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Interval Estimation for
a Binomial Proportion

Lawrence D. Brown, T. Tony Cai and Anirban DasGupta

Abstract. We revisit the problem of interval estimation of a binomial
proportion. The erratic behavior of the coverage probability of the stan-
dard Wald confidence interval has previously been remarked on in the
literature (Blyth and Still, Agresti and Coull, Santner and others). We
begin by showing that the chaotic coverage properties of the Wald inter-
val are far more persistent than is appreciated. Furthermore, common
textbook prescriptions regarding its safety are misleading and defective
in several respects and cannot be trusted.

This leads us to consideration of alternative intervals. A number of
natural alternatives are presented, each with its motivation and con-
text. Each interval is examined for its coverage probability and its length.
Based on this analysis, we recommend the Wilson interval or the equal-
tailed Jeffreys prior interval for small n and the interval suggested in
Agresti and Coull for larger n. We also provide an additional frequentist
justification for use of the Jeffreys interval.

Key words and phrases: Bayes, binomial distribution, confidence
intervals, coverage probability, Edgeworth expansion, expected length,

Jeffreys prior, normal approximation, posterior.

1. INTRODUCTION

This article revisits one of the most basic and
methodologically important problems in statisti-
cal practice, namely, interval estimation of the
probability of success in a binomial distribu-
tion. There is a textbook confidence interval for
this problem that has acquired nearly universal
acceptance in practice. The interval, of course, is
P £ 2y9 n7VA(P(1 — p))M%, where p = X/n is
the sample proportion of successes, and z,/, is the
100(1 — @/2)th percentile of the standard normal
distribution. The interval is easy to present and
motivate and easy to compute. With the exceptions
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of the ¢ test, linear regression, and ANOVA, its
popularity in everyday practical statistics is virtu-
ally unmatched. The standard interval is known as
the Wald interval as it comes from the Wald large
sample test for the binomial case.

So at first glance, one may think that the problem
is too simple and has a clear and present solution.
In fact, the problem is a difficult one, with unantic-
ipated complexities. It is widely recognized that the
actual coverage probability of the standard inter-
val is poor for p near 0 or 1. Even at the level of
introductory statistics texts, the standard interval
is often presented with the caveat that it should be
used only when n-min(p, 1— p) is at least 5 (or 10).
Examination of the popular texts reveals that the
qualifications with which the standard interval is
presented are varied, but they all reflect the concern
about poor coverage when p is near the boundaries.

In a series of interesting recent articles, it has
also been pointed out that the coverage proper-
ties of the standard interval can be erratically
poor even if p is not near the boundaries; see, for
instance, Vollset (1993), Santner (1998), Agresti and
Coull (1998), and Newcombe (1998). Slightly older
literature includes Ghosh (1979), Cressie (1980)
and Blyth and Still (1983). Agresti and Coull (1998)
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particularly consider the nominal 95% case and
show the erratic and poor behavior of the stan-
dard interval’s coverage probability for small n
even when p is not near the boundaries. See their
Figure 4 for the cases n = 5 and 10.

We will show in this article that the eccentric
behavior of the standard interval’s coverage prob-
ability is far deeper than has been explained or is
appreciated by statisticians at large. We will show
that the popular prescriptions the standard inter-
val comes with are defective in several respects and
are not to be trusted. In addition, we will moti-
vate, present and analyze several alternatives to the
standard interval for a general confidence level. We
will ultimately make recommendations about choos-
ing a specific interval for practical use, separately
for different intervals of values of n. It will be seen
that for small n (40 or less), our recommendation
differs from the recommendation Agresti and Coull
(1998) made for the nominal 95% case. To facili-
tate greater appreciation of the seriousness of the
problem, we have kept the technical content of this
article at a minimal level. The companion article,
Brown, Cai and DasGupta (1999), presents the asso-
ciated theoretical calculations on Edgeworth expan-
sions of the various intervals’ coverage probabili-
ties and asymptotic expansions for their expected
lengths.

In Section 2, we first present a series of exam-
ples on the degree of severity of the chaotic behav-
ior of the standard interval’s coverage probability.
The chaotic behavior does not go away even when
n is quite large and p is not near the boundaries.
For instance, when n is 100, the actual coverage
probability of the nominal 95% standard interval
is 0.952 if p is 0.106, but only 0.911 if p is 0.107.
The behavior of the coverage probability can be even
more erratic as a function of n. If the true p is 0.5,
the actual coverage of the nominal 95% interval is
0.953 at the rather small sample size n = 17, but
falls to 0.919 at the much larger sample size n = 40.

This eccentric behavior can get downright
extreme in certain practically important prob-
lems. For instance, consider defective proportions in
industrial quality control problems. There it would
be quite common to have a true p that is small. If
the true p is 0.005, then the coverage probability
of the nominal 95% interval increases monotoni-
cally in n all the way up to n = 591 to the level
0.945, only to drop down to 0.792 if n is 592. This
unlucky spell continues for a while, and then the
coverage bounces back to 0.948 when n is 953, but
dramatically falls to 0.852 when n is 954. Subse-
quent unlucky spells start off at n = 1279, 1583 and
on and on. It should be widely known that the cov-
erage of the standard interval can be significantly

lower at quite large sample sizes, and this happens
in an unpredictable and rather random way.

Continuing, also in Section 2 we list a set of com-
mon prescriptions that standard texts present while
discussing the standard interval. We show what
the deficiencies are in some of these prescriptions.
Proposition 1 and the subsequent Table 3 illustrate
the defects of these common prescriptions.

In Sections 3 and 4, we present our alterna-
tive intervals. For the purpose of a sharper focus
we present these alternative intervals in two cat-
egories. First we present in Section 3 a selected
set of three intervals that clearly stand out in
our subsequent analysis; we present them as our
“recommended intervals.” Separately, we present
several other intervals in Section 4 that arise as
clear candidates for consideration as a part of a
comprehensive examination, but do not stand out
in the actual analysis.

The short list of recommended intervals contains
the score interval, an interval recently suggested
in Agresti and Coull (1998), and the equal tailed
interval resulting from the natural noninforma-
tive Jeffreys prior for a binomial proportion. The
score interval for the binomial case seems to
have been introduced in Wilson (1927); so we call
it the Wilson interval. Agresti and Coull (1998)
suggested, for the special nominal 95% case, the
interval p=zg o057~ Y2(p(1— p))Y2, where i = n+4
and p = (X + 2)/(n + 4); this is an adjusted Wald
interval that formally adds two successes and
two failures to the observed counts and then uses
the standard method. Our second interval is the
appropriate version of this interval for a general
confidence level; we call it the Agresti—Coull inter-
val. By a slight abuse of terminology, we call our
third interval, namely the equal-tailed interval
corresponding to the Jeffreys prior, the Jeffreys
interval. '

In Section 3, we also present our findings on the
performances of our “recommended” intervals. As
always, two key considerations are their coverage
properties and parsimony as measured by expected
length. Simplicity of presentation is also sometimes
an issue, for example, in the context of classroom
presentation at an elementary level. On considera-
tion of these factors, we came to the conclusion that
for small n (40 or less), we recommend that either
the Wilson or the Jeffreys prior interval should
be used. They are very similar, and either may be
used depending on taste. The Wilson interval has a
closed-form formula. The Jeffreys interval does not.
One can expect that there would be resistance to
using the Jeffreys interval solely due to this rea-
son. We therefore provide a table simply listing the
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limits of the Jeffreys interval for n up to 30 and
in addition also give closed form and very accurate
approximations to the limits. These approximations
do not need any additional software.

For larger n (n > 40), the Wilson, the Jeffreys
and the Agresti—Coull interval are all very simi-
lar, and so for such n, due to its simplest form,
we come to the conclusion that the Agresti—Coull
interval should be recommended. Even for smaller
sample sizes, the Agresti—Coull interval is strongly
preferable to the standard one and so might be the
choice where simplicity is a paramount objective.

The additional intervals we considered are two
slight modifications of the Wilson and the Jeffreys
intervals, the Clopper—Pearson “exact” interval,
the arcsine interval, the logit interval, the actual
Jeffreys HPD interval and the likelihood ratio
interval. The modified versions of the Wilson and
the Jeffreys intervals correct disturbing downward
spikes in the coverages of the original intervals very
close to the two boundaries. The other alternative
intervals have earned some prominence in the liter-
ature for one reason or another. We had to apply a
certain amount of discretion in choosing these addi-
tional intervals as part of our investigation. Since
we wish to direct the main part of our conversation
to the three “recommended” intervals, only a brief
summary of the performances of these additional
intervals is presented along with the introduction
of each interval. As part of these quick summaries,
we indicate why we decided against including them
among the recommended intervals.

We strongly recommend that introductory texts
in statistics present one or more of these recom-
mended alternative intervals, in preference to the
standard one. The slight sacrifice in simplicity
would be more than worthwhile. The conclusions
we make are given additional theoretical support
by the results in Brown, Cai and DasGupta (1999).
Analogous results for other one parameter discrete
families are presented in Brown, Cai and DasGupta
(2000).

2. THE STANDARD INTERVAL

When constructing a confidence interval we usu-
ally wish the actual coverage probability to be close
to the nominal confidence level. Because of the dis-
crete nature of the binomial distribution we cannot
always achieve the exact nominal confidence level
unless a randomized procedure is used. Thus our
objective is to construct nonrandomized confidence
intervals for p such that the coverage probability
P, (p € CI) ~ 1 — a where a is some prespecified
value between 0 and 1. We will use the notation

C(p,n) = P,(p € CI),0 < p < 1, for the coverage
probability.

A standard confidence interval for p based on nor-
mal approximation has gained universal recommen-
dation in the introductory statistics textbooks and
in statistical practice. The interval is known to guar-
antee that for any fixed p € (0, 1),C(p,n) > 1 —«
as n — oo.

Let ¢(2) and ®(z) be the standard normal density
and distribution functions, respectively. Throughout
the paper we denote k = z,p = P }(1 - /2), p =
X/n and § = 1 — p. The standard normal approxi-
mation confidence interval CI, is given by

(1) CI, = p+«n V2(pg)12

This interval is obtained by inverting the accep-
tance region of the well known Wald large-sample
normal test for a general problem:

@) (6 — 6)/5e(6)| < «,

where 6 is a generic parameter, § is the maximum
likelihood estimate of 6 and 5e(f) is the estimated
standard error of 6. In the binomial case, we have
0= p, 6= X/n and 5e(h) = (p§)"/>n=1/2.

The standard interval is easy to calculate and
is heuristically appealing. In introductory statis-
tics texts and courses, the confidence interval CI|
is usually presented along with some heuristic jus-
tification based on the central limit theorem. Most
students and users no doubt believe that the larger
the number r, the better the normal approximation,
and thus the closer the actual coverage would be to
the nominal level 1 — a. Further, they would believe
that the coverage probabilities of this method are
close to the nominal value, except possibly when n
is “small” or p is “near” 0 or 1. We will show how
completely both of these beliefs are false. Let us
take a close look at how the standard interval CI
really performs.

2.1 Lucky n, Lucky p

An interesting phenomenon for the standard
interval is that the actual coverage probability
of the confidence interval contains nonnegligible
oscillation as both p and n vary. There exist some
“lucky” pairs (p, n) such that the actual coverage
probability C(p, n) is very close to or larger than
the nominal level. On the other hand, there also
exist “unlucky” pairs (p,n) such that the corre-
sponding C(p, n) is much smaller than the nominal
level. The phenomenon of oscillation is both in n,
for fixed p, and in p, for fixed n. Furthermore, dras-
tic changes in coverage occur in nearby p for fixed
n and in nearby n for fixed p. Let us look at five
simple but instructive examples.
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Fi1c. 1. Standard interval; oscillation phenomenon for fixed p = 0.2 and variable n = 25 to 100.

The probabilities reported in the following plots
and tables, as well as those appearing later in
this paper, are the result of direct probability
calculations produced in S-PLUS. In all cases
their numerical accuracy considerably exceeds the
number of significant figures reported and/or the
accuracy visually obtainable from the plots. (Plots
for variable p are the probabilities for a fine grid
of values of p, e.g., 2000 equally spaced values of p
for the plots in Figure 5.)

ExaMPLE 1. Figure 1 plots the coverage prob-
ability of the nominal 95% standard interval for
p = 0.2. The number of trials n varies from 25 to
100. It is clear from the plot that the oscillation is
significant and the coverage probability does not
steadily get closer to the nominal confidence level
as n increases. For instance, C(0.2, 30) = 0.946 and
C(0.2,98) = 0.928. So, as hard as it is to believe,
the coverage probability is significantly closer to
0.95 when n = 30 than when n = 98. We see that
the true coverage probability behaves contrary to
conventional wisdom in a very significant way.

EXAMPLE 2. Now consider the case of p = 0.5.
Since p = 0.5, conventional wisdom might suggest
to an unsuspecting user that all will be well if n is
about 20. We evaluate the exact coverage probabil-
ity of the 95% standard interval for 10 < n < 50.
In Table 1, we list the values of “lucky” n [defined
as C(p,n) = 0.95] and the values of “unlucky” n
[defined for specificity as C(p, n) < 0.92]. The con-
clusions presented in Table 2 are surprising. We

note that when n = 17 the coverage probability
is 0.951, but the coverage probability equals 0.904
when n = 18. Indeed, the unlucky values of n arise
suddenly. Although p is 0.5, the coverage is still
only 0.919 at n = 40. This illustrates the inconsis-
tency, unpredictability and poor performance of the
standard interval.

EXAMPLE 3. Now let us move p really close to
the boundary, say p = 0.005. We mention in the
introduction that such p are relevant in certain
practical applications. Since p is so small, now one
may fully expect that the coverage probability of
the standard interval is poor. Figure 2 and Table
2.2 show that there are still surprises and indeed
we now begin to see a whole new kind of erratic
behavior. The oscillation of the coverage probabil-
ity does not show until rather large n. Indeed, the
coverage probability makes a slow ascent all the
way until n = 591, and then dramatically drops to
0.792 when n = 592. Figure 2 shows that thereafter
the oscillation manifests in full force, in contrast
to Examples 1 and 2, where the oscillation started
early on. Subsequent “unlucky” values of n again
arise in the same unpredictable way, as one can see
from Table 2.2.

2.2 Inadequate Coverage

The results in Examples 1 to 3 already show that
the standard interval can have coverage noticeably
smaller than its nominal value even for values of n
and of np(1 — p) that are not small. This subsec-

TABLE 1
Standard interval; lucky n and unlucky n for 10 <n <50 and p = 0.5

Lucky n 17 20 25 30
C(0.5,n) 0.951 0.959 0.957 957
Unlucky n 10 12 13 15
C(0.5,n) 0.891 0.854 0.908 0.882

35 37 42 44 49
0.959 0.953 0.956 0.951 0.956

18 23 28 33 40
0.904 0.907 0.913 0.920 0.919
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TABLE 2
Standard interval; late arrival of unlucky n for small p

592
0.792

954
0.852

1279
0.875

1583
0.889

1876
0.898

Unlucky n
C(0.005, n)

tion contains two more examples that display fur-
ther instances of the inadequacy of the standard
interval.

EXAMPLE 4. Figure 3 plots the coverage probabil-
ity of the nominal 95% standard interval with fixed
n = 100 and variable p. It can be seen from Fig-
ure 3 that in spite of the “large” sample size, signifi-
cant change in coverage probability occurs in nearby
p. The magnitude of oscillation increases signifi-
cantly as p moves toward 0 or 1. Except for values
of p quite near p = 0.5, the general trend of this
plot is noticeably below the nominal coverage value
of 0.95.

EXAMPLE 5. Figure 4 shows the coverage proba-
bility of the nominal 99% standard interval with n =
20 and variable p from 0 to 1. Besides the oscilla-
tion phenomenon similar to Figure 3, a striking fact
in this case is that the coverage never reaches the
nominal level. The coverage probability is always
smaller than 0.99, and in fact on the average the
coverage is only 0.883. Our evaluations show that
for all n < 45, the coverage of the 99% standard
interval is strictly smaller than the nominal level
forall0 < p <1.

It is evident from the preceding presentation
that the actual coverage probability of the standard
interval can differ significantly from the nominal
confidence level for moderate and even large sam-
ple sizes. We will later demonstrate that there are
other confidence intervals that perform much better
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in this regard. See Figure 5 for such a comparison.
The error in coverage comes from two sources: dis-
creteness and skewness in the underlying binomial
distribution. For a two-sided interval, the rounding
error due to discreteness is dominant, and the error
due to skewness is somewhat secondary, but still
important for even moderately large n. (See Brown,
Cai and DasGupta, 1999, for more details.) Note
that the situation is different for one-sided inter-
vals. There, the error caused by the skewness can
be larger than the rounding error. See Hall (1982)
for a detailed discussion on one-sided confidence
intervals.

The oscillation in the coverage probability is
caused by the discreteness of the binomial dis-
tribution, more precisely, the lattice structure of
the binomial distribution. The noticeable oscil-
lations are unavoidable for any nonrandomized
procedure, although some of the competing proce-
dures in Section 3 can be seen to have somewhat
smaller oscillations than the standard procedure.
See the text of Casella and Berger (1990) for intro-
ductory discussion of the oscillation in such a
context.

The erratic and unsatisfactory coverage prop-
erties of the standard interval have often been
remarked on, but curiously still do not seem to
be widely appreciated among statisticians. See, for
example, Ghosh (1979), Blyth and Still (1983) and
Agresti and Coull (1998). Blyth and Still (1983) also
show that the continuity-corrected version still has
the same disadvantages.

2.3 Textbook Qualifications

The normal approximation used to justify the
standard confidence interval for p can be signifi-
cantly in error. The error is most evident when the
true p is close to 0 or 1. See Lehmann (1999). In
fact, it is easy to show that, for any fixed n, the

1zTs 1582 1.875.

= so9=

o544

&7
T=z7o se3

1000

(o]

1S00 =2000

F1G. 2. Standard interval; oscillation in coverage for small p.
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F1G. 8. Standard interval; oscillation phenomenon for fixed n = 100 and variable p.

confidence coefficient C(p,n) - 0 as p — 0 or 1.
Therefore, most major problems arise as regards
coverage probability when p is near the boundaries.

Poor coverage probabilities for p near 0 or 1 are
widely remarked on, and generally, in the popu-
lar texts, a brief sentence is added qualifying when
to use the standard confidence interval for p. It
is interesting to see what these qualifications are.
A sample of 11 popular texts gives the following
qualifications:

The confidence interval may be used if:

np, n(1l — p) are > 5 (or 10);

np(1l — p) =5 (or 10);

np,n(l— p) are > 5 (or 10);

p=+3,/p(1— p)/n does not contain 0 or 1;
n quite large;

n > 50 unless p is very small.

BRI S

It seems clear that the authors are attempting to
say that the standard interval may be used if the
central limit approximation is accurate. These pre-
scriptions are defective in several respects. In the
estimation problem, (1) and (2) are not verifiable.
Even when these conditions are satisfied, we see,
for instance, from Table 1 in the previous section,
that there is no guarantee that the true coverage
probability is close to the nominal confidence level.

For example, when n = 40 and p = 0.5, one has
np = n(l - p) =20 and np(1 — p) = 10, so clearly
either of the conditions (1) and (2) is satisfied. How-
ever, from Table 1, the true coverage probability in
this case equals 0.919 which is certainly unsatisfac-
tory for a confidence interval at nominal level 0.95.

The qualification (5) is useless and (6) is patently
misleading; (3) and (4) are certainly verifiable, but
they are also useless because in the context of fre-
quentist coverage probabilities, a data-based pre-
scription does not have a meaning. The point is that
the standard interval clearly has serious problems
and the influential texts caution the readers about
that. However, the caution does not appear to serve
its purpose, for a variety of reasons.

Here is a result that shows that sometimes the
qualifications are not correct even in the limit as
n — oo.

PROPOSITION 1. Let v > 0. For the standard con-
fidence interval,

3) lim inf
n—00 p:np, n(1-p)zy

C(p,n)

< P(a.,, < Poisson(y) < b,),

i

0% 0%

0

W 0w

L)

Fi1G. 4. Coverage of the nominal 99% standard interval for fixed n = 20 and variable p.
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Standard Interval

0.86 088 090 092 094 09 098 1.00

oo o2 0.4 o.e o.s 1.0

=]
Agresti-Coull Interval

0.86 088 080 092 094 096 098 1.00

Wilson Interval

086 0.88 090 082 094 0% 098 1.00

0.0 o.2 0.4 0.6 o.8 1.0

(=]
Jeffreys’ Equal-Tailed Interval

0.86 088 090 092 094 09 098 100

FiG. 5. Coverage probability for n = 50.

TABLE 3
Standard interval; bound (3) on limiting minimum coverage
when np,n(1-p)=vy

Y 5 7 10

lim inf  C(p,n) 0.875 0.913 0.926

=00 p:np, n(1-p)=zy

where a., and b, are the integer parts of

(<% 4 2y + K/ k2 + 4v)/2,

where the — sign goes with a., and the + sign with b,.

The proposition follows from the fact that the
sequence of Bin(n,y/n) distributions converges
weakly to the Poisson(y) distribution and so the
limit of the infimum is at most the Poisson proba-
bility in the proposition by an easy calculation.

Let us use Proposition 1 to investigate the validity
of qualifications (1) and (2) in the list above. The
nominal confidence level in Table 3 below is 0.95.

TABLE 4
Values of A, for the modified lower bound for the Wilson interval

1-« x=1 x=2 x=3
0.90 - 0.105 0.532 1.102
0.95 0.051 0.355 0.818
0.99 0.010 0.149 0.436

It is clear that qualification (1) does not work at
all and (2) is marginal. There are similar problems
with qualifications (3) and (4).

3. RECOMMENDED ALTERNATIVE INTERVALS

From the evidence gathered in Section 2, it seems
clear that the standard interval is just too risky.
This brings us to the consideration of alternative
intervals. We now analyze several such alternatives,
each with its motivation. A few other intervals are
also mentioned for their theoretical importance.
Among these intervals we feel three stand out in
their comparative performance. These are labeled
separately as the “recommended intervals”.

3.1 Recommended Intervals

3.1.1 The Wilson interval. An alternative to the
standard interval is the confidence interval based
on inverting the test in equation (2) that uses the
null standard error (pq)*?n~1/2 instead of the esti-
mated standard error (p4)Y/2n~1/2. This confidence
interval has the form

X +«%/2 kn?
T (b 2 am)

This interval was apparently introduced by Wilson
(1927) and we will call this interval the Wilson
interval.

The Wilson interval has theoretical appeal. The
interval is the inversion of the CLT approximation

4) CIy =
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to the family of equal tail tests of Hy: p = p,.
Hence, one accepts H, based on the CLT approx-
imation if and only if p, is in this interval. As
Wilson showed, the argument involves the solution
of a quadratic equation; or see Tamhane and Dunlop
(2000, Exercise 9.39).

3.1.2 The Agresti-Coull interval. The standard
interval CI, is simple and easy to remember. For
the purposes of classroom presentation and use in
texts, it may be nice to have an alternative that has
the familiar form p + z,/p(1 — p)/n, with a better
and new choice of p rather than p = X/n. This can
be accomplished by using the center of the Wilson
region in place of p. Denote X = X + «?/2 and
fi=n+«? Let p= X/fi and § = 1 — p. Define the
confidence interval CI 4o for p by

) Cl o = p+ x(pg)" a2,

Both the Agresti—Coull and the Wilson interval are
centered on the same value, p. It is easy to check
that the Agresti—Coull intervals are never shorter
than the Wilson intervals. For the case when a =
0.05, if we use the value 2 instead of 1.96 for k,
this interval is the “add 2 successes and 2 failures”
interval in Agresti and Coull (1998). For this rea-
son, we call it the Agresti—Coull interval. To the
best of our knowledge, Samuels and Witmer (1999)
is the first introductory statistics textbook that rec-
ommends the use of this interval. See Figure 5 for
the coverage of this interval. See also Figure 6 for
its average coverage probability.

3.1.3 Jeffreys interval. Beta distributions are the
standard conjugate priors for binomial distributions
and it is quite common to use beta priors for infer-
ence on p (see Berger, 1985).

Suppose X ~ Bin(n, p) and suppose p has a prior
distribution Beta(a;, ay); then the posterior distri-
bution of p is Beta(X + a;,n — X + a5). Thus a
100(1 — @)% equal-tailed Bayesian interval is given
by

[B(a/2; X + a1, n — X + ay),
B(l-a/2; X +a;,n— X +ay)],

where B(a;mq, my) denotes the « quantile of a
Beta(m, my) distribution.

The well-known Jeffreys prior and the uniform
prior are each a beta distribution. The noninforma-
tive Jeffreys prior is of particular interest to us.
Historically, Bayes procedures under noninforma-
tive priors have a track record of good frequentist
properties; see Wasserman (1991). In this problem

the Jeffreys prior is Beta(1/2,1/2) which has the
density function

f(p)=m"'p (1~ p)'2.

The 100(1 — a)% equal-tailed Jeffreys prior interval
is defined as

(6) Cl; =[L;(x), U (x)],

where L ;(0) =0, U (n) =1 and otherwise

(7) Lj(x)=B(a/2; X +1/2,n - X +1/2),

8) Ujx)=B(1—-a/2;X+1/2,n—- X +1/2).

The interval is formed by taking the central 1 — «
posterior probability interval. This leaves /2 poste-
rior probability in each omitted tail. The exception
is for x = 0(n) where the lower (upper) limits are
modified to avoid the undesirable result that the
coverage probability C(p,n) - 0as p - O or 1.

The actual endpoints of the interval need to be
numerically computed. This is very easy to do using
softwares such as Minitab, S-PLUS or Mathematica.
In Table 5 we have provided the limits for the case
of the Jeffreys prior for 7 < n < 30.

The endpoints of the Jeffreys prior interval are
the @/2 and 1—a/2 quantiles of the Beta(x+1/2, n—
x + 1/2) distribution. The psychological resistance
among some to using the interval is because of the
inability to compute the endpoints at ease without
software.

We provide two avenues to resolving this problem.
One is Table 5 at the end of the paper. The second
is a computable approximation to the limits of the
Jeffreys prior interval, one that is computable with
just a normal table. This approximation is obtained
after some algebra from the general approximation
to a Beta quantile given in page 945 in Abramowitz
and Stegun (1970).

The lower limit of the 100(1 — a)% dJeffreys prior
interval is approximately

x+1/2
n+1+(n—x+1/2)(e2 —1)

9

where
_ k/4pq/n + (x* — 8)/(6n)
4pq
o (/2= P)(PA(® +2) = 1/n)

6n(pq)>
The upper limit may be approximated by the same
expression with « replaced by —« in w. The simple
approximation given above is remarkably accurate.
Berry (1996, page 222) suggests using a simpler nor-

mal approximation, but this will not be sufficiently
accurate unless np(1 — p) is rather large.
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95% Limits of the Jeffreys prior interval

TABLE 5

x n="17 n=8 n=9 n=10 n=11 n=12
0 0 0292 0 0.262 0 0.238 0 0217 0 0200 0 0.185
1 0.016 0501 0.014 0454 0.012 0414 0.011 0.381 0.010 0.353 0.009 0.328
2 0.065 0.648 0.056 0.592 0.049 0.544 0.044 0.503 0.040 0.467 0.036 0.436
3 0139 0.766 0.119 0.705 0.104 0.652 0.093 0.606 0.084 0.565 0.076 0.529
4 0234 0861 0.199 0801 0.173 0.746 0.1563 0.696 0.137 0.652 0.124 0.612
5 0.254 0.827 0.224 0.776 0.200 0.730 0.180 0.688
6 0.270 0.800 0.243 0.757
x n=13 n=14 n=15 n=16 n=17 n=18
0 O 0.173 0 0.162 0 0.152 0 0.143 0 0.136 0 0.129
1 0.008 0.307 0.008 0.288 0.007 0.272 0.007 0.257 0.006 0.244 0.006 0.232
2 0.033 0.409 0.031 038 0.029 0.363 0.027 0.344 0.025 0.327 0.024 0.311
3 0.070 0.497 0.064 0469 0.060 0.444 0.056 0.421 0.052 0.400 0.049 0.381
4 0114 0.577 0.105 0.545 0.097 0.517 0.091 0491 0.085 0.467 0.080 0.446
5 0.165 0.650 0.152 0.616 0.140 0.584 0.131 0.556 0.122 0.530 0.115 0.506
6 0221 0.717 0.203 0.681 0.188 0.647 0.174 0.617 0.163 0.589 0.153 0.563
7 0283 0.779 0.259 0.741 0.239 0.706 0.222 0.674 0.207 0.644 0.194 0.617
8 0.294 0.761 0.272 0.728 0.254 0.697 0.237 0.668
9 0.303 0.746 0.284 0.716
x n=19 n=20 n=21 n=22 n=23 n=24
0 0 0122 0 0.117 0 0.112 0 0.107 0 0102 O 0.098
1 0.006 0.221 0.0056 0.211 0.005 0.202 0.005 0.193 0.005 0.186 0.004 0.179
2 0022 0297 0.021 0.284 0.020 0272 0.019 0.261 0.018 0.251 0.018 0.241
3 0.047 0.364 0.044 0.349 0.042 0.334 0.040 0.321 0.038 0.309 0.036 0.297
4 0.076 0.426 0.072 0.408 0.068 0.392 0.065 0.376 0.062 0.362 0.059 0.349
5 0108 0484 0.102 0.464 0.097 0446 0.092 0429 0.088 0.413 0.084 0.398
6 0.144 0539 0.136 0.517 0.129 0.497 0.123 0478 0.117 0461 0.112 0.444
7 0182 0.591 0.172 0568 0.163 0.546 0.155 0.526 0.148 0.507 0.141 0.489
8 0223 0641 0.211 0.616 0.199 0.593 0.189 0571 0.180 0.551 0.172 0.532
9 0266 0688 0.251 0.662 0237 0.638 0.225 0.615 0214 0.594 0.204 0.574
10 0312 0.734 0.293 0.707 0.277 0.681 0.263 0.657 0.250 0.635 0.238 0.614
11 0.319 0.723 0.302 0.698 0.287 0.675 0.273 0.653
12 0.325 0.713 0.310 0.690
x n=25 n=26 n=27 n=28 n=29 n=30
0 0 0095 0 0.091 O 0.088 0 0.085 0 0.082 0 0.080
1 0.004 0.172 0.004 0.166 0.004 0.160 0.004 0.155 0.004 0.150 0.004 0.145
2 0.017 0.233 0.016 0.225 0.016 0.217 0.015 0.210 0.015 0.203 0.014 0.197
3 0.035 0.287 0.034 0.277 0.032 0.268 0.031 0.259 0.030 0.251 0.029 0.243
4 0056 0337 0.054 0325 0.052 0315 0.050 0.305 0.048 0.295 0.047 0.286
5 0081 0.384 0.077 0.371 0.074 0359 0.072 0.348 0.069 0.337 0.067 0.327
6 0107 0429 0.102 0.415 0.098 0402 0.095 0.389 0.091 0.378 0.088 0.367
7 0135 0.473 0.129 0457 0.124 0.443 0.119 0429 0.115 0.416 0.111 0.404
8 0.164 0.515 0.158 0.498 0.151 0482 0.145 0.468 0.140 0454 0.135 0.441
9 0195 0555 0.187 0.537 0.180 0.521 0.172 0.505 0.166 0.490 0.160 0.476
10 0.228 0.594 0.218 0.576 0.209 0.558 0.201 0.542 0.193 0.526 0.186 0.511
11  0.261 0.632 0.250 0.613 0.239 0.594 0.230 0.577 0.221 0.560 0.213 0.545
12 0295 0.669 0.282 0.649 0271 0.630 0.260 0.611 0.250 0.594 0.240 0.578
13 0.331 0.7056 0.316 0.684 0.303 0.664 0.291 0.645 0.279 0.627 0.269 0.610
14 0.336 0.697 0.322 0.678 0.310 0.659 0.298 0.641
15 0.341 0.690 0.328 0.672
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F1G. 6. Comparison of the average coverage probabilities. From top to bottom: the Agresti—Coull interval CI s¢, the Wilson interval Cly,
the Jeffreys prior interval CI ; and the standard interval CI,. The nominal confidence level is 0.95.

In Figure 5 we plot the coverage probability of the
standard interval, the Wilson interval, the Agresti—
Coull interval and the Jeffreys interval for n = 50
and a = 0.05.

3.2 Coverage Probability

In this and the next subsections, we compare the
performance of the standard interval and the three
recommended intervals in terms of their coverage
probability and length.

Coverage of the Wilson interval fluctuates accept-
ably near 1 — a, except for p very near 0 or 1. It
might be helpful to consult Figure 5 again. It can
be shown that, when 1 — o = 0.95,

lim inf C( ) =0.92,

n—oo 'y>]_

lim inf C< ) = 0.936

n—>o0 y>5

and

lim inf C( ) =0.938
n—o00 y>10

for the Wilson interval. In comparison, these three

values for the standard interval are 0.860, 0.870,

and 0.905, respectively, obviously considerably

smaller.

The modification CI,;_y presented in Section
4.1.1 removes the first few deep downward spikes
of the coverage function for CIy. The resulting cov-
erage function is overall somewhat conservative for
p very near 0 or 1. Both CIy and CI;,_w have the
same coverage functions away from 0 or 1.

The Agresti—Coull interval has good minimum
coverage probability. The coverage probability of
the interval is quite conservative for p very close
to 0 or 1. In comparison to the Wilson interval it
is more conservative, especially for small n. This
is not surprising because, as we have noted, CI 4¢
always contains CIy as a proper subinterval.

The coverage of the Jeffreys interval is quali-
tatively similar to that of CIy over most of the
parameter space [0, 1]. In addition, as we will see
in Section 4.3, CI ; has an appealing connection to
the mid- P corrected version of the Clopper—Pearson
“exact” intervals. These are very similar to CI;,
over most of the range, and have similar appealing
properties. CI ; is a serious and credible candidate
for practical use. The coverage has an unfortunate
fairly deep spike near p = 0 and, symmetrically,
another near p = 1. However, the simple modifica-
tion of CI ; presented in Section 4.1.2 removes these
two deep downward spikes. The modified Jeffreys
interval CI,,_; performs well.

Let us also evaluate the intervals in terms of their
average coverage probability, the average being over
p. Figure 6 demonstrates the striking difference in
the average coverage probability among four inter-
vals: the Agresti—Coull interval, the Wilson interval
the Jeffreys prior interval and the standard inter-
val. The standard interval performs poorly. The
interval CI 4 is slightly conservative in terms of
average coverage probability. Both the Wilson inter-
val and the Jeffreys prior interval have excellent
performance in terms of the average coverage prob-
ability; that of the Jeffreys prior interval is, if
anything, slightly superior. The average coverage
of the Jeffreys interval is really very close to the
nominal level even for quite small n. This is quite
impressive.

Flgure 7 displays the mean absolute errors,
fo |C(p,n) — (1 — a)|dp, for n = 10 to 25, and
n = 26 to 40. It is clear from the plots that among
the four intervals, Cly,CI - and CI; are com-
parable, but the mean absolute errors of CI, are
significantly larger.

3.3 Expected Length

Besides coverage, length is also very important
in evaluation of a confidence interval. We compare
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F1c. 7. The mean absolute errors of the coverage of the standard (solid), the Agresti—-Coull (dashed), the Jeffreys (+) and the Wilson

(dotted) intervals for n = 10 to 25 and n = 26 to 40.

both the expected length and the average expected
length of the intervals. By definition,

Expected length
= E, ,(length(CI))

= X m -1 m)(; )=y,

where U and L are the upper and lower lim-
its of the confidence interval CI, respectively.
The average expected length is just the integral
J3 E,, ,(length(CD) dp.

We plot in Figure 8 the expected lengths of the
four intervals for n = 25 and o = 0.05. In this case,
Cly is the shortest when 0.210 < p < 0.790, CI ; is
the shortest when 0.133 < p < 0.2100r 0.790 < p <
0.867, and CI  is the shortest when p < 0.133 or p >
0.867. It is no surprise that the standard interval is
the shortest when p is near the boundaries. CI is
not really in contention as a credible choice for such
values of p because of its poor coverage properties
in that region. Similar qualitative phenomena hold
for other values of n.

Figure 9 shows the average expected lengths of
the four intervals for n = 10 to 25 and n = 26 to

40. Interestingly, the comparison is clear and con-
sistent as n changes. Always, the standard interval
and the Wilson interval CIy have almost identical
average expected length; the Jeffreys interval CI ; is
comparable to the Wilson interval, and in fact CI;
is slightly more parsimonious. But the difference is
not of practical relevance. However, especially when
n is small, the average expected length of CI 4. is
noticeably larger than that of CI; and Cly. In fact,
for n till about 20, the average expected length of
CI 4¢ is larger than that of CI; by 0.04 to 0.02, and
this difference can be of definite practical relevance.
The difference starts to wear off when n is larger
than 30 or so.

4. OTHER ALTERNATIVE INTERVALS

Several other intervals deserve consideration,
either due to their historical value or their theoret-
ical properties. In the interest of space, we had to
exercise some personal judgment in deciding which
additional intervals should be presented.

4.1 Boundary modification

The coverage probabilities of the Wilson interval
and the Jeffreys interval fluctuate acceptably near

0%

0%

0%

02

05

o= ola

ole o.s

FiG. 8. The expected lengths of the standard (solid), the Wilson (dotted), the Agresti~Coull (dashed) and the Jeffreys (+) intervals for

n =25 and a = 0.05.
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Fi1G. 9. The average expected lengths of the standard (solid), the Wilson (dotted), the Agresti-Coull (dashed) and the Jeffreys (+)

intervals for n = 10 to 25 and n = 26 to 40.

1—q for p not very close to 0 or 1. Simple modifica-
tions can be made to remove a few deep downward
spikes of their coverage near the boundaries; see
Figure 5.

4.1.1 Modified Wilson interval. The lower bound
of the Wilson interval is formed by inverting a CLT
approximation. The coverage has downward spikes
when p is very near O or 1. These spikes exist for all

n and a. For example, it can be shown that, when
1-a=0.95and p=0.1765/n,

’}Lrglo P,(peCly)=0.838

and when 1 — a« = 0.99 and p = 0.1174/n,
lim, ., P,(p € ClIy) = 0.889. The particular
numerical values (0.1174,0.1765) are relevant only
to the extent that divided by n, they approximate
the location of these deep downward spikes.

The spikes can be removed by using a one-sided
Poisson approximation for x close to 0 or n. Suppose
we modify the lower bound for x = 1,..., x*. For a
fixed 1 < x < x*, the lower bound of CIy should be

Modified Wiiilson Interval

replaced by a lower bound of A, /n where A, solves
(10) e A(A%/01 A /U4 AT (x—1)) =1 —a.

A symmetric prescription needs to be followed to
modify the upper bound for x very near n. The value
of x* should be small. Values which work reasonably
well for 1 — a = 0.95 are

x* =2 for n <50 and x* =3 for 51 <n < 100+.

Using the relationship between the Poisson and
x? distributions,

P(Y < x) = P(X3144) < 2))

where Y ~ Poisson(A), one can also formally
express A, in (10) in terms of the x? quantiles:
Ay = (1/2)x3, ,» Where x3, , denotes the 100ath
percentile of the y? distribution with 2x degrees of
freedom. Table 4 gives the values of A, for selected
values of x and «a.

For example, consider the case 1 — @ = 0.95 and
x = 2. The lower bound of CIy is ~ 0.548/(n +
4). The modified Wilson interval replaces this by a
lower bound of A/n where A = (1/2) x}, 5. Thus,

Modifieoed Jeffrevs Interval

R .
~

S.c S. o= S G0 S.as

=3

S’o = =T— - S v o S he

F1G. 10. Coverage probability for n = 50 and p € (0, 0.15). The plots are symmetric about p = 0.5 and the coverage of the modified intervals
(solid line) is the same as that of the corresponding interval without modification (dashed line) for p €[0.15,0.85].
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Arcsine Interval

Clopper-Pearson Interval

L

086 088 030 0% 094 0% 098 1.0

e
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085 085 050 0% 034 0% 0% 100

0.0 0.2 0.4 o.6 o.8 1.0
P
Logit Interval

0.0 0.2 0.4 0.6 o.8 1.0
. P
Jeffreys Prior HPD Interval

086 088 090 032 094 0% 098 100

L

1

086 088 030 032 094 0% 0% 100

Fi1c. 11. Coverage probability of other alternative intervals for n = 50.

from a x2 table, for x = 2 the new lower bound is
0.355/n.

We denote this modified Wilson interval by
CI 3 _w. See Figure 10 for its coverage.

4.1.2 Modified Jeffreys interval. Evidently, CI;
has an appealing Bayesian interpretation, and,
its coverage properties are appealing again except
for a very narrow downward coverage spike fairly
near 0 and 1 (see Figure 5). The unfortunate down-
ward spikes in the coverage function result because
U ;(0) is too small and symmetrically L ;(n) is too
large. To remedy this, one may revise these two
specific limits as

Up_4(0) = p,

where p; satisfies (1 — p;)* = a/2 or equivalently
pr =1~ (a/2)"".

We also made a slight, ad hoc alteration of L ;(1)
and set

and LM—J(n) =1- by,

LM_J(l):O and UM_J(n—1)= 1.

In all other cases, Ly, ; = L; and Uy = Uy
We denote the modified Jeffreys interval by CI,, .
This modification removes the two steep down-
ward spikes and the performance of the interval is
improved. See Figure 10.

4.2 Other intervals

4.2.1 The Clopper—Pearson interval. The Clopper—
Pearson interval is the inversion of the equal-tail
binomial test rather than its normal approxima-
tion. Some authors refer to this as the “exact”
procedure because of its derivation from the bino-
mial distribution. If X = x is observed, then
the Clopper—Pearson (1934) interval is defined by
Clcp = [Lcp(x), Ucp(x)], where Lep(x) and Ucp(x)
are, respectively, the solutions in p to the equations

P (X =x)=a/2 and P,(X <x)=a/2.

It is easy to show that the lower endpoint is the «/2
quantile of a beta distribution Beta(x,n — x + 1),
and the upper endpoint is the 1 — /2 quantile of a
beta distribution Beta(x + 1, n — x). The Clopper—
Pearson interval guarantees that the actual cov-
erage probability is always equal to or above the
nominal confidence level. However, for any fixed p,
the actual coverage probability can be much larger
than 1—a unless n is quite large, and thus the confi-
dence interval is rather inaccurate in this sense. See
Figure 11. The Clopper-Pearson interval is waste-
fully conservative and is not a good choice for prac-
tical use, unless strict adherence to the prescription
C(p, n) = 1-ais demanded. Even then, better exact
methods are available; see, for instance, Blyth and
Still (1983) and Casella (1986).
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4.2.2 The arcsine interval. Another interval is
based on a widely used variance stabilizing trans-
formation for the binomial distribution [see, e.g.,
Bickel and Doksum, 1977: T(p) = arcsin(p'/?)].
This variance stabilization is based on the delta
method and is, of course, only an asymptotic one.
Anscombe (1948) showed that replacing p by
P = (X + 3/8)/(n + 3/4) gives better variance
stabilization; furthermore

2n'/?[arcsin(p1/?) — arcsin(p'/?)] - N(0, 1)
as n — oQ.

This leads to an approximate 100(1—a)% confidence
interval for p,

Clye = [sin2(arcsin(ﬁ1/2) — lkn~12),
(11)
sin?(arcsin(p!/2) + %Kn—l/z)]’

See Figure 11 for the coverage probability of this
interval for n = 50. This interval performs reason-
ably well for p not too close to 0 or 1. The coverage
has steep downward spikes near the two edges; in
fact it is easy to see that the coverage drops to zero
when p is sufficiently close to the boundary (see
Figure 11). The mean absolute error of the coverage
of CI,,. is significantly larger than those of Cly,
CI 4c and CI ;. We note that our evaluations show
that the performance of the arcsine interval with
the standard p in place of p in (11) is much worse
than that of CI,,.

4.2.3 The logit interval. The logit interval is
obtained by inverting a Wald type interval for the
log odds A = log(7%;); (see Stone, 1995). The MLE
of A(for 0 < X < n)is

N D X
-in(525) - ()

which is the so-called empirical logit transform. The
variance of A, by an application of the delta theorem,
can be estimated by

= n
V= X(n—-X)

This leads to an approximate 100(1—a)% confidence
interval for A,

(12) CI(A) = [Ay, A ] = [A — k V2 R 4+ V2],

The logit interval for p is obtained by inverting the
interval (12),

el

etu
(13) Clpogis = [—1 T ]

The interval (13) has been suggested, for example,
in Stone (1995, page 667). Figure 11 plots the cov-
erage of the logit interval for n = 50. This interval
performs quite well in terms of coverage for p away
from O or 1. But the interval is unnecessarily long;
in fact its expected length is larger than that of the
Clopper—Pearson exact interval.

REMARK. Anscombe (1956) suggested that A =
log( ni{;i/lz/z) is a better estimate of A; see also Cox
and Snell (1989) and Santner and Duffy (1989). The

variance of Anscombe’s A may be estimated by

(n+1)(n+2)
n(X+)(n-X+1)

V=

A new logit interval can be constructed using the
new estimates A and V. Our evaluations show that
the new logit interval is overall shorter than CIy,.g;;
in (13). But the coverage of the new interval is not
satisfactory.

4.2.4 The Bayesian HPD interval. An exact
Bayesian solution would involve using the HPD
intervals instead of our equal-tails proposal. How-
ever, HPD intervals are much harder to compute
and do not do as well in terms of coverage proba-
bility. See Figure 11 and compare to the Jeffreys’
equal-tailed interval in Figure 5.

4.2.5 The likelihood ratio interval. Along with
the Wald and the Rao score intervals, the likeli-
hood ratio method is one of the most used methods
for construction of confidence intervals. It is con-
structed by inversion of the likelihood ratio test
which accepts the null hypothesis Hy: p = p, if
—2log(A,) < k2, where A, is the likelihood ratio

_ L) _ _ pFA-py¥
" sup,L(p) (X/n)*(1-X/n)y=X’

L being the likelihood function. See Rao (1973).
Brown, Cai and DasGupta (1999) show by analyt-
ical calculations that this interval has nice proper-
ties. However, it is slightly harder to compute. For
the purpose of the present article which we view as
primarily directed toward practice, we do not fur-
ther analyze the likelihood ratio interval.

4.3 Connections between Jeffreys Intervals
and Mid-P Intervals

The equal-tailed Jeffreys prior interval has some
interesting connections to the Clopper—Pearson
interval. As we mentioned earlier, the Clopper—
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Pearson interval CI,p can be written as
Clop =[B(a/2; X,n— X + 1),
B(l-a/2;X+1,n—- X)].

It therefore follows immediately that CI ; is always
contained in CIyp. Thus CI ; corrects the conserva-
tiveness of CIqp.

It turns out that the dJeffreys prior interval,
although Bayesianly constructed, has a clear and
convincing frequentist motivation. It is thus no sur-
prise that it does well from a frequentist perspec-
tive. As we now explain, the Jeffreys prior interval
CI; can be regarded as a continuity corrected
version of the Clopper—Pearson interval CIgp.

The interval CI¢p inverts the inequality P,(X <
L(p)) < a/2 to obtain the lower limit and similarly
for the upper limit. Thus, for fixed x, the upper limit
of the interval for p, Ucp(x), satisfies

(14) PUCP(JC)(X < QC) < 0[/2,

and symmetrically for the lower limit.

This interval is very conservative; undesirably so
for most practical purposes. A familiar proposal to
eliminate this over-conservativeness is to instead
invert

(15) P, (X < L(p)—1)+(1/2)P,(X =L(p))=a/2,
This amounts to solving
(1/2{ Py (X <x-1)
+ Pygp(X < %)} = a/2,
which is the same as
Upia-p(X) =(1/2)B(1 - a/2;x,n — x+ 1)
+(1/2)B(1 —a/2;x+1,n — x)

and symmetrically for the lower endpoint. These
are the “Mid- P Clopper-Pearson” intervals. They are
known to have good coverage and length perfor-
mance. U, ;4-p given in (17) is a weighted average
of two incomplete Beta functions. The incomplete
Beta function of interest, B(1 — «/2;x,n — x + 1), is
continuous and monotone in x if we formally treat
x as a continuous argument. Hence the average of
the two functions defining U,;4-p is approximately
the same as the value at the halfway point, x + 1/2.
Thus

Upiag-p(X)~*B(1-a/2;x+1/2,n—x+1/2)=U ;(x),

(16)

(7)

exactly the upper limit for the equal-tailed Jeffreys
interval. Similarly, the corresponding approximate
lower endpoint is the Jeffreys’ lower limit.

Another frequentist way to interpret the Jeffreys
prior interval is to say that U ;(x) is the upper

limit for the Clopper—Pearson rule with x — 1/2 suc-
cesses and L ;(x) is the lower limit for the Clopper—
Pearson rule with x + 1/2 successes. Strawderman
and Wells (1998) contains a valuable discussion of
mid- P intervals and suggests some variations based
on asymptotic expansions.

5. CONCLUDING REMARKS

Interval estimation of a binomial proportion is a
very basic problem in practical statistics. The stan-
dard Wald interval is in nearly universal use. We
first show that the performance of this standard
interval is persistently chaotic and unacceptably
poor. Indeed its coverage properties defy conven-
tional wisdom. The performance is so erratic and
the qualifications given in the influential texts
are so defective that the standard interval should
not be used. We provide a fairly comprehensive
evaluation of many natural alternative intervals.
Based on this analysis, we recommend the Wilson
or the equal-tailed Jeffreys prior interval for small
n(n < 40). These two intervals are comparable in
both absolute error and length for n < 40, and we
believe that either could be used, depending on
taste.

For larger n, the Wilson, the Jeffreys and the
Agresti—Coull intervals are all comparable, and the
Agresti—Coull interval is the simplest to present.
It is generally true in statistical practice that only
those methods that are easy to describe, remember
and compute are widely used. Keeping this in mind,
we recommend the Agresti—Coull interval for prac-
tical use when n > 40. Even for small sample sizes,
the easy-to-present Agresti—Coull interval is much
preferable to the standard one.

We would be satisfied if this article contributes
to a greater appreciation of the severe flaws of the
popular standard interval and an agreement that it -
deserves not to be used at all. We also hope that
the recommendations for alternative intervals will
provide some closure as to what may be used in
preference to the standard method.

Finally, we note that the specific choices of the
values of n, p and « in the examples and figures
are artifacts. The theoretical results in Brown, Cai
and DasGupta (1999) show that qualitatively sim-
ilar phenomena as regarding coverage and length
hold for general n and p and common values of
the coverage. (Those results there are asymptotic
as n — oo, but they are also sufficiently accurate
for realistically moderate n.)
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APPENDIX
TABLE A.1
95% Limits of the modified Jeffreys prior interval

x n="17 n=8 n=9 n=10 n=11 n=12

0 0 0.410 0 0.369 0 0.336 0 0.308 0 0.285 0 0.265
1 0 0.501 0 0.454 0 0.414 0 0.381 0 0.353 0 0.328
2 0.065 0.648 0.056 0.592 0.049 0.544 0.044 0.503 0.040 0.467 0.036 0.436
3 0.139 0.766 0.119 0.705 0.104 0.652 0.093 0.606 0.084 0.565 0.076 0.529
4 0.234 0.861 0.199 0.801 0.173 0.746 0.153 0.696 0.137 0.652 0.124 0.612
5 0.254 0.827 0.224 0.776 0.200 0.730 0.180 0.688
6 0.270 0.800 0.243 0.757
x n=13 n=14 n=15 n=16 n=17 n=18

0 0 0.247 0 0.232 0 0.218 0 0.206 0 0.195 0 0.185
1 0 0.307 0 0.288 0 0.272 0 0.257 0 0.244 0 0.232
2 0.033 0.409 0.031 0.385 0.029 0.363 0.027 0.344 0.025 0.327 0.024 0.311
3 0.070 0.497 0.064 0.469 0.060 0.444 0.056 0.421 0.052 0.400 0.049 0.381
4 0.114 0.577 0.105 0.545 0.097 0.517 0.091 0.491 0.085 0.467 0.080 0.446
5 0.165 0.650 0.152 0.616 0.140 0.584 0.131 0.556 0.122 0.530 0.115 0.506
6 0.221 0.717 0.203 0.681 0.188 0.647 0.174 0.617 0.163 0.589 0.153 0.563
7 0.283 0.779 0.259 0.741 0.239 0.706 0.222 0.674 0.207 0.644 0.194 0.617
8 0.294 0.761 0.272 0.728 0.254 0.697 0.237 0.668
9 0.303 0.746 0.284 0.716
x n=19 n=20 n=21 n=22 n=23 n=24

0 0 0.176 0 0.168 0 0.161 0 0.154 0 0.148 0 0.142
1 0 0.221 0 0.211 0 0.202 0 0.193 0 0.186 0 0.179
2 0.022 0.297 0.021 0.284 0.020 0.272 0.019 0.261 0.018 0.251 0.018 0.241
3 0.047 0.364 0.044 0.349 0.042 0.334 0.040 0.321 0.038 0.309 0.036 0.297
4 0.076 0.426 0.072 0.408 0.068 0.392 0.065 0.376 0.062 0.362 0.059 0.349
5 0.108 0.484 0.102 0.464 0.097 0.446 0.092 0.429 0.088 0.413 0.084 0.398
6 0.144 0.539 0.136 0.517 0.129 0.497 0.123 0.478 0.117 0.461 0.112 0.444
7 0.182 0.591 0.172 0.568 0.163 0.546 0.155 0.526 0.148 0.507 0.141 0.489
8 0.223 0.641 0.211 0.616 0.199 0.593 0.189 0.571 0.180 0.551 0.172 0.532
9 0.266 0.688 0.251 0.662 0.237 0.638 0.225 0.615 0.214 0.594 0.204 0.574
10 0.312 0.734 0.293 0.707 0.277 0.681 0.263 0.657 0.250 0.635 0.238 0.614
11 0.319 0.723 0.302 0.698 0.287 0.675 0.273 0.653
12 0.325 0.713 0.310 0.690
x n=25 n=26 n=27 n=28 n=29 n=30

0 0 0.137 0 0.132 0 0.128 0 0.123 0 0.119 0 0.116
1 0 0.172 0 0.166 0 0.160 0 0.155 0 0.150 0 0.145
2 0.017 0.233 0.016 0.225 0.016 0.217 0.015 0.210 0.015 0.203 0.014 0.197
3 0.035 0.287 0.034 0.277 0.032 0.268 0.031 0.259 0.030 0.251 0.029 0.243
4 0.056 0.337 0.054 0.325 0.052 0.315 0.050 0.305 0.048 0.295 0.047 0.286
5 0.081 0.384 0.077 0.371 0.074 0.359 0.072 0.348 0.069 0.337 0.067 0.327
6 0.107 0.429 0.102 0.415 0.098 0.402 0.095 0.389 0.091 0.378 0.088 0.367
7 0.135 0.473 0.129 0.457 0.124 0.443 0.119 0.429 0.115 0.416 0.111 0.404
8 0.164 0.515 0.158 0.498 0.151 0.482 0.145 0.468 0.140 0.454 0.135 0.441
9 0.195 0.555 0.187 0.537 0.180 0.521 0.172 0.505 0.166 0.490 0.160 0.476
10 0.228 0.594 0.218 0.576 0.209 0.558 0.201 0.542 0.193 0.526 0.186 0.511
11 0.261 0.632 0.250 0.613 0.239 0.594 0.230 0.577 0.221 0.560 0.213 0.545
12 0.295 0.669 0.282 0.649 0.271 0.630 0.260 0.611 0.250 0.594 0.240 0.578
13 0.331 0.705 0.316 0.684 0.303 0.664 0.291 0.645 0.279 0.627 0.269 0.610
14 0.336 0.697 0.322 0.678 0.310 0.659 0.298 0.641
15 0.341 0.690 0.328 0.672
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ness can cause havoc for much larger sample sizes
that one would expect. The popular (Wald) confi-
dence interval for a binomial parameter p has been
known for some time to behave poorly, but readers
will surely be surprised that this can happen for
such large n values.

Interval estimation of a binomial parameter is
deceptively simple, as there are not even any nui-
sance parameters. The gold standard would seem
to be a method such as the Clopper—Pearson, based
on inverting an “exact” test using the binomial dis-
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