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ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC
REGRESSION AND WHITE NOISE

By LAWRENCE D. BROWN'! AND MARK G. Low?

University of Pennsylvania

The principal result is that, under conditions, to any nonparametric
regression problem there corresponds an asymptotically equivalent se-
quence of white noise with drift problems, and conversely. This asymptotic
equivalence is in a global and uniform sense. Any normalized risk function
attainable in one problem is asymptotically attainable in the other, with
the difference in normalized risks converging to zero uniformly over the
entire parameter space. The results are constructive. A recipe is provided
for producing these asymptotically equivalent procedures. Some implica-
tions and generalizations of the principal result are also discussed.

Introduction. The principal result of this paper is that to any nonpara-
metric regression problem there corresponds a white noise with drift problem
which is asymptotically equivalent. The impact of this asymptotic equivalence
is that any asymptotic solution to one of these problems will automatically
yield a corresponding solution to the other. In addition, there is an explicit
recipe for this correspondence. For example, the optimal rates of convergence
will be equal as will suitably normalized local and global asymptotic risks,
and knowledge of a minimax procedure or of a linear minimax procedure in
one problem automatically yields the corresponding procedure in the other
and so forth.

In particular, many classical functional estimation problems which have
previously been treated separately fall into this framework. These problems
include:

1. Estimating the whole function, considered in the white-noise model by
Pinsker (1980) and in the regression context by Nussbaum (1985) and
Speckman (1985). See also Donoho, Liu and MacGibbon (1990) and Golu-
bev and Nussbaum (1990).

2. Estimating a point functional such as f(x,). For white noise, see Ibragi-
mov and Hasminskii (1984) and for regression, see Ibragimov and Hasmin-
skii (1982). See also Donoho and Liu [(1991), pages 677ff and 688] and
Donoho and Low (1992).
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3. Estimating a nonlinear functional such as [f?(x)dx, treated for white
noise in Fan (1991b) and in earlier references cited there and for both
white noise and regression in Donoho and Nussbaum (1990).

4. Estimating the whole function based on indirect observations as in Fan
(1991a).

The equivalence theory also covers many adaptive situations. If there is a
particular sequence of estimators which is asymptotically minimax over
a collection of parameter spaces in the white-noise case, then there is a
corresponding sequence based on the regression model which is also minimax
over each of these parameter spaces. Such a sequence of adaptive estimators
for estimating the whole function has been found by Efroimovich and Pinsker
(1984) in the white-noise case and by Golubev (1987) for nonparametric
regression. See also Golubev (1991). For the problem of estimating a linear
functional in both regression and white noise, see Lepskii (1991).

Hall and Johnstone (1992) discuss examples of estimating optimal, possi-
bly random, bandwidths in the regression and white-noise contexts. These
problems are also covered by the general equivalence theory developed in this
paper. See Remark 4.5.

The equivalence theory can provide an additional technical advantage.
Some proofs, for example those involving rates of convergence, may be much
simpler in the white-noise model. Thus one may use the white-noise model to
figure out the optimal rate via homogeneity and then the same rate holds in
nonparametric regression. See, for example, Section 7 of Donoho and Low
(1992). Analogous equivalence results should be valid for some other non-
parametric problems. Indeed, Nussbaum (1993) has very recently proved one
such result for nonparametric density estimation.

The first part of the paper contains necessary background. This 1nc1udes
descriptions of the nonparametric regression and white-noise problems, the
definition of asymptotic equlvalence and a discussion of some of its general
consequences.

The second part of the paper contains the main equivalence theorems. Two
cases are treated separately. In one case, the independent variables are
deterministically fixed; in the other, they are a random sample from a
specified distribution.

Part 1. Background.

1. Nonparametric regression. The nonparametric regression model to
be treated in this paper is as follows: Let I < R be a possibly infinite interval.
Let f(-): I > R and o2(): I - (0,%) be two measurable functions and let
H: R — [0,1] be an increasing c.d.f. The variables (X,,;,Y,,), i = 1,..., n, are
observed. In the deterministic X variant the independent variables are given
by a deterministic scheme which will be given by

(1.1) x,=H'(i/(n+1), i=1,.,n,
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except where otherwise noted. In the random X variant the X, are indepen-
dent random variables.

(1.2) X,~H iid.i=1,...,n
In either case the conditional distribution of Y given X is described via
(1.3) Y, =f(x,;) +o(x,;)e,;, &,; ~N(0,1)ind.,i=1,...,n.

The parameter space ® consists of a possibly large set of choices of f. The
c.d.f. H and the function o(-) are assumed fixed and known prior to experi-

mentation.
Here are some examples which are subject to later results of this paper.

ExaMPLE 1.1. O is given in terms of a Lipshitz condition as

[a]l-1

@E}’)B = {f ‘f(x+ A) —f(x) - A¥1 (f(i)(x)/i!)Ai

(1.4)
< B|A|* and sup|f(x)|<B} ifax>1,

xel

0D, = (f:1f(x + A) — f(x)l < BIAI*} if0<a<l.

[(1.4) holds for all x, x + A € 1.] Later we shall require a > 1/2, as explained
in Remark 4.7.

ExampLE 1.2. O is given by a Sobolev type condition such as
0Py, = {f; f(f(ﬂ)(t))2 dt < B and sup|f(x)| < B}
xel

for @ = 1,..., where f(® denotes the ath derivative of f, assumed to exist in
the sense that £~V is absolutely continuous. Note that when [; d¢ = 1, then
0 < 0.

2. White noise. Assume with no loss of generality that 0 € I. Let {B,:

t € I} denote Brownian motion on I conditional on B, = 0, for example,

~ N(0,¢) and B,, t, > 0, is independent of B, , ¢, < 0. Fix n = 1,.
Let {Z(™} denote the Gaussian process whose white-noise version is repre-
sented as dZ{™ = u(t)dt + AX(t)dB,/ Vn.

The parameter space in this model is, as before, the set of possible mean
functions. Consequently, the statistical white-noise problem for given n is to
_ observe the process {Z(™} defined above for some u € ©. In this way a
sequence of problems is defined for n = 1,2,..., each of which has the same
parameter space ©.



NONPARAMETRIC REGRESSION AND WHITE NOISE 2387

Suppose {(Y,™: t € J} and {Z(™: t € J} are two Gaussian processes, like
those above, with respective mean functions u(¢) and »(¢) and with identical
variance functions A\2(¢)/n. Let g and g% denote their respective proba-
bility densities with respect to any dominating measure ¢. Let

(2.1) L, = [lg(0) - g8(0)I&(dw).
[Where convenient we also use either the notation LY ™, Z{™) or
L(g{, g5).] Standard calculations yield
(2.2) L, = 2(1 - 20(-D/2))
where
D? = [[n(m(t) - »(2))"/A(1)] dt.
Consequently, L, = O(D).

REMARK 2.1. Let {Z{™} be as above. Assume H is absolutely continuous
with dH /dt = h and assume % > 0 (a.e.) on I. Define the Gaussian process

Vf(n) = ZgL»)l(,r), TE [0, 1] .

Then V. has mean u*(r) and variance function A*?(r)/n given by
w(H (7)) N (H (7))

2.3 (1) = o, MH(7) =

( ) '/“' (T) h(H—l(T)) 4 (T) h(H_l(T))

Hence there is no significant loss of generality in assuming I = [0,1] and H
is uniform on I, although to do so will affect the definition of ®, in the
manner suggested by (2.3).

3. Statistical equivalence. Consider two statistical problems, #® and
PP, with sample spaces 21V, i = 1,2 (and suitable o-fields), respectively, but
with the same parameter space ®. Denote the respective families of distribu-
tions by {GY: 6 € ©). The following paragraph describes Le Cam’s metric
for the distance between two such experiments [see, e.g., Le Cam (1986) or
Le Cam and Yang (1990)].

Let & be any (measurable) action space and let L: ® X.& — [0, ») denote a
loss function. Let ||L|| = sup{L(®, a): 6 € ©, a €.«}. §¥ will be the generic
symbol for a (randomized) decision procedure in the ith problem. The risk
from using procedure 8 when L is the loss function and 6 is the true value
of the parameter is denoted by R(8®, L, ). Le Cam’s metric is

APV, 2®)

= max|infsup sup sup |RV(6D,L,0) — R®(8®,L,0)l,
(3.1) 50 5@ 6 Li|Ll=1

infsup sup sup |[RV(8D, L, 0%~ RP(8®,L,0)l|.
8@ 5 0 LifLl=1
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(Thus, if A < &, this means that for every procedure §® in problem i there is
a procedure 8 in problem j, j# i, with risk differing by at most e,
uniformly over all L such that ||[LIl=1 and 6 € ©.) Two sequences of
problems {#(": n = 1,...} and {#®: n = 1,...} are asymptotically equivalent
if A(#D, #®) - 0 as n — . In this case, for any sequence of procedures
8" in problems &, n = 1,..., there is a sequence §® in problems #® for
which

lim sup sup |RP(8V,L,0) - RP(5PL,0) = 0.

n=® @ LiLl=1
Such sequences of procedures are said to be asymptotically equivalent.

In our proofs of statistical equivalence the key step is to arrange matters

so that 2 = 22®. Then define

(3.2) Ly(#D, 2®) = sup [lg@(x) - g@(x)|€(dx),
60O

where ¢ dominates GY) and g{’ = dGY/d¢, i = 1,2. The following well-
known fact can then be used to establish asymptotic equivalence.

THEOREM 3.1.
(3.3) IRD(8,L,0) — RO(8,L,0)| < L (2D, #®)|LI.
Consequently,
(3.4) A(PD, 2®) < L(2D, 2@),
Also, .

A(PD, D) > 0 if L( 7D, 7)) - 0,

PrROOF. (3.3) is just a restatement of the standard inequality

1) (8w - 8(x))e(d)

< (suplh()) 1g%(x) - g®(le(dn)). 0

Two other techniques are also used repeatedly: one is reduction by suffi-
ciency; the other involves relations between the L, norm and the Hellinger
metric. The use of sufficiency is based on the following.

LEMMA 3.2. Let & and its o-field be a Polish space with its associated
Borel field. Let 2 denote an experiment with sample space Z. Let S: & — %
be a sufficient statistic and let #® denote the experiment in which Y = S(X)
is observed. Then A(PWM, 2®) = 0. (A Polish space is one which is locally
compact, metrizable and second countable. All the.measurable spaces encoun-
tered in this paper possess these properties.)

Proor. The lemma follows from the fact that under the hypothesis there
exists a measurable map 6(dx|y) such that [6(B|S(x))Ge(dx) = G¢(B). See
Le Cam (1986). O
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The Hellinger metric H(G?Y, G?®) is defined by
H*(GY,G®) = f(g(l)(x)l/z _ g(z)(x)l/z)zf(dx).

It provides a bound for L, since
(3.5) L,(G®,G®) < 2H(G®, G®).
Another useful fact is that if the G are product measures, G® = [17.,G,

then
m H2 G(-l),G(-2)
oo w2
Jj=1

[Le Cam (1986)]. Finally, direct calculation yields

H2(N(/*1"’12)’N(“2"’22))
(3.7) 2040 1z (g — M2)2
= 2[1 - exp[ 4(0_1 e ) ”

0'12 + 0'22

Part 2. Equivalence results.

4. Deterministic X. Let I =[a,B], —®» < a < B <. Let a2(:) > 0 be
a given absolutely continuous function on I such that

(4.1) <Cy, tel

al t
e (®)

for some C; < ». Suppose
(4.2) sup{lf(t)l:t€l, fe®} =B <
and also (4.5), below. Assume H is absolutely continuous on I and
(4.3) H'(t) =h(t) >0 ae.onl.
With x,; as in (1.1) define the step function

7 f nil» gi— St<§i’ ."“’ ’
(44) fn(t) - {fgi ))a t=1.3’ l "

where £ = H'(i/n). (The dependence of & on n is suppressed for conve-
nience.) Assume

(4.5) lim supn[ (F(2) = F.(£) ) R(2) dt =

n-w© re@

REMARK 4.1. Equation (4.5) is a uniform smoothness. condition on f. It is
satisfied in a wide variety of examples. In particular it is satisfied in Exam-
ples 1.1 and 1.2 when « > 1/2. (See Remark 4.7 for discussion of the case
a<1/2)
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For example, to verify (4.5) in Example 1.1 for the case a > 1/2, I = [0, 1],
H uniform and o()=1 we note that |f(¢) — (&)l <Blt —i/(n + 1)|°
where (i — 1)/n <t < i/n. Hence
2a

dt

nf f@)—fu»<ﬂ<n322/””

ll(l ]_)/n n+1

0 20+ 1
since 2a + 1 > 2. Hence (4.5) is satisfied.

n2B2 1 2a+1
<n?B? [P dt = (—) -0
n

THEOREM 4.1. Under assumptions (4.1)—(4.5) the deterministic X nonpara-
metric regression model is asymptotically equivalent to the white-noise model
(2.1) having u(t) = f(t), A2(t) = o 2(t) /A(t).

PrOOF. Let Z(™ be the white-noise model described by

dZM™ = f.(t) dt + % dB,.

Note that sup{A(z): ¢ € I}/infl(AM(¢): t € I} < © because of (4.1) and (4.3).
Hence (4.5), (2.2) and Theorem 3.1 show that

A((Z7), (7)) ~ 0.
Define

2(x, . dZm
(4.6) K? = g‘n"( ") g s =K, [* e
 anoe e

¢

i—1

The variables {S{™: i = 1,..., n} are sufficient for {Z(™: ¢ € I}. Hence

M), (5) = 0

by Lemma 3.2.
The variables S{™, i = 1,..., n, are independent with
K g dt
(n) t = g2
V(S ) n f )\2(1,‘) 4 (xnl)
& Fa(2)
(n) t
E(S") = K, f e &
(4.7)

1/2
—fbummn%[ M”d4

)
U(xnz)]
_f nl, b
( >[a(§n,)
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where £_, < &, < ¢. The existence of £,; follows from the mean value

theorem since [ h(¢)dt = 1/n. Assumption (4.1) then yields
E(Sz(n)) = f( xﬁi)(l +O(¢ - fi-1))

uniformly in f€ ©, i and n. [Note also that the O(-) term is zero if
o %(t) = y2, a constant.]
The above, together with (3.6) and (3.7), yields

Hz({sl(n)}’{xni’yni})
= O(Zfz(xni)(fi - §i~1)2)
<B%(b—a)O(sup{( & — &_1):i=1,...,n})
=0(1) (uniformly over f € @)

by (4.2) and (4.3). Hence lim, _,, A{S{™},{x,;, Y,;}) = 0 by (3.5) and Theorem
1. It follows from the preceding facts that lim , _,,, A{Z{"},{x,;,Y,;) = 0. O

(4.8)

TECHNICAL NOTE. The conditions (4.1)-(4.3) are clearly stronger than
necessary. They are used in order to yield the conclusion H? = o(1) (uni-
formly over f € ®) which appears in (4.8). For example, if o%(") = y?, a
constant, I = [0,1] and A(¢) = 1 on [0, 1], then (4.3) holds and we may also
drop conditions (4.1) and (4.2).

The above ‘theorem yields a prescription for producing, from a sequence of
procedures in one problem, an asymptotically equivalent sequence in the
other. The following corollary gives a precise recipe. The corollary applies to
either nonrandomized or randomized procedures.

- COROLLARY 4.1. Let {§,} be a sequence of procedures in the regression
model of Theorem 4.1. Define v, in the corresponding white-noise problem by

49 ZmM) = 5,(SM here S0 = K, [ 22
( ) ’Yn( t )_ n( i ) whnere oS;"" = i'/:fi—1/\2(t)

as in (4.6). Then {v,} is asymptotically equivalent to {8,}.

Conversely, suppose {v,} is a given sequence of procedures in the white-noise
problem. Then {8,} is an asymptotically equivalent sequence in the asymptoti-
cally equivalent regression problem, where 8, is the randomized procedure
described for any measurable A € &/, as follows:

(4.10) 5,(Al{si™}) = E|v,(A{Z™)) K, :i

-1

ProOF. The corollary is implicit in the proof of Theorem 5.1. Note that o,
in (4.10) is well defined since it is independent of the drift parameter f (™)(¢) of
the {Z(™} process because for each n, {S{™} is sufficient for {Z{}. O
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The construction (4.10) is not entirely felicitous for two reasons: (1) §, will,
in general, be randomized even when y, is not; (2) the conditional expecta-
tion may be hard to evaluate. The following two remarks show that these
difficulties can sometimes be partially alleviated.

REMARK 4.2. Jensen’s inequality can sometimes be used to improve (4.10).
Here is a precise statement. Suppose each &/, is a closed convex subset of a
separable Banach space, and suppose each L,(6,-) is a convex lower semi-
continuous function satisfying lim, . L,(6, @) = ». Define §, as the non-
randomized procedure taking the values

(4.11) & ({s™)) = /a&n(dal{slfn)}).

Then {8} is asymptotically at least as good as {3,}.
Even when L, is not convex it may be that

(4.12) sup|R(8.,L, AB,0) —R(5,,L, AB,8)| - 0.
6

in which case {8} and {§,} are asymptotically equivalent sequences for {L,}.
See Remark 4.3 for one such situation.

A (real-valued) linear estimator in the white-noise problem is a nonran-
domized estimator which can be expressed in the form

, W(Z™) = [p(t) dZ{, with
(4.13)
[p2(2)A%(2) dt < .

It follows that y,(Z(™) has a normal distribution with mean [p,(¢)u(¢) dt and
variance [p2(¢)A%(¢) dt/n.
A linear estimator in the regression problem is, s1m11arly, one which can be
expressed in the form
(4.1 (") = = 3. puusi?.
i1

I

T

As above, such estimators are normally distributed.

REMARK 4.3. The equivalence transformation is especially convenient for
linear estimators. In order to demonstrate this, it is easier to write (4.14) in
an alternate form. As before, for convenience, specialize to the case I = [0, 1],
H is uniform, and also assume A%(-) = 02(:) = y2. Let e,(t) denote the
normalized linearized cumulative sums of {s{™}; that is,

(t) 1 nils(n) L (s — sm )1,
e = — » —_— —_—
i n\pl1 §—&. " '

f,_1St<§“i= 1,...,n.
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Then the general linear estimator (4.14) can be rewritten in the form

(4.15) u(s(7) = [5(1) den ().

Note that
_ & dZ™
() =B\ 2K
[Here & =i/n, A%(t) = y? and K, = ny.] Hence, suppose a linear estimator
(4.13) is given in the white-noise problem. Then the estimator 8, of (4.11) is
given by (4.15) with p,(¢) = p(2).

dt=s",i=1,...,n|.

The preceding results apply to regression problems on a bounded interval.
They can be extended without much additional complication to also apply on
unbounded intervals if a somewhat different scheme for determining the X
values is introduced, as follows:

Let I =(a,b) and I, =[e,,B,], ~*<a<a, <B,<b<»and let H,
be an increasing c.d.f. on [ @,, B,]. Choose the independent variables accord-
ing to
(4.16) x,; = H;'(i/(n + 1)).

The constants ¢; (which also depend on n) are defined as before, but with
H, in place of H, and f, is defined by (4.4) with the additional convention

f.(t) =0, t<a,t>p,.
The assumption (4.5) is then replaced by

(4.17) lim ?ugnfﬁ"[hn(t)(f(t) ~Fu(0))' /0 ()| de = .

Here is a formal statement of the equivalence result. Its proof involves only
minor modifications of the proof of Theorem 4.1, and will be omitted.

COROLLARY 4.2. Define {x,;} as above. Assume (4.1)-(4.2) are satisfied on
(—»,») and H, satisfies (4.3). Assume (4.17) is satisfied and either c*(:) = y2,
a constant, or (B, — a,)max, _; (& — &_1) = o(1). [Here & = H,'(1/n),
& = a, and &, = B,. As usual, the dependence of ¢ on n is suppressed in the
notation.] Then the deterministic X nonparametric regression model is asymp-
totically equivalent to the white-noise model (2.1) having u(t) = f(¢) and
incremental variance function depending on n and given by M(t) =

a?(t)/h,(b).

REMARK 4.4. There is an additional question which arises in the preced-
ing situation: Suppose —» < a < b < » and H, » H with H' = h. Let {Z{"}
be the white noise with drift f(¢) = u(¢) and with variance function A%(¢) =
h(t) /o (¢). Is it true that A({x,;,Y,;},{ZM}) — 0?
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An affirmative answer to the preceding question appears to require some
condition on the convergence of H, to H. In some examples it is not hard to
supply such a condition. Consider, for example, the situation in Example 1.1
with a > 1. Assume (for simplicity of exposition) that o2(¢) = y2. Make the
other assumptions in Theorem 4.1 and assume also that

(4.18) sup|H,(¢) — H(t)l = A, = o(1/Vn)

as n — o, Then the answer is affirmative.
To establish the preceding claim, let {x},, Y%} denote the deterministic X
nonparametric regression based on H. Then

(x> Yo (25, YD) = 72 Z[( - n+1))"f(H_1(nil))]2

< y2nA%2B? - 0.

Then apply Theorem 4.1 to see that A{x*;, Y,¥},{Z{™}) — 0.

REMARK 4.5. The preceding methodology can be used when the loss
functions also depend on the observations. Thus, suppose the loss in the
regression problem is L'P: ® X.& X {(x,,;, y,;)} = [0, B] and in the White-noise
problem it is L®: ® X« X {Z{} — [0, B]. For simplicity assume o 2(:) = y?2,
a constant. Define {T{™} from {Z,(n)} in the same manner as {S{™} was
defined from {Z(™} [see (4.6)]. Assume the two loss functions asymptotically
agree in the sense that for each f € 0,

E(ILP(f, 0, 2) = LO(f, @, (%, T)))) = 0

(4.19)
uniformly in ¢ €.

The proof of Theorem 4.1 can then easily be adapted to prove that correspond-
ing procedures in the two problems have asymptotically equal risk functions
under the respective losses L and L.

The preceding observation can be used to prove equivalence in the problem
of optimal bandwidth selection as formulated in Hall and Johnstone (1992).
The condition (4.19) is relatively straightforward to check in their context.
The resulting conclusion is that their asymptotic result, once proved in the
white-noise setting, is then also valid in the nonparametric regression set-
ting.

REMARK 4.6. Looking at Example 1.1 in the case where a < 1/2 shows

what can happen when the key regularity condition (4.5) falls Let I =[0,1],
h(:) =1 and o(:) = 1. In the white-noise problem

fr?[zgw - fol,u(t) dt] - N(0,1)
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in distribution uniformly over u € 04), ;). [In fact the left side is exactly
N(0, 1).] However, in the regression problem of Section 1 there cannot exist
an estimator d® such that

(4.20) Vn |d9(x,;,Y,;) —folf(t)dt] - N(0,1)

uniformly over f € ©%), ). By virtue of Remark 3.1, this shows that the two
problems are not asymptotically equivalent. [To verify the impossibility of
(4.20), let £, = /It — i(t)/(n + 1)|, where i(¢) is defined by |¢ — i(¢)/(n +
1) =min{lt —j/(n + Dl j=1,...,n}. Then f(¢) =0 and f(¢) = &,(¢) are
both in ®%), ), and (x,;,Y,,) has the identical distribution in both cases.
However, Vn [i,(t) dt ~ V2 /3. Hence validity of (4.20) for f(¢) = 0 implies
its failure for f(¢) = £,(¢).]

Although the two sequences of problems are not asymptotically equivalent
in the strong sense of Theorem 4.1, nevertheless in many special cases they
are asymptotically equally useful. For example, they will have the same local
asymptotic minimax risks for estimating f(x,) under squared error loss or
for estimating f(¢) under integrated squared error loss.

5. Random X. Results analogous to those of the preceding section can
be derived for the random X nonparametric regression problem, as defined in
(1.2). In this case the nonparametric regression problem is asymptotically
equivalent to a white-noise model in which the drift depends on the observed
values of X, as well as the unknown parameters.

To describe this white-noise model on I =[a, 8], —© < a < B <, let

Xy -+ » X(n) denote the ordered values of X and let x, = @, %(,.1) = B and
let
i—1 t—x;
7 (-1
H,(¢) = +
if oy <t<x;,i=1,...,n+ 1.

Now define £ = H;'(i/n) and define f, by (4.4) with £ in place of ¢;. Let
k,(¢) denote the left-hand derivative of H, at ¢. In place of (4.5) assume

(52)  limprobsupn [*(£(£) = (1)) (hu(t) /o2(2)) dt = 0.

n—o© fe ® a
REMARK 5.1. Assumption (5.2) is usually not much harder to verify than

is (4.5). For example, if I = [0,1], H is the uniform distribution, o(¢) = 1 and
a > 1/2 in Example 1.1, then (5.2) follows since

[(F(8) = Fu0) () de = [(F(H(0)) = F(H;'(@))) dv



2396 L. D. BROWN AND M. G. LOW
and
E{n(f(ﬁ;l(v)) - fn(ﬁn‘l(v)))z} < nB2E(xj, — %;_p)°“ > 0
uniformly in v, n, where j = minfi: x,, > H;Y(v)).
In the preceding situation define A2(¢) = o-%(¢)/k,(¢) and

A(#)
Vi

Note that the distribution of {Z{X- ™} depends on the ancillary observations X
through the local variance function A2

(5.3) dz&m = f.(¢) dt + dB,.

THEOREM 5.1. Assume o, f, H satisfy (4.1)-(4.3) and (5.2). Then the
random X nonparametric regression model is asymptotically equivalent to the
white-noise model (5.3).

PrOOF. Analogously to Theorem 4.1, let

M)
Vi

The remainder of the proof exactly follows the pattern of proof of Theorem 4.1
with Z in place of Z and f in place of f. Also (4.8) needs to be modified
slightly to begin as

(54)  H({X,0, S} (X, Vo)) = O(E( L 2(5,0)(& - &-1)°))

and so forth, since {x,;} and {¢;} are random. (An alternative proof could be
based directly on Corollary 4.2.) O

dZ&:m = f (t) dt + dB,.

REMARK 5.2. A conspicuous feature of the preceding result is that knowl-
edge of H is not required to construct Z(**™ nor to carry through the proof of
the theorem. Thus, suppose it is only assumed that H €.%, where

lim prob sup supn/ ft) - f, (t)) (R (t)/o?(2))dt =0
n—oe HeX’fe® “a
and also that either o2(¢) = y2 or (4.3) is modified to require the existence of
an h, satisfying
inf{h(t): h €#} = ho(t) >0 ae.on .
Then the equivalence assertion of Theorem 5.1 remains valid.
- Note also that the construction in Corollary 4.2 of equivalent procedures

together with the contents of Remarks 4.2-4.4 can easily be carried over to
the current situation.
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REMARK 5.3. Suppose H is known. An issue which then arises is whether
this knowledge can serve in place of observation of the ancillary statistics
Xi,..., X,. More precisely, let X; < -+ <X, denote the ordered values of

{X i=1,...,n} and let Y, Y denote the corresponding values of {Y}}.
Then given knowledge of H is the experiment {Y;: i = 1,..., n} asymptoti-
cally equivalent to {(X;,Y;): i =1,...,n}? Because of Theorem 5.1, this is

equivalent to asking whether the experlment {Z} 7(X,m: ¢ e I} is asymptotically
equivalent to {(H,, ZX™): ¢t € I).

The general answer to this question is “No.” Suppose I =[0,1], o%(¢) = 1
for t €I and ® = {f: f(t) = ct, c € R}. Then in the experiment {Z{X'™} the
UMVU and minimax estimator is 2 [t dZ(X*™, which has variance

(5.5) 4n”1 [tR3(¢) dt + Var(2[tdI—7n(t)) =2n7Y(1 + 1/3).

Meanwhile, for the experiment {(H,, Z¥'™)} the UMVU and minimax estima-
tor is 2(H (¢) dZ*>™, which has variance 2n . This shows the two experi-
ments are not asymptotlcally equivalent.

On the other hand, for many purposes the two experiments are equally
useful asymptotically. Roughly speaking this happens when the rate of
convergence of the estimator used is slower than the classical Vn rate.
Heuristically, what happens in such problems is that the imprecision intro-
duced by not observing H, is represented by a term analogous to the second
one on the left of (5.5), which is of order 1/n. When the estimator converges
at slower than Vn rate, so that its variance converges more slowly than n~1,
this second term is asymptotically negligible. Such behavior can be deduced
in examples like those cited in Donoho and Liu (1991) and Low (1992).

Acknowledgment. The authors thank Lucien Le Cam for helpful con-
versations.
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