1 Boosting

For the case where γ is known, we now present the boosting algorithm. The algorithm enjoys the following performance guarantee:

Algorithm 1 Boosting

Input parameters: γ, T

1. Initialize $w_1 \leftarrow \frac{1}{T}$
2. for $t = 1$ to T do
 - Call γ-WeakLearner with distribution w_t, and receive hypothesis $h_t : X \rightarrow [-1, 1]$.
 - Set $l_{t,i} = 1 - \frac{|h_t(x_i) - y_i|}{2}$
 - and update the weights $w_{t+1,i} = \frac{w_{t,i} e^{-\frac{2l_{t,i}}{Z}}}{Z}$, $Z = \sum_{i} w_{t,i} e^{-\frac{2l_{t,i}}{Z}}$
3. end for

OUTPUT the ‘majority vote’ hypothesis:

$$h(x) = \text{sgn} \left(\frac{1}{T} \sum_{t=1}^{T} h_t(x) \right)$$

Theorem 1.1. Let h be the output hypothesis of Boosting. Let M be the set of mistakes on the training set, i.e. $M = \{i : h(x_i) \neq y_i\}$. We have:

$$\frac{|M|}{m} \leq e^{-T\gamma^2/4}$$

Proof. We will appeal to the guarantee of our experts algorithm. For any w^*, we have that:

$$\sum_{t=1}^{T} w_t \cdot l_t \leq \sum_{t=1}^{T} w^* \cdot l_t + \frac{2KL(w^*||w_1)}{\gamma} + \frac{\gamma}{2} T$$

where we have used that $\eta = \gamma/2$ in boosting.

By the definition of weak learning, we have:

$$w_t \cdot l_t = 1 - \sum_{i} w_{t,i} \frac{|h_t(x_i) - y_i|}{2} \geq \frac{1}{2} + \gamma$$
for all t. So we have:

$$T\left(\frac{1}{2} + \gamma\right) \leq \sum_{t=1}^{T} w^* \cdot l_t + \frac{2KL(w^*||w_1)}{\gamma} + \frac{\gamma T}{2}$$

Rearranging:

$$\frac{T}{2} + T\gamma \leq \sum_{t=1}^{T} w^* \cdot l_t + \frac{2KL(w^*||w_1)}{\gamma}$$

which holds for all probability distributions w^*.

We will now choose w^* to be uniform over the set M. For $i \in M$, we know

$$\frac{|y_i - \frac{T}{2} \sum_{t=1}^{T} h_t(x_i)|}{2} \geq \frac{1}{2}$$

Hence, for $i \in M$

$$\frac{1}{T} \sum_{t=1}^{T} l_{t,i} = 1 - \frac{1}{T} \sum_{t=1}^{T} \frac{|y_i - h_t(x_i)|}{2} = 1 - \frac{|y_i - \frac{T}{2} \sum_{t=1}^{T} h_t(x_i)|}{2} \leq \frac{1}{2}$$

Hence,

$$\sum_{t=1}^{T} w^* \cdot l_t \leq \frac{T}{2}$$

Hence, we have that:

$$\frac{T}{2} + \frac{T\gamma}{2} \leq \frac{T}{2} + \frac{2\log(m/|M|)}{\gamma}$$

where we have used the definition of the KL distance with the uniform distribution. Rearranging completes the proof.

\[\square\]

2 L1 Margins and Weak Learning

While it may seem that the weak learning assumption is rather mild, we now show that it is considerably stronger than what one might initially think. In particular, the weak learning assumption is equivalent to a separability assumption.

We say that we have a γ-weak learner if for every distribution w over the training set, we can find a hypothesis $h : X \rightarrow [-1, 1]$ such that:

$$\sum_{i=1}^{m} w_i |h(x_i) - y_i| \leq \frac{1}{2} - \gamma$$

which is equivalent to the condition

$$\sum_{i=1}^{m} w_i y_i h(x_i) \geq 2\gamma$$

which is straightforward to show since $|h(x_i) - y_i| = 1 - y_i h(x_i)$

Let us assume that we have a set of hypothesis

$$\mathcal{H} = \{h_1(\cdot), h_2(\cdot), \ldots h_k(\cdot)\}$$

such that if h is in this set then $-h$ is in this set. Also assume that our weak learning assumption holds with respect to this set of hypothesis, meaning that the output of our weak learning always lies in this set \mathcal{H}. Note then that our final prediction will be of the form:

$$h_{\text{output}}(x) = \sum_{j=1}^{k} w_j h_j(x)$$
where \(w \) is a weight vector.

Define the matrix \(A \) such that:

\[
A_{i,j} = y_i h_j(x_i) .
\]

so \(A \) is an \(m \times k \). Letting \(S \) denote the \(n \)-dimensional simplex, the weak \(\gamma \)-learning assumption can be stated as follows:

\[
2\gamma \leq \min_{p \in S} \max_{j \in [k]} \sum_{i=1}^{m} p_i y_i h_j(x_i) = \min_{p \in S} \max_{j \in [k]} \left| \sum_{i=1}^{m} p_i A_{i,j} \right| = \min_{p \in S} \max_{j \in [k]} \left| p^T A j \right|
\]

where \(\gamma \geq 0 \) and we have stated the assumption in matrix notation, in terms of \(A \).

Now let \(B_1 \) denote the \(L_1 \) ball of dimension \(k \). We can say that our data-set \(A \) is linearly separable with \(L_1 \) margin \(\alpha \geq 0 \) if:

\[
\alpha \leq \max_{w \in B_1} \min_{i \in [m]} \left(\sum_{j=1}^{k} w_j h_j(x_i) \right) = \max_{w \in B_1} \min_{i \in [m]} [Aw]_i
\]

Theorem 2.1. \(A \) is \(\gamma \) weak learnable if and only if \(A \) is linearly separable with \(L_1 \) margin \(2\gamma \).

Proof. Using the minimax theorem:

\[
\min_{p \in S} \max_{j \in [k]} \left| p^T A j \right| = \min_{w \in B_1} \max_{p \in S} p^T Aw = \max_{w \in B_1} \min_{p \in S} p^T Aw = \max_{w \in B_1} \min_{i \in [m]} [Aw]_i
\]

which completes the proof.

3 AdaBoost

AdaBoost (Adaptive Boosting) is for the case where the parameter \(\gamma \) is not known. The algorithm adapts to the performace of the weak learner.
Algorithm 2 AdaBoost

Input parameters: T

Initialize $w_1 \leftarrow \frac{1}{m} 1$

for $t = 1$ to T do

Call γ-WeakLearner with distribution w_t, and receive hypothesis $h_t : X \rightarrow [-1, 1]$.

Calculate the error
$$\gamma_t = \frac{1}{2} - \sum_{i=1}^{m} w_{t,i} \frac{|h(x_i) - y_i|}{2}$$

Set
$$\beta_t = \frac{1}{2} - \gamma_t, \quad l_{t,i} = 1 - \frac{|h_t(x_i) - y_i|}{2}$$

and update the weights
$$w_{t+1,i} = \frac{w_{t,i} \beta_{t,i}^l}{Z_t}, \quad Z_t = \sum_i w_{t,i} \beta_{t,i}^l$$

end for

OUTPUT the hypothesis:
$$h(x) = \text{sgn} \left(\sum_{t=1}^{T} \left(\log \frac{1}{\beta_t} \right) h_t(x) \right)$$

AdaBoost enjoys the following performance guarantee:

Theorem 3.1. Let h be the output hypothesis of AdaBoost. Let M be the set of mistakes on the training set, i.e. $M = \{i : h(x_i) \neq y_i\}$. We have:
$$\frac{|M|}{m} \leq \prod_{t=1}^{T} \frac{1}{1 - 4\gamma_t^2} \leq e^{-2\sum_{t=1}^{T} \gamma_t^2}$$

Proof. We first bound the normalizing constant Z_t using $\beta^x \leq 1 - (1 - \beta)x$ for any $x \in [0, 1]$,
$$Z_t = \sum_{i=1}^{m} w_{t,i} \beta_{t,i}^l \leq \sum_{i=1}^{m} w_{t,i} \left(1 - (1 - \beta_t)l_{t,i} \right) = 1 - (1 - \beta_t) \left(\frac{1}{2} + \gamma_t \right). \tag{1}$$

Next we observe that
$$w_{T+1,i} = w_{1,i} \prod_{t=1}^{T} \beta_{t,i}^l / \prod_{t=1}^{T} Z_t. \tag{2}$$

If the output hypothesis h makes a mistake on example i, then
$$y_i \left(\sum_{t=1}^{T} \left(\log \frac{1}{\beta_t} \right) h_t(x_i) \right) \leq 0.$$

Since $y_i \in \{-1, +1\}$, this implies, for all $i \in M$,
$$\prod_{t=1}^{T} \beta_{t}^{l \cdot \frac{|h_t(x_i) - y_i|}{2}} \geq \left(\prod_{t=1}^{T} \beta_t \right)^{1/2}. \tag{3}$$
Combining (2) and (3), we get

\[
\sum_{i=1}^{m} w_{T+1,i} \prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} Z_t \\
= \sum_{i=1}^{m} w_{1,i} \prod_{t=1}^{T} \beta_{t,i} \\
\geq \sum_{i \in M} w_{1,i} \left(\prod_{t=1}^{T} \beta_{t,i} \right)^{1/2} = \frac{|M|}{m} \left(\prod_{t=1}^{T} \beta_{t,i} \right)^{1/2}.
\]

Rearranging, this gives,

\[
\frac{|M|}{m} \leq \prod_{t=1}^{T} \frac{Z_t}{\sqrt{\beta_t}}.
\]

Combining this with (1), we get

\[
\frac{|M|}{m} \leq \prod_{t=1}^{T} \frac{(1 - (1 - \beta_t)(1/2 + \gamma_t))}{\sqrt{\beta_t}}.
\]

Now substituting \(\beta_t = (1/2 - \gamma_t)/(1/2 + \gamma_t) \) proves the theorem. \(\square \)