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Abstract: Bagging is a device intended for reducing the prediction error of learning

algorithms. In its simplest form, bagging draws bootstrap samples from the training

sample, applies the learning algorithm to each bootstrap sample, and then averages

the resulting prediction rules. More generally, the resample size M may be different

from the original sample size N , and resampling can be done with or without

replacement.

We investigate bagging in a simplified situation: the prediction rule produced

by a learning algorithm is replaced by a simple real-valued U-statistic of i.i.d. data.

U-statistics of high order can describe complex dependencies, and yet they admit

a rigorous asymptotic analysis. We show that bagging U-statistics often but not

always decreases variance, whereas it always increases bias.

The most striking finding, however, is an equivalence between bagging based on

resampling with and without replacement: the respective resample sizes Mwith =

αwithN and Mw/o = αw/oN produce very similar bagged statistics if αwith =

αw/o/(1 − αw/o). While our derivation is limited to U-statistics, the equivalence

seems to be universal. We illustrate this point in simulations where bagging is

applied to cart trees.
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1. Introduction

Bagging, short for “bootstrap aggregation”, was introduced by Breiman (1996)

as a device for reducing the prediction error of learning algorithms. Bagging is

performed by drawing bootstrap samples from the training sample, applying the

learning algorithm to each bootstrap sample, and averaging/aggregating the re-

sulting prediction rules, that is, averaging or otherwise aggregating the predicted

values for test observations. Breiman presents empirical evidence that bagging

can indeed reduce prediction error. It appears to be most effective for cart

trees (Breiman et al. 1984). Breiman’s heuristic explanation is that cart trees

are highly unstable functions of the data — a small change in the training sample
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can result in a very different tree — and that averaging over bootstrap samples

reduces the variance component of the prediction error.

The goal of the present article is to contribute to the theoretical understand-

ing of bagging. We investigate bagging in a simplified situation: the prediction

rule produced by a learning algorithm is replaced by a simple real-valued statistic

of i.i.d. data. While this simplification does not capture some characteristics of

function fitting, it still enables us, for example, to analyze the conditions under

which variance reduction occurs. The claim that bagging always reduces variance

is in fact not true.

We start by describing bagging in operational terms. Bagging a statistic

θ(X1, . . . ,XN ) is defined as averaging it over bootstrap samples X∗
1 , . . . ,X∗

N :

θB(X1, . . . ,XN ) = aveX∗

1
,...,X∗

N
θ(X∗

1 , . . . ,X∗
N ) .

where the observations X∗
i are i.i.d. draws from {X1, . . . ,XN }. The bagged

statistic can also be written as

θB(X1, . . . ,XN ) =
1

NN

∑

i1,...,iN

θ(Xi1 , . . . ,XiN )

because there are NN sets of bootstrap samples, each having probability 1/NN .

For realistic sample sizes N , the NN sets cannot be enumerated in actual com-

putations, hence one resorts to sampling a smaller number, often as few as 50.

Our analysis covers several variations on bagging. Instead of averaging the

values of a statistic over bootstrap samples of the same size N as the original

sample, we may choose the resample size M to be smaller, or even larger, than N .

Another alternative covered by our analysis is resampling without replacement.

The statistics we consider here are U-statistics. While they do not capture

the statistical properties of cart trees, U-statistics can model complex interac-

tions and yet they allow for a rigorous second order analysis. (For an approach

tailored to tree-based methods, see Buhlmann and Yu (2003).)

The most striking effect we observe, both theoretically and in simulations,

is a correspondence between bagging based on resampling with and without re-

placement. The two modes of resampling produce very similar bagged statistics

if the resampling fractions αw/o = Mw/o/N for sampling without replacement
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and αwith = Mwith/N for sampling with replacement satisfy the relation

αwith =
αw/o

1 − αw/o
, or

1

αwith
=

1

αw/o
− 1 .

This equivalence holds to order N−2 under regularity assumptions. The equiva-

lence is implicit in one form or another in previous work: Friedman and Hall (2000,

sec. 2.6) notice it for a type of polynomial expansions, but they do not make use

of it other than noting that half-sampling without replacement (αw/o = 1/2)

and standard bootstrap sampling (αwith = 1) yield very similar bagged statis-

tics. Knight and Bassett (2002, sec. 4) note the equivalence for half-sampling

and bootstrap in the case of quantile estimators. In the present article we show

the equivalence for U-statistics of fixed but arbitrary order. We also illustrate it

in simulations for bagged trees where it holds with surprising accuracy, hinting

at a much greater range of validity.

Other observations about the effects of bagging concern the variance, squared

bias, and mean squared error (MSE) of bagged U-statistics. Similar to Chen and

Hall (2002) and Knight and Bassett (2002), we obtain effects that are only of

order O(N−2). This may seem small with the sometimes strong effects of bagging

on cart trees in mind, but it should be kept in mind that the implicit N of a

tree-based estimate f̂(x) of a function f(x) at x is often small, namely, in the

order of the terminal node size. For small N , however, even effects of order N−2

can be sizable. — We also find that, with decreasing resample size, squared bias

always increases and variance often but not always decreases. More precisely, the

difference between bagged and unbagged for the squared bias is an increasing

quadratic function of

g :=
1

αwith
=

1

αw/o
− 1 ,

and for the variance it is an often but not always decreasing linear function

of g. Therefore, the only possible beneficial effect of bagging stems from variance

reduction. In those situations where variance is reduced, the combined effect of

bagging is to reduce the MSE in an interval of g near zero; equivalently, the MSE

is reduced for αwith near infinity and correspondingly for αw/o near 1. For the

standard bootstrap ( αwith = 1) and half-sampling (αw/o = 1/2), improvements

in MSE are obtained only if the resample sizes fall in the respective critical
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intervals. However, there can arise odd situations in which the MSE is improved

only for αwith > 1 and αw/o > 1/2.

We finish this article with some illustrative simulations of bagged cart trees.

A purpose of these illustrations is to gain some understanding of the peculiarities

of trees in light of the fact that bagging often shows dramatic improvements

that apparently go beyond the effects described by O(N−2) asymptotics. An

important point to keep in mind is that there are two notion of bias:

• If we regard θ(FN ) as a plug-in estimate of θ(F ), then the plug-in bias is

E θ(FN ) − θ(F ).

• If we regard θ(FN ) as an estimate for some parameter µ, then the estimation

bias is E θ(FN ) − µ.

The second notion of bias – estimation bias – is the one commonly used in function

estimation. Our theory of bagged U-statistics, however, is concerned with plug-

in bias, not with estimation bias. The same applies to Chen and Hall’s (2002)

theory of bagging estimating equations, as well as Knight and Bassett’s (2002)

theory of bagged quantiles. This point even applies to Buhlmann and Yu’s (2003)

treatment of bagged stumps and trees because their notion of bias refers not

to the true underlying function but to the optimal asymptotic target, that is,

the asymptotically best fitting stump or tree. Their theory therefore explains

bagging’s effect on the variance of stumps and trees (better than any of the other

theories, including ours), but it, too, has nothing to say about bias in the usual

sense of function fitting.

An interesting observation we make in the simulations is that for smooth

underlying f(x) bagging not only decreases variance, but it can reduce estimation

bias as well. This should not be too surprising because according to Buhlmann

and Yu’s theory the effect of bagging is essentially to replace fitting a stump

with fitting a stump convolved with a narrow-bandwidth kernel. The convolved

stump is smooth and has a chance to reduce estimation bias when the underlying

f(x) is smooth.

Note: The proofs can be found at either of the following URLs:

www-stat.wharton.upenn.edu/˜buja/PAPERS/sinica-bagging-buja-stuetzle.pdf

www.stat.washington.edu/wxs/Learning-papers/sinica-bagging-buja-stuetzle.pdf
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2. Resampling U-Statistics

Let X1,X2, . . . ,XN be i.i.d. random variables. We consider statistics of

X1, ...,XN that are finite sums

U =
1

N

∑

i

AXi +
1

N2

∑

i,j

BXi,Xj +
1

N3

∑

i,j,k

CXi,Xj ,Xk
+ . . . ,

where the “kernels” B, C,... are permutation symmetric in their arguments. [We

put the arguments in subscripts in order to avoid the clutter caused by frequent

parentheses.] The normalizations of the sums are such that under common as-

sumptions limits for N → ∞ exist. Strictly speaking, only the off-diagonal part
∑

i6=j BXi,Xj (e. g.) is a proper U-statistic. Because we include the diagonal i = j

in the double sum, this is strictly speaking a V-statistic or von Mises statistic

(Serfling 1980, Sec. 5.1.2), but we use the better known term “U-statistic” any-

way. The reason for including the diagonal is that only in this way can U be

interpreted as the plug-in estimate U(FN ) of a statistical functional

U(F ) = E AX + E BX,Y + E CX,Y,Z + . . .

where X, Y , Z,... are i.i.d. Knowing what the statistic U estimates is a necessity

for bias calculations. A second reason for including the diagonal is that bagging

has the effect of creating terms such as BXi,Xi , so we may as well include such

terms from the outset.

It is possible to explicitly calculate the bagged version U bag of a sum of

U-statistics U . We can allow bagging based on resampling with and without

replacement as well as arbitrary resample sizes M .

Let W = (W1 . . . ,WN ≥ 0) be integer-valued random variables counting the

multiplicities of X1, . . . ,XN in a resample.

• For resampling with replacement, that is, bootstrap, the distribution of W

is Multinomial(1/N, . . . , 1/N ;M). Conventional bootstrap corresponds to

M = N , but we allow M to range between 1 and ∞. Although M > N

is computationally undesirable, infinity is the conceptually plausible upper

bound on M : for M = ∞ no averaging takes place because with an “infinite

resample” one has F ∗
M = FN .

• For resampling without replacement, that is, subsampling, W is a hypergeo-

metric random vector where each Wi is Hypergeometric(N, 1,M) with each
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i = 1...N being the unique “defective” in turn. Half-sampling, for example,

is for M = N/2, but the resample size M can range between 1 and N . For

the upper bound M = N no averaging takes place because the resample is

just a permutation of the data, hence F ∗
M = FN .

With these facts we can write down the resampled and the bagged version of a U

explicitly. We illustrate this for a statistic U with kernels AXi and BXi,Xj . For

a resample of M with multiplicities W1, . . . ,WN , the value of U is

U resample =
1

M

∑

Wi AXi +
1

M2

∑

WiWj BXi,Xj .

The bagged version of U under either mode of resampling is the expected value

with respect to W:

U bag = EW

[

1

M

∑

Wi AXi +
1

M2

∑

WiWj BXi,Xj

]

=
1

M

∑

E [Wi] AXi +
1

M2

∑

E [WiWj ] BXi,Xj .

From the form of U bag it is apparent that the only relevant quantities are moments

of W:

EWi =
M

N
with and w/o

EW 2
i =







with: M
N + M(M−1)

N2

w/o: M
N

EWiWj =







with: M(M−1)
N2

w/o: M(M−1)
N(N−1)

(i 6= j)

The bagged functional can now be written down explicitly. It is necessary to

distinguish between the two resampling modes: we denote U bag by Uwith and

Uw/o for resampling with and without replacement, respectively.

Uwith =
1

N

∑

i

(

AXi +
1

Mwith
BXi,Xi

)

+
1

N2

∑

i,j

(

1 −
1

Mwith

)

BXi,Xj ,

Uw/o =
1

N

∑

i



AXi +





1 −
Mw/o

N

1 − 1
N





1

Mw/o
BXi,Xi



 +
1

N2

∑

i,j





1 − 1
Mw/o

1 − 1
N



BXi,Xj .

Analogous calculations can be carried out for statistics with U-terms of orders

higher than two. We summarize:
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Proposition 1: A bagged sum of U-statistics is also a sum of U-statistics. For a

statistic with kernels Ax and Bx,y only, the bagged terms Awith
x , Bwith

x,y and A
w/o
x ,

B
w/o
x,y , respectively, depend on Ax and Bx,y as follows:

Awith
x = Ax +

1

Mwith
Bx,x , Bwith

x,y =

(

1 −
1

Mwith

)

Bx,y ,

Aw/o
x = Ax +





1 −
Mw/o

N

1 − 1
N





1

Mw/o
Bx,x , Bw/o

x,y =





1 − 1
Mw/o

1 − 1
N



Bx,y .

For U-statistics with terms of first and second order, the proposition is a

direct result of the preceding calculations. For general U-statistics of arbitrary

order, the proposition is a consequence of the proofs in the appendix of the online

version of this article.

We see from the proposition that the effect of bagging is to remove mass

from the proper U-part of B (
∑

i6=j) and shift it to the diagonal (
∑

i=j), thus

increasing the importance of the linear part. Similar effects take place in higher

orders where variability is shifted to lower orders.

3. Equivalence of Resampling With and Without Replacement

Proposition 1 yields a heuristic for an important fact: bagging based on

resampling with replacement yields results very similar to bagging based on re-

sampling without replacement if the resample sizes Mwith and Mw/o are suit-

ably matched up. The required correspondence can be derived by equating

Awith = Aw/o and/or Bwith = Bw/o in Proposition 1; both equations yield the

identical condition:

Corollary: Bagging a sum of U-statistics of first and second order yields iden-

tical results under the two resampling modes if

N − 1

Mwith
=

N

Mw/o
− 1 .

For a general finite sum of U-statistics of arbitrary order, we do not obtain

an identity but an approximate equivalence:

Proposition: 2 Bagging a finite sum of U-statistics of arbitrary order under
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either resampling mode yields the same results up to order O(N−2) if

N

Mwith
=

N

Mw/o
− 1 ,

assuming the kernels are bounded. If the kernels are not bounded but have mo-

ments of order q, the approximation is to order O(N
− 2

p ), where 1
p + 1

q = 1.

We will similarly see that variance, squared bias and hence MSE of bagged

U-statistics all agree in the N−2 term in the two resampling modes under corre-

sponding resample sizes.

The correspondence between the two resampling modes is more intuitive if

one expresses the resample sizes Mwith and Mw/o as fractions/multiples of the

sample size N :

αwith =
Mwith

N
(> 0, < ∞) and αw/o =

Mw/o

N
(> 0, < 1).

The condition of Proposition 2 above is equivalent to

αwith =
αw/o

1 − αw/o
.

It equates, for example, half-sampling without replacement, αw/o = 1/2, with

conventional bootstrap, αwith = 1. Subsampling without replacement with

αw/o > 1/2 corresponds to bootstrap with αwith > 1, that is, bootstrap resam-

ples larger than the original sample. The correspondence also maps αw/o = 1 to

αwith = ∞, both of which mean that the bagged and the unbagged statistic are

identical.

4. The Effect of Bagging on Variance, Bias and MSE

We need some notation: For U-statistics CX,Y,Z... of any order we denote

partial conditional expectations by

CX = E [CX,Y,Z,W,...|X ] , CX,Y = E [CX,Y,Z,W,...|X,Y ]

4.1 Variance

Variances of U-statistics can be calculated explicitly. For example, for a

statistic that has only terms AX and BX,Y , the variance is

Var(U) = N−1 Var(AX + 2BX)
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+ N−2 (2Cov(AX , BX,X) + 4Cov(BX,X , BX) − 4Cov(AX , BX)

+2Var(BX,Y ) − 12Var(BX))

+ N−3 (Var(BX,X) − 2Var(BX,Y ) + 8Var(BX) − 4Cov(BX,X , BX))

We are, however, primarily interested not in variances but differences between

variances of bagged and unbagged statistics:

Proposition 3: Let g = N
M for sampling with replacement and g = N

M − 1 for

sampling without replacement. Assume g is fixed and 0 < g < ∞ as N → ∞.

Let U be a finite sum of U-statistics of arbitrary order; then:

Var(U bag) − Var(U) =
1

N2
· 2SVar · g + O(

1

N3
) ,

for both sampling with and without replacement. If U has only terms AX and

BX,Y , then:

SVar = Cov(AX + 2BX , BX,X − BX) .

The proof is in the appendix of the online version of this article, where we

also show how to calculate SVar for statistics with U-terms of any order. — The

effect of bagging on variance is of order O(N−2). For statistics of first order

(BX,Y = 0) we have SV ar = 0, hence no effect of bagging.

The assumption about g is essential. If it is not satisfied, the order of the

asymptotics will be affected. The jackknife is a case in point: It is obtained for

M = N − 1 and resampling without replacement. This implies g → 0, which

violates the assumption of the proposition. It would be easy to cover this type

of asymptotics because the calculations can be performed exactly.

There exist situations in which bagging increases the variance, namely, when

SVar > 0. If SVar < 0, variance is reduced, and the beneficial effect becomes the

more pronounced the smaller the resample size. Therefore, the fact that bagging

may reduce variance cannot be the whole story: if variance were the only criterion

of interest, one should choose the resample size M as low as operationally feasible

for maximal variance reduction. Obviously, one has to take into account bias as

well.



10 ANDREAS BUJA AND WERNER STUETZLE

4.2 Bias

We show that bagging U-statistics always increases squared bias (except for

linear statistics, where the bias vanishes). Recall that the statistic U = U(FN )

is the plug-in estimator for the functional U(F ), so the bias is E U(FN )−U(F ).

Proposition 4: Under the same assumptions as in Proposition 3, we have:

Bias 2(U bag) − Bias 2(U) =
1

N2
(g2 + 2g)SBias + O(

1

N3
) ,

for both sampling with and without replacement. If U has only terms AX and

BX,Y , then

SBias = (EBX,X − EBX,Y )2 .

Again, the proofs are in the appendix of the online version of this article

where we also give a general formula for SBias for statistics with U-terms of any

order. — For statistics of first order (BX,Y = 0) we have SBias = 0, hence no

effect of bagging.

Just as in the comparison of variances, sampling with and without replace-

ment agree in the N−2 term modulo differing interpretation of g in the two

resampling modes.

4.3 Mean Squared Error

The mean squared error of U = U(FN ) is

MSE(U) = E
(

[U(FN ) − U(F )]2
)

= Var(U) + Bias (U)2 .

The difference between MSEs of bagged and unbagged functionals is as follows:

Proposition 5: Under the same assumptions as in Propositions 3 and 4, we

have:

MSE(U bag
M (FN ))−MSE(U(FN )) =

1

N2

(

SBias g2 + (SVar + SBias ) 2g
)

+ O(
1

N3
) .

for both sampling with and without replacement.

4.4 Choice of Resample Size

In some situations one may obtain a reduction in MSE for some resample

sizes M but not for others, while in other situations bagging may never lead to
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g
0 2 4 6 8

Var

MSE

Bias^2

0

Figure 4.1: Dependence of Variance, Squared Bias and MSE on g. The graph shows

the situation for SVar/SBias = −4. Bagging is beneficial for g < 6, that is, for resample

sizes Mwith > N/6 and Mw/o > N/7. Optimal is g = 3, that is, Mwith = N/3 and

Mw/o = N/4.

an improvement. The critical factor is the dependence of the MSE difference on

g:

SBias g2 + 2 (SVar + SBias ) g .

One immediately reads off the following condition for MSE improvement:

Corollary 5: There exist resample sizes for which bagging improves the MSE to

order N−2 iff

SVar + SBias < 0 .

Under this condition the range of beneficial resample sizes is characterized by

g < −2

(

SVar

SBias
+ 1

)

.

The resample size with optimal MSE improvement is

gopt = −

(

SVar

SBias
+ 1

)

.

Conventional bootstrap, Mwith = N , and half-sampling, Mw/o = N/2, (both

characterized by g = 1) are beneficial iff

SVar

SBias
< −

3

2
,
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and they are optimal iff
SVar

SBias
= −2 .

Recall from Proposition 3 that the resample sizes Mwith and Mw/o are ex-

pressed in terms of gwith = N/Mwith and gw/o = N/Mw/o − 1. The corollary

therefore prescribes a minimum resample size to achieve MSE reduction. See

Figure 1 for an illustration.

The intuition that the benefits of bagging arise from variance reduction is

thus correct, although it must be qualified: Bagging is not always beneficial, but

if it is, the reduction in MSE is due to reduction in variance. This follows from

the fact that SBias is always positive, hence bagging always increases bias, but if

the variance dips sufficiently strongly, an overall benefit results.

Recall that the above statements should be limited to values of g bounded

away from zero and infinity. Near either boundary a different type of asymptotics

sets in.

4.5 An Example: Quadratic Functionals

Consider as a concrete example of U-statistics the case of quadratic functions:

AX = a · X2 and BX,Y = b · XY , that is,

U = a ·
1

N

∑

X2
i + b · (

1

N

∑

Xi)
2 .

In order to determine the terms SVar and SBias , we need the first four moments of

X: Let µ = EX, σ2 = E [(X−µ)2], γ = E [(X−µ)3)]/σ3 and κ = E [(X−µ)4]/σ4

be expectation, variance, skewness and kurtosis, respectively. Then:

SVar = (2µγσ3 + (κ − 1)σ4) ab + 2µγσ3 b2

and

SBias = b2 σ4 .

It is convenient to write the criterion for the existence of resample sizes with

beneficial effect on the MSE as SVar/SBias + 1 < 0:

(

2
µ

σ
γ + (κ − 1)

)

a

b
+

(

2
µ

σ
γ + 1

)

< 0 .
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If µ = 0 or γ = 0, this simplifies to

(κ − 1)
a

b
+ 1 < 0 .

Since κ > 1 for all distributions except a balanced 2-point mass, the condition

becomes
a

b
< −

1

κ − 1
.

For a = 1, b = −1, that is, the empirical variance U = mean(X2) − mean(X)2,

beneficial effects of bagging exist iff κ > 2. For a = 0, that is, the squared mean

U = mean(X)2, no beneficial effects exist.

5. Simulation Experiment

The prinicipal purpose of the experiments presented here is is to demonstrate

the correspondence between resampling with and without replacement in the

non-trivial setting of bagging cart trees.

Scenarios. We consider four scenarios, differing in the size N of the training

sample, the dimension p of the predictor space, the noise variance σ2, the number

K of leaves of the cart tree, and the true regression function f . The scenarios

are adapted from Friedman and Hall (2000).

Scenario N p X σ2 K f(x)

1 800 1 U [0, 1] 1 2 I(x > 0.5)

2 800 1 U [0, 1] 1 2 x

3 8000 10 U [0, 1]10 0.25 50
∏5

i=1 I(xi > 0.13)

4 8000 10 U [0, 1]10 0.25 50
∑5

i=1 i xi

We grew all trees in Scenarios 3 and 4 in a stagewise forward manner without

pruning; at each stage we split the node that resulted in the largest reduction of

the residual sum of squares, till the desired number of leaves was reached.

Performance Measures. Let T
w/o
α (·;L) be the bagged tree obtained by averag-

ing cart trees grown on resamples of size α N drawn without replacement from

a training sample L = (x1, y1), . . . , (xN , yN ), and let Twi
α (·;L) be the bagged tree

obtained by averaging over resamples of size α N/(1−α) drawn with replacement.

The mean squared error (MSE) of T
w/o
α is

MSE (Tw/o
α ) = E X [E L((Tw/o

α (X;L) − f(X))2)]
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= E X [E L((Tw/o
α (X;L) − E L(Tw/o

α (X;L)))2)]

+E X [ (E L(Tw/o
α (X;L) − f(X)))2]

= Var(Tw/o
α ) + Bias 2

est(T
w/o
α ) .

The MSE of Twi
α is defined analogously.

Recall that the definition of bias used here is estimation bias — expected

difference between the estimated regression function for a finite sample size and

the true regression function. As pointed out in the introduction, this is different

from plug-in bias — expected difference between the value of a statistic for a

finite sample size and its value for infinite sample size — which was analyzed

in the earlier sections of the article. cart trees with a fixed number of leaves

and their bagging averages are not in general consistent estimates of the true

regression function, and in cases where they are not, as in scenarios (2) and (4)

above, the two notions of bias differ.

Operational details of the experiment. We estimated plug-in bias, esti-

mation bias, variance, and MSE for α = 0.1, 0.2, . . . , 0.9, 0.95, 0.99, 1; α = 1

corresponds to unbagged cart. Estimates were obtained by averaging over 100

training samples and 10, 000 test observations.

We approximated the bagged trees T
w/o
α (·;L) and Twi

α (·;L) by averaging over

50 resamples. A finite number of resamples adds a significant variance component

to the Monte Carlo estimates of Var(T
w/o
α ) and Var(Twi

α ). This component can

be easily estimated and subtracted out, thus adjusting for the finite number of

resamples. There is no influence of the number of resamples on bias.

To calculate the plug-in bias we need to know the cart tree for infinite

training sample size. In Scenarios 1 and 3 this is not a problem because the trees

are consistent estimates for the true regression functions. In Scenarios 2 and 4

we approximated the tree for infinite training sample size by a tree grown on a

training sample of size n = 100, 000.

Simulation results. Figure 5.2 summarizes the simulation results for Sce-

nario 1. The top panels show variance, squared plug-in bias, and squared es-

timation bias as functions of the resampling fraction α, for resampling with and

without replacement. The bottom panel shows the MSE for both resampling

modes, and variance and squared estimation bias for sampling with replacement
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only. To make the tick mark labels more readable, vertical scales in all the panels

are relative to the MSE of the unbagged tree.

We note that variance decreases monotonically with decreasing resampling

fraction, which confirms the intuition that smaller resample size means more

averaging. Estimation bias and plug-in bias agree because a tree with two leaves

is a consistent estimate for the true regression function, which in this scenario

is a step function. Squared plug-in bias increases with decreasing resampling

fraction, as predicted by the theory presented in Sections 4.1 through 4.3.

Figure 5.3 shows the corresponding results for Scenario 2. Again, variance

is decreasing with decreasing resampling fraction, and squared plug-in bias is

increasing, as predicted by the theory. Squared estimation bias, however, is de-

creasing with decreasing resampling fraction. Bagging therefore conveys a double

benefit, decreasing both variance and squared (estimation) bias. The explanation

is simple: A bagged cart tree is smoother than the corresponding unbagged tree,

because bagging smoothes out the discontinuities of a piecewise constant model.

If the true regression function is smooth, smoothing the estimate can be expected

to be beneficial. Admittedly, the scenario considered here is highly unrealistic,

but the beneficial effect can also be expected in more realistic situations, like

Scenario 4 discussed below.

Scenario 3 is analogous to Scenario 1, with 10-dimensional instead of one-

dimensional predictor space. The true regression function is piecewise constant

and can be consistently estimated by a cart tree with 50 leaves. The results,

shown in Figure 5.4, parallel those for Scenario 1.

The results for Scenario 4, shown in Figure 5.5, closely parallel those for

Scenario 2. Again, both variance and squared (estimation) bias decrease with

decreasing resampling fraction.

The experiments confirm the agreement between bagging with and without

replacement predicted by the theory developed in Section 3: Bagging without

replacement with resample size N α gives almost the same results in terms of bias,

variance, and MSE as bagging with replacement with resample size N α/(1−α).

The experiments also confirm that bagging does increase squared plug-in

bias. However, the relevant quantity in a regression context is estimation bias:

if the true regression function is smooth, bagging can in fact reduce estimation
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bias as well as variance and therefore yield a double benefit.

6. Summary and Conclusions

We studied the effects of bagging for U-statistics of any order and finite sums

thereof. U-statistics of high order can describe complex data dependencies and

yet they admit a rigorous asymptotic analysis. The findings are as follows:

• The effects of bagging on variance, squared plug-in bias and mean squared

error are of order N−2. This may not seem to explain the sometimes con-

siderable improvements due to bagging seen in trees; on the other hand,

pointwise tree-based function estimates often rely on small terminal nodes,

implying a small N in terms of our theory and hence allowing sizable ef-

fects even for order N−2. (The following statements are all valid to second

order.)

• If one allows boostrap samples with or without replacement and arbitrary re-

sample sizes, then bagging based on “sampling with” for resample size Mwith

is equivalent to “sampling without” for resample size Mw/o if N/Mwith =

N/Mw/o−1 = g (> 0, < ∞). While our derivation is limited to U-statistics

and sums thereof, the equivalence seems to hold more widely, as illustrated

by our experiments with bagged cart trees.

• Var(bagged)−Var(raw) is a linear function of g; bagging improves variance

if the slope is negative.

• Bias 2(bagged) − Bias 2(raw) is a positive quadratic function of g; bagging

hence always increases squared bias.

• MSE 2(bagged) − MSE 2(raw) is a quadratic function of g; bagging may or

may not improve mean squared error, and if it does, it is for sufficiently

small g, that is, sufficiently large resample sizes M .

Even though cart trees and U-statistics are quite different, there is qualitative

agreement between our theoretical findings and the experimental results for trees.

Plug-in bias increases and variance decreases with decreasing resample size, as

predicted by the theory, and the theoretically predicted equivalence between

bagging with and without replacement is indeed observed in the experiments.
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Figure 5.2: Simulation results for Scenario 1. Top panels: Variance, squared plug-in

bias, and squared estimation bias for resampling with and without replacement. Bottom

panel: MSE for both resampling modes, and variance and squared estimation bias for

resampling with replacement.
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Figure 5.3: Simulation results for Scenario 2. Top panels: Variance, squared plug-in

bias, and squared estimation bias for resampling with and without replacement. Bottom

panel: MSE for both resampling modes, and variance and squared estimation bias for

resampling with replacement.
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Figure 5.4: Simulation results for Scenario 3. Top panels: Variance, squared plug-in

bias, and squared estimation bias for resampling with and without replacement. Bottom

panel: MSE for both resampling modes, and variance and squared estimation bias for

resampling with replacement.
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Figure 5.5: Simulation results for Scenario 4. Top panels: Variance, squared plug-in

bias, and squared estimation bias for resampling with and without replacement. Bottom

panel: MSE for both resampling modes, and variance and squared estimation bias for

resampling with replacement.
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7. Appendix

7.1 Summation Patterns for U-Statistics

The calculations for U-statistics in this and the following sections are remi-

niscent of those found in Hoeffding (1948). We introduce notation for statistical

functionals that are interactions of order J and K, respectively:

B =
1

NJ

∑

µ

Bµ , C =
1

NK

∑

ν

Cν ,

where

µ = (µ1, . . . , µJ) ∈ {1, . . . ,N}J , Bµ = BXµ1
,...,XµJ

,

ν = (ν1, . . . , νK) ∈ {1, . . . ,N}K , Cν = CXν1
,...,XνK

.

We assume the functions Bx1,...,xJ
and Cy1,...,yK

to be permutation symmetric in

their arguments, the random variables X1, . . . ,XN to be i.i.d., and the second

moments of Bµ and Cν to exist for all µ and ν. As is usual in the context of

von Mises expansions, we do not limit the summations to distinct indices as is

usual in the context of U-statistics. One reason is that we wish B and C to be

plug-in estimates of the functionals EB1,...,J and EC1,...,K . Another reason is

that bagging produces lower order interactions from higher order, as we will see.

In what follows we will need to partition sums such as σµ according to

how many indexes appear multiple times in µ = (µ1, . . . , µJ). To this end,

we introduce t(µ) as the numbers of “essential ties” in µ:

t(µ) = #{ (i, j) | i < j, µi = µj , µi 6= µ1, . . . , µi−1 } .

The sub-index i marks the first appearance of the index µi, and all other µj equal

to µi are counted relative to i. For example, µ = (1, 1, 2, 1, 2) has three essential

ties: µ1 = µ2, µ1 = µ4, and µ3 = µ5; the tie µ2 = µ4 is inessential because it can

be inferred from the essential ties.

An important observation concerns the counts of indexes with a given number

of essential ties. The following will be used repeatedly:

#{ µ | t(µ) = 0} =





N

J



 = O(NJ) ,

#{ µ | t(µ) = 1} =





N

J









J

2



 = O(NJ−1) ,
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#{ µ | t(µ) = 0} = O(NJ−2) .

Another notation we need is for the number c(µ, ν) of essential cross-ties

between µ and ν:

c(µ, ν) = #{ (i, j) | µi = νj , µi 6= µ1, . . . , µi−1 , νj 6= ν1, . . . , νj−1 } .

We exclude inessential cross-ties that can be inferred from the ties within µ and

ν. For example, for µ = (1, 2, 1) and ν = (3, 1) the only essential cross-tie is

µ1 = ν2 = 1; the remaining inessential cross-tie µ3 = ν2 can be inferred from the

essential tie µ1 = µ3 within µ.

With these definitions we have the following fact for the number of essential

ties of the concatenated sequence (µ, ν):

t((µ, ν)) = t(µ) + t(ν) + c(µ, ν) .

7.2 Covariance of General Interactions

In expanding the covariance between B and C, we note that the terms with

zero cross-ties between µ and ν vanish due to independence. Thus:

Cov(B,C) =
1

NJ+K

∑

c(µ,ν)>0

Cov(Bµ, Cν) .

Because #{(µ, ν) | c(µ, ν) > 0 } is of order O(NJ+K−1) (a crude upper bound is

JKNJ+K−1), it follows that Cov(B,C) is of order O(N−1), as it should.

We now show that in order to capture terms of order N−1 and N−2 in

Cov(B,C) it is sufficient to limit the summation to those (µ, ν) that satisfy

either

• t(µ) = 0, t(ν) = 0 and c(µ, ν) = 1, or

• t(µ) = 1, t(ν) = 0 and c(µ, ν) = 1, or

• t(µ) = 0, t(ν) = 1 and c(µ, ν) = 1,

or t(µ) + t(ν) = 0, 1 and c(µ, ν) = 1 for short. To this end, we note that the

number of terms with t(µ) + t(ν) ≥ 2 and c(µ, ν) ≥ 1 is of order NJ+K−3. This
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is seen from the following crude upper bound:

#{ (µ, ν) | t(µ) + t(ν) ≥ 2 , c(µ, ν) ≥ 1 }

≤ #{ (µ, ν) | t((µ, ν)) ≥ 3 }

≤









K + J

4,K + J − 4



+





K + J

3, 2,K + J − 5



+





J + K

2, 2, 2, J + K − 6







 · NJ+K−3 ,

where the “choose” terms arise from choosing the index patterns (1, 1, 1, 1),

(1, 1, 1, 2, 2) and (1, 1, 2, 2, 3, 3) in all possible ways in a sequence (µ, ν) of length

K + J ; these three patterns are necessary and sufficient for t((µ, ν)) ≥ 3. Using

NJ+K−3 instead of N(N − 1) . . . (N − (J + K − 4)) makes this an upper bound.

With the assumption of finite second moments of Bµ and Cν for all µ and ν,

it follows that the sum of terms with t(µ) + t(ν) ≥ 2 and c(µ, ν) ≥ 1 is of order

O(N−3). Abbreviating





N

L



 =
N !

(N − L)!
= N(N − 1) . . . (N − (L − 1))

we have:

Cov(B,C)

=
1

NJ+K

∑

t(µ)+t(ν)=0,1; c(µ,ν)=1

Cov(Bµ, Cν) + O(N−3)

=
1

NJ+K

∑

t(µ)=0, t(ν)=0, c(µ,ν)=1

Cov(Bµ, Cν)

+
1

NJ+K

∑

t(µ)=1, t(ν)=0, c(µ,ν)=1

Cov(Bµ, Cν)

+
1

NJ+K

∑

t(µ)=0, t(ν)=1, c(µ,ν)=1

Cov(Bµ, Cν)

+ O(N−3)

=
1

NJ+K
JK





N

J + K − 1



 · Cov(B(1,...), C(1,...))

+
1

NJ+K





J

2



KN





N

J + K − 3



 ·
(

Cov(B(1,1,...), C(1,...)) + Cov(B(1,1,2,...), C(2,...))
)
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+
1

NJ+K
J





K

2



N





N

J + K − 3



 ·
(

Cov(B(1,...), C(1,1,...)) + Cov(B(2,...,J), C(1,1,2,...))
)

+ O(N−3) ,

where “. . .” inside a covariance stands for as many distinct other indices as nec-

essary. Using




N

L



 = NL −





L

2



NL−1 + O(NL−2)

we obtain

Cov(B,C)

=



N−1 −





J + K − 1

2



N−2 + O(N−3)



 JK · Cov(B(1,...), C(1,...))

+
(

N−2 + O(N−3)
)





J

2



K ·
(

Cov(B(1,1,...), C(1,...)) + Cov(B(1,1,2,...), C(2,...))
)

+
(

N−2 + O(N−3)
)

J





K

2



 ·
(

Cov(B(1,...), C(1,1,...)) + Cov(B(2,...), C(1,1,2...))
)

+ O(N−3) .

Collecting terms O(N−3), the above can be written in a more sightly manner as

Cov(B,C)

=



N−1 −





J + K − 1

2



N−2



 JK · Cov(BX , CX)

+ N−2





J

2



K · (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ N−2 J





K

2



 · (Cov(BX , CX,X) + Cov(BX , CX,Y,Y ))

+ O(N−3)

= a · N−1 + b · N−2 + O(N−3) .
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7.3 Moments of Resampling Coefficients

We consider sampling in terms of M draws from N objects {1, . . . ,N} with

and without replacement. The draws are M exchangeable random variables

R1, . . . , RM , where Ri ∈ {1, . . . , N}. Each draw is equally likely: P [Ri = n] =

N−1, but for sampling with replacement the draws are independent; for sampling

w/o replacement they are dependent and the joint probabilities are P [R1 =

n1, R2 = n2, . . . , RJ = nJ ] =





M

J



 /





N

J



 for distinct ni’s, and = 0 if ties exist

among the ni’s.

For resampling one is interested in the count variables

Wn,M,N = Wn =
∑

µ=1,...,M

1[Rµ=n] ,

where we drop M and N from the subscripts if they are fixed. We let W =

WM,N = (W1, . . . ,WN ) and recall:

• For resampling with replacement: W ∼ Multinomial(1/N, . . . , 1/N ;M).

• For resampling w/o replacement: W ∼ Hypergeometric(M,N).

For bagging one needs the moments of W. Because of exchangeability of W

for fixed M and N , it is sufficient to consider moments of the form

E [W i1
n=1,M,N W i2

n=2,M,N · · ·W iL
n=L,M,N ] .

The following recursion formulae hold for il ≥ 1:

E [W i1
n=1,M,N W i2

n=2,M,N · · ·W iL
n=L,M,N ]

=















with : M
N E [(Wn=1,M−1,N + 1)i1−1 W i2

n=2,M−1,N · · ·W iL
n=L,M−1,N ] ,

w/o : M
N E [W i2

n=2,M−1,N−1 · · ·W
iL
n=L,M−1,N−1] .

From these we derive the moments that will be needed below. Recall α =

M/N , and g = 1
α for resampling with, g = 1

α −1 for resampling without, replace-

ment. Using repeatedly approximations such as




N

L



 = NL −





L

2



 NL−1 + O(NL−2) ,
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we obtain:

E [W i1
1 W i2

2 · · ·W iL
L ] = O(1)

E [W1 W2 · · ·WL]

=







































with :





M

L



 /NL

w/o :





M

L



 /





N

L





=







































with : αL − αL





L

2





1
αN−1 + O(N−2)

w/o : αL − αL





L

2





(

1
α − 1

)

N−1 + O(N−2)

= αL



1 −





L

2



 g N−1



 + O(N−2)

E [W 2
1 W2 · · ·WL−1]

=







































with :





M

L



 /NL +





M

L − 1



 /NL−1

w/o :





M

L − 1



 /





N

L − 1





=







with : αL + αL−1 + O(N−1)

w/o : αL−1 + O(N−1)
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= αL (g + 1) + O(N−1) .

7.4 Equivalence of resampling With and Without Replacement

We show the equivalence of resampling with and without replacement to

order N−2. To this end we need to distinguish between the resampling sizes

Mwith and Mw/o, and the corresponding resampling fractions αwith = Mwith/N

and αw/o = Mw/o/N . The equivalence holds under the condition

1

αwith
=

1

αw/o
− 1 (=: g) .

The two types of bagged U-statistics are denoted, respectively, by

Bwith =
1

MJ
with

∑

µ

E
[

W with
µ1

· · ·W with
µJ

]

· Bµ ,

Bw/o =
1

MJ
w/o

∑

µ

E
[

W w/o
µ1

· · ·W w/o
µJ

]

· Bµ .

Bagging differentially reweights the parts of a general interaction in terms of

moments of the resampling vector W. The result of bagging is no longer a

pure interaction but a general U-statistic because bagging creates lower-order

interactions from higher orders.

Recall two facts about the bagging weights, that is, the moments of W:

1) They depend on the structure of the ties in the index vectors µ = (µ1, ..., µJ )

only; for example, µ = (1, 1, 2) and µ = (3, 2, 3) have the same weights, E [W 2
1 W2] =

E [W 2
3 W2] due to exchangeability. 2) The moments of W are of order O(1) in

N (Subsection ) and hence preserve the orders O(N−1), O(N−2), O(N−3) of the

terms considered in Subsection .

We derive a crude bound on their difference using Bbound = maxµ |Bµ|. We

assume the above condition on αwith and αw/o and obtain:

|Bwith − Bw/o| ≤
∑

µ

∣

∣

∣

∣

∣

1

MJ
with

E
[

W with
µ1

· · ·W with
µJ

]

−
1

MJ
w/o

E
[

W w/o
µ1

· · ·W w/o
µJ

]

∣

∣

∣

∣

∣

· Bbound

=





∑

t(µ)=0

+
∑

t(µ)=1

+
∑

t(µ)>1



 | ... | · Bbound
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=
∑

t(µ)=0

∣

∣

∣

∣

∣

∣

1

MJ
with



αJ
with



 1 −





J

2



 g N−1



 + O(N−2)





−
1

MJ
w/o



αJ
w/o



 1 −





J

2



 g N−1



 + O(N−2)





∣

∣

∣

∣

∣

∣

· Bbound

+
∑

t(µ)=1

∣

∣

∣

∣

∣

1

MJ
with

[

αJ
with (g + 1) + O(N−1)

]

−
1

MJ
w/o

[

αJ
w/o (g + 1) + O(N−1)

]

∣

∣

∣

∣

∣

· Bbound

+
∑

t(µ)>1

∣

∣

∣

∣

∣

1

MJ
with

[O(1) ] −
1

MJ
w/o

[O(1) ]

∣

∣

∣

∣

∣

· Bbound

=
1

NJ





∑

t(µ)=0

O(N−2) +
∑

t(µ)=1

O(N−1) +
∑

t(µ)>1

O(1)



 · Bbound

=
1

NJ









N

J



 O(N−2) +





N

J − 1









J

2



 O(N−1)

+



NJ −





N

J



−





N

J − 1









J

2







 O(1)



 · Bbound

=
1

NJ

[

O(NJ)O(N−2) + O(NJ−1)O(N−1) + O(NJ−2)O(1)
]

· Bbound

= O(N−2) · Bbound

This proves the per-sample equivalence of bagging based on resampling with and

without replacement up to order O(N−2). The result is somewhat unsatisfactory

because the bound depends on the extremes of the U-terms Bµ, which tend to

infinity for N → ∞, unless Bµ is bounded. Other bounds at a weaker rate can

be obtained with the Hölder inequality:

|Bwith − Bw/o| ≤ O
(

N
− 2

p

)

(

1

NJ

∑

µ

|Bµ|
q

) 1

q

for
1

p
+

1

q
= 1 .

This specializes to the previously derived bound when p = 1 and q = ∞, for

which the best rate of O(N−2) is obtained, albeit under the strongest assump-

tions on Bµ.
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7.5 Covariances of Bagged Interactions

Resuming calculations begun in Subsection 7.2 for covariances of unbagged

interaction terms, we now derive the covariance of their M -bagged versions:

Bbag =
1

MJ

∑

µ

E [Wµ1
· · ·WµJ

]·Bµ , Cbag =
1

MK

∑

ν

E [Wν1
· · ·WνK

]·Cν .

The moment calculations of Subsection yield the following:

Cov(Bbag ,Cbag)

=
1

MJ+K

∑

t(µ)+t(ν)=0,1; c(µ,ν)=1

E [Wµ1
· · ·WµJ

] E [Wν1
· · ·WνK

] Cov(Bµ, Cν)

+ O(N−3)

=
1

MJ+K

∑

t(µ)=0, t(ν)=0, c(µ,ν)=1

E [Wµ1
· · ·WµJ

] E [Wν1
· · ·WνK

] Cov(Bµ, Cν)

+
1

MJ+K

∑

t(µ)=1, t(ν)=0, c(µ,ν)=1

E [Wµ1
Wµ2

· · ·WµJ
] E [Wν1

· · ·WνK
] Cov(Bµ, Cν)

+
1

MJ+K

∑

t(µ)=0, t(ν)=1, c(µ,ν)=1

E [Wµ1
Wµ2

· · ·WµJ
] E [Wν1

Wν2
· · ·WνK

] Cov(Bµ, Cν)

+ O(N−3)

=
1

NJ+KαJ+K
JK





N

J + K − 1





· E [W1 · · ·WJ ] E [W1 · · ·WK ] Cov(B(1,...), C(1,...))

+
1

NJ+KαJ+K





J

2



KN





N

J + K − 3





· E [W 2
1 W2 · · ·WJ−1] E [W1 · · ·WK ]

(

Cov(B(1,1,...), C(1,...)) + Cov(B(1,1,2,...), C(2,...))
)

+
1

NJ+KαJ+K
J





K

2



N





N

J + K − 3





· E [W1 · · ·WJ ] E [W 2
1 W2 · · ·WK−1]

(

Cov(B(1,...), C(1,1,...)) + Cov(B(2,...), C(1,1,2,...))
)

+ O(N−3)
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= JK



N−1 −





J + K − 1

2



N−2







1 −





J

2



 g N−1





·



1 −





K

2



 g N−1



Cov(BX , CX)

+





J

2



K N−2 (g + 1) (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ J





K

2



 N−2 (g + 1) (Cov(BX , CX,X) + Cov(BX , CX,Y,Y )) + O(N−3)

=



N−1 − N−2





J + K − 1

2



 − N−2









J

2



+





K

2







 g



 JK Cov(BX , CX)

+ N−2





J

2



K (g + 1) (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ N−2 J





K

2



 (g + 1) (Cov(BX , CX,X) + Cov(BX , CX,Y,Y )) + O(N−3)

The last three lines form the final result of these calculations.

7.6 Difference Between Variances of Bagged and Unbagged

Comparing the results of the Sections 7.2 and 7.5, we get:

Cov(Bbag ,Cbag) − Cov(B,C)

= − N−2









J

2



+





K

2







 g JK Cov(BX , CX)

+ N−2





J

2



K g (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ N−2 J





K

2



 g (Cov(BX , CX,X) + Cov(BX , CX,Y,Y )) + O(N−3)
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= N−2 g



−









J

2



+





K

2







 JK Cov(BX , CX)

+





J

2



K (Cov(BX,X , CX) + Cov(BX,X,Y , CY ))

+ J





K

2



 (Cov(BX , CX,X) + Cov(BX , CX,Y,Y ))



 + O(N−3)

= N−2 g 2 SVar(B,C) + O(N−3) ,

where

SVar(B,C) =
1

2









J

2



K Cov(CX , BX,X + BX,Y,Y − JBX)

+





K

2



 J Cov(BX , CX,X + CX,Y,Y − KCX)



 .

The expression for SVar(B,C) remains correct for J and K as low as 1, in which

case one interprets





J

2



 = 0 and BX,X = 0 when J = 1, and BX,Y,Y = 0 when

J ≤ 2, and similar for C when K =1 or 2. The result generalizes to arbitrary

finite sums of interactions

U = A + B + C + . . .

=
1

N

∑

i

Ai +
1

N2

∑

i,j

Bi,j +
1

N3

∑

i,j,k

Ci,j,k + . . . .

Because SVar(B,C) is a bilinear form in its arguments, the corresponding con-

stant SVar(U) for sums of U-statistics can be expanded as follows:

SVar(U) = SVar(A,A) + 2SVar(A,B) + SVar(B,B)

+ 2SVar(A,C) + 2SVar(B,C) + SVar(C,C) + . . . ,

so that

Var(U bag) − Var(U) = N−2 g 2SVar(U) + O(N−3) .

For example a functional consisting of first and second order terms,

U = A + B =
1

N

∑

i

Ai +
1

N2

∑

i,j

Bi,j ,
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yields

SVar(U) = SVar(A,A) + 2SVar(A,B) + SVar(B,B)

= Cov(AX , BX,X − 2BX) + 2Cov(BX , BX,X − 2BX)

= Cov(AX + 2BX , BX,X − 2BX) .

Note that SVar(A,A) = 0 because bagging leaves additive statistics unchanged.

7.7 Difference between Squared Bias of Bagged and Unbagged

We consider a single K-th order interaction first, with functional and plug-in

statistic

U(F ) = E C(1,2,...,K) ,

U(FN ) =
1

NK

N
∑

ν1,...,νK=1

C(ν1,...,νK) .

[Recall that Cν and C(ν1,...,νK) are short for CXν1
,...,XνK

.] The functional U(F )

plays the role of the parameter to be estimated by the statistic U = U(FN ), so

that the notion of bias applies. We first calculate the bias for the unbagged statis-

tic U and second for the bagged statistic U bag. Note that ECX = E C1,...,K =

U(F ).

E [U(FN )] =
1

NK

∑

ν1,...,νK

E C(ν1,...,νK)

=
1

NK









N

K



E C(1,...,K) +





K

2









N

K − 1



E C(1,1,2,...,K−1) + O(NK−2)





= U(F ) + N−1





K

2



 (E CX,X − E CX ) + O(N−2) .

Now for the bias of the bagged statistic:

E U bag =
1

MK

N
∑

ν1,...,νk=1

E [Wν1
· · ·WνK

] E C(ν1,...,νK)

=
1

NKαK





∑

t(ν)=0

+
∑

t(ν)=1

+ O(NK−2)
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=
1

NKαK









N

K



E [W1 · · ·WK ]E C(1,...,K)

+





K

2









N

K − 1



E [W 2
1 W2 · · ·WK−1]E C(1,1,2,...,K−1)





+ O(N−2)

=



1 −





K

2



N−1







1 −





K

2



 g N−1



 E C(1,...,K)

+ N−1





K

2



 (g + 1) E C(1,1,2,...,K−1)

+ O(N−2)

= U(F ) − N−1





K

2



 (g + 1) E C(1,...,K)

+ N−1





K

2



 (g + 1) E C(1,1,2,...,K−1) + O(N−2)

= U(F ) + N−1





K

2



 (g + 1) (E CX,X − E CX) + O(N−2)

Thus:

Bias (U bag) = N−1





K

2



 (g + 1) (E CX,X − E CX) + O(N−2)

As for variances, we can consider statistics that are finite sums of interactions:

U = A + B + C + . . .

=
1

N

∑

Ai +
1

N2

∑

Bi,j +
1

N3

∑

Ci,j,k + . . .

The final result is:

Bias 2(U bag) − Bias 2(U)

= N−2
(

(g + 1)2 − 1
)









2

2



 (E BX,X − E BX) +





3

2



 (E CX,X − E CX) + . . .





2

+ O(N−3) .

As usual, g = 1
α for sampling with, and g = 1

α −1 for sampling w/o, replacement.


