 3 IE[Wyl...W,,K]EC’(Vl ..... -
UVl V=
1
B > o+ >+ O(NK2))
Nfa® <t<u>=o Hoot
1 N
= NKCYK ([K‘| E [Wl . WK] E O(l ..... K)
K N
+ O(N?)



1 (K B
+ N 1 <2> (g+ 1) E 0(171,27.“71(71) + O(N 2)

~ U(F) + N7 (I;

) (g—l—l) (E CX,X — EC)() + O(N_2)
Thus:

K

Bias (U") = N* <2> (g+1) (ECxx — ECx) + O(N7?)

As for variances, we can now consider more general statistics that are finite sums of
interactions:
U = A+B+C+ ...
= %ZAZ- + %Zfﬁuj + %ZQM + ...

The final result is:

Bias?(U") — Bias?(U)

= N2 ((g+1)2 _ 1) ((;) (E Bxx — E Bx) + (g) (ECxx — ECx) + )2

+ O(N7?).

As usual, g = é for sampling with, and g = é — 1 for sampling w/o, replacement.
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