1 Rademacher Averages

Recall that we are interested in bounding the difference between empirical and true expectations uniformly over some function class \(G \). In the context of classification or regression, we are typically interested in a class \(G \) that is the loss class associated with some function class \(F \). That is, given a bounded loss function \(\ell : \mathcal{D} \times \mathcal{Y} \to [0, 1] \), we consider the class

\[
\ell_F := \{ (x, y) \mapsto \ell(f(x), y) \mid f \in \mathcal{F} \}.
\]

Rademacher averages give us a powerful tool to obtain uniform convergence results. We begin by examining the quantity

\[
\mathbb{E} \left[\sup_{g \in G} \left(\mathbb{E} [g(Z)] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right) \right],
\]

where \(Z, \{Z_i\}_{i=1}^{m} \) are i.i.d. random variables taking values in some space \(Z \) and \(G \subseteq [a, b]^{Z} \) is a set of bounded functions. We will later show that the random quantity we are interested in, namely

\[
\sup_{g \in G} \left(\mathbb{E} [g(Z)] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right),
\]

will be close to the above expectation with high probability.

Let \(\epsilon_1, \ldots, \epsilon_m \) be i.i.d. \(\{\pm\}\)-valued random variables with \(\mathbb{P}(\epsilon_i = +1) = \mathbb{P}(\epsilon_i = -1) = 1/2 \). These are also independent of the sample \(Z_1, \ldots, Z_m \). Define the empirical Rademacher average of \(G \) as

\[
\hat{\mathcal{R}}_m(G) := \mathbb{E} \left[\sup_{g \in G} \frac{1}{m} \sum_{i=1}^{m} \epsilon_i g(Z_i) \mid Z_1^m \right].
\]

The Rademacher average of \(G \) is defined as

\[
\mathcal{R}_m(G) := \mathbb{E} \left[\hat{\mathcal{R}}_m(G) \right].
\]

Theorem 1.1. We have,

\[
\mathbb{E} \left[\sup_{g \in G} \left(\mathbb{E} [g(Z)] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right) \right] \leq 2\mathcal{R}_m(G).
\]

Proof. Introduce the ghost sample \(Z_1', \ldots, Z_m' \). By that we mean that \(Z_i' \)'s are independent of each other and of \(Z_i \)'s.
and have the same distribution as the latter. Then we have,

\[
\mathbb{E} \left[\sup_{g \in \mathcal{G}} \left(\mathbb{E}[g(Z)] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right) \right] = \mathbb{E} \left[\sup_{g \in \mathcal{G}} \left(\frac{1}{m} \sum_{i=1}^{m} \left(\mathbb{E}[g(Z)] - g(Z_i) \right) \right) \right] = \mathbb{E} \left[\sup_{g \in \mathcal{G}} \left(\frac{1}{m} \sum_{i=1}^{m} \left(g(Z'_i) - g(Z_i) \right) \right) \right] \leq \mathbb{E} \left[\sup_{g \in \mathcal{G}} \left(\frac{1}{m} \sum_{i=1}^{m} \epsilon_i (g(Z'_i) - g(Z_i)) \right) \right] = \mathbb{E} \left[\sup_{g \in \mathcal{G}} \left(\frac{1}{m} \sum_{i=1}^{m} \epsilon_i g(Z'_i) \right) \right] + \mathbb{E} \left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_i g(Z_i) \right] = 2 \mathcal{R}_m(\mathcal{G}).
\]

Since \(\mathcal{R}_m(-\mathcal{G}) = \mathcal{R}_m(\mathcal{G}) \), we have the following corollary.

Corollary 1.2. We have,

\[
\mathbb{E} \left[\sup_{g \in \mathcal{G}} \left(\frac{1}{m} \sum_{i=1}^{m} g(Z_i) - \mathbb{E}[g(Z)] \right) \right] \leq 2 \mathcal{R}_m(\mathcal{G}).
\]

Since \(g(X_i) \in [a, b] \),

\[
\sup_{g \in \mathcal{G}} \left(\mathbb{E}[g(Z)] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right)
\]

does not change by more than \((b - a)/m \) if some \(Z_i \) is changed to \(Z'_i \). Applying the bounded differences inequality, we get the following corollary.

Corollary 1.3. With probability at least \(1 - \delta \),

\[
\sup_{g \in \mathcal{G}} \left(\mathbb{E}[g(Z)] - \frac{1}{m} \sum_{i=1}^{m} g(Z_i) \right) \leq 2 \mathcal{R}_m(\mathcal{G}) + (b - a) \sqrt{\frac{\ln(1/\delta)}{2m}}
\]

Recall that we denote the empirical \(\ell \)-loss minimizer by \(\hat{f}^\ell \). We refer to \(L_\ell(\hat{f}^\ell) - \min_{f \in \mathcal{F}} L_\ell(f) \) as the estimation error. The next theorem bounds the estimation error using Rademacher averages.
2 Expected Regret

Now let us examine the expected regret of the empirical risk minimizer (e.g. analogous to the statistical risk). Let

$$\hat{g} = \arg\min_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} g(Z_i)$$

where τ is the training set and

$$g^* = \arg\min_{g \in \mathcal{G}} \mathbb{E}[g(Z)]$$

which is true minimizer.

Lemma 2.1. The expected regret is:

$$\mathbb{E}[\mathbb{E}[\hat{g}(Z)] - \mathbb{E}[g^*(Z)]] \leq 2\mathcal{R}_m(\mathcal{G}) + \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} g^*(Z_i) - \mathbb{E}[g^*(Z)]\right]$$

where the expectation is with respect \hat{g} (due to randomness in the training set).

Proof. Let \hat{g}

The expected regret is:

$$\mathbb{E}[\mathbb{E}[\hat{g}(Z)] - \mathbb{E}[g^*(Z)]] \leq \mathbb{E}\left[\mathbb{E}[\hat{g}(Z)] - \frac{1}{m} \sum_{i=1}^{m} \hat{g}(Z_i) + \frac{1}{m} \sum_{i=1}^{m} \hat{g}(Z_i) - \mathbb{E}[g^*(Z)]\right]$$

$$\leq \mathbb{E}\left[\mathbb{E}[\hat{g}(Z)] - \frac{1}{m} \sum_{i=1}^{m} \hat{g}(Z_i) + \frac{1}{m} \sum_{i=1}^{m} g^*(Z_i) - \mathbb{E}[g^*(Z)]\right]$$

$$\leq \mathbb{E}\left[\sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{g}(Z)] - \frac{1}{m} \sum_{i=1}^{m} \hat{g}(Z_i)\right)\right] + \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} g^*(Z_i) - \mathbb{E}[g^*(Z)]\right]$$

$$\leq 2\mathcal{R}_m(\mathcal{G}) + \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} g^*(Z_i) - \mathbb{E}[g^*(Z)]\right]$$

The final claim is straightforward. \square

3 Growth function

Consider the case $\mathcal{Y} = \{\pm 1\}$ (classification). Let ℓ be the 0-1 loss function and \mathcal{F} be a class of ± 1-valued functions. We can relate the Rademacher average of $\ell_{\mathcal{X}}$ to that of \mathcal{F} as follows.

Lemma 3.1. Suppose $\mathcal{F} \subseteq \{\pm 1\}^X$ and let $\ell(y', y) = 1[y' \neq y]$ be the 0-1 loss function. Then we have,

$$\mathcal{R}_m(\ell_{\mathcal{X}}) = \frac{1}{2} \mathcal{R}_m(\mathcal{F}).$$

3
Proof. Note that we can write \(\ell(y', y) \) as \((1 - yy')/2\). Then we have,

\[
\mathcal{R}_m(\ell_{\mathcal{F}}) = \mathbb{E} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \epsilon_i \frac{1 - Y_i f(X_i)}{2} \right] X_{1}^m, Y_{1}^m
\]

\[= \mathbb{E} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \epsilon_i Y_i f(X_i) \right] X_{1}^m, Y_{1}^m \quad (1)\]

\[= \frac{1}{2} \mathbb{E} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m (-\epsilon_i Y_i) f(X_i) \right] X_{1}^m, Y_{1}^m \]

\[= \frac{1}{2} \mathbb{E} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \epsilon_i f(X_i) \right] X_{1}^m, Y_{1}^m \quad (2)\]

\[= \frac{1}{2} \mathcal{R}_m(\mathcal{F}).\]

Equation (1) follows because \(\mathbb{E} [\epsilon_i | X_{1}^m, Y_{1}^m] = 0 \). Equation (2) follows because \(-\epsilon_i Y_i \)'s jointly have the same distribution as \(\epsilon_i \)'s.

Note that the Rademacher average of the class \(\mathcal{F} \) can also be written as

\[
\mathcal{R}_m(\mathcal{F}) = \mathbb{E} \left[\sup_{a \in \mathcal{F}|_{X_{1}^m}} \frac{1}{m} \sum_{i=1}^m \epsilon_i a_i \right],
\]

where \(\mathcal{F}|_{X_{1}^m} \) is the function class \(\mathcal{F} \) restricted to the set \(X_1, \ldots, X_m \). That is,

\[
\mathcal{F}|_{X_{1}^m} := \{ (f(X_1), \ldots, f(X_m)) | f \in \mathcal{F} \}.
\]

Note that \(\mathcal{F}|_{X_{1}^m} \) is finite and

\[
|\mathcal{F}|_{X_{1}^m} | \leq \min\{|\mathcal{F}|, 2^m\}.
\]

Thus we can define the growth function as

\[
\Pi_{\mathcal{F}}(m) := \max_{x_{1}^m \in \mathbb{R}^m} |\mathcal{F}|_{X_{1}^m} |.
\]

The following lemma due to Massart allows us to bound the Rademacher average in terms of the growth function.

Lemma 3.2. *(Finite Class Lemma)* Let \(\mathcal{A} \) be some finite subset of \(\mathbb{R}^m \) and \(\epsilon_1, \ldots, \epsilon_m \) be independent Rademacher random variables. Let \(r = \sup_{a \in \mathcal{A}} \|a\| \). Then, we have,

\[
\mathbb{E} \left[\sup_{a \in \mathcal{A}} \frac{1}{m} \sum_{i=1}^m \epsilon_i a_i \right] \leq r \frac{\sqrt{2 \ln |\mathcal{A}|}}{m}.
\]

Proof. Let

\[
\mu = \mathbb{E} \left[\sup_{a \in \mathcal{A}} \sum_{i=1}^m \epsilon_i a_i \right].
\]
We have, for any $\lambda > 0$,

$$e^{\lambda \mu} \leq \mathbb{E} \left[\exp \left(\lambda \sup_{a \in A} \sum_{i=1}^{m} \epsilon_i a_i \right) \right]$$

Jensen's inequality

$$= \mathbb{E} \left[\sup_{a \in A} \exp \left(\lambda \sum_{i=1}^{m} \epsilon_i a_i \right) \right]$$

$$\leq \mathbb{E} \left[\sum_{a \in A} \exp \left(\lambda \sum_{i=1}^{m} \epsilon_i a_i \right) \right]$$

$$= \sum_{a \in A} \mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{m} \epsilon_i a_i \right) \right]$$

$$= \sum_{a \in A} \prod_{i=1}^{m} \mathbb{E} \left[\exp \left(\lambda \epsilon_i a_i \right) \right]$$

$$\leq \sum_{a \in A} \prod_{i=1}^{m} e^{\lambda^2 a_i^2 / 2} \quad \because \text{Hoeffding's lemma}$$

$$= \sum_{a \in A} e^{\lambda^2 \|a\|^2 / 2}$$

$$\leq |A| e^{\lambda^2 r^2 / 2}$$

Taking logs and dividing by λ, we get that, for any $\lambda > 0$,

$$\mu \leq \ln |A| \frac{1}{\lambda} + \frac{\lambda r^2}{2}.$$

Setting $\lambda = \sqrt{2 \ln |A| / r^2}$ gives,

$$\mu \leq r \sqrt{2 \ln |A|},$$

which proves the lemma. \qed