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NOTES ON REPRODUCING KERNEL HILBERT SPACE

XIN LU TAN

Given a linear operator A on a vector spaceH, we have the following relationship:

KerA = (RanA∗)⊥, KerA∗ = (RanA)⊥,

(KerA)⊥ = RanA∗, (KerA∗)⊥ = RanA.

Let Ag(f) = 〈f, g〉H, then Ag is a linear functionals, i.e. Ag(c1f1 + c2f2) =
c1Ag(f1)+c2Ag(f2). Moreover, Ag is bounded, |Ag(f)| ≤ ‖Ag‖‖f‖H = ‖f‖H‖g‖H.

Theorem 1 (Riesz Representation Theorem). In a Hilbert space H, for every
bounded linear functionals A : H −→ R, there exists a unique g ∈ H such that

Af = 〈f, g〉H
An evaluation functional over a Hilbert space of functionsH is a linear functional

δx : H −→ R that evaluates each function in the space at the point x, or δx(f) =
f(x). Evaluation functional is always linear: For f1, f2 ∈ H, and c1, c2 ∈ R,
δx(c1f1 + c2f2) = (c1f1 + c2f2)(x) = c1f1(x) + c2f2(x) = c1δx(f1) + c2δx(f2).

Definition 1. A Hilbert space H is a reproducing kernel Hilbert space if the evalu-
ation functionals are bounded (equivalently, continuous), i.e. there exists a positive
constant M such that

|δx(f)| = |f(x)| ≤M‖f‖H ∀f ∈ H.

In a reproducing kernel Hilbert space, norm convergence implies pointwise con-
vergence.

Theorem 2. If limn→∞ ‖fn− f‖H = 0, then limn→∞ fn(x) = f(x), for all x ∈ X .

Proof. |fn(x)− f(x)| = |δx(fn)− δx(f)| = |δx(fn − f)| ≤ ‖δx‖‖fn − f‖H. �

We will discuss three distinct concepts:

(1) reproducing kernel
(2) kernel
(3) positive definite function

and then show that they are all equivalent.

Definition 2 (Reproducing Kernel). Let H be a Hilbert space of functions f :
X −→ R defined on a non-empty set X . A function k : X × X −→ R is called a
reproducing kernel of H if it satisfies

(1) ∀x ∈ X , kx = k(x, ·) ∈ H,
(2) ∀x ∈ X ,∀f ∈ H, 〈f, kx〉H = f(x) (the reproducing property).

In particular, for any x, y ∈ X , k(x, y) = 〈kx, ky〉H = 〈ky, kx〉H = k(y, x).

Theorem 3. A Hilbert space H is a reproducing kernel Hilbert space if and only if
it has a reproducing kernel.
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Proof. If H is a reproducing kernel Hilbert space, then by definition all the eval-
uation functionals are bounded. By the Riesz Representation Theorem, for each
x ∈ X , there exists a unique representer kx ∈ H of Fx such that Fx(f) = f(x) =
〈kx, f〉H. So for each x, y ∈ H, we define k(x, y) = ky(x) = 〈kx, ky〉H. By symmetry
of the inner product 〈·, ·〉H we have k(x, y) = k(y, x). We immediately see that ∀x ∈
X , the function kx = k(x, ·) ∈ H. Also, ∀f ∈ H, 〈f, k(x, ·)〉H = 〈f, kx〉H = f(x). So
k(x, y) is the reproducing kernel of H. On the other hand, given a space of func-
tions H, if there exists k : X ×X → R such that the two properties in Definition 2
hold, then the evaluation functionals are bounded. This can be seen as follows:
∀x ∈ X ,∀f ∈ H, we have |δx(f)| = |f(x)| = |〈f, kx〉H| ≤ ‖kx‖H‖f‖H = ‖δx‖‖f‖H,
where ‖δx‖ = ‖kx‖H <∞ since kx ∈ H. �

Theorem 4. If it exists, reproducing kernel is unique. Equivalently, a reproducing
kernel Hilbert space uniquely determines its reproducing kernel.

Proof. If both k(x, y) and k′(x, y) are reproducing kernels of H, then we know that
both k(x, y) and k′(x, y) must be symmetric. By the reproducing property we then
have k(x, y) = 〈k(x, ·), k′(y, ·)〉H = 〈k′(y, ·), k(x, ·)〉H = k′(y, x) = k′(x, y). This is
true for all x, y ∈ X , so k = k′. �

Definition 3 (Kernel). A function k : X × X −→ R is called a kernel on X is
there exists a Hilbert space (not necessarily a reproducing kernel Hilbert space) F
and a map Φ : X −→ F such that k(x, y) = 〈Φ(x),Φ(y)〉F .

Here H may not be a reproducing kernel Hilbert space. We call Φ : X → F a
feature map and F a feature space.

Corollary 1. Every reproducing kernel is a kernel.

Proof. We simply take Φ : x 7−→ k(x, ·), i.e. the reproducing kernel Hilbert space
H is a feature space, and k(x, y) = 〈k(x, ·), k(y, ·)〉H = 〈Φ(x),Φ(y)〉H. �

Example 1 (Non-uniqueness of feature representation). Consider X = R2, and
k(x, y) = 〈x, y〉2. We can write k(x, y) as

k(x, y) = (x1y1 + x2y2)2

= x21y
2
1 + x22y

2
2 + 2x1x2y1y2

=
(
x21 x22

√
2x1x2

) y21
y22√

2y1y2



=
(
x21 x22 x1x2 x1x2

)
y21
y22
y1y2
y1y2

 .

So we can use the feature maps φ(x) = (x21, x
2
2,
√

2x1x2) or φ̃(x) = (x21, x
2
2, x1x2, x1x2),

with feature spaces F = R3 or F̃ = R4. Note that F and F̃ are not reproducing
kernel Hilbert space since they are not unique! There are, in fact, infinitely many
feature space representations (and we can even work in one or more of them). But
what remains unique is the kernel and its reproducing kernel Hilbert space!
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Definition 4. A symmetric function k : X ×X → R is positive definite if ∀n ∈ N,
∀(a1, . . . , an) ∈ Rn and ∀(x1, . . . , xn) ∈ Xn,

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0.

The function k(·, ·) is strictly positive definite if for mutually distinct xi, the equality
holds only when all the ai are zero.

Every inner product is a positive definite function, and more generally:

Corollary 2. Every kernel is a positive definite function.

Proof. Let k(x, y) be a kernel, then there exists a Hilbert space (not necessarily a
reproducing kernel Hilbert space) F and a map φ : X → F such that k(x, y) =
〈φ(x), φ(y)〉F . We then have

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

aiaj〈φ(xi), φ(xj)〉F

=

〈 n∑
i=1

aiφ(xi),

n∑
j=1

ajφ(xj)

〉
F

=

∥∥∥∥ n∑
i=1

aiφ(xi)

∥∥∥∥2
F
≥ 0.

�

So far, we have shown that reproducing kernel =⇒ kernel =⇒ positive
definite function. In Theorem 5, we will show that positive definite function =⇒
reproducing kernel, and conclude that a reproducing kernel, a kernel and a positive
definite function are equivalent. Before stating the theorem, we first spell out the
following two lemmas which are immediate consequences of these equivalences.

Lemma 1 (Sum and scaling of kernels). If k, k1, k2 are kernels on X , and α ≥ 0
is a scalar, then αk and k1 + k2 are kernels.

A difference of kernels is not necessarily s kernel! This is because we cannot
have k1(x, x) − k2(x, x) = 〈φ(x), φ(x)〉H < 0. This gives the set of all kernels the
geometry of a closed convex cone.

Lemma 2 (Product of kernels). Let k1 and k2 be kernels on X and Y, respectively.

(a) Then k = k1 ⊗ k2, given by

k((x, y), (x′, y′)) = k1(x, x′)k2(y, y′)

is a kernel on X × Y.
(b) If X = Y, then k = k1 · k2, given by

k(x, x′) = k1(x, x′)k2(x, x′)

is a kernel on X .

Also, Hk1⊗k2
∼= Hk1 ⊗Hk2 (isomorphic?!).

We will now show that a positive definite function is always a reproducing kernel
of an RKHS.
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Theorem 5 (Moore-Aronszajn). Let k : X × X −→ R be positive definite. Then
there is a unique reproducing kernel Hilbert space with reproducing kernel k. In
particular, the span of the reproducing kernel k is dense in the resulting reproducing
kernel Hilbert space.

Proof. Let the spaceH0 = span{k(x, ·) : x ∈ X} be endowed with the inner product

〈f, g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(xi, yj),

where f =
∑n

i=1 αik(xi, ·) and g =
∑m

j=1 βjk(yj , ·). It can be seen that the evalu-
ation functionals are continuous on H0, and any Cauchy sequence fn is H0 which
converges pointwise to 0 also converges in H0-norm to 0. Define H to be the set
of functions f : X → R for which there exists a Cauchy sequence {fn} ∈ H0 con-
verging pointwise to f . We define the inner product between f, g ∈ H as the limit
of an inner product of the Cauchy sequences {fn}, {gn} converging to f and g re-
spectively. It is easy to see that the inner product is well-defined and independent
of the sequences used. Also, 〈f, f〉H = 0 if and only if f = 0. It can also be shown
that the evaluation functionals are still continuous on H, and that H is a Hilbert
space. �

Now we have shown that reproducing kernel =⇒ kernel =⇒ positive definite
function =⇒ reproducing kernel, so our proof of equivalence is complete. It is
now easy to see that Lemma 1 is trivial if we use a positive-definiteness argument.

Corollary 3. If a vector space V of functions on a set X is the direct sum of
reproducing kernel Hilbert spaces H1 with kernel k1 and H2 with kernel k2, that is,
V = H1 + H2 and H1 ∩ H2 = {0}, then k = k1 + k2 is a reproducing kernel for
all of V, and the subspaces H1 and H2 are orthogonal in the resulting reproducing
kernel Hilbert space V.

A more general version of the corollary says that:

Theorem 6. If ki(x, y) is the reproducing kernel of the class Fi with the norm
‖ · ‖i, then k(x, y) = k1(x, y) + k2(x, y) is the reproducing kernel of the class F of
all functions f = f1 + f2 with fi ∈ Fi, and with the norm defined by

‖f‖2 = min[‖f1‖21 + ‖f2‖22],

the minimum taken for all the decompositions f = f1 + f2 with fi ∈ Fi.
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